2024 33rd International Conference on Computer Communications and Networks (ICCCN) | 979-8-3503-8461-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICCCN61486.2024.10637636

Exploring Similarity-Based Graph Compression for
Efficient Network Analysis and Embedding

Hamdi Selim Akin
Department of Computer Science
Georgia State University
Atlanta, GA, USA
hakin2 @student.gsu.edu

Tanvir Hossain
Department of Computer Science
Georgia State University
Atlanta, GA, USA
thossain5 @student.gsu.edu

Abstract—Network analysis is an emerging field with a wide
spectrum of applications across many disciplines such as social
networks, computer networks, and healthcare. However, the ever-
increasing size of real-world networks is a major challenge for
network analysis due to their high computational and space
costs. In this paper, we utilize a node similarity-based graph
compression method, SGC, and investigate the effect of various
node similarity measures on graph compression. SGC compresses
the input graph to a smaller graph without losing any/much
information about its global structure and the local proximity of
its vertices. We apply our compression method to the network
embedding problem to study its effectiveness and efficiency. Our
experimental results on four real-world networks show that each
similarity measure has a different effect on graph compression
and embedding, where some yield an improvement up to 70%
network embedding time without decreasing classification accu-
racy as evaluated on single and multi-label classification tasks.

Index Terms—graph compression, network embedding, node
similarity, node classification

I. INTRODUCTION

Network analysis is an emerging field with a wide spec-
trum of applications across many disciplines, such as social
networks [1], computer networks [2] and healthcare [3]. Ex-
amples of applications include finding groups of users in social
networks (e.g., Facebook), which is useful for a personal-
ized recommendation [1], and detecting drug-drug interaction,
which may cause dangerous side effects on health [3]. In
network mining, many useful methods can be applied to small
graphs effectively. However, the ever-increasing size of real-
world networks is a major challenge for these methods due to
their high computational and space costs [4]. This challenge
has motivated researchers to develop various graph compres-
sion (summarization) algorithms to reduce the complexity and
size of large graphs. Such reductions are essential to scale up
or scale out existing algorithms to better manage, query, store,

This work has been supported partially by the National Science Foundation
under Grant No 2308206.

Mehmet Emin Aktas
Institute for Insight
Georgia State University
Atlanta, GA, USA
maktas @gsu.edu

Muhammed Ifte Islam
Department of Computer Science
Georgia State University
Atlanta, GA, USA
mislam?29 @student.gsu.edu

Esra Akbas
Department of Computer Science
Georgia State University
Atlanta,GA, USA
eakbasl @gsu.edu

and display them [5]. Graph compression aims to create a
smaller supergraph from a massive graph such that the crucial
information of the original graph will be maintained in the
supergraph.

In this paper, we study graph compression by preserving
similarity between nodes. Similarity is used in many graph
mining problems, such as node classification, community
detection, and link prediction. For example, in a social network
(e.g., Facebook), if two people are similar, they are expected
to have similar interests, backgrounds, or friends. That is why
similarity can be used for friend recommendation (i.e., link
prediction) [6], and group recommendation [7].

Based on this observation, in our preliminary work [8], we
employed one neighborhood-based similarity, namely Jaccard
similarity, for graph compression. The core concept involves
assessing the similarities between nodes and compressing
those whose similarity falls below a predefined threshold.
In this paper, we leverage various node similarity metrics,
each emphasizing distinct structural aspects of the nodes.
Consequently, the compressed graphs produced by each metric
will vary, leading to diverse outcomes in learning. Our project
aims to explore how different metrics influence compression.

To study the effectiveness and efficiency of the proposed
compression methods, we further employ the compressed
graph in the network embedding problem. Network embedding
is defined as encoding structural information of graphs, such
as characteristics or role of vertices, into a low-dimensional
vector space on their connections [9]. Instead of embedding
the original large graph to bring down the embedding cost, we
embed the compressed graph and use this embedding to get the
embedding of the original graph. Hence, network embedding
will become a lot more efficient thanks to graph compression.
Next, to address the effectiveness of the proposed compression
methods, we use these node embeddings in the single-label
and multi-label node classification problem on four different
real-world networks. Our experimental results show that the

979-8-35R3aR4B 4 @S (8 [RARAIEErgia State University. Downloaded on July 21,2025 at 16:00:58 UTC from IEEE Xplore. Restrictions apply.

proposed graph compression methods have better efficiency
with similar accuracy than the baseline methods in different
classification tasks on several real-world graphs.

