
Combustion and Flame 260 (2024) 113252

A
0

h
R

Contents lists available at ScienceDirect

Combustion and Flame

journal homepage: www.sciencedirect.com/journal/combustion-and-flame

A novel machine learning based lumping approach for the reduction of large
kinetic mechanisms for plasma-assisted combustion applications
Georgios Rekkas-Ventiris a,b,∗, Alfredo Duarte Gomez c, Nicholas Deak c,e, Nicholas Kincaid d,
Perrine Pepiot d, Fabrizio Bisetti c, Aurélie Bellemans a,b
a Faculty of Engineering, Thermo and Fluid dynamics (FLOW), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
b Brussels Institute for Thermal-fluid systems and clean Energy (BRITE), Vrije Universiteit Brussel (VUB) and Université Libre de Bruxelles (ULB), Belgium
c Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712, USA
d Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
e National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA

A R T I C L E I N F O

Keywords:
Plasma-assisted combustion
Kinetics reduction
P-DRGEP
Isomer lumping
Machine learning

A B S T R A C T

The development of skeletal mechanisms has become essential for multi-dimensional simulations of plasma-
assisted combustion (PAC). However, reduction tools developed for traditional combustion applications are
not always applicable to PAC, due to the complex interplay between non-equilibrium plasma and combustion
kinetics. Plasma direct relation graph with error propagation (P-DRGEP) is a recent plasma-specific reduction
method developed in order to incorporate plasma energy branching in the reduction. In the first part of this
work, the applicability of P-DRGEP to large kinetic mechanisms is investigated. A detailed isooctane/air plasma
mechanism containing 2805 species and 18457 reactions is reduced to 415 species and 4716 reactions, keeping
errors on ignition time within 3% for a wide range of initial conditions: from 750 K to 1200 K, 10 atm and
equivalence ratios from 0.75 to 1.50. The second part focuses on isomer lumping, which is another reduction
technique widely used in combustion. When applied to PAC, it is shown that the resulting lumped mechanism
produces poor results. A novel plasma-specific isomer lumping strategy using machine learning is proposed
instead. With the supervised algorithm of gradient boosting, predictive regression models are generated, which
describe rate coefficients of lumped reactions adequately. These models are trained with simulation data.
Leveraging this newly proposed lumping approach on the reduced mechanism, allows for an additional 28%
reduction in the number of species and 19% reduction in the number of reactions. Two different versions are
presented: in the first one the models are trained using one input feature (1D), while in the second one, two
input features are selected (2D). The resulting lumped mechanism is shown to produce accurate predictions
of PAC over the entire parameter space of interest, while significantly decreasing the computational time.
Indicatively, with the 1D version the maximum error on ignition time in this range of conditions is 6%. The
2D approach produces even lower errors, which do not exceed 3%.

Novelty and significance statement
In this work, a novel approach for isomer lumping, in plasma-assisted combustion mechanisms, is

demonstrated. This plasma-specific approach, uses predictive machine learning regression models to describe
the complex evolution of lumped reaction rate coefficients. Combining it with the plasma direct relation graph
with error propagation, a powerful reduction framework is created, which is successfully demonstrated on a
detailed isooctane/air plasma kinetic mechanism, via zero-dimensional ignition simulations. This framework
constitutes a useful tool towards the creation of highly accurate skeletal mechanisms, which significantly reduce
the computational costs of simulations.
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1. Introduction

The enhancement of combustion with various forms of plasma
offers significant advantages related to the shortening of ignition time,
increase of flame speed and extension of extinction and flammability
limits [1–5]. Detailed overviews of applications, which range from
internal combustion to hypersonic ramjet engines, can be found in [6,
7].

Non-equilibrium (or low-temperature) plasma in particular, where
the temperature of electrons 𝑇𝑒 is much higher than the temperature
f heavy particles (atoms, molecules, ions), has been a topic of great
nterest. Its use for robust ignition and stable flames has been proved
o be promising [8].
Significant efforts have been made to gain a better understanding

n the complex processes by which non-equilibrium plasmas affect
ombustion, using experiments [9–11] and numerical modeling [12,
3]. Numerical simulations facilitate the exploration of plasma-assisted
ombustion (PAC) regimes in various initial conditions, that would be
ifficult and expensive to analyze experimentally. However, simula-
ions using detailed reaction kinetic mechanisms are computationally
emanding, due to the increased number of species and reactions
rought by the need to describe plasma kinetics in addition to oxidation
hemistry [14].
The development of reduced order models has therefore become
necessity. Such models are less stiff and enable two- and three-
imensional computational fluid dynamics (CFD) simulations [15].
everal methods have been applied with success for the reduction of
ombustion mechanisms without plasma. They are often organized in
he following three categories [16]:

• Dimension reduction. Computational singular perturbation
(CSP) studies the dynamics of a system on the slow manifold
and was originally developed for methane and hydrogen combus-
tion [17]. It was later also used for n-heptane/air mixtures [18]
and non-premixed flames [19]. Quasi-steady-state approximation
(QSSA) is another powerful reduction method, in which the
change of concentration in time is set equal to zero, for species
whose consumption rate is much faster than their production
rate. QSSA is often used in combination with other methods, as
an extra reduction step [20,21]. Principal component analysis
(PCA) projects the original state-space on a small set of variables.
Indicatively, it has been used for synthetic gas combustion [22]
and reacting flows modeling [23].

• Elimination. Here, unimportant species and reactions are re-
moved from the detailed mechanism. Sensitivity [24] and flux
analysis [25] can help identify negligible species and reactions.
In graph-based methods, the chemical system can be seen as a
graph with nodes and edges. The nodes represent species and the
edges quantify the strength of the coupling between the nodes.
Direct relation graph (DRG), based on production rate analysis,
was firstly applied for the reduction of an ethylene oxidation
mechanism [26]. DRG with error propagation (DRGEP) allows for
a finer selection of species, by taking into account the damping
of the influence of a node to the user-defined target, as it propa-
gates along the graph. DRGEP capabilities were demonstrated by
reducing an isooctane oxidation mechanism [27].

• Lumping. This category is based on linear or nonlinear transfor-
mations on either the mathematical equations or the chemistry
governing a mechanism. In isomer lumping, species with similar
composition are grouped together and they are represented by a
new single pseudo-species. N-heptane and n-dodecane oxidation
mechanisms have been reduced with the help of isomer lumping
[28–30].

