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Abstract—Graph Neural Network (GNN) achieves great suc-
cess for node-level and graph-level tasks via encoding meaningful
topological structures of networks in various domains, ranging
from social to biological networks. However, repeated aggregation
operations lead to excessive mixing of node representations,
particularly in dense regions with multiple GNN layers, resulting
in nearly indistinguishable embeddings. This phenomenon leads
to the oversmoothing problem that hampers downstream graph
analytics tasks. To overcome this issue, we propose a novel
and flexible truss-based graph sparsification model that prunes
edges from dense regions of the graph. Pruning redundant edges
in dense regions helps to prevent the aggregation of excessive
neighborhood information during hierarchical message passing
and pooling in GNN models. We then utilize our sparsification
model in the state-of-the-art baseline GNNs and pooling models,
such as GIN, SAGPool, GMT, DiffPool, MinCutPool, HGP-SL,
DMonPool, and AdamGNN. Extensive experiments on different
real-world datasets show that our model significantly improves
the performance of the baseline GNN models in the graph
classification task.

Index Terms—GNN, Oversmoothing, Graph Sparsification, k-
truss Subgraphs, Graph Classification.

I. INTRODUCTION

In recent years, graph neural networks (GNN) have given
promising performance in numerous applications over differ-
ent domains, such as gene expression analysis [19], traffic flow
forecasting [28], fraud detection [22], and recommendation
system [7]. GNN effectively learns the representation of nodes
and graphs via encoding topological graph structures into
low-dimensional space through message passing and aggrega-
tion mechanisms. To learn the higher-order relations between
nodes, especially for large graphs, we need to increase the
number of layers. However, creating an expressive GNN model
by adding more convolution layers increases redundant recep-
tive fields for computational nodes and results in oversmooth-
ing as node representations become nearly indistinguishable.

Several research works illustrate that due to oversmoothing,
nodes lose their unique characteristics [5], [9], adversely
affecting GNNs’ performance on downstream tasks, including
node and graph classification. Different models have been pro-
posed to overcome the problem, such as skip connection [6],
drop edge [17], GraphCON [18]. While many of these methods
focus on node classification, they often overlook the impact
of oversmoothing on the entire network’s representation. Ad-
ditionally, only a limited number of studies have investigated
the influence of specific regions causing oversmoothing [6],
[9] in GNNs. These studies show that the smoothness in GNN

varies for complex connections in different graph areas, and
an individual node with high degrees converges to stationary
states earlier than lower-degree nodes. Hence, the networks’
regional structures affect the phenomenon because repeated
message passing occurs within the dense neighborhood regions
of the nodes. Therefore, we observe the impact of congested
graph regions on oversmoothing.

We conduct a small experiment to demonstrate the early
oversmoothing at highly connected regions on a toy graph
(Figure 1(a)). To calculate the density on the graph, we utilize
the k-truss [1], one of the widely used cohesive subgraph
extraction models based on the number of triangles each edge
contains. To show the smoothness of the node features, we
utilize the average node representation distance (ANRD) [11].
We measure the ANRD of different k-truss regions and present
how it changes through the increasing number of layers in
GNN. We present the toy graph and ANRD values with respect
to the number of layers in Figure 1(b). While the toy graph in
the figure is a 4-truss graph, it has 6, 7, and 8-truss subgraphs.
Nodes and edges are colored based on their trussness. As
known, k-truss subgraphs have hierarchical relations, e.g., 7
and 8-truss subgraphs are included in the 6-truss subgraph.
Even at layer 2, we observe the ANRD of 7 and 8-truss
subgraphs substantially degrades compared to the lower truss
(k = 4, 6) subgraphs.

While oversmoothing is observed at the node level, it may
also result in losing crucial information for the graphs’ repre-
sentation to distinguish them. Furthermore, to learn the graph
representation, GNNs employ various hierarchical pooling
approaches, including hierarchical coarsening and message-

(a) Experiment Graph (b) ANRD vs Layers

Fig. 1: Early Oversmoothing: Average node representation
distance(ANRD) of different k-truss subgraphs concerning
GNN layers (2-10)
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passing, resulting in oversmoothing via losing unique node
features [24], [33]. Consequently, dense regions’ identical
node information affects the graph’s representation learning.

We extend the preliminary investigation on the toy graph
given in Figure 1(a). We first apply the SAGPool model. After
each pooling layer’s operation, we measure the coarsened
graph’s nodes’ embedding space matrix (ESM) with l2 norm,
then present the results for the first 2 pooling layers in
Figure 2(a) and 2(b). We observe that embedding distances
are getting smaller for nodes within the dense regions, sig-
nificantly reducing the final graph’s representation variability.
These node and graph representation characteristics through
GNN models inspire us to work at different levels of dense
regions in the network to mitigate oversmoothing.

Our Work. To tackle the challenge, we develop a truss-
based graph sparsification (TGS) model. Earlier sparsification
models apply supervised techniques [31] and randomly drop
edges [9], [17] which may result in losing meaningful con-
nections. However, our model selects the initial extraneous
information propagating edges by utilizing edge trussness. It
operates on the candidate edge’s nodes’ neighborhood and
measures the connectivity strength of nodes. This connectivity
strength assists in understanding the edge’s local and global
impact on GNN’s propagation steps. Based on their specific
node strength limits, we decide which edges to prune and
which to keep. Removing selected redundant edges from
dense regions reduces noisy message passing. That decreases
oversmoothing and facilitates the GNN’s consistency in per-
formance during training and inference time. As we see in
Figure 2(c) and 2(d), the sparsified graph exhibits greater
diversity in node distances than the original, enhancing better
representation learning. In a nutshell, the contributions of our
model are listed as follows.

• We observe the prior stationary representation learning of
nodes emerging in the network’s high-truss region, which
denotes a new perspective on explaining oversmoothing.
We develop a unique truss-based graph sparsification
technique to resolve this issue.

• In the edge pruning step, we measure the two nodes’
average neighborhood trussness to detect the regional
interconnectedness strength of the nodes. During the
message passing steps in GNN, as we trim down the
dense connections within subgraphs, nodes in less dense
areas at varying hop distances acquire diverse hierarchical
neighbor information. Conversely, nodes in highly dense
regions receive reduced redundant information. This pro-
vides smoothness to the node representation as well as to
the graph representation.

• We provide a simple but effective model by pruning
noisy edges from graphs based on their nodes’ average
neighborhood trussness. The effectiveness of our model
has been evaluated in comparison with standard GNN and
graph pooling models. Extensive experiments on different
real-world graphs show that our approach outperforms
most of those baselines in graph classification tasks.

The rest of this paper is organized as follows. Section II dis-
cusses the related work that informs our research. Section III
introduces the model’s preliminaries, whereas Section IV
describes the model itself. Next, Section V represents our
model’s experiment results and an analysis of its performance
on different datasets. Finally, we conclude the paper with a
discussion of future research directions.

II. RELATED WORKS

Graph Classification. Early GNN models leverage simple
readout functions to embed the entire graph. GIN [26] intro-
duces their lack of expressivity and employs deep multiset
sums to represent graphs. In recent years, graph pooling
methods have acquired excellent traction for graph represen-
tation. They consider essential nodes’ features instead of all
nodes. Flat pooling methods utilize the nodes’ representation
without considering their hierarchical structure. Among them,
GMT [3] proposes a multiset transformer for capturing nodes’
hierarchical interactions. Another approach, SOPool [25], cap-
italizes vertices second-order statistics for pooling graphs.

There are two main types of hierarchical pooling methods:
clustering-based and selection-based. Clustering-based meth-
ods assign nodes to different clusters: computing a cluster
assignment matrix [27], utilizing modularity [21] or spectral
clustering [4] from the node’s features and adjacency. On the
other hand, selection-based models compute nodes’ impor-
tance scores up to different hop neighbors and select essential
nodes from them. Two notable methods are SAGPool [12],
which employs a self-attention mechanism to compute the
node importance, and HGP-SL [30], which uses a sparse-
max function to pool graphs. KPLEXPOOL [2] hierarchically
leverages k-plex and graph covers to capture essential graph
structures and facilitates the diffusion between contexts of
distance nodes. Some approaches combine both hierarchical
pooling types to represent graphs. One model, ASAP [16],
adapted a new self-attention mechanism for node sectioning,
a convolution variant for cluster assignment. Another model,
AdamGNN [32], employs multi-grained semantics for adapt-
ing selection and clustering for pooling graphs.

Oversmoothing: While increasing number of layers for a
regular neural network may results better learning, it may
cause an oversmoothing problem in which nodes get sim-
ilar representations during graph learning because of the
information propagation in GNN. To tackle this, researchers
propose different approaches: DROPEDGE [17] randomly
prunes edges like a data augmentor that reduces the mes-
sage passing speed, DEGNN [14], [23] applies connectivity
aware decompositions that balance information propagation
flow and overfitting issue, MADGap [5] measures the average
distance ratio between intra-class and inter-class nodes which
lower value ensures over-smoothing. However, these methods
overlook networks’ regional impact on oversmoothing. The
k-truss [10] algorithm primarily applies to community-based
network operations to identify and extract various dense re-
gions. It has been employed in different domains, such as
high-performance computing [8] and graph compression [1].



(a) Org. pool 1 (b) Org. pool 2 (c) Spars. pool 1 (d) Spars. pool 2

Fig. 2: ESM of the toy graph and sparsified graph for δ = 7

Our TGS model functions as a technique equipped with
foundation graph pooling methods. It leverages the k-truss
algorithm and edges’ minimum node strength to provide
networks’ structural interconnectedness. Pruning highly dense
connections helps to restrict excessive message passing paths
to reduce oversmoothing in GNN models. We empirically
justified it by experimenting with different graph topologies
in section V.

III. PRELIMINARIES

This section discusses the fundamental concepts for GNN
and pooling, and also formulate the oversmoothing problem
including the essential components for our solution to this
problem. We begin with discussing graph neural networks and
graph pooling techniques. Then, define the issue, including
the task. Finally, we delve into the foundation concept of
our model (k-truss), which plays a crucial role in solving the
problem.

A. GNN and Graph Pooling

Graph Neural Network (GNN) [20] is an information
processing framework that defines deep neural networks on
graph data. Unlike traditional neural network architectures
that excel in processing Euclidean data, GNNs are experts
in handling non-Euclidean graph structure data. The principal
purpose of GNN is to encode node, subgraph, and graph into
low-dimension space that relies upon the graph’s structure. In
GNN, for each layer, K in the range 1, 2, ...k, the computa-
tional node aggregates (1) messages m

(k)
N(v) from its K-hop

neighbors and updates (2) its representation h
(k+1)
v with the

help of the AGGREGATE function.

m
(k)
N(v) = AGGREGATE(k)({h(k)

u , ∀u ∈ N(v)}) (1)

h(k+1)
v = UPDATE(k)(h(k)

v ,m
(k)
N(v)) (2)

In the context of graph classification, GNNs must focus on
aggregating and summarizing information across the entire
graph. Hence, the pooling methods come into play.

Graph Pooling. [13] Graph pooling performs a crucial
operation in encoding the entire graph into a compressed
representation. This process is vital for graph classification
tasks as it facilitates capturing the complex network structure
into a meaningful form in low-dimensional vector space.
During the nodes’ representation learning process at different

layers, one or more pooling function(s) operate on them.
These pooling layers are pivotal in enhancing the network’s
ability to generalize from graph data through effective graph
summarization. In general, pooling operations are categorized
into two types: Flat pooling and Hierarchical pooling.

Flat pooling [13] is a straightforward graph readout opera-
tion. It simplifies the encoding by providing a uniform method
to represent graphs of different sizes in a fixed size.

hG = READOUT ({h(k)
v |v ∈ V }) (3)

Hierarchical pooling [13] iteratively coarsens the graph
and encodes comprehensive information in each iteration,
reducing the nodes and edges of the graph and preserving
the encoding. It enables the graph’s representations to achieve
short and long-sighted structural details. In contrast to Flat
Pooling, it gives deeper insights into inherent graph patterns
and relationships.

Between the two types of hierarchical graph pooling meth-
ods, the selection-based methods emphasize prioritizing nodes
by assigning them a score, aiming to retain the most significant
nodes in the graph. They employ a particular attention
function for each node to compute the node importance. Based
on the calculated scores, top k nodes are selected to construct a
pooled graph. The following equation gives a general overview
of the top k selection graph pooling method:

S = score(G,X); idx = topK(S, [α×N ])

A(l+1) = Aidx,idx

(4)

where S ∈ RN×1 is the scores of nodes, α is the pooling
ratio, and N is the number of nodes. Conversely, clustering-
based pooling methods form supernodes by grouping original
graph nodes that summarize the original nodes’ features. A
cluster assignment matrix S ∈ RN×K using graph structure
and/or node features are learned by the models. Then, nodes
are merged into super nodes by S ∈ RN×K to construct the
pooled graph at (l + 1)th layer as follows

A(l+1) = S(l)TA(l)S(l)

H(l+1) = S(l)TH(l)
(5)

where A ∈ RN×N is the adjacency matrix and H ∈ RN×d

is the feature matrix with d dimensional node feature and
N is the number of nodes. Note that, the AGGREGATE,



UPDATE and READOUT operations are different oper-
ational functions, commonly including min, max, average,
and concat.

B. Oversmoothing

According to [29], continual neighborhood aggregation of
nodes’ features gives an almost similar representation to nodes
for an increasing number of layers K. simply, without consid-
ering the non-linear activation and transformation functions,
the features converge as -

h∞ = Â∞X, Âi,j =
(di + 1)r(dj + 1)1−r

2m+ n
(6)

where, vi and vj are source and target nodes, di and dj are
their degrees respectively, Â is the final smoothed adjacency
matrix and r ∈ [0, 1] is the convolution coefficient. The
equation (6) shows for an infinite number of propagations,
the final features are blended and only rely upon the degrees
of target and source nodes. Furthermore, through spectral and
empirical analysis [6] shows: nodes with higher-dree are more
likely to suffer from oversmoothing.

hk(j) =
√
dj + 1(

n∑
i=1

√
dj + 1

2m+ n
xi ±

∑n
i=1 xi(1− λ2

G

2 )k√
dj + 1

)

(7)
In the equation (7), λG is the spectral gap, m is the number
of edges, and n is the number of nodes. It represents the
features convergence relied upon the spectral gap λG and
summation

∑n
i=1 of feature entries. When the number of

layers K goes to infinity, the second term disappears (after
±). Hence, all vertices’ features converge to steady-state for
oversmoothing, which mainly depends on the nodes’ degrees.

C. Problem Formulation

This research aims to alleviate oversmoothing by effectively
simplifying graphs to balance global and local connections,
resulting in better graph classification results. Formally, A
Graph is denoted as G = (V,E,X), where V is the set
of nodes and E is the set of edges. Symbol X ∈ RN×d

represents the graph’s feature matrix of dimension d, where
N = |V | is the number of nodes in G and xv ∈ Rd, xv ∈
X and v ∈ V is a d dimensional feature of a particular
node in the graph. The neighborhood of a node u is denoted
as N(u), and its degree is represented as d(u) = |N(u)|.
For a dataset D = (G, Y ) consisting of a set of graphs
G = {G1, G2 · · ·GN}, label pair Y = {Y1, Y2, ....YN},
our truss-based sparsification algorithm introduces a set of
sparsified graphs as GS = {GS1, GS2....GSN}. The algorithm
is designed to remove redundant graph connections and retain
the graph’s essential structural information. Subsequently, This
sparsified graphs set is analyzed using GNN models to learn
a function f : GS → Y leveraging the reduced complexity of
the graphs. The principal objective is to enhance the accuracy
(Acc) of GNN models in graph classification tasks.

D. K-truss

Identifying and extracting cohesive subgraphs is a pivotal
task in the study of complex networks. The k-truss subgraph
extraction algorithm is instrumental as it isolates subgraphs
based on a specific connectivity criterion. The root of the
criterion is the term support, which refers to the enumeration
of triangles in which an edge participates. The support
serves as the cornerstone to measure the cohesiveness of a
subgraph. The following two definitions explain the criterion
for extracting specific tightly interconnected subgraphs from
a complex network.