II. BACKGROUND
A. Preliminaries

1) Graph Compression: In this paper, we consider an
undirected, simple graph G = (V; E) where V is the set of
vertices, and £ C {V x V'} is the set of edges. The set of
neighbors for given a vertex v € V' is denoted as N (v), where
N@w)=A{ulu e V: (u,v) € E}.

Graph compression aims to reduce the size of a graph
to improve our ability to analyze them [10], [11]. While
compressed graphs can be used directly by many graph mining
algorithms, they can also be used with decompressing parts of
it on the fly when needed. A general formal definition of a
compressed graph is given as follows:

Definition 1 (Compressed graph). For a given graph G =
(V; E), a compressed graph is represented as CG = (G; M)
where G = (V,) is the supergraph with supernodes V and
superedges £ and M is a mapping from each vertex v € V
to its supernode v € V.

There are several approaches for graph compression (see
Section II-B). In this paper, our focus is to use proximity-
based similarities for compression. Hence, next, we define the
similarities that we use in the paper.

2) Proximity-based Node Similarities: The proximity-based
similarities are defined using the relations between nodes and
edges, such as the number of shared edges between nodes.
Definitions of the proximity-based similarities utilized in this
paper are listed below.

i. Common Neighbors is calculated based on the number
of common neighbors, with an additional consideration for a
direct edge between them. The formula is defined as

o 2X (NOANG) + L peny)
G EE]

where N (i) and N(j) are the sets of neighbors of nodes ¢ and
J, respectively. 1,cn(;); is an indicator function that is 1 if
there is a direct edge from ¢ to j, and O otherwise.

ii. Jaccard similarity is defined based on the number of
common neighbors between two nodes i and j as follows

o N NG
Jacoard@s) = NG+ ING)]
where N (4) is the set of neighbors of ith vertex.
iii. Overlap similarity is a variation of Jaccard similarity that
measures the relative overlap between the neighborhoods of
two nodes. It normalizes the number of common neighbors
by the size of the smaller neighborhood, giving more weight
to nodes with smaller neighborhoods. It is defined as

IN(i) NN (j)|
min(|N(2)], |N(5)])

Overlap(i, j) =

iV. Wasserstein similarity quantifies the dissimilarity between

two probability distributions. It measures the minimum amount
of work required to transform one distribution into another.
Given two nodes ¢ and j with probability distributions p; and
p; over their respective neighborhoods, Wasserstein similarity
is defined as

inf

Wasserstein(i, j) =
YET (pi,p5)

S e, v)(u,v)

uU,v

where I'(p;, p;) is the set of all joint probability distributions
with marginals p; and p;, and c(u, v) is the cost of transporting
mass from node v to node v.

V. Resource Allocation Index measures the amount of
a resource” that a node can allocate to another through their
common neighbors. It is defined as

1
2 IN()I

ZEN(HNN ()

RAI(i, j) =

3) Network Embedding: Network embedding is a technique
used in network analysis to represent nodes and edges in a
network as low-dimensional vectors in a continuous vector
space. The goal of network embedding is to capture the struc-
tural and relational information of the network in these vector
representations, enabling downstream machine learning tasks
such as node classification, link prediction, and community
detection.

In general, the embedding process includes 2 steps. As the
first step, a set of neighbors is sampled from a graph. Then,
the learning process leverages the co-occurrence probability
of the vertices that appear within a window in a sampled
neighborhood [12], [13]. Node pairs with high co-occurrence
probability are regarded as neighbors. We define network
embedding as follows.

Definition 2 (Network embedding). Network embedding is a
mapping ¢ : V — R, d << |V| which represents each vertex
v €V as a point in a low dimensional space R.