In the recent years, there have been efforts to apply these well-
nown methods to PAC. For example, PCA was used to reduce a zero-
imensional carbon dioxide plasma model [31], a collisional-radiative
rgon plasma model [32], and PAC mechanisms [33].
2

t

A plasma-specific extension to the DRGEP method, which we called
lasma DRGEP (P-DRGEP), was developed by some of the authors [34].
n P-DRGEP, variables that track energy transfer are used in addition
o traditional combustion targets. In this manner, plasma kinetics are
aken into account during reduction and important plasma-specific
athways are retained in the reduced mechanisms. Its advantage over
RGEP, especially in preserving energy branching characteristics, was
emonstrated by reducing an ethylene-air plasma mechanism: start-
ng from 163 species and 1167 reactions, a skeletal mechanism of
4 species and 236 reactions was developed with low errors on the
rediction of time to ignition and electron energy [34].
Firstly, the present work investigates the applicability of P-DRGEP

o larger, more complex fuels that exhibit complex low temperature
hemistry, with isooctane as an initial case study, in the framework
f zero-dimensional simulations for PAC using nanosecond pulsed dis-
harges (NSPD).
After the initial reduction with P-DRGEP, isomer lumping is pursued

n order to reduced the size of the mechanism further. In this context,
he limitations of conventional low-temperature isomer lumping when
pplied to PAC are characterized and found inadequate. Due to its
nability to capture the dynamics of the majority of lumped reactions,
plasma-specific isomer lumping strategy is proposed. The novel ap-
roach is based on data-driven science and uses machine learning
n order to create predictive regression models, which capture rate
oefficients of lumped reactions accurately. This novel approach to
umping is used as part of a hierarchical framework after the initial
eduction of the detailed plasma-combustion mechanism by P-DRGEP.

. Isooctane/air plasma mechanism: physical modeling and de-
ailed simulation

Isooctane (C8H18, 2,2,4-trimethylpentane) is chosen here as a case
tudy, since it is widely used as a primary reference fuel for gasoline in
ombustion modeling [35].
In order to assemble the isooctane/air plasma mechanism, the

ollowing two mechanisms are combined: a detailed chemical kinetic
odel for isooctane combustion, which was recently updated and vali-
ated against experimental data [36] and a plasma reaction model [37].
he latter has also been used in zero-dimensional ignition studies for
ethane/air and ethylene/air plasma mixtures [38]. Once combined,
he detailed plasma-combustion mechanism features 2805 species and
8457 reactions (S2805R18457), counting forward and reverse reac-
ions separately.
The ignition of the isooctane/air plasma mixture is simulated in a

ero-dimensional isochoric and adiabatic reactor, thus neglecting any
ransport effects. For a more accurate representation of the ignition pro-
ess, a more complex and higher order system should be investigated
e.g., perfectly stirred reactor) [39]. By representing electrons with the
ubscript 𝑒 and all the other particles with 𝑝, the evolution of the molar
concentration of each species in time is be described by the following
system of ordinary differential equations (ODEs):
𝑑𝑐𝑒
𝑑𝑡

= 𝜔𝑒, (1)

𝑑𝑐𝑖
𝑑𝑡

= 𝜔𝑖. 𝑖 ≠ 𝑒 (2)

In the above, 𝜔 is the molar production rate. Similarly, the evolution
of the two temperatures present in the model can be computed via the
ODEs for energy conservation:

𝐶𝑣𝑒𝑐𝑒
𝑑𝑇𝑒
𝑑𝑡

= −𝜔𝑒𝑢𝑒 +𝑄𝑒𝑙 +𝑄𝑖𝑥 +𝑄𝑟𝑒 +𝑄𝐸 , (3)

∑

𝑖≠𝑒
𝐶𝑣𝑖𝑐𝑖

𝑑𝑇
𝑑𝑡

= −
∑

𝑖≠𝑒
𝜔𝑖𝑢𝑖 −𝑄𝑒𝑙 −𝑄𝑖𝑥 −𝑄𝑟𝑒. (4)

𝐶𝑣 is the specific heat and 𝑢 is the molar internal energy. 𝑄𝑒𝑙 describes
he elastic energy exchanges, 𝑄 is the energy lost by the electrons due
𝑖𝑥
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Table 1
Discharge characteristics used for the ignition of the isooctane/air plasma mixture.
Number of pulses in each burst 8
Pulse frequency, 𝑓 [kHz] 100
Single pulse peak power density, 𝑃 [MW/cm3] 20
FWHM of each pulse [ns] 30
Energy density per pulse, 𝑊 [J/cm3] 0.64

Fig. 1. Temporal evolution of gas temperature and various species for a C8H18/air
plasma mixture. Simulation with the detailed mechanism (S2805R18457) at 𝑇0 = 750
K, 𝑝0 = 10 atm, 𝜙 = 1.0.

to ionization, dissociation and excitation and 𝑄𝑟𝑒 is the energy lost by
the electrons through recombination processes. Consecutive NSPD with
pulse frequency 𝑓 excite the mixture until ignition is reached. Each
pulse is Gaussian and therefore the power deposited by the discharge
per unit volume 𝑄𝐸 is described by the following equation:

𝑄𝐸 (𝑡) =
𝐸

𝜎
√

2𝜋
exp

(

−1
2
(𝑡 − 𝜇)2

𝜎2

)

. (5)

is the time of peak power, 𝐸 is the energy density per pulse and 𝜎 is
he pulse width related to the full-width-half-max FWHM = 2

√

2ln2𝜎.
he discharge characteristics of the pulses used in the simulations are
ummarized in Table 1.
An in-house computer program called PACMAN is used for the

imulations [33,34,38]. PACMAN utilizes CVODE in order to solve
he system of ODEs, as formulated in Eqs. (1)–(4) [40]. The thermo-
chemical characteristics of the system are assessed and the necessary
computations (e.g., reaction rate coefficients) are performed using the
CHEMKIN library [41].

During a pulse, electrons reach a peak mean energy. This energy
is then gradually lost through collisions with heavy particles. Consec-
utively, excited species are formed, mainly driven by electron impact
reactions. The new pathways contribute to the production of primary
combustion radicals O, OH and H, which are important for the fuel
breakdown. Pulse after pulse, the gas temperature 𝑇 increases, together
with the concentration of CO and CO2. A more detailed description of
the ignition is given in Refs. [38,42].

In order to provide an overview of a plasma-assisted ignition of the
isooctane/air mixture, the reactor is initialized at temperature 𝑇0 = 750
K, pressure 𝑝0 = 10 atm, and equivalence ratio 𝜙 = 1.0. The temporal
volution of key species, is shown in Fig. 1. At every pulse there is
rapid increase (1–10) ns in the concentration of O, followed by a
lower decay (100–1000) ns. The same behavior is observed for the two
ther main combustion radicals, OH and O (not shown in Fig. 1). In the
eantime, as C8H18 is consumed, the concentration of CO2 increases

and so does the gas temperature 𝑇 . The instant when the rate of change
n the concentration of CO2 is maximum designates the time of ignition
∗. Time to ignition 𝜏𝑖𝑔 is then defined as the time interval between

∗ ∗
3

he first pulse 𝑡1 and ignition 𝑡 : 𝜏𝑖𝑔 = 𝑡 − 𝑡1. For the specific detailed a
simulation under examination, it is evident that ignition is reached after
8 pulses at 𝑡∗ ≃ 80 μs.