Definition 1: Support: In graph G = (V,E) , the support
of an edge e = (u, v) ∈ E is denoted as supG(e) the number
of triangles where e involves, i.e supG(e) = |{ ∆uvw :
w ∈ V }| .

Definition 2: k-truss subgraph: A subgraph S = (VS , Es)
where, S ⊆ G, Vs ⊆ V and ES ⊆ E is a k-truss subgraph
where every edge e ∈ ES has at least k − 2 support, where
k ≥ 2.
Notably, the concept of k-truss is inherently dependent on
the count of triangles within the graph, establishing that any
graph can be considered a 2-truss subgraph. The hierarchical
structure of k-truss subgraphs implies that a 3-truss subgraph
is a subset of the 2-truss subgraph (the original graph) denoted
as G3 ⊆ G2. Similarly, G4 ⊆ G3 · · ·Gk ⊆ Gk−1.

Definition 3: Edge Trussness: For a given graph G, for k >
2, an edge, E(u, v), can exist in multiple k-truss subgraphs.
The trussness of the edge, denoted as Tr(u, v), is quantified
from the highest k value for which the edge is included in that
subgraph. That is, Tr(u, v) = k and (u, v) /∈ Gk+1.

IV. TRUSS BASED GRAPH SPARSIFICATION

In this section, we explain the proposed truss-based graph
sparsification model (TGS) to overcome the oversmoothing
problem for graph classification. In graph analytics, classifying
graphs is challenging due to their large size and complex struc-
ture. Graph sparsification– a technique that reduces the number
of graph connections by preserving crucial graph structures, is
an emerging technique to address these challenges. We aim to
get an effective simplified graph that keeps essential short- and
long-distance graph connections through graph sparsification,
which produces the optimal graph classification result. The
overall architecture of the proposed model is presented in
Figure 3. The model consists of 2 parts: truss-based graph
sparsification and graph learning on the sparsified graph.
We observe four phases to develop the truss-based graph
sparsification framework.
Phase 1: Compute edge trussness: At first, we apply the k-truss
decomposition algorithm on an unweighted graph to compute
its edges’ trussness as weight. Next, we split all edges into
groups based on their truss values: high-truss edges and low-
truss values for a given threshold η.
Phase 2: Measure node strenght: TGS focuses on high-truss
edges for sparsification. As high-truss edges have higher
degrees, they massively contribute to the oversmoothing phe-
nomenon (Section III-B). Thus, strategic pruning of those
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Fig. 3: Architecture of the TGS (η = 3, δ = 2.5).

edges helps to reduce oversmoothing. However, at the same
time, important structural connections need to be maintained.
To do so, we measure the minimum node strength of its two
end nodes for each candidate high-truss edge, indicating the
edge’s surroundings’ density status.
Phase 3: Prune and update: When that minimum value ex-
ceeds the standard density assuring threshold, we prune the
edge from the graph and update all the edge’s trussness values.
Due to the cascading effect of the network, pruning affects
other edges’ trussness. Therefore, edge trussness needs to be
updated after each pruning operation. The process continues
the pruning step until all high-truss edges are examined.
Phase 4: Learning: At the end of the sparsification, we first
feed the processed graph to GNN models for graph learning.
Finally, we experiment the entire graph’s representation with
a multi-layer perceptron (MLP) network.

Note that our model follows some strategies during the
graph sparsification steps: (a) sorts the high-truss edges in
descending order to prune more dense regions’ edges earlier,
and (b) examines each edge only once. Removing an edge
from the graph might affect other edges; then, in further
exploration, one edge might satisfy the pruning condition. The
phenomenon negligibly happens as TGS starts to prune from
more dense edges. Hence, the technique avoids recursion.

A. Dense Region Identification

To learn the structure of the graph, GNN applies message
passing between nodes through edges. Through repeated mes-
sage passing, nodes in the dense regions get similar neighbors’
feature information, which causes oversmoothing. As a result,
the features of those regions’ nodes become indistinguishable.
Many different density measures exist, including k-truss, k-
core, and k-edge. This paper uses k-truss, defined based on
triangle connectivity, to identify the dense regions.

Our approach employs a truss-decomposition [1] algorithm,
as detailed in Algorithm 1, to compute edge trussness and

Algorithm 1: Computing Edge Trussness
Input: A Graph G = (V,E)
Output: A graph GT , where edge trussness Tr(e) as

weight for each e ∈ E
1 Compute supG(e), ∀e ∈ E
2 Sort(e ∈ E, item = supG(e)) // in non-decreasing

order
3 k ← 2 ; GT ← G.copy()
4 while ∃e ∈ E, supG(e) ≤ (k − 2) do
5 e∗(u, v)← argmine∈E supG(e) // assume

w.o.l.g, d(u) ≤ d(v)
6 foreach w ∈ N(u) ∩N(v) and e∗ = (u, v) ∈ E

do
7 supG(u,w)← supG(u,w)− 1
8 supG(v, w)← supG(v, w)− 1
9 Reorder(u,w) and (v, w)

10 end
11 GT [u][v][W ]← Tr(e

∗)← k;
12 remove e∗ from E
13 end
14 if ∃e ∈ E then
15 k ← k + 1
16 goto the while-loop (line 4)
17 end
18 return GT

discover all k-trusses from G. At first, it takes an unweighted
graph as input and computes the supports of all edges. Then
initialize the value of k as 2 and select the edge e∗ with the
lowest support (line 5). Next, the value k is assigned as edge
weight W , and the edge is removed (line 12). Removing an
edge decreases other edges supports. Hence, we reorder edges
according to their new support values (line 9). The process
continues until the edges that have support no greater than



(k − 2) are removed from the graph. Next, the algorithm
checks whether any edge exists to access or not. If one or
more exist(s), it increments k by one and goes to the line 4
again to measure their trusseness (line 14-17). Edge trussness
facilitates understanding the highest dense region within which
the edge exists. After calculating the edge trussness, to identify
highly dense areas, TGS separates the edges in GT into
two sets: High-Truss Edges and Low-Truss Edges. Following
condition (1), it compares all edges’ trussness with the given
threshold value, η, and determines the High Truss Edges EH .
For example, in Figure 3, given η = 3, the blue (Tr(E) = 4)
and golden (Tr(E) = 3) colored edges are high-truss edges.
Pruning {E ∈ EH} reduces the load of high-degree nodes in
dense regions, which assists in mitigating oversmoothing in
GNN.

Condition 1: High Truss Edges EH : In any graph for a
specific variable η, if an edge’s trussness value is greater than
or equal to η then the edge is considered as a high truss edge
and their set is denoted as EH .

B. Pruning Redundant Edges

Ascertaining the high-truss edges is crucial for under-
standing the density level in different parts of the graph.
However, directly pruning these edges may break up essential
connectivity between nodes. For example, low-degree nodes
could be connected with a dense region node, and pruning an
incident high-truss edge may not provide adequate information
to that low-degree node. To balance the connectivity between
nodes, we determine the nodes’ strength of edge high-truss
edges and then proceed to the next step. To measure nodes’
(n ∈ E, E ∈ EH ) strength, TGS calculates the average
trussness ¯TN(n), n ∈ V . This score ensures the density depth
of a node and implies its important connectivity.

Definition 4: The strength of a node is measured as the
summation of all of its incident edge weights. However, In this
research, node strength is applied as the average of nodes’
incident edges’ trussness.

¯TN(n) ←
1

|N(n)|
∑

u∈N(n)

Tr(n, u) (8)

For a candidate edge E = (u, v), after measuring the
node strength of u and v (8) , their minimum value (9) has
been taken. Notably, a node may be included in different k-
truss subgraphs. Hence, its neighborhood’s trussness provides
more connectivity information. The minimum node strength
of an edge’s two endpoints signifies the least density of its
surroundings. As we aim to reduce the density of highly
connected regions to combat oversmoothing, TGS follows a
technique to decide to prune edges. For this purpose, the
minimum node strength of the edge E is compared to a
threshold δ. In condition (2), This comparison ensures the
edge’s presence in a prunable dense region. The condition
indicates that if any end of the candidate edge is sparse

¯TN(E) < δ, TGS avoids cutting it because that connection
serves as an essential message-passing medium in the GNNs
aggregation step. In contrast, when the minimum score equals

Algorithm 2: Truss-based Graph Sparsification (TGS)
Input: A Graph (G), threshold δ, cutoff η
Output: A Sparsified Graph GS ⊂ G

19 GT = Computing Edge Trussness(G)
20 EH = {∀(u, v) ∈ E, Tr(u, v) ≥ η}
21 EH ← Sort(EH , reverse = True)
22 n← length(EH)
23 GS ← GT

24 for r ← 1 to n do
25 foreach E(u, v) ∈ EH do
26 Compute ¯TN(E) from Equations (8) and (9)
27 if ¯TN(E) ≥ δ then
28 GS ← GT \E(u, v) // Edge Cut
29 EH ← EH\E(u, v) // Reduce High Truss

Edge List
30 GS ← UpdateTr(GS)
31 end
32 end
33 end
34 return GS

or exceeds the value of δ, we assume the edge is part of a
highly dense region, and there is a high chance of excessive
messages passing between that region’s nodes. That may cause
them to blend their representations, leading to oversmoothing
during graph learning through GNN (section III-B). From the
condition, the model understands which edges contribute to
undesirable density levels that foster oversmoothing in GNNs.

¯TN(E) ← minimum( ¯TN(u), ¯TN(v)) (9)

Condition 2: An Edge e = (u, v) is eligible for pruning
when the minimum average neighborhood edge weight be-
tween u and v equals or exceeds the threshold δ.

¯TN(E) ≥ δ (10)

For example, at the lower-left in phase 3 (in Figure 3), the
edge (v2, v10), where the degrees of v2 and v10 are 5 and
2, respectively. The node strengths, ¯TN(v2) is {(3 × 3) +
(2 × 2)}/5 = 2.6, and ¯TN(v10) is {(2 + 2)}/2 = 2. Given
δ = 2.5, and the minimum node strength, ¯TN(v2,v10) =

¯TN(E) = min (2.6, 2) = 2. Hence, the pruning condition
is unsatisfactory, and the edge will stand in the graph. If
TGS pruned the edge, the neighborhood of v10 would be
sparser than before and miss its crucial global information.
On the other hand, at the upper-right in phase 3, in context of
E = (v1, v3), ¯TN(v1) = 3 and ¯TN(v3) = 3. Hence, comparing
to the value of δ they are already in the dense region and

¯TN(v1,v3) = 3 ≥ 2.5. In this case, the pruning will help
to prevent blended node representation in GNN, especially
between highly interconnected subgraphs. According to our
model, it considers the nodes will still stay in enough dense
regions to receive meaningful local and global neighborhood
information after pruning.



TABLE I: Datasets’ Statistics

Datasets # Graphs Avg # |V | Avg # |E| # Classes
PROTEINS 1113 39.06 72.82 2

NCI1 4110 29.87 32.30 2
NCI109 4127 29.68 32.13 2

PTC 344 25.56 25.96 2
DD 1178 284.32 715.66 2

IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3

REDDIT-B 2000 429.63 497.75 2

The Algorithm 2 represents the TGS model. Lines (19-
21) identify the dense regions and ensure high-truss edges of
the network while lines (24-33) demonstrate the pruning of
noisy high-truss edges in the network. Algorithm UpdateTr
in line 30 (similar to section 4.2, [10]), updates all edges’
trussness after each pruning step.

C. Algorithm Complexity

The complexity of measuring edge trussness is O(E
√

(E))
and the updateTr algorithms complexity is O(E). As we
explore all high truss edges in the algorithm, the exploration
complexity is O(E) in the worst case. Hence, the Algo-
rithms complexity is O(E(O(E)) +O(E

√
(E)) = O(E2) +

O(E
√
(E)) = O(E2) in the worst case. Although it seems

highly complex the real-world datasets are not hardly dense.
In addition, due to updating the edges trussness score many
high-truss edges are removed before examination.

V. EXPERIMENT DESIGN AND ANALYSIS

This section validates our technique on different real-world
datasets by applying standard graph pooling models. First, we
provide an overview of the datasets. Then, we briefly describe
the parameters of various methods. Finally, we compare the
performance of our TGS algorithm’s enhancement with the
original baselines in the graph classification tasks including
analysis of parameters, deeper networks, and ablation study.

A. Datasets and Baselines

We experiment with our model on eight different TU
Dortmund [15] datasets: Five of them are biomedical do-
main: PROTEINS, NCI1, NCI109, PTC, and DD and
three of them from social network domain: IMDB-BINARY,
IMDB-MULTI, and REDDIT-BINARY. We extend the
TGS algorithm with seven state-of-the-art backbone graph
pooling models. Among them, three are node clustering-
based pooling methods: DiffPool [27], DMonPool [21] and
MinCutPool [4]. Two models, SAGPool [12] and HGP-
SL [30], utilize a node selection approach for pooling the
graphs. Of the remaining two, one learns graph representation
through flat-pooling (GMT [3]), and another one utilizes an
adaptive pooling approach by applying both node selection
and clustering for the pooling procedure: AdamGNN [32].
We report the statistics of the datasets in the Table I.

B. Experimental Settings

To compare fairly, we executed the existing standard im-
plementations of the baselines and incorporated them with
our model. For evaluation, we split the datasets into 80%
for training, 10% for validation, and 10% testing. Mostly,
we stopped learning early for 50 consecutive same validation
results in training. We measured the performance using the
accuracy metric by ruining each model 10 times for 10 random
seeds and reported their mean. The batch size was 128 for most
of the models. The effectiveness of our pruning method mostly
depends on two crucial parameters: the cutoff parameter η
and the edge pruning threshold δ. For all experiments, we
set η = 3, which means any edge with a trussness score
below 3 cannot be pruned from the graph. On the other
hand, we experimented with various δ values across the
datasets. Specifically, we used δ values of {3, 4, 5, 6, 7} for
IMDB-BINARY, IMDB-MULTI, and {3, 3.5, 4} for REDDIT-
BINARY datasets. For PROTEINS and DD datasets δ was set
as {3, 3.25, 3.5, 3.75, and 4} and for NCI1, NCI109, we used
δ values of { 2.5, and 3} while for PTC only 2.5.

C. Result Analysis

Table II reports the experiment results, providing a compara-
tive analysis between our established model and original base-
lines across various datasets. TGS integrated with backbone
graph pooling models consistently outperforms the baselines,
and demonstrates its robustness in graph classification tasks.
On selection-based models, with the incorporation of the
SAGPool model, TGS achieves a 1.5-5.5% gain(G) (11) over
the original models. Notably, on DD and IMDB-BINARY
datasets, the gains are 3.34% and 5.17%, respectively. In the
experiment with the HGP-SL model, TGS attains a sustainable
improvement of nearly 4.5% on the IMDB-BINARY dataset
and on the PTC dataset, which is over 2.5%. Adapting
TGS along with the flat pooling model GMT acquires a
significant gain (nearly 7%) over the NCI109 dataset and
maintains consistent performance on other datasets.

In experiments with cluster-based modes, TGS equipped to
Diffpool model achieves a magnificent accuracy gain on the
PTC dataset, which is nearly 19%. It also demonstrates strong
performance with the DMonPool model over all datasets.
Notably, it achieves the highest accuracy on the REDDIT-
BINARY dataset, which is 85.75%

Gain(G) =
TGS− Original

Original
× 100% (11)

Extended Experiment: In addition to the pooling method,
we incorporate the TGS model with the fundamental GNN
models: two versions of graph isomorphic networks (GIN-
0 and GIN-ϵ) and the simple graph convolution network
for graph classification. During the experiment with GIN
networks, we follow 10-fold cross-validation to evaluate the
validity of our model. On the other hand, we assess the
GCN as other pooling models (section V-B). In most con-
texts (in Table II), our technique outperforms these models
on every dataset. Especially on the PTC and IMDB-BINARY



TABLE II: Result Table (in %). Results that achieve at least 0.5% gain over the counterpart model we mark in bold. We show
a model-by-model comparison.