Here d is a parameter specifying the number of dimen-
sions of our feature representation. For every source node
u € V, we define Ng(u) C V as a network neighborhood of
node u generated through a neighborhood sampling strategy
S. We seek to optimize the following objective function,
which maximizes the log-probability of observing a network
neighborhood Ng(u) for a node u conditioned on its feature
representation, given by ¢

max > " logPr(Ns(u)|¢(w)).)

ueV
B. Related Work

In the context of network embedding, graph compres-
sion is employed as a preprocessing step in many research
works. GraphZoom [14], MILE [15], HARP [16] simplify
the large graphs utilizing multi-level graph clustering, and
at each level, they learn and refine nodes’ representations.

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2025 at 16:00:58 UTC from IEEE Xplore. Restrictions apply.

NECL [17] uses meta-strategy by applying neighborhood
similarity (Jaccard) between nodes where nodes with similar
neighbors are grouped into supernodes. EnD [18] employs
degree-based compression and iterative dedensification for
efficient representation learning. Mostly, graph compression
models combine graph components for efficient representation
learning, while the dedicated function provides a comparable
test performance to the original graph.

III. METHODOLOGY
A. Random walk based sampling

The neighborhoods in the network embedding are not re-
stricted to just immediate neighbors but can have vastly differ-
ent structures depending on the sampling strategy. There are
many possible neighborhood sampling strategies for vertices
as a form of local search. Different neighborhoods coming
from different strategies result in different learned feature
representations. For scalability of learning, random walk-based
methods are used to capture the structural relationships of
vertices and proximity-based similarities in the graph. They
maximize the co-occurrence probability of subsequent vertices
within a fixed-length window of random walks to preserve
higher-order proximity between vertices. With random walks,
networks are represented as a collection of vertex sequences.
In this section, we take a deeper look at the network neigh-
borhood sampling strategy based on random walks and the
proximity captured by random walks.

The co-occurrence probability of node pairs depends on the
transition probabilities of vertices during the random walk.
Considering a graph G with adjacency matrix A, we define the
diagonal matrix, known as degree matrix, as D;; = > i Aar if
i = j and D;; = 0 otherwise. In a random walk, the transition
probability from one node to another depends on the degree
of the vertices. The probability of leaving a node from one of
its edges is split uniformly among the edges. We define this 1
step transition probability as T: T'= D~' A where Tj; is the
probability of a transition from vertex v; to vertex v; within
one step.

We observe here that if two vertices, v;, v;, of a graph have
many common neighbors, they also have similar transition
probabilities to other vertices. This means that if A; and A; are
similar, transition probability vectors of them, T; = A; Di_i1
and T = A * D;jl, will be similar as well. Hence they have
similar neighborhoods and get similar neighborhood sets from
random walks, and as a result, they get similar representa-
tions from the learning process. Therefore, the random walk-
based neighborhood sampling strategy captures the higher-
order proximity within the neighborhood of the vertices.

B. Graph compression based on node similarity

Based on the observation given in the previous section, if
two vertices have similar neighborhoods on the graph, random
walks starting from these vertices would produce similar paths
and similar representations. As a result, instead of learning
representations for these vertices individually, which is time-
consuming, we can merge these two vertices into a supernode

®
HOOE

((a)) Original

((b)) 1st comp. ((¢)) 2nd comp.

Fig. 1: Example of graph compression

and use the representation of the supernode to learn the
representation of the original vertices.

As an example, we provide an illustration of our compres-
sion idea on a toy graph in Figure 1. As seen in Figure 1-
a nodes a and b share identical neighbor sets. Hence, they
have a high proximity-based similarity as a result of very
similar sampled paths. From identical neighbor sets, their
transition probabilities to other neighboring vertices also be-
come identical, denoted as p(v;la) = p(v;|b) = 1/3 for all
1 € 1,2,3. Initiating a walk from either a or b results in the
same/similar paths. Hence, rather than conducting walks and
deriving representations for a and b separately, learning from
just one of them suffices. This motivates the merging of the
node pair (a, b) into a single super-node ab (see in Figure 1-b).
The transition probabilities of this supernode to the neighbors
of a and b remain identical to those of a and b, respectively,
expressed as p(v;lab) = 1/3 for all i € 1,2, 3.