3. Isomer lumping using machine learning: motivation and
methodology

During oxidation of large hydrocarbon fuel molecules, several re-
actions lead to the formation of functional isomers: species with the
same composition (same number of atoms of each element), but dif-
ferent arrangement of atoms. In lumping, they are grouped together
into a lumped group and they are thereafter represented by a single
pseudo-species.

The relative distribution 𝛼 of each isomer 𝑚 with respect to its
lumped group 𝑙 is defined as:

𝛼𝑚,𝑙 =
𝑐𝑚
𝑐𝑙

, (6)

where 𝑐 denotes molar concentration. For a lumped group consisting
of a total number of isomers 𝑁𝑚, the concentration of the new lumped
species is equal to the sum of concentrations of isomers in the group:

𝑐𝑙 =
𝑁𝑚
∑

𝑚=1
𝑐𝑚. (7)

After substituting all isomers to be lumped in the mechanism with
their corresponding pseudo-species, groups of reactions with identical
equations will be formed. These reactions are lumped together as well.
For a group of 𝑁𝑟 elementary reactions, the forward reaction rate of
the newly created lumped reaction 𝑟𝐿 has to be equal to the sum of the
forward reaction rates of the individual reactions to be lumped 𝑟𝑗 :

𝑟𝐿 =
𝑁𝑟
∑

𝑗=1
𝑟𝑗 . (8)

For elementary reactions, the concentrations of reactants that are not
isomers cancel out, so Eq. (8) becomes:

𝑘𝐿𝑐
𝜈𝑙
𝑙 =

𝑁𝑟
∑

𝑗=1
(𝑘𝑗

𝑁𝑚
∏

𝑚=1
𝑐
𝜈𝑚,𝑗
𝑚 ), (9)

where 𝑘𝑗 is the reaction rate coefficient of reaction 𝑗, 𝜈𝑚,𝑗 is the stoichio-
metric coefficient of isomer 𝑚 in reaction 𝑗 and 𝜈𝑙 is the stoichiometric
coefficient of the lumped isomer in the lumped reaction (𝜈𝑚,𝑗 = 𝜈𝑙).
Solving Eq. (9) for the reaction rate coefficient of the lumped reaction
𝑘𝐿, using Eq. (7) :

𝑘𝐿 =
𝑁𝑟
∑

𝑗=1
(𝑘𝑗

𝑁𝑚
∏

𝑚=1
𝛼
𝜈𝑚,𝑗
𝑚,𝑙 ), (10)

In conventional combustion, various isomer lumping approaches
differ on the manner in which 𝛼𝑚,𝑙 and therefore 𝑘𝐿 are approxi-
mated [28,30,43,44]. Some of these approaches were compared in
Ref. [45], with respect to the accuracy in the prediction of the ig-
nition delay time of an isooctane oxidation mechanism. In the same
work [45], a more accurate isomer lumping strategy was proposed.
Specifically, data for the isomer distributions 𝛼𝑚,𝑙 were gathered from
simulations of the detailed mechanism and it was assumed that 𝑘𝐿
can be parameterized as a temperature-dependent analytical function.
Using least-square regression, values of 𝑘𝐿, calculated as in Eq. (10),
were fitted to an Arrhenius-like expression:

𝑓 (𝑇 ) = 𝐴𝑇 𝑏𝑒−
𝐸
𝑅𝑇 . (11)

n the above, 𝑅 is the universal gas constant. After fitting, the re-
ulting values for the unknowns 𝐴, 𝑏 and 𝐸 will be used as the new
re-exponential factor, temperature exponent and activation energy,
espectively.
In PAC however, not all lumped reaction rate coefficients are well

pproximated by an exponential function. In the isooctane/air plasma
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Fig. 2. Evolution and fit Eq. (11) of reaction rate coefficient of lumped reaction (16), as a function of gas temperature. Detailed simulations at 𝑇0 = 750 K, 𝑝0 = 10 atm, 𝜙 = 1.0
(a) without plasma and (b) with plasma generated by pulsed discharges.
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mechanism under investigation, for example, the following 4 reactions
are difficult to be lumped and fit with exponentials:

AC8H17 + O2
𝑘1
⟶ AC8H17O2 (12)

BC8H17 + O2
𝑘2
⟶ BC8H17O2 (13)

CC8H17 + O2
𝑘3
⟶ CC8H17O2 (14)

DC8H17 + O2
𝑘4
⟶ DC8H17O2, (15)

with 𝑘1 ≠ 𝑘2 ≠ 𝑘3 ≠ 𝑘4. They are lumped into a single reaction:

C8H17(L) + O2
𝑘𝐿
⟶ C8H17O2(L). (16)

To highlight the difference in the evolution of 𝑘𝐿 when it comes to PAC,
two simulations are performed with the detailed isooctane/air plasma
mechanism (S2805R18457): one using NSPD with the characteristics
described in Table 1 and another one without NSPD. The theoretical
values of 𝑘𝐿 are calculated from the output data of the simulations. As
apparent in Fig. 2(b), in the absence of plasma, the evolution of 𝑘𝐿 as
a function of gas temperature is adequately described by Eq. (11) in
he low temperature region. The inaccurate fit at higher temperatures
𝑇 > 1000 K) has a negligible impact on the accuracy of the lumping
ethod [45]. In the simulation with plasma however, there are peaks
n the evolution of 𝑘𝐿, even at low temperatures and an Arrhenius
quation is clearly inappropriate. These peaks, which are due to plasma
ulses, appear in the evolution of the relative distributions of isomers
𝑚,𝑙 and also affect 𝑘𝐿, since these two quantities are related via
q. (10).
Indeed, lumping the detailed mechanism with NSPD just by fitting

ll resulting lumped forward reaction rate coefficients to Eq. (11),
roduces a lumped mechanism with very low accuracy. This is evident
n Fig. 3, where neither the gas temperature nor the fuel breakdown
re approximated accurately by the lumped mechanism. Consequently,
he error on the prediction of time to ignition in this case is above 12%.

The inadequacy of Eq. (11) in describing the dependence of 𝑘𝐿
rom temperature is the motivation behind the pursuit of a novel
lasma-specific isomer lumping strategy.
To this end, machine learning is employed to build predictive

egression models. In particular, we adopt gradient boosting, which is
well-known supervised machine learning method, widely used both
n classification and regression problems. ‘‘Boosting’’ refers to the idea
f modifying a weak learner for improved accuracy [46]. ‘‘Gradient’’
mplies the use of gradient descent to minimize a loss function [47].
radient boosting [48,49], is considered an ensemble algorithm, as it
ses multiple decision trees, which represent weak learners. Trees are
dded one at a time and gradient descent minimizes a loss function
hen doing so, until an acceptable accuracy is obtained. A strong
dvantage of this method is that it does not need exhaustive data
4

o

Fig. 3. Temporal evolution of gas temperature and fuel for a C8H18/air plasma
ixture. Comparison between simulations with detailed S2805R18457 (lines) and
umped mechanism, using regular isomer lumping approach (circles) at 𝑇0 = 750 K,
0 = 10 atm, 𝜙 = 1.0.

re-processing. Feature scaling, for example, is not applied, as it has
egligible impact on ensemble techniques like gradient boosting. This
s because these algorithms build trees based on conditions and do not
ely on the value range of features.
For this application, eXtreme Gradient Boosting (XGBoost) is used,

hich is an open-source library for the implementation of gradient
oosting [50]. Specifically, we propose a novel isomer lumping ap-
roach leveraging XGBoost. The framework consists of the following
teps:

1. Data collection of state variables in time (e.g., temperature, pres-
sure, and species concentration) from a simulation with either
the detailed mechanism or a very accurate reduced mechanism;

2. Determination of isomers to be lumped;
3. Reaction lumping: identification of reactions which cannot be
lumped accurately with the traditional fitting approach pre-
sented above;

4. For each one of the lumped reactions identified in Step 3, train
a machine learning model with XGBoost, using data from Step
1, in order to correct the forward reaction rate coefficient of the
lumped reaction.