Biomedical Dataset Social Network Dataset
Backbones PROTEINS NCI1 NCI109 PTC DD IMDB-B IMDB-M REDDIT-B

SAGPool Original 72.68 70.10 67.37 57.14 77.31 71.60 44.87 77.55
TGS 73.84 70.72 67.78 58.00 80.67 75.30 44.67 79.05

GMT Original 70.63 60.29 48.86 50.86 65.88 71.10 47.40 70.95
TGS 71.25 61.56 52.32 51.14 69.50 74.50 47.93 71.25

DiffPool Original 71.10 66.96 67.60 46.29 75.31 63.90 44.80 80.92
TGS 69.82 68.30 67.20 55.14 78.75 64.80 42.67 82.46

DMon Original 75.45 74.20 72.61 53.71 79.32 74.00 49.53 84.95
TGS 75.80 74.74 73.77 56.00 80.42 74.90 49.60 85.85

MinCut Original 73.75 72.77 73.28 56.28 76.63 71.40 51.06 76.85
TGS 73.84 73.58 73.04 58.57 77.31 72.80 51.20 77.05

AdamGNN Original 78.12 47.36 65.16 60.00 70.63 72.48 49.53 OOM
TGS 81.77 47.36 67.81 62.86 74.25 77.60 50.57 OOM

HGP-SL Original 74.64 73.33 72.87 56.00 72.35 72.90 49.47 OOM
TGS 74.28 73.38 74.22 57.43 73.19 76.10 49.80 OOM

GIN-0 Original 73.42 81.70 74.99 68.86 74.58 73.00 47.60 73.60
TGS 73.84 82.50 75.08 69.43 75.93 78.10 52.53 74.35

GIN-e Original 73.12 81.85 75.93 68.28 76.44 73.80 49.33 73.55
TGS 73.39 82.50 76.97 68.29 74.75 73.90 53.40 74.55

GCN Original 68.29 71.41 69.61 52.00 64.87 75.20 50.00 82.30
TGS 70.45 72.24 69.69 52.57 73.10 75.50 50.60 84.30

datasets, TGS(GIN-0) achieves the highest accuracy scores
of 69.43% and 78.10%, respectively. Additionally, TGS with
the backbone GCN model, attains the overall second-highest
accuracy on the REDDIT-BINARY data, with 84.30%.

D. Analysis in Deeper Network

We examine the impact of the TGS in deeper layers with the
backbone models. In this analysis along with the SAGPool, we
choose three GNN models: GCN, GIN-ϵ, and GIN-0. Besides,
we select two datasets from the biomedical domain (DD and
PROTEINS) and one from the social network domain (IMDB-
BINARY). Figure 4 shows the best two ranked (Table IV
and V in the section VII) TGS variants for the threshold
δ compared to the original model performance. Columns 1
(TGS(GCN)) and 4 (TGS(SAGPool)) reveal that for increasing
the number of layers, in most cases the TGS outperforms the
original models on all three datasets in multiple layers. Fig-
ure 4(j) and 4(k) illustrate the similar trends in the context of
TGS(GIN-ϵ) and TGS(GIN-0) on the IMDB-BINARY dataset.
However, both of these models show fluctuations in accuracy
on the DD and PROTEINS datasets. One interesting fact is
that the accuracy trend TGS(GIN-0) has dis-proportionally
increased in deeper networks on DD. A possible reason could
be the dense nature of the networks in the dataset.

E. Sensitivity Analysis

In Figure 5, we demonstrate our model’s performance for
variations of hyperparameters’ values on the IMDB-BINARY
and PROTEINS datasets. Notably, in most cases, the pruning
rate decreases as much as the delta value increases. Fig-
ure 5(a) shows at δ = 3 value, our equipped TGS models
perform well. We observe that for lower δ value, the accuracy
of TGS with AdamGNN increases, whereas degrades for
TGS(SAGPool). On the other hand, in the PROTEINS dataset
(Figure 5(c)), for changing the δ value, TGS decorated with

SAGPool, MinCutPool, DMonPool, and HGP-SL, showing
near-consistent performance. However, when increasing the δ
value from 3 to 3.25, TGS(AdamGNN)’s accuracy decreases
and shows an almost stable performance. Assembled with
GMT and Diffpool, the accuracy of TGS shows some vari-
ations from δ = (3 − 3.5) and then remains near the same
score for other values.

Regarding the change of cutoff variable η,
figures 5(b) and 5(d) show the performance changes on
the same datasets. Similar to δ, the number of pruned
edges in the graph decreases for increasing the value η,
and TGS(SAGPool)’s accuracy increases. In contrast, for the
same reason, the performance of our skill with backbone
AdamGNN and HGP-SL degrades. Other models display
minor fluctuations in accuracy with the change of η value.

F. Ablation Study

This section observes the strategical and functional signif-
icance of TGS with the backbone graph pooling models. We
chose four datasets and six pooling methods. In Table III,
for each dataset at the first two rows, we change the edge’s
connectivity strength measuring equations (8), and (9). In the
first row, the equation (8) remains the same but at equation (9)
instead of minimum the average of two end nodes’ strength
has been taken. On the other hand, in the second row, node
strength measuring equation (8) is modified whereas the other
equation remains unchanged. In the last two rows, we change
the pruning procedure, examining to prune two (prune 2∗) and
three (prune 3∗) edges without updating the edge trussness.
Due to the change of equations, the model’s performance on
the PROTEINS dataset increases with its extension to MinCut-
Pool and DiffPool methods. However, on the NCI1 dataset, the
performance of AdamGNN dramatically decreases (47.36%
and 61.22%). Regarding examining 2 and 3 edges for pruning,
sometimes more than one edge is pruned without updating the



(a) DD(GCN) (b) DD(GIN-0) (c) DD(GIN-ϵ) (d) DD(SAGPool)

(e) PROT..(GCN) (f) PROT..(GIN-0) (g) PROT..(GIN-ϵ) (h) PROT..(SAGPool)

(i) IMDB-B(GCN) (j) IMDB-B(GIN-0) (k) IMDB-B(GIN-ϵ) (l) IMDB-B(SAGPool)

Fig. 4: Models’ Performance in Deeper Networks

(a) IMDB-B δ (b) IMDB-B η (c) PROTEINS δ (d) PROTEINS η

Fig. 5: Change of parameters δ and η on IMDB-BINARY and PROTEINS.

other edges’ trussness. Hence, significant information process-
ing connections could prune in the system. Compared to the
result in Table II, our model’s performance severely degrades
on some datasets with the components change. Nonetheless,
the modified pruning strategy with MinCutPool and DiffPool
achieve better results over TGS are 74.37% and 70.27%
respectively on the PROTEINS dataset.

VI. CONCLUSION

In this paper, we have proposed an effective k-truss-based
graph sparsification model to facilitate graph learning of the
graph neural networks (GNN). Through the sparsification of
dense graph regions’ overflowed message passing edges, our

model includes more variability to the input graph for alle-
viating oversmoothing. Comprehensive experiments on eight
renowned datasets verify that TGS is consistent in performance
over popular graph pooling and readout-based GNN models.
We expect our research to show some interesting directions:
Learning the edge pruning threshold during training, applying
parallelization during pruning edges at different k-truss sub-
graphs, and joint learning to measure edge importance during
graph sparsification.
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VII. SUPPLEMENT

A. Result Details

This section reports the experiment details of the TGS model
pipelined with the backbone graph pooling and GNN models.
In all the tables, the social networks and biomedical domains’
datasets’ results are shown with the accuracy (%) metric.
We measure the average accuracy for each dataset and rank
them for different variations of the edge pruning threshold δ
compared to the original backbone model’s scores. Table IV
and V report all the results of different TGS-variants for
separate δ values. Due to limited space, we represent the
(REDDIT-BINARY & PTC) and (NCI1 & NCI109) datasets’
results together in sub-tables.

TABLE IV: IMDB-B, IMDB-M, REDDIT-B and PTC results

IMDB-BINARY
δ

Original 3 4 5 6 7
SAGPool 72.80 73.10 73.10 73.20 72.10 75.30

GMT 71.10 74.50 73.70 72.20 72.20 73.60
DiffPool 63.90 65.20 63.60 62.30 64.80 62.80
DMon 74.00 73.40 73.50 74.90 73.50 73.20

MinCut 71.40 72.80 71.80 71.60 71.20 71.70
AdamGNN 72.48 77.60 74.83 73.09 75.26 71.70

HGP-SL 72.90 74.10 73.40 75.40 76.10 74.70
GIN-ϵ 73.80 73.80 73.90 73.00 73.40 72.50
GIN-0 73.00 78.10 69.50 71.60 73.20 73.30
GCN 74.00 75.00 79.00 78.99 74.00 77.99
Mean 71.94 73.76 72.63 72.62 72.58 72.68
Rank 6 1 3 4 5 2

IMDB-MULTI
δ

Original 3 4 5 6 7
SAGPool 44.86 42.67 44.67 41.47 42.73 43.00

GMT 47.40 47.60 45.53 46.27 47.93 47.13
DiffPool 44.80 41.53 40.93 40.67 40.67 42.67
DMon 49.53 49.30 48.4 48.46 49.60 48.33

MinCut 51.06 50.06 51.20 50.73 50.20 50.93
AdamGNN 49.53 46.92 46.40 50.57 50.05 46.40

HGP-SL 49.46 49.80 48.80 48.87 47.33 49.00
GIN-ϵ 49.33 43.80 49.00 47.93 50.80 53.40
GIN-0 47.60 41.47 46.13 48.73 51.00 52.53
GCN 41.33 44.67 40.67 42.67 46.67 40.67
Mean 47.49 45.78 46.17 46.64 47.70 47.41
Rank 2 6 5 4 1 3

REDDIT-BINARY PTC
δ δ

Org. 3 3.5 4 Org. 2.5
SAGPool 77.55 76.15 79.05 77.80 57.14 59.14

GMT 70.95 70.95 71.05 71.25 50.86 51.14
DiffPool 80.72 81.45 82.32 82.03 46.29 55.14
DMon 84.95 85.75 84.70 85.85 53.71 56.00

MinCut 76.85 77.05 76.19 76.45 56.28 58.57
AdamGNN OOM OOM OOM OOM 60.00 62.86

HGP-SL OOM OOM OOM OOM 56.00 57.43
GIN-ϵ 73.55 73.75 74.00 74.55 68.28 66.57
GIN-0 73.60 73.65 74.10 73.30 68.86 65.43
GCN 88.99 89.50 88.50 73.50 45.71 45.71
Mean 78.40 78.53 78.74 76.84 56.31 57.80
Rank 3 2 1 4 2 1

TABLE V: DD, PROTEINS, NCI1 and NCI109 results

DD
δ

Original 3 3.25 3.5 3.75 4
SAGPool 77.31 79.83 78.15 80.67 80.67 79.00

GMT 65.88 69.5 67.39 68.49 64.62 63.78
DiffPool 75.31 78.13 78.75 78.13 77.81 73.75
DMon 79.32 80.42 79.49 79.57 79.66 80.08

MinCut 76.63 77.31 77.22 76.97 76.55 76.72
AdamGNN 64.63 71.65 74.25 71.12 67.87 71.00

HGP-SL 72.35 71.68 72.44 71.43 72.86 73.19
GIN-ϵ 76.44 73.73 71.36 74.58 73.9 74.75
GIN-0 74.58 73.22 74.75 75.08 74.49 75.93
GCN 58.82 73.95 66.38 67.23 70.58 69.75
Mean 72.13 74.94 74.02 74.33 73.90 73.80
Rank 6 1 3 2 4 5

PROTEINS
δ

Original 3 3.25 3.5 3.75 4
SAGPool 72.68 73.04 73.84 73.57 71.60 71.79

GMT 70.63 71.07 69.46 71.25 70.36 70.27
DiffPool 71.10 67.71 68.07 69.82 69.45 68.72
DMon 75.45 75.09 75.8 75.36 75.27 75.09

MinCut 73.75 72.86 73.57 73.84 73.75 73.48
AdamGNN 78.12 81.77 79.43 79.17 78.91 78.39

HGP-SL 74.64 72.68 73.66 73.30 74.28 72.14
GIN-ϵ 73.12 71.88 71.88 71.07 73.39 70.57
GIN-0 73.42 73.42 73.84 73.12 72.78 72.50
GCN 65.18 66.07 63.39 66.07 64.28 63.39
Mean 72.81 72.56 72.29 72.66 72.41 71.63
Rank 1 3 5 2 4 6

NCI1 NCI109
δ δ

Org. 2.5 3 Org. 2.5 3
SAGPool 70.10 68.49 70.72 67.37 66.84 67.07

GMT 60.29 57.42 58.44 48.86 51.01 51.13
DiffPool 66.96 67.64 68.18 67.60 65.97 67.2
DMon 74.20 74.23 74.01 72.61 73.50 73.38

MinCut 81.85 82.46 82.50 73.28 73.04 72.56
AdamGNN 81.70 81.21 81.87 65.16 61.79 67.81

HGP-SL 71.53 73.48 70.07 72.87 72.58 72.56
GIN-ϵ 81.85 82.46 82.50 75.93 75.98 76.61
GIN-0 81.70 81.21 81.87 74.99 74.53 74.94
GCN 71.53 73.48 70.07 75.60 76.81 72.70
Mean 74.17 74.21 74.02 69.43 69.21 69.60
Rank 2 1 3 2 3 1

TABLE VI: Training Parameters in Models (Part 1)

model lr. rate # epochs # layers hid. size
SAGPool 0.005 1,000,000 3 128

GMT 0.0005 500 3 32
DiffPool 0.001 500 3 64
DMon 0.001 500 3 32

MinCut 0.0005 15,000 3 32
AdamGNN 0.01 200 1 or 2 64

HGP-SL 0.001 1,000 3 128
GIN-(ϵ & 0) 0.01 350 5 16

GCN 0.005 350 4 128

B. Parameter Details

Table VI and VII represent all the baseline models’ pa-
rameters’ details. A notable observation is that the number
of maximum epochs for the SAGPool and MinCutPool seems
endless. However, due to the patience variable, models take a
much smaller number of epochs during the experiment. The



TABLE VII: Training Parameters in Models (Part 2)

model weight dec. patience batch Size dropout
SAGPool 0.0001 100 128 50%

GMT 0.0001 50 128 50%
DiffPool Default 50 128 No
DMon Default 50 128 No

MinCut 0.0001 50 128 No
AdamGNN Default 50 64 50%

HGP-SL 0.001 50 512 No
GIN-(ϵ & 0) 0.5 No 128 50%

GCN 0.0001 100 128 50%

AdamGNN model determines the number of layers for the
experiment by analyzing the graphs’ structural properties. All
the models are developed in the PyTorch library and utilize
the Adam optimizer where the default weight decay is set
to 0 in most cases. Except for AdamGNN (64) and HGP-SL
(512), the batch size is 128 for all of the other models. All the
baseline models employ different learning rates for evaluation.
Six of the models employ the dropout parameter with a rate
of 50%, while the other four models abstain from utilizing it.
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Abstract—Modeling the interactions between drugs, targets,
and diseases has significant implications for drug discovery,
precision medicine and personalized treatments. Current com-
putational approaches consider pairwise interaction, including
drug-target or drug-disease interaction individually. On the other
hand, within human metabolic systems, the interaction of drugs
with protein targets in cells influences target activities. Moving
beyond binary relationships and exploring tighter relationships
together as triple is essential to understanding drugs’ mechanism
of action (MoAs). Moreover, considering the heterogeneity of
drugs, targets, and diseases, along with their distinct char-
acteristics, it is critical to model these complex interactions
appropriately. To address these challenges, we develop a novel
Heterogeneous Graph Triplet Attention Network (HeTAN) by
modeling the interconnectedness of all entities in a heterogeneous
graph. HeTAN introduces a novel triplet message passing and
triplet-wise attention mechanism within this heterogeneous graph
structure. In contrast to focusing only on pairwise attention
as the importance of an entity for the other, we define triplet
attention to model the importance of pairs for the other in
the drug-target-disease triplet prediction problem. We perform
extensive experiments on real-world datasets and our results
show that HeTAN outperforms several baselines, demonstrating
its superior performance in uncovering novel drug-target-disease
relationships.