Moreover, compression may alter the transition probabilities
of vertices due to reductions in their neighbor counts. As a
result, the transition probabilities of each neighbor are subject
to change. For instance, in the toy graph depicted in Figure 1-
a, while the transition probability from v; to its neighbors is
initially m it becomes W post-compression, as the
number of neighbors decreases by one. To address this issue,
we assign weights to the edges of super-nodes based on the
number of merged edges during compression. For instance,
the super-edge between super-node ab and v; encompasses 2
merged edges, namely (a,v1) and (b,v;). Consequently, the
weight of the super-edge (ab, v1) should be 2.

Furthermore, in real-world graphs, it is uncommon to find
many vertices with entirely identical neighbor sets. Therefore,
if the neighbors of two vertices are similar (though not
identical), rather than individually learning representations for
each node, we can still merge them into a super-node and
derive a single representation for all of them. For example, in
Figure 1-b, nodes ab and ¢ do not share identical neighbors,
yet their 2 out of 4 neighbors are in common. Hence, we
may still want to merge them into the supernode abc as in
Figure 1-c.

Based on this observation, we integrate multiple node simi-
larity measures within our graph compression framework. The
existing literature provides a diverse array of such measures.
Specifically detailed in Section II-A2, we investigate five
distinct proximity-based similarity measures. Each of these
measures sheds light on different structural characteristics of

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2025 at 16:00:58 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Graph Compressing(G,)

Input: G(Vg, Eg), similarity threshold A
Output: S(Vg:, Eg, Wg), mapping M
M is a mapping from super-node to original node
1 S+G
2 NSQ + 0
3 for v € Vi do

4 for u € Ng(v) do

5 for k € Ng(u) do

6 Compute Proximity-based similarity between v

and k as PSim(v, k)

7 NSQ < NSQU (v, k)

8 end

9 end
10 end

11 for (v,k) € NSQ do
12 if PSim(v, k) > X then

13 Merge them into a super-node s, i

14 M(sy,5) v; M(8p,5) + k

15 Delete v and k from S and add s, % into S.
16 end

17 for ng € Ns(v) do

18 add edge between s, and ng

19 'lU(TLg,SUk) = ’LU('I’Lg,’U)

20 end

21 for ng € Ns(k) do

22 add edge between s, and ng if there is no
23 ’lU(ng7SUk) :w(nga‘SUk) +w(ng, k)

24 end

25 end

the nodes. Consequently, the resulting compressed graphs vary
across measures, leading to diverse learning outcomes. Follow-
ing similarity calculations between node pairs, we determine
compression based on a given threshold; we compress nodes
as a supernode whose similarities are larger than the given
threshold. Our project aims to examine how these measures
affect compression and representation learning. The generic
compressing algorithm is provided in Algorithm 1.

C. Network embedding on compressed graph

After obtaining the compressed graph, we employ a network
embedding method to derive embeddings for the compressed
graph. Specifically, we utilize random walk-based network
embedding techniques such as DeepWalk and Node2vec
to learn representations for the super nodes within the com-
pressed graph. It’s worth noting that our model remains
adaptable to any network embedding method. Given that the
size of the compressed graph is smaller than the original graph,
obtaining embeddings for super nodes is more efficient com-
pared to individual vertices in the original graph. Subsequently,
we assign the embeddings of super nodes to vertices based on
the mapping M acquired from the compression process.

TABLE I: Graph statistics

| Network [[[V] [[E[[class# | Multi-label |
Wiki 2405 [23192 17 No
Cora 2708 | 10858 7 No
DBLP 27199 | 133664 | 4 Yes
BlogCatalog 10312 | 667966 39 Yes

IV. EXPERIMENTS
A. Datasets

We consider four real-world graphs', which have been
widely adopted in the studies of network embedding. The
general statistics of the datasets used for experiments are
reported in Table I.