There are some important remarks to be made on the actual im-
lementation. Firstly, groups of isomers are formed automatically: the
hemical composition of each species present in the mechanism is
ssessed and those with identical composition (same number of atoms

f each element) are identified as a separate group of isomers to be
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Fig. 4. Temporal evolution of power density and concentrations of O, OH, and
H radicals, during the first two discharge pulses for a C8H18/air plasma mixture.
Simulation with the detailed mechanism (S2805R18457) at 𝑇0 = 750 K, 𝑝0 = 10 atm,
𝜙 = 1.0.

lumped. Secondly, the hyper-parameters of the machine learning mod-
els (e.g., number of estimators, learning rate, minimum and maximum
number of nodes to be added) are tuned with a grid search approach
in order to optimize learning.

Two different variations of the machine learning lumping are pre-
sented in this work. In the 1D approach, all machine learning regression
models are trained using gas temperature as the only input feature. In
the 2D approach, apart from gas temperature, a second input feature is
also employed. This second input feature is one of the following: O,
OH, or H. The procedure of selecting one of these three candidates
as the second input feature is performed separately for every model.
The final selection is decided for each model based on the feature
importance, which is a metric that indicates how useful every feature is
in the construction of the trees within the specific model. The candidate
feature with the highest importance is selected as the second input
feature for the model.

The O, OH, and H radicals are selected as candidate secondary input
features, because their production strongly relies on the presence of
plasma and their contribution to the ignition process has proved to be
significant [51]. The strong interaction between these three radicals
and plasma is evident in Fig. 4. During each discharge pulse, the sudden
peak in the amount of deposited energy triggers similar peaks in the
concentration of O, OH, and H. This implies that the said radicals
are strongly related to the plasma physics of the mechanism under
examination and could contribute to capturing the irregular evolution
of the reaction rate coefficients of lumped reactions.

Training is not performed directly on the lumped reaction rate
coefficients 𝑘𝐿, rather on correction factors 𝜉, which are defined as:

𝜉 =
𝑘𝐿

𝑘𝐿,𝐴𝑟𝑟
, (17)

where 𝑘𝐿 target values are computed using data from simulations and
𝑘𝐿,𝐴𝑟𝑟 represent approximate values, as they are computed from the
fitted Arrhenius equation. Naturally, there is no need for the con-
struction of a regression model, if 𝑘𝐿,𝐴𝑟𝑟 approximates 𝑘𝐿 accurately.
For this reason, the fit between 𝑘𝐿 and 𝑘𝐿,𝐴𝑟𝑟 is assessed, using the
coefficient of determination 𝑅2. If 𝑅2 is less than a user-specified
hreshold (here set equal to 0.99), then 𝑘𝐿 is deemed inappropriate
o be approximated by the Arrhenius equation alone and the machine
earning based regression model is trained for the specific lumped
eaction.
The performance of the models obtained from the machine learning

pproach is evaluated against training and testing results. Here, a
riori results are presented in Fig. 5 for the XGBoost single-input
5

predictive regression model developed for reaction (16). In order to
avoid over-fitting, 80% of the available data are used for training and
the remaining 20% are used for testing alone. The low normalized root
mean squared error (NRMSE) in both training and testing, as well as the
high score of the Pearson correlation coefficient between actual and
predicted values, highlight the excellent performance of the XGBoost
model. Another tool used here against over-fitting is the division of the
training data into 𝐾 folds. At every iteration during training, one of the
folds is held out and a model is created using the remaining (𝐾−1) folds.
The model is then fitted to the hold-out fold. The process is repeated
for every fold and the mean performance after all iterations is reported.

The whole method described above is implemented in Python. The
ignition simulations, are carried out using the in-house code PACMAN,
which is written in Fortran. In order to be able to use machine learning
models in Fortran, a lookup table is used. After training all models, the
Python code outputs a file with the necessary information to build the
table. At the beginning of a simulation, the file is read by PACMAN
and a lookup table created. For the 1D approach, it contains a user-
defined number of equally partitioned values of gas temperature and
the corresponding correction factor predictions at every temperature
point, from each one of the XGBoost models. For the 2D approach,
equally partitioned values of the second input feature for every model
are created as well. Predictions are made with every XGBoost model
for all possible combinations between the partitioned values of the first
and second input feature. In this way, a square matrix containing the
predictions is created for each model, which allows for interpolation
in two dimensions. This matrix is incorporated in the lookup table. It
is important to note that in both cases the lookup table is generated
using a new set of points, which have not been used by the models
during training or testing. During simulation, at every time step and
for every reaction that needs correction, the lookup table is accessed
and the correction factor results from the interpolation between the
existing values in the table, based on the current value(s) of the one
(or two) input feature(s). This is repeated multiple times until CVODE
converges to a solution for the specific time step. Finally, the forward
reaction rate coefficient of the lumped reaction, as calculated by the
Arrhenius equation, is multiplied by the correction factor.

4. Results and discussion

The detailed isooctane/air plasma mechanism (S2805R18457) is
used to assess the performance of P-DRGEP and the novel isomer
lumping approach. A reduced mechanism is created with P-DRGEP first.
Then, the lumping approach using XGBoost is applied to create an even
more compact lumped mechanism. Results related to the performance
of both reduction steps in zero-dimensional simulations with various
initial conditions are presented and analyzed in this Section.

4.1. Reduction with P-DRGEP

Error tolerances are imposed for the set of desired targets. At every
iteration of P-DRGEP, species and reactions are removed, based on
the magnitude of their associated coefficients [34]. Once one of the
error tolerances is exceeded, the process stops. For this application, a
maximum error of 5% is set for 𝜏𝑖𝑔 and 40% for energy transfer metrics,
related to losses due to excitation, ionization and impact dissociation.
The reactor is initialized at temperature 𝑇 = 𝑇𝑒 = 750 K, pressure
𝑝0 = 10 atm, for the C8H18/air mixture at stoichiometric conditions.