Index Terms—Drug Discovery, Heterogeneous Graph Neu-
ral Network, Graph Neural Network, Representation Learning,
Graph Attention, Triplet Prediction

I. INTRODUCTION

Understanding drugs’ mechanism of action (MoA) is crucial
for drug repurposing, a promising approach to accelerating
drug discovery and offering avenues for personalized medicine
and targeted therapies. However, traditional drug discovery is
time-consuming and expensive [1]. To address this challenge,
computational methods have emerged as invaluable tools for
leveraging large-scale chemical and genomic data [2].

Recent machine learning advancements have enhanced the
study of drugs’ MoAs through various learning tasks like
drug behavior analysis, target activity evaluation, and disease

modeling. [3]. Among these tasks, predicting the relations
of drugs with other entities, such as drug-disease and drug-
target prediction, have gained significant attention [4], [5].
While existing methods have made progress in predicting the
relations of drugs with other entities, they often treat these
tasks as isolated tasks, leading to limitations in capturing the
interconnected nature of drugs with other entities. Crucially, a
drug’s therapeutic effect hinges on its interplay with biological
targets within complex pathways and the overall metabolic
system [1]. Drugs interact with protein targets in cells to
modulate target activities, altering biological pathways to treat
diseases. This activity integrates higher-order relationships
among multiple entities. Therefore, a more comprehensive
triple relationship involving drugs, targets, and diseases must
be considered to capture the interplay between these entities.

Tensor factorization has emerged as a popular approach
for drug-target-disease triplet prediction problems. They infer
missing entries in drug-target-disease tensors via extracting
latent structures from high-dimensional data [6]. NeurTN [7]
combines tensor algebra and deep neural networks to learn
the intrinsic relationships among drugs, targets, and diseases.
However, traditional tensor models like Canonical Polyadic
(CP) decomposition and Tucker decomposition suffer from
issues, including linearity and data sparsity. Nonlinear tensor
factorization methods have shown promise in capturing the
complexities of the data, but they often rely on prior Gaussian
processes that are challenging to estimate [8]. Moreover,
incorporating auxiliary information into tensor models requires
tedious feature engineering, making it challenging to han-
dle large-scale healthcare data [9]. Furthermore, while many
graph-based machine-learning models are common for drug-
related problems, the tensor model does not utilize graph
machine-learning models to predict new triplets.

Heterogeneous graphs, also called Heterogeneous Informa-
tion Networks (HIN) [10], provide a robust framework for
representing diverse entities and interactions in drug discovery.

20
24

 IE
EE

 1
1t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 D
at

a 
Sc

ie
nc

e 
an

d 
Ad

va
nc

ed
 A

na
ly

tic
s (

DS
AA

) |
 9

79
-8

-3
50

3-
64

94
-1

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

DS
AA

61
79

9.
20

24
.1

07
22

83
2

Authorized licensed use limited to: Georgia State University. Downloaded on December 10,2024 at 03:39:33 UTC from IEEE Xplore.  Restrictions apply. 



In these graphs, nodes represent entities like drugs, proteins,
pathways, chemical substructures, ATC codes, and diseases,
while edges capture interactions between them. While many
models are developed to represent the relationship between
drug, target, and disease, they focus on predicting pairwise
relations between drug and other entities such as drug-drug,
drug-disease and drug-target [11]–[15]. These methods base
their predictions on established drug-drug similarity, target-
target similarity as well as known drug-target associations.
However, there is no HIN-based triplet prediction model.

To address these limitations and model the complex inter-
actions between drugs, targets, and diseases more effectively,
we propose a novel Heterogeneous Graph Triplet Attention
Network (HeTAN). HeTAN leverages the power of heteroge-
neous graphs, representing diverse entities and their interac-
tions, and employs a novel triplet attention mechanism to
capture higher-order interactions within the drug-target-disease
triplets. We capture higher-order interactions between drug,
target, and disease through a triplet-wise attention mechanism.
This gives us a more comprehensive understanding of drug
MoAs and can accelerate drug repurposing for personalized
medicine. While it is defined for drugs, targets, and diseases
triplets, it is a generic model that can be applied to other
triplets. Our main contributions are as follows:

● Utilizing heterogeneous graph neural network for
drug-target-disease triplet prediction: We propose a
novel approach that models the complex interactions be-
tween drugs, targets, and diseases using a heterogeneous
graph neural network (HGNN). By incorporating different
types of nodes and edges, our approach effectively cap-
tures the rich information embedded in the interactions
between these entities, leading to improved prediction
performance.

● Introducing the HeTAN model: We develop a novel
model, HeTAN, by proposing a novel triplet message
passing and triplet-wise attention mechanisms on differ-
ent types of entities in a heterogeneous graph. Our model
goes beyond the pair-wise interaction and captures higher-
order triplet-wise interactions to make triplet predictions
on the heterogeneous graph. While triplet message pass-
ing enables passing the information among three different
entities (drug-target-disease), the triplet attention mecha-
nism enables the model to focus on the most relevant
pairs for an entity instead of the most relevant neighbor.
These enhance its predictive accuracy and its ability to
capture intrinsic and complex interactions among three
entities. No prior work in GNN and HGNN has explored
triplet-wise message-passing and attention mechanisms.

● Extensive Experiments: We conduct extensive experi-
ments to show the effectiveness of our model on two
different datasets. We also compare the proposed HeTAN
model with several baseline models. The results with
different accuracy measures show that our method signif-
icantly surpasses the baseline models. In addition, differ-
ent case studies denote that different datasets and external

literature evidence can validate our model’s predictions.
The remainder of this paper is organized as follows: Section

II reviews related works. Section III describes the creation
of a heterogeneous graph. Details of the HeTAN model are
presented in Section III. Experiments and results are discussed
in Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS

This section provides an overview of existing research
in computational predictions of drugs, targets, and diseases,
specifically on triplet prediction for high-dimensional struc-
tured data.

A. Modeling drug-target-disease

Treating human diseases involves interactions among drugs,
biological targets, and disease pathways. Computational phar-
macology seeks to uncover associations among these entities
and understand drugs’ mechanisms of action (MoAs) [1]. A
common technique involves network-based inference models,
such as bipartite networks with distinct layers for drugs and
diseases (targets). Various machine learning methods, includ-
ing random walks, matrix factorization, and support vector
machines [16], have been used to predict new drug-disease
and drug-target interactions.

DTINet [15] integrates diverse drug-related information
to build a heterogeneous network and employs a compact
feature learning algorithm to derive low-dimensional vector
representations of nodes. This model uses a known set of
drug-target associations as a reference to determine the optimal
projection from the drug space onto the protein space, ensuring
that the projected feature vectors of drugs closely align with
the feature vectors of their known targets. Chen et al. [16]
integrated a protein-protein similarity network, a drug-drug
similarity network, and a drug-target interaction network into
a heterogeneous network. Using a random walk algorithm,
they inferred new drug-target connections without directly
modeling drug-disease relationships, focusing on predicting
drug-target interactions by learning a transformation matrix
from known interactions. Similarly, Fu et al. [17] utilized
known drug-target connections from various data sources but
did not explicitly use drug-disease-target triples, thus only
predicting drug-target interactions. Zheng et al. [18] developed
a matrix factorization method based on the similarity of
chemical structures and protein sequences to establish drug-
target relationships. These methods rely on chemical structure
similarity through structural fingerprints and protein sequence-
based similarity. However, these approaches treat drug-disease
and drug-target predictions as separate tasks, limiting a com-
prehensive understanding of the interconnected drug-target-
disease relationships.

B. Triplet Prediction

Triplet prediction has broad applications, ranging from drug
repurposing to natural language processing and computer
vision. Zhang et al. [19] introduced an attention mechanism
based on transformers to capture relationships between three
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entities (query, key, and value) for improved language under-
standing and generation. In natural language processing, triplet
prediction has been used for tasks like relationship extraction,
where models use sentence-level attention and entity descrip-
tions to predict relationships between entity triplets in text
[20]. In computer vision, triplet prediction techniques have
been used for face recognition and person re-identification
[21].

In drug-target-disease prediction, various models have been
developed, such as collective matrix factorization [22] and
neural tensor networks [7], to capture nonlinear dependencies
within triplets. Recent research explores the interdependence
of drugs, targets, and diseases through event-graph modeling
and neural tensor network models [7], [23]. Meanwhile, recent
advancements have explored the potential of hypergraphs and
hypergraph neural networks in biomedical problems [24], [25],
including drug-microbe-disease associations, [26]. A hyper-
graph is a unique graph with hyperedges. Unlike a regular
graph where the degree of each edge is 2, hyperedge is
degree-free; it can connect an arbitrary number of nodes.
While these approaches are significant, the application of
heterogeneous graph neural networks (HGNNs) and triplet
attention mechanisms remains largely unexplored.

Despite many proposed models for triplet prediction, most
focus on homogeneous entities, and none have applied graph-
based models to drug-related problems. HeTAN distinguishes
itself in drug repurposing by pioneering the combined use of
HGNNs and triplet attention mechanisms. While defined for
drug-target-disease triplets, HeTAN can be applied to other
triplets as well.

III. METHODOLOGY

Given that a triplet includes a drug, a target, and a
disease, our goal is to predict whether the triplet has an
interaction. In this paper, we propose a novel approach that
leverages the power of heterogeneous information networks
(HIN) and introduces the concept of triplet attention. To
achieve this, we develop the Heterogeneous Graph Triplet
Attention Network (HeTAN), which employs an end-to-end
encoder-decoder architecture. The encoder integrates a triplet
attention mechanism to determine the significance of pairs
(e.g., target-disease) for the other entity (e.g., drug) while
learning embeddings of all entities and triplets. Moreover,
HeTAN incorporates a decoder that learns and predicts the
interaction between entities of triplets. The system architecture
of HeTAN is outlined in Figure 1. We optimize the model
parameters with a cross-entropy loss function.

Our proposed model consists of the following steps:
1) Heterogeneous Graph Construction & Node’s Feature

Extraction
2) Heterogeneous Graph Triplet Attention Network Archi-

tecture
● Encoder: Triplet Attention-based node representation

learning
● Decoder: Drug-Target-Disease triplet prediction

A. Heterogeneous Graph Construction & Node’s Feature Ex-
traction

The first step in our approach is to construct a heterogeneous
graph that captures the complex relationships among drugs,
proteins (targets), and diseases. The graph consists of three
types of nodes: drugs, proteins, and diseases. We establish
edges between these nodes based on known drug-target inter-
actions and drug-disease associations. This construction allows
us to represent the rich interactions and dependencies between
different entities in the graph.

Graph neural network (GNN) models can optimize and
refine node representations with an iterative learning process.
These models transform initial node attributes or features
with message passing and aggregation mechanisms from the
node’s neighbors to generate enriched and effective node
vector representations. In our next step, we utilize the struc-
tural properties of drugs and targets to extract node features
from our heterogeneous graph. Specifically, we focus on the
chemical substructures of drugs and targets, represented as
SMILES strings [27] and Amino Acid sequences, respectively.
We employ the Explainable Substructure Partition Fingerprint
(ESPF) [28] algorithm to create drug and target features. ESPF
decomposes the SMILES string and Amino Acid sequence
into frequent substructures, selecting the most significant ones
based on a frequency threshold. These substructures provide
informative features for the drugs and targets utilized in the
subsequent steps of the HeTAN model. We represent disease
nodes with one-hot encoded representations. After construct-
ing the heterogeneous graph and extracting node features, we
propose the HeTAN architecture for learning representations
that capture complex relationships among drugs, targets, and
diseases.

B. Heterogeneous Graph Triplet Attention Network

The core goal of our research is to address the challenge of
predicting drug-target-disease interactions. To achieve this, our
model HeTAN leverages the rich information in heterogeneous
networks and captures the complex relationships among drugs,
targets, and diseases. The model is trained using an end-
to-end approach to predict drug-target-disease interactions.
The model is responsible for aggregating information from
neighboring nodes and learning higher-order relationships in
the graph using a triplet attention mechanism, the critical
component of our model. The triplet attention mechanism
calculates attention coefficients based on the features of all
three nodes in a triplet (i, j, and k), where i is the central node,
and j and k are neighboring nodes. When aggregating infor-
mation, these coefficients are used to weigh the importance of
neighboring node pairs for the central nodes in each triplet.
The attention mechanism is applied to all graph-generated
triplets, enabling the model to capture complex, interconnected
relationships among the different node types. Afterward, the
encoded representations of nodes are obtained by aggregating
information from neighboring nodes, weighted by the atten-
tion coefficients. This process is repeated for each layer of
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Fig. 1: The HeTAN workflow comprises three steps: Heterogeneous Graph Construction, Encoder, and Decoder. Initially, a
heterogeneous network is built with drug, target, and disease nodes connected by drug-target or drug-disease edges. Target-
disease connections (dashed lines) are inferred from shared drug associations. We introduce Triplet Message Passing (TMP)
and Triplet-wise attention to generate node representations. Finally, using concatenated node representations, a Multi-Layer
Perceptron (MLP) predicts drug-target-disease interactions.

the HeTAN model, allowing the model to learn increasingly
complex patterns and dependencies across multiple layers.

Our proposed model consists of the following steps:
● Encoder: Triplet Attention-based Node Representation

learning
● Decoder: Predicting Drug-Target-Disease Interactions
1) Node Representation Learning (Encoder): The encoder

component of our model focuses on learning informative node
representations. In a heterogeneous graph, nodes and edges
belong to different types, and each type of node has its own
distinct feature space. To effectively learn informative node
representations, we must align these diverse feature spaces
into a common one. This enables meaningful comparisons
and interactions among nodes of different types. To overcome
this challenge, we introduce a type-specific transformation
matrix M , which projects the features of different nodes into
a common feature space as h

′

i =M ○ hi

Traditional Graph Convolutional Networks (GCNs) rely
on pairwise message passing, where neighboring nodes pass
messages to each other. However, this approach falls short
in capturing intricate dependencies beyond pairwise relation-
ships, especially in our case, where understanding drug-target-
disease interactions requires considering the complex relations
inherent in drug-target-disease triplets.

To solve this limitation, we define the Triplet Message
Passing function (TMP), a novel mechanism that leverages
node triplets for representation learning. Instead of pairwise
interactions, TMP considers neighboring node pairs and their
influence on the central node. For a central node of type i,

we define its neighbors as node pairs (Ni) comprising node
pairs of type j and k as Ni = {(j1, k1), ..., (jn, kn)}. We pass
messages from these neighbor pairs to the central node i. This
allows the model to capture richer contextual information and
complex relationships in drug-target-disease interactions. The
triplet message passing function is defined as:

zli = TMP (zl−1i ,Ni) (1)

For one central node, there are several node pairs as the
neighbors. However, it is essential to note that not all neighbor
pairs are equally crucial for the central node. Message passing
should consider these varying levels of importance. We design
a novel Triplet-wise Attention mechanism to incorporate the
importance of neighbor pairs for a central node into message
passing. This attention mechanism utilizes the features of all
three nodes in a triplet and assigns attention coefficients,
signifying the relative importance of the neighbor pairs for
the central node. Based on the features of all three nodes in a
triplet, the attention coefficient eijk is defined as follows:

eijk = a(h
′

i, h
′

j , h
′

k)
= LeakyRELU(NN(h

′

i∣∣h
′

j ∣∣h
′

k))
(2)

In Eq. 2, a denotes the triplet-wise attention mechanism, and
∣∣ denotes the concatenation operation. We employ a neural
network in the attention mechanism, denoted as NN . This
neural network is designed to capture essential relationships
and dependencies among the nodes in a triplet. Additionally,
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to capture the nonlinear dependencies among drug-target-
disease data, we apply the LeakyReLU activation function.
LeakyReLU is chosen for its ability to introduce nonlinearity
in the model, allowing it to capture complex relationships crit-
ical for accurately predicting drug-target-disease interactions.