B. Baseline methods

For the performance evaluation, we use DeepWalk and
Node2vec as baseline embedding methods in our model and
compare our model with them. We combine each baseline
method with our method and compare their performance.

Parameter Settings: For DeepWalk, Node2vec, and
SGC(DW), SGC(N2V), we set the following parameters: the
number of random walks v, walk length ¢, window size w for
the Skip-gram model and representation size d. The parameter
setting for all models is v = 40, t = 10, w = 10, d = 128.
The initial learning rate and final learning rate are set to 0.025
and 0.001 respectively in all models.

C. Classification

Our experiments aimed to evaluate the effectiveness of var-
ious proximity-based node similarity measures in the context
of graph compression and their subsequent impact on network
embedding. We compare the different proximity-based node
similarity measures on two different node classification tasks,
namely single-label and multi-label classification. At first, we
get the node embedding for all nodes in the network using all
similarity measures for Node2vec and DeepWalk methods.
Then we randomly select a portion of the labeled nodes to
train the classification method and the rest of them are used
for testing. For a fair comparison, we do the classification
process 10 times and average the micro F1 scores.

1) Single-label classification:: For single-label classifica-
tion experiments, we used Cora and Wiki datasets where nodes
have a single label, i.e., a node belongs to only one class.
We use the SVM model as the classifier for this experiment.
Table II shows node classification accuracy results for Cora
and Wiki datasets. The experiments were conducted using
5% labeled vertices for training the classifier. We select the
similarity threshold values, denoted as A, for each similarity
measure based on significant accuracy improvements observed
in Figure 2. Specifically, we set the thresholds A to 0.5, 0.4,
0.7, 0.4, 0.9, 0.3, and 0.9 for the respective similarities, as they
appear in the table. The table indicates that among all five
proximity-based similarity measures, the Jaccard similarity
measure yields the highest accuracy for both datasets. Our
model with the Jaccard similarity measure demonstrates a
noteworthy enhancement of 64.41% and 64.58% in efficiency
as embedding time without experiencing significant loss, or
even showcasing better improvements, in effectiveness, as
evidenced by the micro F1 score on the Cora dataset for
the DeepWalk and Node2vec methods respectively. For

Thttps://lings.soe.ucsc.edu/data

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2025 at 16:00:58 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Performance comparison of the single-label and multi-label classification tasks for the training ratio 5% for Cora,
Wiki, BlogCatalog, and DBLP. Here, we select the similarity threshold A for each similarity based on their performance.