With all these options set, a reduced mechanism of 415 species and
4716 reactions (S415R4716) is generated using P-DRGEP, forward and
backward reactions counted separately. This is a reduction of around
85% in the total number of species and 75% in the total number
of reactions. The excellent agreement between skeletal and detailed
mechanisms is apparent from the data in Fig. 6. The error on 𝜏𝑖𝑔

prediction is less than 2%.
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Fig. 5. XGBoost regression results for the prediction of correction factors for reaction (16), using a single-input model. Left: training (top) and testing (bottom). Right: correlation
between predicted and actual values. Data originate from simulation with a reduced mechanism at 𝑇0 = 750 K, 𝑝0 = 10 atm, 𝜙 = 1.0.
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Fig. 6. Temporal evolution of gas temperature and various key combustion species

for a C8H18/air plasma mixture. Comparison between simulations with detailed
S2805R18457 (lines) and reduced S415R4716 (circles) mechanisms at 𝑇0 = 750 K,
0 = 10 atm, 𝜙 = 1.0.

The ability of the skeletal mechanism to reproduce the behavior
f the detailed one for a range of initial conditions is always one
f the main goals during reduction. Here temperatures ranging from
50 K to 1200 K in lean and rich conditions, with equivalence ratios
rom 0.75 to 1.50, are explored. Results for the prediction of 𝜏𝑖𝑔 are
presented in Fig. 7(c), for every zero-dimensional reactor simulation
executed with the reduced mechanism. The light blue area in the plots
represents a ±5% deviation from reference values predicted by the
detailed mechanism. This is the same tolerance used for the P-DRGEP
reduction for the specific metric. In any case, the absolute error is less
than 3%, when comparing predictions between detailed and reduced
mechanisms.

4.2. Application of the novel isomer lumping strategy

With an accurate reduced mechanism available, the lumping proce-
dure is conducted. The Python-based lumping software reads all species
in S415R4716 and identifies 49 groups of unique isomers. The forward
reaction rate coefficient of every newly formed lumped reaction is fit
to Eq. (11), in order to obtain the new Arrhenius parameters. If the
fit is not accurate, an XGBoost model is trained for the reaction, using
output data from a simulation with the reduced mechanism S415R4716
at 𝑇0 = 750 K, 𝑝0 = 10 atm and 𝜙 = 1.0. When the reaction to be lumped
ith XGBoost is reversible, it is split into two forward reactions first
nd two separate models are created, one for each reaction direction.
round 550 models are trained and their predictions of correction
actors 𝜉 are written into the file, which is then read by PACMAN to
enerate lookup tables at run-time.
6

The final lumped mechanism consists of 300 species and 3827 reac-
tions (S300R3827), always counting forward and backward reactions
separately. When compared to the reduced mechanism after the P-
DRGEP step, this translates to an additional 28% reduction in the
number of species and 19% reduction in the number of reactions.

4.2.1. Single-input machine learning models (1D approach)
All models are trained using gas temperature as the only input

feature. The performance of the 1D lumped mechanism is evaluated by
simulating a plasma-assisted ignition of the C8H18/air mixture at the
same initial conditions as those used to train the predictive regression
machine learning models. The temporal evolution of temperature and
concentration of a number of species are compared to those from a
simulation with detailed mechanism in Fig. 8 and a good agreement
s observed. For the same conditions, a similar comparison is car-
ied out for the concentration of two lumped isomer groups, namely
8H17(L) and C8H17O2(L), presented in Fig. 9. There is an almost
perfect agreement between the results obtained with the lumped model
and the target values. The latter are computed via the additivity rule,
as expressed in Eq. (7), using simulation data from the detailed model.
This indicates that the mass balance is respected in the simulations with
the lumped mechanism.

It is interesting to note that the high accuracy of the mechanism
produced by P-DRGEP, which is evident in Figs. 6 and 7(c), allows
the training of all models with data from the reduced mechanism
(S415R4716), instead of from the detailed one (S2805R18457). This
is computationally convenient when training models with XGBoost for
a broad set of initial conditions. Another important advantage is that
there is no need to gather training data from multiple simulations with
different initial conditions. As it can be seen by the gas temperature rise
in Fig. 6, a single simulation provides enough data, to train the models
over a wide range of temperatures.

Focusing again on the performance of the lumped mechanism, we
assess its accuracy when used in predictions of plasma-assisted ignition
of mixtures at initial thermochemical states different from those used
during training. For this purpose, multiple zero-dimensional simula-
tions were executed over the same range examined with the reduced
mechanism. For each simulation, the time to ignition 𝜏𝑖𝑔 is plotted in
Fig. 10(c) together with the corresponding value obtained with the
detailed mechanism and a ±5% error band.

Even though the lumping and training of models were based on data
from simulation with specific initial conditions, the resulting lumped
mechanism is accurate over a much broader range of temperatures
and equivalence ratios: 750 ≤ 𝑇0 ≤ 1200 K and 0.75 ≤ 𝜙 ≤ 1.50.
More specifically, for lean conditions, the average absolute error in the
prediction of time to ignition is around 1%, with a maximum value
of 2.3%. Similar results are observed for stoichiometric conditions,
with an average error of 1.5%, and a maximum error of 3.3%. For
simulations with rich mixtures, a maximum error of 6% is observed for
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Fig. 7. Comparison between the time to ignition prediction made by simulations with detailed S2805R18457 (lines) and reduced S415R4716 mechanism (dots) at 𝑝0 = 10 atm:
(a) 𝜙 = 0.75, (b) 𝜙 = 1.00 and (c) 𝜙 = 1.50, at various initial temperatures.
Fig. 8. Temporal evolution of gas temperature and various species for a C8H18/air
plasma mixture. Comparison between simulations with detailed S2805R18457 (lines)
and 1D lumped S300R3827 (circles) mechanisms at 𝑇0 = 750 K, 𝑝0 = 10 atm, 𝜙 = 1.0.

low temperatures. The average absolute error remains low and close to
2.2%.

The alleviation of computational demand is also significant: 87%
decrease in central processing unit (CPU) time is observed for a sim-
ulation with the 1D lumped mechanism at 𝑇0 = 750 K, 𝑃0 = 10 atm,
and 𝜙 = 1.00, when compared to the respective simulation using the
detailed mechanism.

Apart from the initial thermochemical conditions, different pulse
settings were also tested for the lumped mechanism. More specifically,
the pulse frequency 𝑓 was varied over the range 50–400 kHz and single
pulse power density 𝑃 over the range 10–75 MW/cm3. Thus, different
values for the energy deposition rate𝑊 were explored, where𝑊 = 𝐸𝑓 ,
7

Fig. 9. Temporal evolution of two lumped groups for a C8H18/air plasma mixture.
Comparison between simulations with detailed S2805R18457 (lines) and lumped
S300R3827 (circles) mechanisms at 𝑇0 = 750 K, 𝑝0 = 10 atm, 𝜙 = 1.0.

and 𝐸 is the energy density per pulse, which is a function of 𝑃 . For each
value of 𝑊 , a simulation was performed at 𝑝0 = 10 atm, 𝑇0 = 750 K,
and 𝜙 = 1.00. 𝜏𝑖𝑔 for every configuration is shown in Fig. 11, compared
to predictions made by corresponding simulations with the reduced
mechanism (S415R4716), with a ±10% error band. Larger errors are
observed for lower values of 𝑊 . In order to make the simulations with
the lumped mechanism more accurate for low values of 𝑊 , data from
simulations with lower 𝑊 should be included in the training set as
well.