It is vital to make attention coefficients easily comparable
across different nodes. Therefore, the attention coefficients
are then normalized using a Softmax function. This step
ensures that the model appropriately weighs the attention of
each neighbor when aggregating information. The normalized
attention coefficient αijk is defined as follows;

αijk = softmaxj(eijk)

= exp(eijk)
∑l,m∈N(i) exp(eilm)

(3)

During the triplet message passing process, it is imperative
to consider the message from neighbor pairs. To generate
messages from pairs, we concatenate the representations of
the nodes within the pair. We then pass this concatenated
feature vector of size 2d through a single-layer feedforward
neural network to transform it into a feature vector of size
d. After multiplying each pair message with calculated pair-
wise attention, these messages are aggregated and combined
with the central node’s representation using a self-attention
mechanism. This mechanism considers the node’s features
and aggregated information, allowing the model to capture
its unique influence within the heterogeneous graph. So, the
triplet message passing function, TMP in Eq 1 is defined as
follows:

zi = δ(h
′

i +W ○ ∑
j,k∈N(i)

(αijk ○NN(h
′

j ∣∣h
′

k))) (4)

where ○ represents multiplication operator and W is a trainable
parameter. To incorporate self-attention, we use W , which
determines the weight or importance of node i’s embedding
in the aggregation process. The purpose of W is to control
the influence of node i’s features and the aggregated features
of its neighboring nodes on the overall representation.

We employ multi-head attention to capture more complex
patterns and relationships, each focusing on different aspects
of the data. This further enhances the model’s ability to learn
intricate patterns and relationships within the heterogeneous
graph. In multi-head attention, multiple attention mechanisms
(K) are used individually to transform the features, and the
outputs are concatenated (∣∣) to obtain the final representation.
So, the final triplet message passing with multi-head attention
is defined as follows;

zi = ∣∣Kk=1δ(h
′

i +W ○ ∑
j,k∈N(i)

(αijk ○NN(h
′

j ∣∣h
′

k))) (5)

By integrating these equations and steps, our model
learns informative node representations within a heterogeneous
graph. This ensures it captures complex relationships, intricate

patterns, and crucial interactions for predicting drug-target-
disease interactions.

2) Drug-Target-Disease Triplet Prediction (Decoder):
Our model has a decoder component that predicts the likeli-
hood of interactions between drugs, targets, and diseases as
new triplets based on the representations of entities obtained
from the encoder. Decoder, in particular, assigns a score to
drug, target, and disease triplet (vi,vj ,vk), expressing how
likely it is that drug vi target vj , and disease vk are interacting.
The corresponding entities’ features are concatenated and
passed through a multilayer perceptron (MLP).

predx,y,z =MLP (zx∣∣zy ∣∣zz) (6)

The MLP outputs a prediction score, Y ′, between 0 and 1.
A score close to 1 indicates a high likelihood of interaction
among the triplets, whereas a score close to 0 indicates less
likely interaction.

3) Model Optimization: We train our entire encoder-
decoder architecture as a binary classification problem by
minimizing a binary cross-entropy loss function specified as
follows:

L = −
N

∑
i=1

Yi logY
′

i + (1 − Yi) log(1 − Y
′

i ) (7)

where N is the total number of triplets, Yi is the actual label
indicating the presence or absence of an interaction for the
triplet, and Y

′

i is the predicted score for the triplet.

C. Analysis of HeTAN model

Here we give the analysis of HeTAN as follows:
● Handling Diverse Nodes and Relationships: HeTAN

effectively handles different types of nodes and relation-
ships, integrating rich semantics within a heterogeneous
graph. We facilitate message passing among neighbor
node pairs and a given node. During this message passing,
we incorporate the importance of neighbor pairs for a
central node through a novel Triplet-wise Attention mech-
anism. Leveraging Triplet Message Passing and Triplet-
wise Attention allows for enhanced integration, promo-
tion, and improvement of diverse node embeddings.

● Efficiency and Complexity: The proposed HeTAN is
highly efficient and can be easily parallelized. The com-
plexity of HeTAN can be analyzed based on its main
components: heterogeneous graph construction, triplet
attention mechanism, and message passing. The initial
step of constructing a heterogeneous graph involves nodes
(drugs, targets, diseases) and edges (interactions), with
a complexity of O(∣V ∣ + ∣E∣). For each triplet of nodes
(i, j, k), the triplet attention mechanism computes atten-
tion scores and normalizes them, resulting in a complexity
of O(∣E∣ff ′ + ∣V ∣df ′), where f is the initial feature
dimension, f ′ is the output feature dimension, and d is
the average degree of nodes.
HeTAN leverages multi-head attention to capture com-
plex patterns, scaling the computation by the number
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TABLE I: Statistics of Dataset

# of Instances DrugBank (DB) DrugBank and CTD
Drugs 531 450
Targets 836 708

Diseases 279 1, 267
Triplets 27,238 175, 288

TABLE II: Hyper-parameter Settings

Parameter Values
Learning rate 1e-2, 5e-2, 1e-3, 5e-3, 1e-5

Number of heads per layer 8, 16, 32
Hidden units 8, 16, 32, 64, 128

Dropout 0.1, 0.3, 0.5, 0.6
Weight decay 0.01, 0.001

of heads K. The message passing and aggregation pro-
cess, combined with multi-head attention, contributes to
an overall complexity of O(K(∣E∣ff ′ + ∣V ∣df ′)). This
efficient handling of heterogeneous graphs and higher-
order interactions enables HeTAN to effectively capture
intricate relationships among drugs, targets, and diseases,
demonstrating its capability in drug-target-disease triplet
prediction.

IV. EXPERIMENT

To evaluate our HeTAN model, we conduct experiments
involving negative sampling and random dataset splitting into
train and test sets. Our performance assessment include Recall,
Precision, F1-score, AUROC, and the commonly used top-
n metric hit@n. This section summarizes our experimental
parameters, evaluation protocols, and analysis of results.

A. Datasets, Parameter Settings & Baselines

Our study utilizes data from DrugBank and CTD, pro-
viding insights into drug-related information. Two dataset
configurations are employed. One uses data exclusively from
DrugBank, encompassing details about drug-target interactions
and drug-disease associations. The other configuration inte-
grates information from DrugBank (concerning drug-target
interactions) with data from CTD (providing drug-disease
associations). This integration provides a comprehensive view
of <drug, target, disease> triplets. Subsequently, the DrugBank
and combined datasets will be referred to as DB and DB&C,
respectively. Table I summarizes the vital characteristics of
nodes and edges in the heterogeneous graph.

Datasets are split into random training (80%) and testing
(20%) subsets for five iterations. This splitting process is
repeated five times, and the average accuracy metrics are
calculated and reported in the results section. The optimal
hyper-parameters are obtained by grid search based on the
validation set. The ranges of grid search are shown in Table
II. We train the HeTAN model using the cross-entropy loss and
optimize the model parameters using the Adam optimizer. The
optimal learning rate is determined to be 1e-5, and the optimal
dropout rate is found to be 0.6 to prevent overfitting. Training
runs for 2000 epochs with early stopping after 200 consecutive
epochs without validation loss improvement.

To construct negative triplets, we employ negative sampling
by randomly replacing one or all nodes in positive triplets, en-
suring they are absent from the actual data. We assess HeTAN’s
performance through a diverse set of metrics encompassing
accuracy, precision, F1-score, and AUROC. We also utilize
the commonly used top-n metric hit@n and NDCG@n, as
proposed by [29], [30]. Hit@n measures whether a test triplet
appears within the top-n ranked predictions, while NDCG@n
prioritizes higher-ranked matches. We rank triplets in descend-
ing order based on model prediction scores, prioritizing those
most likely to represent valid interactions.

To evaluate HeTAN’s effectiveness, we compare it to a range
of state-of-the-art models categorized by their approaches:

● Tensor Decomposition Methods: CP and Tucker are fa-
mous tensor models with diverse variants that are being
successfully applied in health data analysis [31]. They
both adopt multilinear assumptions.

● Attention-based Methods: We use transformer, a robust
deep learning architecture that captures complex relation-
ships and patterns in the data. It utilizes self-attention
mechanisms to effectively learn and represent the inter-
actions between drugs, targets, and diseases. For these
models, the embeddings of the triplet nodes (drug, target,
disease) are concatenated, and the combined embeddings
are used to predict interactions.

● Graph Neural Network (GNN): We use GNN architec-
tures on our heterogeneous graph to learn the representa-
tion of nodes. We select three standard GNN-based meth-
ods: GIN [32], GAT [33], and GraphSAGE [34]. Among
these GNN models, GAT [33] uses pairwise attention to
generating node representation. Similar to attention-based
methods, GNN models concatenate the embeddings of the
triplet nodes and use these concatenated embeddings for
interaction prediction.

● Heterogeneous Graph Neural Network (HGNN): For this
baseline, we use the commonly used HGNN model het-
erogeneous graph transformer (HGT) [35]. HGT incorpo-
rates pairwise attention on a heterogeneous graph to learn
the representation of nodes. The triplet node embeddings
are concatenated and used to predict interactions.

● NeurTN: Neural Tensor Network (NeurTN) [7] combines
tensor algebra and deep neural networks, offering a
more powerful way to capture the nonlinear relationships
among drugs, targets, and diseases. Both NeurTN and
HeTAN combine drug-target and drug-disease interactions
from DrugBank and CTD.

● DDTE: Moon et al. [36] construct a heterogeneous knowl-
edge graph including various drug-related information
and utilize TransE [30] model to infer drug–disease–target
relationships.

● MHGNN: MHGNN-DTI [37] builds the model with a
dual-channel architecture to learn drug and target embed-
dings, respectively, using a graph attention mechanism
and metapath techniques. It proposes building correlation
graphs to exploit high-order relations. Finally, it performs
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TABLE III: Comparing performance of HeTAN with other baseline models on DB

Model Method F-1 Score Precision Recall ROC-AUC AUPR
TD 47.00 48.51 45.59 49.19 48.98

Tensor-based CPD 52.91 52.19 56.19 49.84 50.06
Attention-based Transformer 52.31 62.96 51.18 60.62 59.46

GraphSAGE 72.24 61.3 83.94 66.4 59.92
GNN-based GIN 74.06 71.18 77.2 73.08 66.31

GAT 72.63 62.65 82.34 67.64 60.92
HGT 80.44 82.71 79.41 83.13 83.32

HGNN-based MHGNN 81.9 87.16 83.86 92.63 91.57
HeTAN 86.31 88.43 84.34 93.46 93.07

TABLE IV: Comparing performance of HeTAN with other baseline models on DB&C

Model Method F-1 Score Precision Recall ROC-AUC AUPR
TD 53.17 62.45 47.86 60.65 62.04

Tensor-based CPD 57.23 63.72 52.19 59.82 60.76
Attention-based Transformer 83.05 85.24 81.09 82.04 75.36

GraphSAGE 83.31 78.97 90.04 75.98 70.72
GNN-based GIN 83.98 78.16 83.49 76.45 71.52

GAT 85.17 82.44 82.11 83.76 77.15
HGT 85.22 87.08 84.55 87.98 84.07

HGNN-based MHGNN 87.7 85.88 88.79 95.64 94.45
HeTAN 90.91 93.12 89.88 98.01 97.75

Fig. 2: Evaluation of top-n performance for HeTAN and other baseline models in terms of
a) Hit@n and b) NDCG@n on DB and DB&C

pairwise drug-target interaction prediction.

B. Comparison with baselines

In this study, we conduct a comprehensive performance
analysis of HeTAN compared to a selection of state-of-the-
art baseline models. We employ diverse performance metrics
to assess these models’ efficacy. Specifically, we report the
F-1 Score, Precision, Recall, ROC-AUC, and AUPR results
in Table III for DB and Table IV for DB&C. Both tables
refer to the tensor-based baselines, tucker decomposition and
CP decomposition as TD and CPD, respectively. Our model,

HeTAN, outperforms all baseline models for both datasets,
showcasing its exceptional predictive capabilities.

For instance, on DB, HeTAN achieves impressive F-1 score,
ROC-AUC, and AUPR of 86.31%, 93.46%, and 93.07%, rep-
resenting significant improvements over the best-performing
baseline, MHGNN, which achieves F-1 score, ROC-AUC, and
AUPR of 81.9%, 92.63%, and 91.57%, respectively. The su-
perior performance of HeTAN is further evident in the DB&C
dataset, where it attains F-1 score, ROC-AUC, and AUPR of
90.91%, 98.01%, and 97.75%, surpassing the performance of
other models by a considerable margin.
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TABLE V: Novel Triplet Predictions by HeTAN FROM DB&C
Drug Target Disease DB&C Label Prediction DB Label

Carbamazepine NR1I2-HUMAN Osteoporosis 0 0.99 1
Testosterone ERR3-RAT Myocardial infarction 0 0.98 1
Nefazodone DRD2-HUMAN Schizophrenia 0 0.97 1
Raloxifene ERR3-RAT Obesity 0 0.93 1
Fenofibrate MMP19-HUMAN Psoriatic arthritis 0 7e-09 0

TABLE VI: Novel Triplet Predictions by HeTAN FROM DB
Drug Target Disease DB Label Prediction DB&C Label

Cyclobenzaprine 5HT2C-HUMAN Muscle Spasm 0 0.99 1
Cyclobenzaprine AA2AR-HUMAN Gout 0 0.98 1

Imipramine ADA1D-HUMAN Interstitial Lung Disease 0 0.97 1
Quetiapine HRH1-HUMAN Schizophrenia 0 9.9e-10 0
Verapamil CAC1S-HUMAN Cluster headache 0 5e-07 0

TABLE VII: Top five drug-target pairs predicted by our proposed HeTAN for depression
Drug (DrugBank) Target (UniProt) Evidence

Amitriptyline Sodium-dependent serotonin transporter Kim Lawson [38]
Nortriptyline 5-hydroxytryptamine receptor 2A Pierre Blier [39]
Imipramine Sodium-dependent serotonin transporter Dempsey et al. [40]

Nortriptyline Muscarinic acetylcholine receptor M5 Philip et al. [41]
Nortriptyline MD(2) dopamine receptor Pierre Blier [39]

In addition to these performance metrics, we adopt the top-
n metrics, Hit@n and NDCG@n, as illustrated in Figure 2.
These metrics are particularly critical in triplet prediction, as
they assess the ranking quality of the model’s predictions.
HeTAN’s top-n metrics (Hit@n and NDCG@n) performance
showcases its superior ranking ability, which is crucial for
accurate triplet prediction. On DB, HeTAN achieves a Hit@15
score of 50.11% and NDCG@15 of 27.36%, significantly
exceeding the top baseline (MHGNN) by over 6% and 3%,
respectively.

Tensor-based models exhibit solid performance but often
lag in recall and ranking. Attention-based methods, like the
Transformer, improve Precision and Recall. NeurTN, combin-
ing tensor and attention models, excels in top-n metrics. Since
different accuracy results like F-1 score, Precision and Recall
are unavailable on NeurTN paper, we could not present and
analyze these results with other baseline models. Similarly, we
could not obtain these results from DDTE.

GNN and HGNN-based models consistently achieve F-
1 scores surpassing 70%, emphasizing the pivotal role of
graph structural information. GNN and HGNN-based mod-
els represent interactions between graph nodes and capture
graph dependence through message passing. Comparing graph
attention-based models, GAT and HGT rely on pairwise
attention, and HeTAN utilizes triplet-wise attention. HeTAN
consistently performs better than GAT and HGT. For example,
GAT achieved F-1 scores of 72.63% on DB and 85.17%
on DB&C, while HGT scored 80.44% on DB and 85.21%
on DB&C. One notable heterogeneous graph neural network,
MHGNN achieves F-1 scores of 81.9% on DB and 87.7%
on DB&C, demonstrating strong performance. MHGNN’s
strength lies in its dual-channel architecture and meta-path
techniques to exploit high-order relations. Still, MHGNN falls
short of HeTAN’s results. HeTAN achieve 86.31% and 90.91%
on DB and DB&C, respectively.

HeTAN effectively manages diverse nodes and relationships,
integrating rich semantics within a heterogeneous graph. By
using triplet message passing and triplet-wise attention, the
model captures intricate patterns and dependencies, offering
a comprehensive understanding of drug-target-disease associ-
ations. Multi-head attention enhances its ability to learn from
complex data, ensuring robust predictions. Overall, HeTAN
significantly improves prediction accuracy, positioning itself as
a powerful tool for drug discovery and personalized medicine.

C. Prediction and Validation of Triplets

This study evaluates HeTAN’s ability to predict drug-target-
disease interactions using real-world datasets. To determine its
effectiveness in predicting missing interactions, we compare
HeTAN’s predictions with data from two distinct datasets.