Cora Wiki BlogCatalog DBLP
DeepWalk Node2vec DeepWalk Node2vec DeepWalk Node2vec DeepWalk Node2vec
Similarity | Mi. £y Time | Mi. F; Time | Mi. £y Time | Mi. F; Time | Mi. F7 Time |Mi. F4 Time |Mi. F} Time | Mi. F; Time
Comp. | 0.692 4.78 | 0.703 491 0.500 3.16 | 0.508 5.66 | 0.290 235.06 | 0.292 2154.54| 0.658 120.13 | 0.657 121.93
CN | Orig. 0.726 152 | 0.710 15.6 | 0.521 12.01| 0.521 19.93| 0.309 278.74| 0.316 2395.05| 0.654 423.85| 0.653 484.80
Gain % | -4.68 68.55| -099 67.61| -403 73.69| -250 71.60| -6.15 15.67 -7.59 10.04 0.61 71.66 0.61 74.85
Comp. | 0.711 541 0.715 537 | 0522 478 | 0.533 8.00 | 0297 26436 | 0.305 223458 | 0.658 211.04| 0.661 275.71
J Orig. 0.726 152 | 0.710 15.16 | 0.521 12.01 | 0.521 19.93 | 0.309 278.74| 0.316 2395.05| 0.654 423.85| 0.653 484.80
Gain % | -2.07 6441 | 070 64.58| 0.19 60.20| 2.30 40.41| -3.88 5.16 -3.48 6.70 0.61 50.21 1.22 43.13
Comp. | 0.637 7.77 | 0.622 855 | 0467 5.65 | 0.481 1146 0.282 96.88 | 0.279 1446.84 | 0.622 177.11 | 0.622 223.51
(6] Orig. 0.726 152 | 0.710 15.16 | 0.521 12.01 | 0.521 19.93 | 0.309 278.74| 0.316 2395.05| 0.654 423.85| 0.653 484.80
Gain % | -12.26 48.88 | -12.39 43.60 | -10.36 5296 | -7.68 42.50 | -8.74 34.76 | -11.71 39.59 -4.89 58.21 -4.75 53.90
Comp. | 0.649 5.04 | 0.646 7.09 | 0.526 7.55 | 0529 11.5 | 0313 232.09| 0315 2168.47| 0.455 3432 | 0.653 311.36
w Orig. 0.726 152 | 0.710 15.16 | 0.521 12.01 | 0.521 19.93 | 0.309 278.74| 0.316 2395.05| 0.654 423.85| 0.653 484.80
Gain % | -10.61 66.84 | -9.01 5323 | 096 37.14| 1.54 42.30 1.29 16.74 -0.32 9.46 -3043 91.90 0.00 35.78
Comp. | 0.638 9.82 | 0.650 19.63 | 0.293 1093 | 0.299 9.57 | 0.249 237.09| 0.237 1914.12 | 0.582 360.86 | 0.588 374.60
R Orig. 0.726 152 | 0.710 15.16| 0.521 12.01| 0.521 10.69 | 0.309 278.74| 0.316 2395.05| 0.654 423.85| 0.653 484.80
Gain % | -11.12 3539 | -845 2949 | -43.76 899 | -42.61 1041 | -1942 1494 | -25.00 20.08 -11.01 1486 | -9.10 22.73
0.451 T 0.45 ’/' 0.60 0.601 L/
2::2 g;:‘ 0.50 } // 0.50]
0301 0.30| / 40! /
025/ 025 | /,/ o4 . //
0200 1/ 0200 koA / — 0.30] y=—
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Threshold Threshold Threshold Threshold

—— Com. Neigh.
Jaccard

-~ Overlap ~— Resource ~~ Resource

~— Wasserstein

+— Com. Neigh
Jaccard

«— Overlap
+— Wasserstein

((a)) SGC(DeepWalk) - Wiki ((b)) SGC(Node2vec) - Wiki

Fig. 2: Detailed classification results (Micro F1) for Wiki

the Wiki dataset, our model shows 60.20% and 40.41%
improvements in efficiency compared to the baseline models.

Figure 2 shows the detailed result for the Cora and wiki
datasets for different similarity threshold values. From the
figures, we can see that at the beginning when the threshold
is A = 0.1 the accuracy is very low. When we increase the
threshold value A the accuracy is also changing dramatically
till the threshold value 0.5. After the threshold value of 0.5, the
accuracy increases very slowly or remains constant for most
of the similarity measures. One possible reason for this result
is that graph sizes are very small when the threshold value
A < 0.5 which loses lots of important information. For the
Cora dataset, for low threshold values, the Resource similarity
metric performs better than the other similarity metrics. While
the Jaccard similarity metric gives better accuracy when the
threshold value is more than 0.4. On the other hand, the Over-
lap similarity measure gives the lowest accuracy. Similarly for
the Wiki dataset, Wasserstein, Common Neighbor, Resource,
and Jaccard similarity metrics show almost the same results
when the threshold value A > 0.5.

2) Multi-label classification:: A vertex may belong to more
than one class in the multilabel classification task. To test the
effectiveness of our compressed graphs, we utilize the logistic
regression model in rest vs one manner as the classifier for the
classification task. The model fits with the ridge regression
lo and is implemented by LibLinear. Table II demonstrates
the Multi-label classification accuracy for DBLP and Blog-

+— Com. Neigh.
Jaccard

+— Com. Neigh ~— Resource +— Overlap —— Resource

Jaccard

-~ Overlap
—— Wasserstein

-~ Wasser.