4.2.2. Two-input machine learning models (2D approach)
In this case, the same models developed for the lumped mechanism
S300R3827 are trained with two input features, instead of one: the first
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Fig. 10. Comparison between the time to ignition with detailed S2805R18457 (lines), 1D lumped S300R3827 (dots), and 2D lumped S300R3827 (triangles) mechanisms at 𝑝0 = 10
tm: (a) 𝜙 = 0.75, (b) 𝜙 = 1.00 and (c) 𝜙 = 1.50, at various initial temperatures.
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Fig. 11. Comparison between time to ignition predictions made by simulations with
reduced S415R4716 (dots with ±10% error bars) and 1D lumped S300R3827 mechanism
triangles), for different values of energy deposition rate 𝑊 .

one is the gas temperature and the second one is selected for every
model, based on the feature importance ranking of the three candidate
species (O, OH, and H), as described above. It is interesting to note that
almost half of the models use O as their second input feature. Another
35% use OH and the rest H.

The promising potential of this approach is already evident by
assessing some preliminary results. Indicatively, NRMSE, both in train-
ing and testing of the models, is decreased by half compared to the
single-input approach.

These a priori good results are confirmed by the numerical simu-
lations performed using the two-input machine learning models, as it
can be observed in Fig. 10(c). The average absolute error on 𝜏 with
8

𝑖𝑔
the 2D lumped mechanism is just 1.4% in the same range of initial
conditions examined for the 1D approach: 𝑝0 = 10 atm, 750 ≤ 𝑇0 ≤ 1200
, and 0.75 ≤ 𝜙 ≤ 1.50. The 2D machine learning lumping approach
ffers better modeling capabilities compared to a classic least square
pproach. The superiority of the 2D lumped mechanism is evident from
he improved accuracy in the set of initial conditions where the 1D
ersion produced the worst results, namely the low temperature region
n rich conditions. Fuel concentration and gas temperature evolution in
ime are presented for the two different isomer lumping approaches in
ig. 12 and Fig. 13, for simulations at initial conditions 𝜙 = 1.50, 𝑝0 =

10 atm, 𝑇0 = 750 K, and 𝜙 = 1.50, 𝑝0 = 10 atm, 𝑇0 = 800 K respectively.
Results from simulations with the detailed mechanism are also shown.
The 2D lumped mechanism approximates more accurately the fuel
breakdown and gas temperature rise in both cases, thus achieving low
errors or 𝜏𝑖𝑔 : 2.8% for 𝑇0 = 750 K and 2.5% for 𝑇0 = 800 K. The
respective errors with the 1D lumped mechanism are 6% and 5%.

As far as the computational time is concerned, a simulation at 𝑇0 =
750 K, 𝑃0 = 10 atm, and 𝜙 = 1.00 using the 2D lumped mechanism is
78% faster in terms of CPU time, compared to the detailed mechanism.

As for the training phase, a single simulation is sufficient to produce
the needed data for both the 1D and 2D approaches. Adding one more
input feature to a model, while keeping the same output, does not
necessarily require a larger training dataset, since the complexity of
the model does not increase significantly [52]. Thus, an adequate time
step size during the simulation, produces enough training data for both
models.

5. Conclusions

This work focuses on the reduction of a detailed isooctane/air
plasma-assisted combustion mechanism, consisting of 2805 species and
18457 reactions, by combining two novel techniques. Using P-DRGEP, a
reduced mechanism of 415 species and 4716 reactions is produced. The
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Fig. 12. Temporal evolution of gas temperature and fuel for a C8H18/air mixture.
omparison between simulations with detailed S2805R18457 (lines), 1D lumped
echanism S300R3827 (circles), and 2D lumped mechanism S300R3827 (dashed lines)
t 𝑇0 = 750 K, 𝑝0 = 10 atm, 𝜙 = 1.50.

Fig. 13. Temporal evolution of gas temperature and fuel for a C8H18/air mixture.
omparison between simulations with detailed S2805R18457 (lines), 1D lumped
echanism S300R3827 (circles), and 2D lumped mechanism S300R3827 (dashed lines)
t 𝑇0 = 800 K, 𝑝0 = 10 atm, 𝜙 = 1.50.

echanism has excellent predictive capabilities over a wide range of
nitial conditions: temperatures from 750 K to 1200 K and equivalence
atios from 0.75 to 1.50. Thus, the ability of the reduction framework
o handle kinetic mechanisms of such a large size and complexity is
emonstrated for the first time. In addition, a plasma-specific isomer
umping approach is proposed and its viability and accuracy demon-
trated. With the gradient boosting machine learning method and data
rom a zero-dimensional reactor simulation that employ the reduced
echanism, predictive regression models are developed, which are
ound to describe accurately lumped reaction rate coefficients. Using
his novel methodology, a lumped mechanism is developed, which
ontains 300 species and 3827 reactions. Two variations of this method
re presented: one with models that use just gas temperature as input
eature and another with two-input models, which apart from gas
emperature also employ one of the radicals O, H, or OH as a second
nput feature. In the former approach and over the broad range of initial
onditions used to test the reduced mechanism with zero-dimensional
imulations, absolute errors fall within 6% on time to ignition, when
ompared to the detailed mechanism. The latter approach produces
ven lower errors, which do not exceed 3%.

RediT authorship contribution statement

Georgios Rekkas-Ventiris: Main researcher, Wrote paper. Alfredo
uarte Gomez: Feedback on simulations. Nicholas Deak: Feedback
9

on simulations. Nicholas Kincaid: Feedback on reduction strategies.
errine Pepiot: Feedback on lumping. Fabrizio Bisetti: Designed ap-
plications. Aurélie Bellemans: Designed research, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

N. Kinckaid and P. Pepiot were supported by National Science
Foundation (NSF, USA) Grant DGE–2139899, A. Duarte Gomez and F.
Bisetti were sponsored in part by NSF, USA Grant No. 1903775 and
U.S. Department of Energy (DOE, USA) Grant DE-EE0008874.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.combustflame.2023.113252.

References

[1] W. Sun, S.H. Won, Y. Ju, In situ plasma activated low temperature chemistry
and the S-curve transition in DME/Oxygen/Helium mixture, Combust. Flame 161
(8) (2014) 2054–2063.

[2] F. Wang, C. Jiang, A. Kuthi, M. Gundersen, J. Sinibaldi, C. Brophy, L. Lee,
Transient plasma ignition of hydrocarbon-air mixtures in pulse detonation
engines, in: 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, paper
AIAA–2004–0834.