We start by selecting triplets from Dataset DB&C, which
lack interaction data in DB&C but possess relevant association
information in DB. We train HeTAN on the DB&C dataset,
ensuring that the selected triplets are used exclusively in the
test set to minimize potential bias. The predicted scores for
these triplets, presented in Table V, consistently exceed 90%,
suggesting that these triplets are likely to exhibit interactions
despite the absence of explicit interaction data in DB&C.
To validate these predictions further, we cross-reference them
with the information in DB. Remarkably, this comparison
confirms the interactions between these triplets, reinforcing
the predictive power and accuracy of HeTAN.

To expand our validation process and test HeTAN’s gen-
eralizability, we select another set of five drug triplets from
DB, which lack interaction information within DB but contain
such data in DB&C, as highlighted in Table VI. We train
HeTAN using the DB dataset for this validation, tailoring
the model specifically to this unique dataset configuration.
Subsequently, we validate the predicted scores by cross-
referencing them with DB&C, which serves as an independent
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validation set. Validating predicted scores against DB&C em-
phasizes HeTAN’s reliability and generalizability, showcasing
its adaptability across datasets and reinforcing its real-world
predictive capabilities.
D. Case Study on Depression

Personalized treatment is a core objective in our medical
research, particularly in identifying effective drugs for specific
diseases and understanding their biological targets. HeTAN
has been employed to uncover new drug-target combinations
relevant to depression—a complex condition with various
molecular factors. By focusing on triplets where the disease
is depression, HeTAN was trained on a heterogeneous graph
from DrugBank and CTD datasets. For this experiment, we
filter our predicted triplets to focus on those where the
disease is depression. Table VII enlists the top five pairs
of (drug, target) corresponding to depression and literature
evidence supporting these predictions. For depression, these
pairs are the highest-ranked predictions based on the model’s
scoring and have corresponding evidence in the literature,
demonstrating their potential relevance and validity. These
results underline HeTAN’s potential in identifying clinically
relevant drug-target pairs, marking a significant step toward
personalized medicine. The model’s reliable predictions offer a
promising approach to revolutionizing treatments for complex
diseases like depression.

E. Ablation Study
To assess the contribution of each component in HeTAN,

we perform an ablation study with five variants:
● HeTAN-Sum (HeTAN-S): This variant employs sum-

mation instead of concatenation and neural network trans-
formations for neighbor embedding in Eq 4.

● HeTAN-Concat (HeTAN-C): Three neighbor node
embeddings are concatenated in Eq 2 and then reduced
in dimension.

● HeTAN-Elem-Prod (HeTAN-EP): This variant uses
the element-wise product on neighbor node embeddings
in Eq 4.

● HeTAN-Triplet-Attention-Sum
(HeTAN-TAS): In this variant, three neighbor node
embeddings are summed in Eq 2 to get triplet-wise
attention.

● HeTAN-Triplet-Attention-Elem-Prod
(HeTAN-TAEP): This variant applies the element-
wise product on three neighbor node embeddings in
Eq 2 to get triplet-wise attention.

In comparing the model variants with the original HeTAN,
HeTAN-Sum and HeTAN-Concat demonstrate weaker per-
formance, likely due to their use of summation or concatena-
tion, which may not capture complex relationships as effec-
tively as the original approach. Similarly, HeTAN-TAEP and
HeTAN-TAS underperform compared to HeTAN, highlighting
the efficacy of applying a neural network for concatenated
embeddings. As shown in Figure 3, the original HeTAN model
consistently surpasses its variants across key metrics like F1-
score, Recall, and ROC-AUC, underscoring the effectiveness

Fig. 3: Performance Comparison of HeTAN with its variants

of its triplet-wise attention and message passing mechanisms.
This analysis confirms HeTAN’s robustness in managing com-
plex, heterogeneous data in biomedical research.

V. CONCLUSION

HeTAN stands out as a powerful model for modeling
drug-target-disease interactions thanks to its dedicated HGNN
architecture and innovative triplet-attention mechanism. This
approach effectively addresses limitations encountered in pre-
vious models, leading to significant improvements in perfor-
mance. The novel triplet-attention mechanism holds broad
potential for application beyond drug discovery, extending to
diverse domains involving heterogeneous graphs and higher-
order interactions.

While HeTAN is currently defined for drug-target-disease
triplets, future research could further enhance its capabilities
by applying it to different triplet combinations and incorporat-
ing additional elements, such as drug-target-pathway-disease
interactions. This expansion could lead to a deeper understand-
ing of drug mechanisms and improved predictive accuracy.
Moreover, integrating multi-omics data and exploring more
complex graph structures are promising avenues for boosting
HeTAN’s predictive power and providing a more comprehen-
sive view of biological processes. These advancements can
significantly contribute to progress in personalized medicine
and drug development, ultimately benefiting patient outcomes
and healthcare systems.
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Abstract—Drug-Drug Interactions (DDIs) may hamper the
functionalities of drugs, and in the worst scenario, they may
lead to adverse drug reactions (ADRs). Predicting all DDIs is
a challenging and critical problem. Most existing computational
models integrate drug-centric information from different sources
and leverage them as features in machine learning classifiers
to predict DDIs. However, these models have a high chance of
failure, especially for new drugs when all the information is
not available. This paper proposes a novel Hypergraph Neural
Network (HyGNN) model based on only the Simplified Molecular
Input Line Entry System (SMILES) string of drugs, available
for any drug, for the DDI prediction problem. To capture the
drug chemical structure similarities, we create a hypergraph
from drugs’ chemical substructures extracted from the SMILES
strings. Then, we develop HyGNN consisting of a novel attention-
based hypergraph edge encoder to get the representation of drugs
as hyperedges and a decoder to predict the interactions between
drug pairs. Furthermore, we conduct extensive experiments to
evaluate our model and compare it with several state-of-the-art
methods. Experimental results demonstrate that our proposed
HyGNN model effectively predicts DDIs and impressively outper-
forms the baselines with a maximum F1 score, ROC-AUC, and
PR-AUC of 94.61%, 98.69%, and 98.68%, respectively. Finally,
we show that our models also work well for new drugs.

Index Terms—Drug-Drug Interaction, Graph Neural Network,
Hypergraph, Hypergraph Neural Network, Hypergraph Edge
Encoder

I. INTRODUCTION

Many patients, especially those who suffer from chronic
diseases such as high blood pressure, cancer, and heart failure,
often consume multiple drugs concurrently for their disease
treatment. Simultaneous usage of multiple drugs may result
in Drug-Drug Interactions (DDIs). These interactions may
unexpectedly reduce the efficacy of drugs and even may lead
to adverse drug reactions (ADRs) [1], [2]. Therefore, it is
important to identify potential DDIs early to minimize these
adverse effects. However, since clinical trials to identify DDIs
are performed on a few patients for a brief period [3], many
potential new drug DDIs remain undiscovered before it is
open to the market. Also, it is too expensive to do clinical
experiments with all possible drug pairs. Thus, there is an
obvious need for a computational model to detect DDIs and
mitigate unanticipated reactions automatically.

With the availability of public databases, including drug-

related information like DrugBank1, STITCH2, SIDER3, Pub-
Chem4, KEGG5, etc., different computational models have
been proposed to detect DDIs [4], [5]. Some of these models
consider drug pairs’ chemical structure SMILES similarity or
binding properties [6]. SMILES is a specification that uses
ASCII characters to define molecular structures explicitly.
With a string of characters, SMILES may depict a three-
dimensional chemical structure. On the other hand, out of
the entire chemical structure, only a few substructures are
responsible for chemical reactions between drugs, and the rest
are less relevant [7]. However, considering the whole chemical
structure may create a bias toward irreverent substructures and
thus undermine the DDIs prediction [8]. With the increasing
ability of more relational information about drugs, most of
the current methods integrate multiple data sources to extract
drug features such as side effects, target protein, pathways,
and indications [9], [10].

Network-based methods have recently been explored in this
domain, where drug networks are constructed based on drugs’
known DDIs. Most of the graph-based methods consider a
dyadic relationship between drugs. They operate on a simple
regular graph where each vertex is a drug, and each edge
shows a connection between two nodes. However, some meth-
ods also consider the relations of drugs to other biological enti-
ties to create heterogeneous graphs. Then, different topological
information is extracted from the network to predict unknown
links (i.e., interactions) between drugs. With the current ad-
vancement of the graph neural network (GNN), different GNN
models for DDI prediction problems are proposed [5], [11].
While some of them create heterogeneous graphs manually
from different resources, some of them create biomedical
knowledge graphs by extracting triples from raw data (e.g.,
DrugBank) [12]–[14]. In these graphs, different entities, such
as drugs, proteins, and side effects, are represented as nodes,
and relations between those entities are represented as the
edges. While including multiple drug-centric information from
different sources would help to learn about DDI and have
achieved strong performance, it is challenging to integrate

1https://go.drugbank.com/
2http://stitch.embl.de/
3http://sideeffects.embl.de/
4https://pubchem.ncbi.nlm.nih.gov/
5https://www.kegg.jp/
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data from different resources. It is also tough to interpret
which information is the most valuable in DDI prediction
which needs a strong knowledge of biomedical entities and
this is challenging for drugs in the early development stage.
Moreover, multiple information may not always be available
for all drugs, specially new drugs; therefore, these models may
fail whenever any information is unavailable [15].

In this paper, to address these problems, we present a novel
GNN-based approach for DDI prediction by only considering
the SMILES string of the drugs, which is available for all
drugs. Our method relies on the hypothesis that similar drugs
behave similarly, are likely to interact with the same drugs,
and two drugs are similar if they have similar substructures as
functional groups in their SMILES strings [16], [17]. Finding
similarities between SMILES strings based on their common
substructures is a challenging task. To properly depict the
structural-based similarity between drugs, we present them in a
hypergraph setting, representing drugs as hyperedges connect-
ing many substructures as nodes. A hypergraph is a unique
model of a graph with hyperedges. Unlike a regular graph
where the degree of each edge is 2, hyperedge is degree-free;
it can connect an arbitrary number of nodes [18]–[21]. After
constructing the hypergraph, we develop a Hypergraph Neural
Network (HyGNN), a model that learns the DDIs by generating
and using the representation of hyperedges as drugs. HyGNN
has an encoder-decoder architecture. First, we present a novel
hypergraph edge encoder to generate the embedding of drugs.
Afterward, the pair-wise representations of drugs are passed
through decoder functions to predict a binary score for each
drug pair that represents whether two drugs interact. The main
contributions of this paper are summarized as follows:

• Hypergraph construction from SMILES strings: We
construct a novel hypergraph to depict the drugs’ similar-
ities. In the hypergraph, while each substructure extracted
from the drugs’ SMILES strings is represented as a node,
each drug, consisting of a set of unique substructures, is
represented as a hyperedge. This hypergraph represents
the higher-level connections of substructures and drugs,
which helps us to define complex similarities between
chemical structures and drugs. Also, this helps us to learn
better representation for drugs with GNN models with a
passing message not only between 2 nodes but between
many nodes and also between nodes and hyperedges.

• Hypergraph GNN: To learn and predict DDIs, we
propose a novel hypergraph GNN model, called HyGNN,
consisting of a novel hyperedge encoder and a decoder.
Encoder exploits two layers where the first layer generates
the embedding of nodes by aggregating the embedding
of hyperedges. Then, the second layer generates the
embedding of hyperedges (i.e., drugs) by aggregating the
embedding of nodes. Since not all but a few substructures
are mainly significant in chemical reactions, we use atten-
tion mechanisms to learn the significance of substructures
(nodes) for drugs (edge) and chemical reactions. Further-
more, a decoder is modeled to predict the DDIs by taking

the pair-wise drug representations as input. Our method
solely utilizes drugs’ chemical structure data to predict
DDIs without requiring any other information or strong
knowledge of biomedical entities. Chemical structures
are obtained from SMILES strings that any drug has.
Therefore, our model is applicable to any drugs, including
new drugs, without other information, such as side effects
and DDIs.

• Extensive experiments: We conduct extensive exper-
iments to compare our proposed model with the state-
of-the-art models. The results with different accuracy
measures show that our method significantly outperforms
all the baseline models. Also, we show with case studies
that our model can find not only new DDIs for existing
drugs but also DDIs for new drugs.

The rest of the paper is structured as follows. First, we briefly
review the related work on DDI and hypergraph GNN in
Section II. Section III describes our proposed HyGNN model,
including hypergraph construction from SMILES strings, en-
coder and decoder layers of the HyGNN model works for
generating the drug embedding and predicting DDIs. Next,
in Section IV, we describe the experimental results and dis-
cussion. Finally, a conclusion is given in Section V.

II. RELATED WORK

Many works have been proposed for the DDI prediction
problem over the years. It can be categorized into similarity-
based, classification-based, and network-based methods. Pre-
vious works assume that similar drugs have similar interaction
profiles and define different similarities between drugs. Tradi-
tionally, pharmacological, topological, or semantic similarity
based on statistical learning is utilized to predict DDIs. Vilar
et al. [22] identify the DDIs based on molecular similarities.
They represent each drug by a molecular fingerprint, a bit
vector reflecting the presence/absence of a molecular feature.
[23] develops INDI that uses seven different drug-drug sim-
ilarity measures learned from drug side-effect, fingerprints,
therapeutic effects, etc. Another vital research is [24] that
incorporates four different biological information (e.g., target,
transporter, enzyme, and carrier) of drugs to measure the
similarity of drug pairs.

Some models extract features of drugs from various bio-
logical entities and drug interaction information and apply
different machine learning (ML) methods for DDI training [8],
[25]–[27]. Davazdahemami and Delen [26] constructed a graph
containing both drug-protein and drug-side effect interactions.
They also employed a classification method on the feature set
and produced many similarities and centrality metrics based on
the network. These features were then fed into four machine
models. Luo et al. [27] propose a DDI prediction server that
provides real-time DDI predictions based only on molecular
structure. The server docks a drug’s chemical structure across
611 human proteins to create a 611-dimensional docking
vector. The drug pair features are created by concatenating
the docking vectors for drug pairings. Finally, utilizing these
features, a logistic regression model for DDI prediction is
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developed. Ibrahim et al. [25] first extract different similarity
features and employ logistic regression to pick the best feature;
later, the best feature is used in six different ML classifiers
to predict DDIs. One primary problem in DDI prediction
is the lack of negative samples. A solution to address this
problem is proposed in [8], named DDI-PULearn. It first
generates negative samples using one-class SVM and kNN.
Then positive and negative samples are used to predict DDIs.

Last decade, network-based models got great attention for
drug-related problems. Some researchers construct a drug
network using known DDIs where drugs are nodes, and inter-
acting drugs are connected by a link [28]. Moreover, hetero-
geneous information networks leveraging different biomedical
entities, such as proteins, side effects, pathways, etc., are
also used to address similar problems [9]. As a different
model, [29] constructs a molecular graph for each drug from
its SMILES representation. Moreover, existing network-based
models often extract drug embedding and directly learn latent
node embedding using various embedding methodologies.
As a result, their capacity to obtain specific neighborhood
information on any organization in KG is restricted.

Recently, GNN has shown promising performance in dif-
ferent fields that include drug discovery [30], drug abuse
detection [31], and drug-drug interaction [29], [32], [33], etc.
Decagon [5] created a knowledge graph based on protein-
protein, drug-drug, and drug-protein interactions. They also
created a relational graph convolutional neural network for
predicting multi-relational links in multimodal networks. Fur-
thermore, they used a novel graph auto-encoder technique
to create an end-to-end trainable model for link prediction
on a multimodal graph. CASTER [7] recently created a
dictionary learning framework for predicting DDIs based on
drug chemical structures. They predict drug-drug interactions
using the drug’s molecular structure in a text format of
SMILES [34] strings representation and outperform numerous
deep learning approaches such as DeepDDI [35] and molVAE
[36]. CASTER uses a sequential pattern mining approach
to identify the common substrings included in the SMILES
strings supplied during the training phase, which are then
translated to an embedding using an encoder module. These
features are then transformed into linear coefficients fed to
a decoder and a predictor to yield DDI predictions. [33]
constructs a drug network where two drugs are connected if
they share common chemical substructures. Then, they apply
different GNN models on the network to get the representation
of drugs, and drug pair representation is passed to the ML
classifier to predict interaction.