((c)) sGC(DeepWalk) - Cora ((d)) SGC(Node2vec) - Cora

and Cora datasets with different similarity threshold .

Catalog datasets. From the table, we can see that for the
BlogCatalog dataset, the Wasserstein similarity measure gives
the best results among all proximity-based measures for the
DeepWalk method. Where it improves 1.29% micro F1 score
and 16.74% gain on embedding time. For the Node2vec
model, Jaccard similarity measures give better results than
other similarity measures. For the DBLP dataset, the Common
Neighbors similarity measure gives the best result for both
embedding methods among all similarity measures. Our model
shows 71.66% and 74.85% efficiency improvements compared
to baseline models for the Common Neighbors similarity
measure.

Figures 3 demonstrate the impact of the node classification
accuracy on the DBLP and BlogCatalog datasets for changing
the threshold. For both the DeepWalk and Node2vec em-
bedding methods, we observe an almost similar pattern in node
classification accuracy. Notably, the accuracy with Wasserstein
distance similarity achieves stable accuracy for incrementing
the threshold A. One of the reasons is that the method does
not greatly compress the network. In contrast, with the Jaccard
similarity and resource allocation index, all datasets archive
stable results when the A value reaches near 0.4. In the case
of the typical neighborhood, overlapping similarities gradually
attain their best accuracies for incrementing threshold.

D. Graph compression

In this section, we present how the graph size, i.e., the
number of vertices and edges, is decreasing by graph com-

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2025 at 16:00:58 UTC from IEEE Xplore. Restrictions apply.

0.321 . — 0.32] « e - s _ - — ——
—_— ———e —— —- - — s — e ——t—— < =
0.30 .’_: — 0.30 1 — 0.65 4 =
S o~ 7
0.28{ —— 0.28 = 0.60
0.26] ¥ 0.26 b7
0.241 / / 0.24 0.55
0.221 y / / 0.22 %
/ 4 0.50 /

0201 / A 0.20 / A { 4
018 / g o8 / | ‘_/ 0.45| =——"—

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Threshold Threshold Threshold Threshold

~— Resource +— Com. Neigh

Jaccard

+— Overlap
—— Wasserstein

—— Com. Neigh. ~— Resource

Jaccard

—— Overlap
—— Wasserstein

((a)) SGC(DeepWalk) - BlogC ((b)) SGC(Node2vec) - BlogC

—— Com. Neigh

((c)) SGC(DeepWalk) - DBLP

+— Com. Neigh.
Jaccard

+— Overlap
—— Wasserstein

—— Overlap —— Resource +— Resource

Jaccard <+~ Wasserstein

((d)) SGC(Node2vec) - DBLP

Fig. 3: Detailed classification results (Micro F1) for BlogCatalog and DBLP datasets with different similarity threshold A.

pression with different similarity measures. Table III shows
the Percentage statistics of compression on nodes and edges in
the compressed graph for different proximity-based similarity
metrics on all four datasets. For the Cora dataset, the Common
Neighbor similarity metric reduces the highest number of
nodes and edges from the original graph. It reduces 47.3% and
51.74% of the original node and edge sizes respectively. For
the Wiki dataset, the Common Neighbor similarity measure
shows the highest gain on graph compression. For the DBLP
dataset, the Common Neighbor similarity measure again shows
the highest gain on graph compression whereas Overlap
similarity gets the highest graph compression gain for the
BlogCatalog dataset.

TABLE III: Graph Compression Statistics

Graph CN J o w R

Cora V| | 473% | 27.1% | 382% | 33.6% | 12.6%
E 51.7% | 28.5% | 37.8% | 30.5% | 26.2%