[3] T. Ombrello, S.H. Won, Y. Ju, S. Williams, Flame propagation enhancement by
plasma excitation of oxygen. Part I: Effects of O3, Combust. Flame 157 (10)
(2010) 1906–1915.

[4] T. Ombrello, S.H. Won, Y. Ju, S. Williams, Flame propagation enhancement by
plasma excitation of oxygen. Part II: Effects of O2 (a1𝛥g), Combust. Flame 157
(10) (2010) 1916–1928.

[5] T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, C. Carter, Combustion en-
hancement via stabilized piecewise nonequilibrium gliding arc plasma discharge,
AIAA J. 44 (1) (2006) 142–150.

[6] A. Starikovskiy, N. Aleksandrov, Plasma-assisted ignition and combustion, Prog.
Energ. Combust. Sci. 39 (1) (2013) 61–110.

[7] Y. Ju, W. Sun, Plasma assisted combustion: Dynamics and chemistry, Prog. Energ.
Combust. Sci. 48 (2015) 21–83.

[8] S. Starikovskaia, D.A. Lacoste, G. Colonna, Non-equilibrium plasma for ignition
and combustion enhancement, Eur. Phys. J. D 75 (8) (2021) 1–25.

[9] N. Popov, Kinetics of plasma-assisted combustion: effect of non-equilibrium
excitation on the ignition and oxidation of combustible mixtures, Plasma Sources
Sci. Technol. 25 (4) (2016) 043002.

[10] N. Tsolas, R.A. Yetter, Kinetics of plasma assisted pyrolysis and oxidation of
ethylene. Part 1: Plasma flow reactor experiments, Combust. Flame 176 (2017)
534–546.

[11] N. Tsolas, R.A. Yetter, I.V. Adamovich, Kinetics of plasma assisted pyrolysis and
oxidation of ethylene. Part 2: Kinetic modeling studies, Combust. Flame 176
(2017) 462–478.

[12] S.B. Leonov, D.A. Yarantsev, A.P. Napartovich, I.V. Kochetov, Plasma-assisted
combustion of gaseous fuel in supersonic duct, IEEE Trans. Plasma Sci. 34 (6)
(2006) 2514–2525.

[13] I. Kosarev, N. Aleksandrov, S. Kindysheva, S. Starikovskaia, A.Y. Starikovskii,
Kinetics of ignition of saturated hydrocarbons by nonequilibrium plasma:
CH4-containing mixtures, Combust. Flame 154 (3) (2008) 569–586.

[14] W. Sun, Y. Ju, A multi-timescale and correlated dynamic adaptive chemistry and
transport (CO-DACT) method for computationally efficient modeling of jet fuel
combustion with detailed chemistry and transport, Combust. Flame 184 (2017)
297–311.

[15] J. Griffiths, Reduced kinetic models and their application to practical combustion
systems, Prog. Energ. Combust. Sci. 21 (1) (1995) 25–107.

[16] P. Pepiot, L. Cai, H. Pitsch, Model reduction and lumping procedures, in: T.
Faravelli, F. Manenti, E. Ranzi (Eds.), Computer Aided Chemical Engineering,
Elsevier, 2019, pp. 799–827.

[17] A. Massias, D. Diamantis, E. Mastorakos, D. Goussis, Global reduced mechanisms
for methane and hydrogen combustion with nitric oxide formation constructed
with CSP data, Combust. Theor. Model. 3 (2) (1999) 233.

https://doi.org/10.1016/j.combustflame.2023.113252
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb1
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb1
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb1
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb1
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb1
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb2
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb2
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb2
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb2
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb2
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb2
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb2
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb3
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb3
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb3
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb3
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb3
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb4
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb4
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb4
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb4
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb4
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb5
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb5
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb5
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb5
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb5
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb6
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb6
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb6
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb7
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb7
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb7
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb8
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb8
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb8
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb9
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb9
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb9
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb9
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb9
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb10
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb10
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb10
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb10
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb10
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb11
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb11
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb11
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb11
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb11
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb12
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb12
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb12
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb12
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb12
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb13
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb13
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb13
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb13
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb13
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb14
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb14
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb14
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb14
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb14
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb14
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb14
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb15
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb15
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb15
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb16
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb16
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb16
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb16
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb16
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb17
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb17
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb17
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb17
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb17


Combustion and Flame 260 (2024) 113252G. Rekkas-Ventiris et al.
[18] M. Valorani, F. Creta, F. Donato, H. Najm, D. Goussis, A CSP-based skeletal
mechanism generation procedure: Auto-ignition and premixed laminar flames
in n-heptane/air mixtures, in: European Conference on Computational Fluid
Dynamics, 2006.

[19] P.P. Ciottoli, R.M. Galassi, P.E. Lapenna, G. Leccese, D. Bianchi, F. Nasuti, F.
Creta, M. Valorani, CSP-based chemical kinetics mechanisms simplification strat-
egy for non-premixed combustion: An application to hybrid rocket propulsion,
Combust. Flame 186 (2017) 83–93.

[20] T. Løvs, D. Nilsson, F. Mauss, Automatic reduction procedure for chemical
mechanisms applied to premixed methane/air flames, Proc. Combust. Inst. 28
(2) (2000) 1809–1815.

[21] Q.-D. Wang, Y.-M. Fang, F. Wang, X.-Y. Li, Systematic analysis and reduction
of combustion mechanisms for ignition of multi-component kerosene surrogate,
Proc. Combust. Inst. 34 (1) (2013) 187–195.

[22] J.C. Sutherland, A. Parente, Combustion modeling using principal component
analysis, Proc. Combust. Inst. 32 (1) (2009) 1563–1570.

[23] B.J. Isaac, A. Coussement, O. Gicquel, P.J. Smith, A. Parente, Reduced-order PCA
models for chemical reacting flows, Combust. Flame 161 (11) (2014) 2785–2800.

[24] A. Stagni, A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi, Skeletal mechanism
reduction through species-targeted sensitivity analysis, Combust. Flame 163
(2016) 382–393.

[25] R. Li, A.A. Konnov, G. He, F. Qin, D. Zhang, Chemical mechanism development
and reduction for combustion of NH3/H2/CH4 mixtures, Fuel 257 (2019)
116059.

[26] T. Lu, C.K. Law, A directed relation graph method for mechanism reduction,
Proc. Combust. Inst. 30 (1) (2005) 1333–1341.

[27] P. Pepiot-Desjardins, H. Pitsch, An efficient error-propagation-based reduction
method for large chemical kinetic mechanisms, Combust. Flame 154 (1–2) (2008)
67–81.

[28] T. Lu, C.K. Law, Strategies for mechanism reduction for large hydrocarbons:
n-heptane, Combust. Flame 154 (1–2) (2008) 153–163.

[29] A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, E. Ranzi, Lumping and reduction
of detailed kinetic schemes: an effective coupling, Ind. Eng. Chem. Res. 53 (22)
(2014) 9004–9016.