More recently, hypergraph and hypergraph neural network
models have been developed to capture higher-order relations
between different objects [19], [37]–[39]. All these works
learn the representation of nodes and use these for node
classification problems. Our HyGNN model is the first attempt
to use hypergraph structure for DDI problems and, in general,
drug-related problems. Also, our model aims to learn the rep-
resentation of hyperedges and edge pair classification, which
is different from current hypergraph neural network models.

III. HYGNN MODEL FOR DDI

In this section, we first define our DDI prediction problem
and then summarize the preliminaries, model, and settings
(Section III-A). Then we explain our hypergraph construction
step with substructures extraction from Drugs (Section III-B).
After that, we introduce our proposed HyGNN model with
attention-based encoder and decoder layers (Section III-C).

A. Problem Formulation

Our goal is to develop a computational model that takes
a drug pair (Dx, Dy) as input and predicts whether there
exists an interaction between this drug pair. Each drug is
represented by the SMILES string. SMILES is a unique
chemical representation of a drug that consists of a sequence
of symbols of molecules and the bonds between them.

Most of the graph-based existing DDI methods consider
a dyadic relationship between drugs. This simple graph type
considers an edge that can connect a maximum of two objects.
However, there could be a more complex network in real life
where an arbitrary number of nodes may interact as a group,
so they could be connected through a hyperedge (i.e., triadic,
tetradic, etc.). A hypergraph can be used to formulate such
a complex network. A formal definition of the hypergraph is
given below.

Hypergraph: A hypergraph is a special kind of graph
defined as G = (V,E) where V = {v1, ...., vm} is the
set of nodes and E = {e1.....en} is the set of hyperedges.
Each hyperedge ej is degree-free and consists of an arbitrary
number of nodes.

Like the adjacency matrix of a regular graph, a hypergraph
can be denoted by an incidence matrix H with Hi,j = 1 if
the node i is in the hyperedge j as vi ∈ ej and Hi,j = 0
otherwise.

In this paper, we construct a hypergraph network of drugs
where each drug is a hyperedge, and the chemical substruc-
tures of drugs are the nodes. The chemical structures of a
drug can be obtained from the SMILES, a unique chemical
representation of a drug. We design a novel hypergraph neural
networks model as an encoder-decoder architecture to accom-
plish the DDI prediction task. The encoder part exploits an
attention mechanism to learn the representations of hyperedges
(drugs) by giving attention to edges and nodes (substructures).
The decoder predicts the interaction between drug pairs using
latent learned drug features. The whole system is trained in
a semi-supervised fashion. The functional architecture of this
paper is shown in Figure 1. Our proposed model consists of
two steps:

1) Hypergraph construction from SMILES,
2) DDI prediction with hypergraph neural networks

a) Encoder: Drug (Hyperedge) representation learning
b) Decoder: DDI prediction

B. Drug Hypergraph Construction

We construct a hypergraph to depict the structural simi-
larities among drugs. At first, we decompose all the drugs’
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Fig. 1. System architecture of the proposed method. The First step is to construct a hypergraph network of drugs where each drug is a hyperedge, and
frequent chemical substructures of drugs are the nodes. The second step is to design a hypergraph neural network (HyGNN) model with an attention-based
encoder for hyperedge (drug) representation learning and decoder for DDI learning

SMILES into a set of substructures. In our drug hypergraph,
these substructures are used as nodes. Moreover, each drug
with a certain number of substructures is represented by a
hyperedge. Drugs as hyperedges may connect with other drugs
employing shared substructures as nodes. This hypergraph
represents the higher-level connections of substructures and
drugs, which may help to define complex similarities between
chemical structures and drugs. Also, this helps us to learn
better representation for drugs with GNN models with the
passing message not only between 2 nodes but between many
nodes and also between nodes and edges.

Substructures can be generated by utilizing different algo-
rithms such as ESPF [40], k-mer [41], strobemers [42], etc.
In this project, we use ESPF and k-mer to see the effect of
substructures on the results. While k-mer use all extracted
substructures, ESPF selects the most frequent ones. Algorithm
1 briefly shows the hypergraph construction steps.

ESPF: Like the concept of sub-word units in the natural
language processing domain, ESPF is a powerful tool that

Algorithm 1: Drug Hypergraph Construction
Input: SMILES strings
Output: Hypergraph incident matrix: H
Call Substructure Decom(SMILES strings);
/* Substructure_Decom() could be ESPF
or k-mer that decomposes SMILES into
substructures. It returns a list of
unique substructures and drug
dictionary that will be used in the
following for loop */

for each Substructure in Substructure list do
if Substructure is in Drug dict[SMILES] then

H[i, j] = 1 ; /* i,j is the id of
substructure and drug,
respectively. */

end
end
Output: H , Hypergraph incident matrix
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Algorithm 2: Explainable Substructure Partition Fin-
gerprint (ESPF)
Input: Set of initial SMILES tokens S as atoms and
bonds, set of tokenized SMILES strings TS,
frequency threshold α, and size threshold L for S.

for t = 1 . . . , L do
(S1, S2), f ← scan TS ; /* (S1, S2) is the
frequentest consecutive tokens. */

if f < α then
break ; /* (S1, S2)’s frequency lower
than threshold */

end
TS ← find (S1, S2) ∈ TS, replace with (S1S2) ;
/* update TS with the combined
token (S1S2) */
S ← S ∪ (S1S2) ; /* add (S1S2) to the
token vocabulary set S */

end
Output: TS, the updated tokenized drugs; S, the
updated token vocabulary set.

decomposes sequential structures into interpretable functional
groups. They consider that a few substructures are mainly
responsible for drug chemical reactions, so they extract fre-
quent substructures as influential ones. The ESPF algorithm
is shown in Algorithm 2. Given a set of drug SMILES
strings S, ESPF finds the frequent repetitive moderate-sized
substructures from the set and replaces the original sequence
with the substructures. If the frequency of each substructure in
S is above a predefined threshold, it is added to a substructure
list as a vocabulary. Substructures appear in this list in the
most to least frequent order. We use this vocabulary list
as our nodes and decompose any drug into a sequence of
frequent substructures concerning those. For any given drug,
we partition its SMILES in order of frequency, starting from
the highest frequency. An example of partitioning a SMILES
of a drug, DB00226, is as follows.

NC(N)=NCC1COC2(CCCCC2)O1
⇓

N C(N) =N CC1 CO C2 (CCC CC2) O1.

k-mer: k-mer is a tool to decompose sequential structures
into subsequences of length k. It is widely used in biological
sequence analysis and computational genomics. Similar to n-
gram in natural language processing, a k-mer is a sequence of
k characters in a string (or nucleotides in a DNA sequence).
To get all k-mers from a sequence, we need to get the first k
characters, then move just a single character to start the next
k-mer, and so on. Effectively, this will create sequences that
overlap in k-1 positions. Pseudocode for k-mer is shown in
Algorithm 3.

For a sequence of length l, there are l − k + 1 numbers of
k-mers and nk total possible number of k-mers, where n is
the number of monomers. k-mers are like words of a sentence.

Algorithm 3: k-mer
Input: SMILES strings, size threshold k
Substructure list: []
Drug dict:{}
for each SMILES in SMILES strings do

Lst=[]
for x in range (l-k+1) do

/* l is the length of SMILES */
C = SMILES[x : x+ k]
Lst.append(C)
Substructure list.append(C)

end
Drug dict[SMILES] = Lst

end
Output: Drug dict, Substructure list

k-mers help to bring out semantic features from a sequence.
For example, for a sequence NCCO, monomers: {N, C, and
O}, 2-mers: {NC, CC, CO} , 3-mers: {NCC, CCO}.

C. Hypergraph Neural Network (HyGNN) for DDI Prediction

We utilize the Hypergraph Neural Network (HyGNN) for
DDI prediction. HyGNN includes an encoder, which generates
the embedding of drugs, and a decoder that uses the embed-
ding of drugs from the encoder to predict whether a drug pair
interact or not.

1) Drug Representation learning via HyGNN - Encoder:
To detect interacting pairs of drugs, we need features of drug
pairs and, thus, features of drugs that encode their structure
information. To generate features of drugs, we propose a novel
hypergraph edge encoder. It creates d

′
dimensional embedding

vectors for hyperedges (drugs) instead of nodes as in regular
GNN models. Given the edge feature matrix, F ∈ RE∗d and
incidence matrix H ∈ RV ∗E , the encoder of the HyGNN
generates a feature vector of d′ dimension through learning
a function Z. Any layer (e.g., (l + 1)th layer) of HyGNN can
be expressed as

F l+1 = Z(F l, HT ). (1)

We consider the hypergraph edge encoder with a memory-
efficient self-attention mechanism. It consists of two different
levels of attention: (1) hyperedge-level attention, (2) node-level
attention.

While hyperedge-level attention aggregates the hyperedge
information to get the representation of nodes, node-level
attention layer aggregates the connected vertex information
to get the representation of hyperedges. In general, we define
the HyGNN attention layers as

pli = AE
l(pl−1

i , ql−1
j |∀ej ∈ Ei), (2)

qlj = AV
l(ql−1

j , pli|∀vi ∈ ej) (3)

where AE is an edge aggregator that aggregates features of
hyperedges to get the representation pli of node vi in layer-l
and Ei is the set of hyperedges that are connected to node vi.
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Similarly, AV is a node aggregator that aggregates features of
nodes to get the representation qlj of hyperedge ej in layer-l
and vi is the node that connects to hyperedge ej .

Hyperedge-level attention: In a hypergraph, each node may
belong to multiple numbers of edges. However, the contri-
bution of hyperedges to a node may not be equal. That is
why we design an attention mechanism to highlight the crucial
hyperedges and aggregate their features to compute the node
feature pli of node vi. With the attention mechanism, pli is
defined as

pli = α

 ∑
ej∈Ei

YijW1q
l−1
j

 (4)

where α is a nonlinear activation function, W1 is a trainable
weight matrix that linearly transforms the input hyperedge
feature into a high-level, Ei is the set of hyperedges connected
to node vi, and Yij is the attention coefficient of hyperedge
ej on node vi. The attention coefficient is defined as

Yij =
exp(ej)∑

ek∈Ei
exp(ek)

(5)

ej = β(W2q
l−1
j ∗W3p

l−1
i ) (6)

where β is a LeakyReLU activation function, W2, W3 are
the trainable weight matrices, and ∗ is the element-wise
multiplication.

Node-level attention: Each hyperedge in a hypergraph con-
sists of an arbitrary number of nodes. However, the importance
of nodes in a hyperedge construction may not be the same.
We design a node-level attention mechanism to highlight
a hyperedge’s important nodes and aggregate their features
accordingly to compute the hyperedge feature qlj of hyperedge
ej . With the attention mechanism, qlj is defined as

qlj = α

 ∑
vi∈ej

XjiW4p
l
i

 (7)

where W4 is a trainable weight matrix, and Xji is the attention
coefficient of node vi in the hyperedge ej . The attention
coefficient is defined as

Xji =
exp(vi)∑

vk∈ej
exp(vk)

(8)

vi = β(W5p
l
i ∗W6q

l−1
j ) (9)

where vk is the node that belongs to hyperedge ej , W5, W6

are the trainable weight matrices.
Our hypergraph edge encoder model works based on these

two attention layers that can capture high-order relations
among data. Given the input hyperedge features, we first gather
them to get the representation of nodes with hyperedge-level
attention, then we gather the obtained node features to get the
representation of hyperedges with node-level attention.

2) DDI prediction - Decoder: After getting the represen-
tation of drugs from the encoder layer, our target is to predict
whether a given drug pair interacts or not. To accomplish this
target, we design a decoder.

Given the vector representations (qx, qy) of drug pairs
(Dx, Dy) as input, the decoder assigns a score, px,y to each
pair through a decoder function defined as

px,y = γ(qx, qy) (10)

We use two different types of decoder functions:
MLP: After concatenating the features of drug pairs, we

pass it through a multi-layer perceptron (MLP), which returns
a scalar score for each pair

γ(qx, qy) = f2(f1(qx ∥ qy)) (11)

where f1 and f2 are two different layers of MLP, and || is the
concatenation operation.

Dot product: We compute a scalar score for each edge by
performing element-wise dot product between features of drug
pairs using

γ(qx, qy) = qx · qy (12)

Afterward, we pass the decoder output through a sigmoid
function σ(γ(qx, qy)) that generates predicted labels, Y ′,
within the range 0 to 1. Any output value closer to 1 implies
a high chance of interaction between two drugs.

3) Training the whole model: We consider the DDI pre-
diction problem as a binary classification problem predicting
whether there is an interaction between drug pairs or not. As
a binary classification problem, we train our entire encoder-
decoder architecture using a binary cross-entropy loss function
defined as

loss = −
N∑
i=1

(
Yi log Y

′

i + (1− Yi) log(1− Y
′

i )
)

(13)

where N is the total number of samples, Yi is the actual label,
and Y

′

i is the predicted label.

D. Complexity

Our method is highly efficient with paralyzing across the
edges and nodes [43]. The hyperedge encoder generates d

′

dimensional embedding vector for each hyperedge with a
given initial feature as d dimensional vector using two-level
attention. Hence, the time complexity in the encoder part is
the cumulative complexity of attention layers. According to
equation 4, the complexity in the hyperedge-level attention can
be expressed as: O(|E|dd′

+ |V |Dd
′
), where D is the average

degree of nodes. Similarly, the complexity in the node-level
attention can be expressed as: O(|V |dd′

+ |E|Bd
′
), where B

is the average degree of hyperedges.

IV. EXPERIMENT

In this section, we evaluate our proposed HyGNN model
for DDI prediction with extensive experiments on two differ-
ent datasets. We use F1, ROC-AUC, and PR-AUC accuracy
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TABLE I
STATISTICS OF DATASET

Dataset # of Drug # of DDI
TWOSIDES 645 63473
DrugBank 1706 191402

metrics to compare our model’s performances with the state-
of-art baseline models. Making DDI predictions for new drugs
could be more challenging than existing drugs. Therefore, we
assess our model’s performance for both new and existing
drugs as well. First, we describe our datasets, TWOSIDES
and DrugBank, then we explain our experiments, and present
and analyze our results.

A. Dataset

We evaluate the proposed model using two different sizes
of datasets. One is a small dataset, and another one is a large
dataset. (1) TWOSIDES is our small dataset. TWOSIDES
was created using data from adverse event reporting systems.
Common adverse effects, such as hypotension and nausea,
occur in more than a third of medication combinations, but
others, such as amnesia and muscular spasms, occur in only
a few. We extract 645 approved drugs’ information from
TWOSIDES. Each drug is linked to its chemical structure
(SMILES). There are 63,473 DDI positive labels for the
selected drugs. (2) DrugBank is our large dataset and it is
the largest dataset for drugs that is publicly available. It is
a drug knowledge database that includes clinical information
about drugs, such as side effects and (DDIs). DrugBank
also includes molecular data, such as the drug’s chemical
structure, target protein, and so on. From DrugBank, we
retrieve information on 1706 approved drugs along with their
SMILES strings and 191,402 DDI information. Both datasets
are publicly available on Therapeutics Data Commons (TDC)
6. The first unified platform, TDC, was launched to compre-
hensively access and assess machine learning across the entire
therapeutic spectrum.

All known DDIs in both datasets are our positive samples.
However, to train our model, we need negative samples as
well. Therefore, we randomly sample a drug pair from the
complement set of positive samples for each positive sample.
Thus, we ensure a balanced dataset of equally positive and
negative samples for an individual dataset.