Wiki \% 559% | 35.8% | 52.9% | 7.9% 24.7%
E 63.0% | 46.3% | 59.8% 6.9% 67.2%

DBLP \% 67.6% | 452% | 53.2% | 37.5% | 253%
E 753% | 554% | 63.6% | 42.9% | 54.1%

BC \% 17.5% | 12.7% | 26.3% 2.0% 6.5%
|E| | 18.4% | 4.4% 28.1% | 0.1% 78.8%

V. CONCLUSION

In this paper, we propose a novel graph compression
method, SGC, for an efficient network analysis and network
embedding method preserving the local structural features of
the vertices. Based on different node similarities, we compress
related vertices of a network into supernodes that preserve the
neighborhood information of the vertices. Then, we use the
compressed graph to learn the representation of the vertices in
the original graph. We leverage the utility of this paradigm by
integrating SGC with two commonly used network embedding
techniques, DeepWalk and Node2vec. Extensive experi-
ments on various real-world graphs show distinct effects of
each similarity measure on graph compression and embedding.
Some measures lead to enhancements of up to 70% in network
embedding time without sacrificing classification accuracy, as
assessed across single and multi-label classification tasks. This
study underscores the promising potential of similarity-based
graph compression for efficient network analysis and network
embedding.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

P. Bedi and C. Sharma, “Community detection in social networks,” Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
vol. 6, no. 3, pp. 115-135, 2016.

P. Fang and T. Wolf, “Value trees: Multi-hop and asynchronous eco-
nomic transactions in distributed systems,” in 2023 32nd International
Conference on Computer Communications and Networks (ICCCN).
IEEE, 2023, pp. 1-10.

M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side
effects with graph convolutional networks,” Bioinformatics, vol. 34,
no. 13, pp. i457-i466, 2018.

A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with
big data,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp.
2032-2033, 2012.

Y. Liu, T. Safavi, A. Dighe, and D. Koutra, “Graph summarization
methods and applications: A survey,” ACM Comput. Surv., vol. 51, no. 3,
pp. 62:1-62:34, 2018.

M. Rahman and M. Al Hasan, “Link prediction in dynamic networks
using graphlet,” in Joint European Conference on Machine Learning
and Knowledge Discovery in Databases. Springer, 2016, pp. 394—409.
J. Yang, J. McAuley, and J. Leskovec, “Community detection in
networks with node attributes,” Proceedings - IEEE International
Conference on Data Mining, ICDM, pp. 1151-1156, Jan. 2013.
[Online]. Available: http://arxiv.org/abs/1401.7267

E. Akbas and M. E. Aktas, “Network embedding: on compression and
learning,” in 2019 IEEE International Conference on Big Data (Big
Data). 1EEE, 2019, pp. 4763-4772.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of
social representations,” in Proceedings of the SIGKDD’14. ACM, 2014,
pp. 701-710.

A. Loukas, “Graph reduction with spectral and cut guarantees,” Journal
of Machine Learning Research, vol. 20, no. 116, pp. 1-42, 2019.

M. E. Aktas, T. Nguyen, and E. Akbas, “Homology preserving graph
compression,” in 2021 20th IEEE International Conference on Machine
Learning and Applications (ICMLA). 1EEE, 2021, pp. 930-935.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Proceedings of Workshop at
ICLR, 2013., 2013.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111-3119.

Y. W. Z. Z. Z. E. Chenhui Deng, Zhiqiang Zhao, “Graphzoom: A multi-
level spectral approach for accurate and scalable graph embedding,” in
In ICLR 2020, 2020.

J. Liang, S. Gurukar, and S. Parthasarathy, “Mile: A multi-level frame-
work for scalable graph embedding,” in Proceedings of the International
AAAI Conference on Web and Social Media, vol. 15, 2021, pp. 361-372.
H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “Harp: Hierarchical repre-
sentation learning for networks,” in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

M. 1. Islam, F. Tanvir, G. Johnson, E. Akbas, and M. E. Aktas,
“Proximity-based compression for network embedding,” Frontiers in big
Data, vol. 3, p. 608043, 2021.

T. Hossain, E. Akbas, and M. 1. K. Islam, “End: Enhanced dedensifica-
tion for graph compressing and embedding,” in 2022 IEEE International
Conference on Data Mining Workshops (ICDMW). 1EEE, 2022, pp.
674-681.

Authorized licensed use limited to: Georgia State University. Downloaded on July 21,2025 at 16:00:58 UTC from IEEE Xplore. Restrictions apply.