[30] S.S. Ahmed, F. Mauß, G. Moréac, T. Zeuch, A comprehensive and compact n-
heptane oxidation model derived using chemical lumping, Phys. Chem. Chem.
Phys. 9 (9) (2007) 1107–1126.

[31] K. Peerenboom, A. Parente, T. Kozák, A. Bogaerts, G. Degrez, Dimension
reduction of non-equilibrium plasma kinetic models using principal component
analysis, Plasma Sources Sci. Technol. 24 (2) (2015) 025004.

[32] A. Bellemans, T. Magin, A. Coussement, A. Parente, Reduced-order kinetic plasma
models using principal component analysis: Model formulation and manifold
sensitivity, Phys. Rev. Fluids 2 (7) (2017) 073201.

[33] A. Bellemans, N. Deak, F. Bisetti, Development of skeletal kinetics mechanisms
for plasma-assisted combustion via principal component analysis, Plasma Sources
Sci. Technol. 29 (2) (2020) 025020.

[34] A. Bellemans, N. Kincaid, N. Deak, P. Pepiot, F. Bisetti, P-DRGEP: a novel
methodology for the reduction of kinetics mechanisms for plasma-assisted
combustion applications, Proc. Combust. Inst. 38 (4) (2021) 6631–6639.
10
[35] D. Davidson, M. Oehlschlaeger, J. Herbon, R. Hanson, Shock tube measurements
of iso-octane ignition times and OH concentration time histories, Proc. Combust.
Inst. 29 (1) (2002) 1295–1301.

[36] N. Atef, G. Kukkadapu, S.Y. Mohamed, M. Al Rashidi, C. Banyon, M. Mehl,
K.A. Heufer, E.F. Nasir, A. Alfazazi, A.K. Das, et al., A comprehensive iso-
octane combustion model with improved thermochemistry and chemical kinetics,
Combust. Flame 178 (2017) 111–134.

[37] Z.S. Eckert, Energy Transfer in Non-Equilibrium Reacting Gas Flows: Applications
in Plasma Assisted Combustion and Chemical Gas Lasers (Ph.D. thesis), The Ohio
State University, Columbus, OH, USA, 2018.

[38] N. Deak, A. Bellemans, F. Bisetti, Plasma-assisted ignition of methane/air and
ethylene/air mixtures: Efficiency at low and high pressures, Proc. Combust. Inst.
38 (4) (2021) 6551–6558.

[39] Y. Bechane, B. Fiorina, Numerical investigations of turbulent premixed flame
ignition by a series of Nanosecond Repetitively Pulsed discharges, Proc. Combust.
Inst. 38 (4) (2021) 6575–6582.

[40] S.D. Cohen, A.C. Hindmarsh, P.F. Dubois, CVODE, a stiff/nonstiff ODE solver in
C, Comput. Phys. 10 (2) (1996) 138–143.

[41] R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin-II: A Fortran Chemical Kinetics
Package for the Analysis of Gas-Phase Chemical Kinetics, Tech. rep., Sandia
National Laboratories, Livermore, CA, USA, 1989.

[42] A. Sharma, V. Subramaniam, E. Solmaz, L.L. Raja, Fully coupled modeling of
nanosecond pulsed plasma assisted combustion ignition, J. Phys. D Appl. Phys.
52 (9) (2018) 095204.

[43] E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, T. Faravelli, Lumping procedures
in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and
combustion of hydrocarbon mixtures, Prog. Energ. Combust. Sci. 27 (1) (2001)
99–139.

[44] H. Huang, M. Fairweather, J. Griffiths, A. Tomlin, R. Brad, A systematic lumping
approach for the reduction of comprehensive kinetic models, Proc. Combust. Inst.
30 (1) (2005) 1309–1316.

[45] P. Pepiot-Desjardins, H. Pitsch, An automatic chemical lumping method for the
reduction of large chemical kinetic mechanisms, Combust. Theor. Model. 12 (6)
(2008) 1089–1108.

[46] M. Kearns, Thoughts on Hypothesis Boosting, Tech. rep., 1988.
[47] L. Mason, J. Baxter, P. Bartlett, M. Frean, Boosting algorithms as gradient

descent, Adv. New. In. 12 (1999) 512–518.
[48] J.H. Friedman, Greedy function approximation: a gradient boosting machine,

Ann. Statist. (2001) 1189–1232.
[49] L. Breiman, Prediction games and arcing algorithms, Neural Comput. 11 (7)

(1999) 1493–1517.
[50] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen, et al.,

Xgboost: Extreme Gradient Boosting, 2015, R package version 0.4-2.
[51] Y. Tang, Q. Yao, J. Zhuo, S. Li, Plasma-assisted pyrolysis and ignition of

pre-vaporized n-heptane, iso-octane and n-decane, Fuel 289 (2021) 119899.
[52] V. Lakshmanan, S. Robinson, M. Munn, Machine Learning Design Patterns,

O’Reilly Media, 2020.

http://refhub.elsevier.com/S0010-2180(23)00626-0/sb18
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb18
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb18
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb18
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb18
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb18
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb18
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb19
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb19
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb19
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb19
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb19
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb19
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb19
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb20
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb20
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb20
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb20
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb20
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb21
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb21
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb21
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb21
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb21
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb22
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb22
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb22
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb23
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb23
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb23
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb24
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb24
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb24
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb24
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb24
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb25
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb25
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb25
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb25
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb25
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb26
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb26
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb26
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb27
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb27
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb27
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb27
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb27
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb28
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb28
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb28
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb29
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb29
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb29
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb29
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb29
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb30
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb30
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb30
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb30
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb30
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb31
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb31
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb31
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb31
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb31
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb32
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb32
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb32
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb32
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb32
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb33
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb33
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb33
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb33
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb33
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb34
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb34
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb34
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb34
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb34
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb35
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb35
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb35
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb35
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb35
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb36
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb36
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb36
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb36
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb36
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb36
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb36
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb37
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb37
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb37
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb37
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb37
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb38
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb38
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb38
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb38
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb38
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb39
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb39
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb39
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb39
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb39
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb40
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb40
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb40
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb41
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb41
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb41
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb41
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb41
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb42
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb42
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb42
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb42
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb42
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb43
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb43
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb43
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb43
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb43
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb43
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb43
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb44
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb44
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb44
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb44
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb44
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb45
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb45
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb45
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb45
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb45
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb46
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb47
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb47
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb47
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb48
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb48
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb48
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb49
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb49
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb49
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb50
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb50
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb50
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb51
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb51
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb51
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb52
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb52
http://refhub.elsevier.com/S0010-2180(23)00626-0/sb52

	A novel machine learning based lumping approach for the reduction of large kinetic mechanisms for plasma-assisted combustion applications
	Introduction
	Isooctane/air plasma mechanism: physical modeling and detailed simulation
	Isomer lumping using machine learning: motivation and methodology
	Results and discussion
	Reduction with P-DRGEP
	Application of the novel isomer lumping strategy
	Single-input machine learning models (1D approach)
	Two-input machine learning models (2D approach)


	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