We apply the ESPF algorithm and k-mer separately to
extract the substructures from the SMILES string of drugs.
For ESPF, we notice that when a lower frequency threshold
is set, it generates many substructures, some of which may
be unimportant. However, when a more significant threshold
value is set, it generates fewer substructures and may lose
some critical substructures. These substructures are used as
nodes in the hypergraph. To examine the impact of the
frequency threshold and thus the number of nodes in the
hypergraph learning, we choose five different threshold values

6https://tdcommons.ai/

TABLE II
# OF NODES (N) IN THE HYPERGRAPH BASED ON PARAMETERS OF THE

METHODS, ESPF AND k-MER, FOR TWOSIDES DATASET

ESPF |N | k-mer |N |
5 555 3 822

10 324 6 7025
15 249 9 14002
20 208 12 17351
25 187 15 18155

TABLE III
# OF NODES (N) IN THE HYPERGRAPH BASED ON PARAMETERS OF THE

METHODS, ESPF, AND k-MER, FOR DRUGBANK DATASET

ESPF |N | k-mer |N |
5 1266 3 1296

10 729 6 11849
15 550 9 29443
20 462 12 43634
25 400 15 51315

from 5 to 25. For k-mer, we notice that typically with the
increment of k, the number of substructures (i.e., nodes) also
increases. Similarly, to examine the impact of the k and thus
the number of nodes in the hypergraph learning, we choose
five different values of k from 3 to 15. A statistic of both
datasets is shown in Table I. The number of nodes for different
threshold values of ESPF and k-mer is given in Table II and
Table III for each dataset.

B. Parameter Settings

Each dataset is randomly split into three parts: train (80%),
validation (10%), and test (10%). We repeat this five times
and report the average performances in terms of F1-score,
ROC-AUC, and PR-AUC. The optimal hyper-parameters are
obtained by grid search based on the validation set. The ranges
of grid search are shown in Table IV.

We employ a single-layer HyGNN having two levels of atten-
tion. We use a LeakyReLU activation function in the encoder
side and a ReLU activation function in the MLP predictor of
the decoder side. During training, we simultaneously optimize
the encoder and decoder using adam optimizer. Each model
is trained for 2000 epochs with an early stop if there is no
change in validation loss for 200 consecutive epochs.

For the baselines in subsection: IV-C, each GNN model
is used as a two-layer architecture. All other parameters of
each GNN are set by following their sources. For DeepWalk
and node2vec, the walk length, number of walks, and window
size are set to 100, 10, and 5, respectively. We use Logistic
Regression as a simple ML classifier.

C. Baselines

We compare our model performance with different types of
state-of-the-art models. We categorize the baseline models into
five groups based on the data representation and methodology.
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TABLE IV
HYPER-PARAMETER SETTINGS

Parameter Values
Learning rate 1e-2, 5e-2, 1e-3, 5e-3
Hidden units 32, 64, 128

Dropout 0.1, 0.5
Weight decay 1e-2, 1e-3

1. Random walk-based embedding (RWE) on DDI graph
We construct a regular graph based on the drug interaction
information called a DDI graph. Drugs are represented as
nodes, and two drugs share an edge if they interact. After
constructing the graph, we apply the random walk-based
graph embedding methods to get the representations of drugs.
DeepWalk [44] and Node2vec [45] are two well-known
graph embedding methods. They are both based on a similar
mechanism of ‘walk’ on the graph traversing from one node
to another. We apply DeepWalk and Node2Vec on the DDI
graph and generate the embedding of nodes. Afterward, we
concatenate drug embeddings to get the drug pair features
and feed that into a machine learning classifier for binary
classification.

2. GNN on DDI graph: After constructing the DDI graph
as explained above, we apply three different GNN models
with unsupervised settings; graph convolution network (GCN)
[46], graph attention network (GAT) [43], and GraphSAGE
[47] to get the representations of drugs. These GNN models
are obtained from DGL7. After getting the representations
of drugs, we concatenate them pair-wise and use them as
the features of drug pairs in the ML classifier for binary
classification.

3. GNN on substructure similarity graph (SSG) We follow
[33] to create the substructure similarity graph (SSG). We
construct an edge between two drugs if they have at least
a predefined number of common substructures. We apply
the ESPF algorithm to the SMILES strings of drugs to
get the frequent substructures. Afterward, we apply three
different GNN models, GCN, GAT, and GraphSAGE, to the
constructed graph to get the representations of drugs. The
drug representations are then concatenated pair-wise and fed
into a classifier to predict the DDI.

4. CASTER We apply the Caster algorithm [7] for DDI
prediction. It takes SMILES strings as input and employs
frequent sequential pattern mining to discover the recurring
substructures. They use the ESPF algorithm to extract frequent
substructures. Then, they generate a functional representation
for each drug using those frequent substructures. Further,
the functional representation of drug pairs is used to predict
DDIs. We reproduce CASTER results for our datasets.

7https://docs.dgl.ai/

5. Decagon Decagon [5] uses a multi-modal graph con-
sisting of protein-protein interactions and drug-protein targets
interactions for DDI prediction. It has an encoder-decoder
architecture. The encoder exploits a graph convolution network
to generate the representation of drugs by embedding all
drug interactions with other entities in it. Then, the decoder
takes drug pair representations as input and predicts DDIs
with an exact side effect. The same TWOSIDES drug-drug
interactions network is used in Decagon. That is why we
directly compare our model performances with their reported
results for TWOSIDES data instead of reproducing Decagon.
However, we do not consider DrugBank data for Decagon as
we do not have the additional information (e.g., side effects
and target protein) in our DrugBank dataset to construct the
multi-modal graph.

D. Results

1) Model Performances: We conduct detailed experiments
on our proposed models for two different datasets with differ-
ent threshold values of k-mer and ESPF. Both MLP and dot
predictor-based decoder functions are employed individually
for each setup to compare their performances. The overall
performances are illustrated in Fig. 2 and Fig. 3. Fig. 2
depicts the model’s performance for different ESPF frequency
thresholds ranging from 5 to 25. This figure shows that it has a
more significant impact on the TWOSIDES dataset, especially
for the Dot decoder function than DrugBank. On TWOSIDES
with MLP, it gives similar results till 25, and then it has
a considerable decrease for 25. Since we get a significantly
less number of substructures, it would not be enough to learn
with those. For DrugBank, it gives similar results for different
thresholds of ESPF. In general, frequency threshold 5 gives the
best performance for TWOSIDES and DrugBank with MLP
and DOT. As with the increment of the frequency threshold,
the number of substructures (i.e., nodes) decreases, which
could be a potential reason for performance degradation. The
best performance for each dataset and decoder is recorded for
a threshold value of 5.

Fig. 3 presents the models’ performances for five different
k values of k-mer ranges from 3 to 15. Similar to ESPF, the
effect of the parameter on the results is higher for TWOSIDES
than DrugBank. The reason for this could be that it is smaller
than DrugBank, so the graph’s size is affecting its results.
However, DrugBank is a large dataset with enough training
data to get good results, even with a small graph. Here, we
can see that with the increment of the size of k-mer, the
performance of the model increases, especially for TWO-
SIDES. As with increasing k, the number of substructures
(i.e., nodes) increases which could be the reason for overall
performance improvement. After some point, we will get too
many substructures that could put noise into the data and
decrease the model’s performance. The best performance for
each dataset and decoder are reported with k = 9 for k-mer.

2) Comparison with Baselines: We evaluate our models by
comparing their performances with several baseline models
and present the results in Table V for the TWOSIDES, and
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Fig. 2. Performance comparison of models for different frequency thresholds of ESPF.

Fig. 3. Performance comparison of models for different sizes of k-mer.
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TABLE V
PERFORMANCE COMPARISONS OF HYGNN WITH BASELINE MODELS ON TWOSIDES DATASET.

Model Method F1 ROC-AUC PR-AUC
DeepWalk 80.35 80.36 85.19

RWE on DDI Graph Node2vec 84.50 84.52 88.33
GCN 85.34 85.38 88.87

GNN on DDI graph GraphSage 85.83 85.80 89.28
GAT 82.67 82.68 86.86
GCN 53.85 54.04 66.94

GNN on SSG graph GraphSage 60.19 60.18 70.34
GAT 54.25 54.37 66.85

CASTER - 82.35 90.45 90.58
Decagon - - 87.20 83.20

ESPF & MLP 88.79 96.01 96.30
ESPF & Dot 76.79 91.12 93.37

HyGNN k-mer & MLP 89.21 96.25 96.53
k-mer & Dot 78.55 91.80 93.88

TABLE VI
PERFORMANCE COMPARISONS OF HYGNN WITH BASELINE MODELS ON DRUGBANK DATASET.

Model Method F1 ROC-AUC PR-AUC
DeepWalk 73.34 73.35 80.05

RWE on DDI Graph Node2vec 79.52 79.54 84.56
GCN 77.05 77.06 82.78

GNN on DDI graph GraphSage 80.83 80.88 85.51
GAT 63.84 69.75 78.52
GCN 58.00 58.04 69.11

GNN on SSG graph GraphSage 61.10 61.15 70.64
GAT 58.20 58.24 69.25

CASTER - 87.36 94.27 94.20
ESPF & MLP 92.42 97.63 97.53
ESPF & Dot 83.94 95.80 96.57

HyGNN k-mer & MLP 94.61 98.69 98.68
k-mer & Dot 87.38 97.99 98.28

Table VI for the DrugBank dataset. As we see in these tables,
our models comprehensively outperform all the baseline mod-
els. More precisely, in Table V for the TWOSIDES dataset,
HyGNN achieves at least 7% on F1, 6% on ROC-AUC, and
PR-AUC better performance than other baseline models. While
the best model among all the baselines, CASTER, achieves an
F1 score of 82.35%, our HyGNN with k-mer & MLP scores
89.21% with almost 7% gain. A similar situation also happens
for the other two accuracy measures: ROC-AUC and PR-AUC.

In Table V, for the DDI graph, from the GNN models,
GraphSage gives the best results with 85.83%, 85.80%, and
89.29% on F1, ROC-AUC, and PR-AUC, respectively. Also,
from random walk-based embedding models, Node2Vec gives
the best results, which is very similar to GraphSage results
with 84.50% on F1, 84.52% on ROC-AUC, and 88.33% PR-
AUC scores. For the SSG graph, again, GraphSage gives the
best result. In our result comparison table, CASTER is the best
competitor of HyGNN. Out of all baseline models, CASTER

shows the best performance with ROC-AUC and PR-AUC of
above 90%. Decagon is a multi-modal graph that also exhibits
better performance than GNN on SSG.

Table VI presents the performance comparison of HyGNN
with baselines for the DrugBank dataset. As for TWOSIDES,
here again, out of three different GNN models on DDI and
SSG graphs, GraphSage yields the best result. Similarly,
Node2Vec performs better than DeepWalk. CASTER is still
the best performer among all baselines, with 87.36%, 94.27%,
and 94.20% on F1, ROC-AUC, and PR-AUC, respectively.
However, our HyGNN with k-mer & MLP significantly sur-
passes CASTER with 94.61% on F1, 98.69% on ROC-AUC,
and 98.68% on PR-AUC. As Decagon depends on the drug
and other drug-centric information, we could not experiment
with it on the DrugBank dataset.

In summary, HyGNN with k-mer gives better results than
ESPF. The reason for this could be that with the ESPF, we
eliminate many substructures but keep just frequent ones. This
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Fig. 4. Performance comparison of models for different training sizes where x-axes represent the training percentages.

may result in losing important ones that are not frequent.
However, with k-mer, we get all and let the attention models
in HyGNN learn which substructures are more important for
DDI.

Moreover, we take the best-performing method from each
baseline model, namely Node2Vec from random walk-based
embedding, GraphSage from GNN on DDI, GraphSage from
GNN on SSG, CASTER, and k-mer & MLP from our HyGNN
models. Then, we compare their performances by changing
the training sizes from 10% to 80% for both datasets. A com-
parison of performance is outlined in Fig 4. Results indicate
HyGNN to be the best-performing model, and it still gives very
good results with small training data. However, decreasing
the training size affects the baseline models significantly,
especially GraphSage on the SSG model. It is worthy of
mention that based on our results, all graph-based models,
especially different variants of GNNs, including HyGNN and
baselines, have performed fairly well on our data.

Hypergraphs are used in a wide range of scientific fields.
Hypergraphs are a natural method to illustrate shared group
relationships. Through a hypergraph structure, HyGNN is able
to capture higher-order correlations between data (i.e., triadic,
tetradic, etc.). Furthermore, employing an attention mechanism
makes it more robust by giving more weight to important
substructures while learning representations of drugs. Though
GAT has attention architecture as well, it can not discover
the important edges. The main strength of our HyGNN is
the proposed hypergraph edge encoder that has two levels
of attention mechanism. At first, it aggregates the hyperedges
to generate the representation of the node. While aggregat-
ing, it imposes more attention on the important hyperedges.
Similarly, to generate the representation of a hyperedge, it

aggregates the nodes’ information with much attention to the
important ones.

Moreover, HyGNN has a decoder function, and we learn
all the parameters of the encoder and decoder simultane-
ously during training. From Table V and Table VI, we can
see HyGNN with k-mer & MLP performs better than dot
product. k-mers are k-length substrings included inside a
biological sequence. A bigger k-mer is preferable since it
ensures greater uniqueness in the base sequences that will
create the string. Larger k-mer sizes aid in the elimination
of repetitive substrings. Moreover, MLP Predictors are well-
suited for classification problems in which data is labeled.
They are extremely adaptable and may be used to learn a
mapping from inputs to outputs in general. Additionally, it
generates superior results compared to dot predictor since
it has trainable parameters that are learned throughout the
training.

3) Case Study - Prediction and Validation of Novel DDIs:
We evaluate the effectiveness of HyGNN model on novel DDIs
prediction. We select some drug pairs from TWOSIDES. None
of these drug pairs have DDI info in TWOSIDES but have
DDI info in DrugBank. Then we train our HyGNN using
TWOSIDES and make predictions for those pairs. Following
that, we collect predicted scores for those drug pairs as shown
in Table VII. From this table, we see that for the first eight
drug pairs, though the TWOSIDES label for each of these
pairs is zero, we get predicted scores above 90% for each
pair, which shows there is a high chance that each pair will
interact between them. To further validate it, we cross-check
our predicted score with DrugBank, which says each of these
eight drug pairs interacts between them. Moreover, for the last
four-drug pairs of Table VII the predicted scores are minimal,
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TABLE VII
NOVEL DDI PREDICTIONS BY HYGNN ON TWOSIDES DATASET

Drug1 Drug2 TWOSIDES Label Predicted DDI Score DrugBank Label
Desvenlafaxine Paroxetine 0 0.9989 1

Probenecid Metformin 0 0.9931 1
Fluvastatin Metronidazole 0 0.9212 1
Loratadine Isradipine 0 0.9703 1
Glyburide Bosentan 0 0.9068 1
Salmeterol Dicycloverine 0 0.9189 1
Valdecoxib Sodium sulfate 0 0.9105 1
Lisinopril Naratriptan 0 0.9336 1

Bexarotene Maprotiline 0 9.9993e-10 0
Amoxapine Econazole 0 6.8256e-09 0
Nabilone Oxaprozin 0 4.1440e-08 0

Dexmedetomidine Carbachol 0 1.2417e-08 0

TABLE VIII
NOVEL DDI PREDICTIONS BY HYGNN ON DRUGBANK DATASET

Drug1 Drug2 DrugBank Label Predicted DDI Score TWOSIDES Label
Hydroxychloroquine Loratadine 0 0.9879 1
Dextromethorphan Ofloxacin 0 0.9772 1

Midazolam Warfarin 0 0.9884 1
Benzthiazide Fentanyl 0 5.6989e-14 0

Labetalol Levonorgestrel 0 9.1049e-07 0
Cefprozil Disulfiram 0 1.0882e-11 0

TABLE IX
PERFORMANCE OF HYGNN FOR NEW DRUGS

Dataset Unseen Node F1 ROC-AUC PR-AUC
TWOSIDES 5% 72.75 78.25 85.64
DrugBank 5% 65.23 70.84 78.04

and TWOSIDES, and DrugBank both say they don’t interact.
Similarly, six drug pairs are selected from DrugBank having
no DDI info in DrugBank but in TWOSIDES as shown in
Table VIII, then HyGNN is trained using DrugBank data and
validated the predicted scores by TWOSIDES.

4) Case Study- DDI Prediction for New Drugs: Making
DDI predictions for new drugs could be more challenging
than existing drugs. Since the model does not learn based on
the SMILES strings of new drugs. To show the effectiveness
of our model for new drugs, at first, we randomly select a
5% drug from a dataset and completely remove these drugs’
information from the corresponding train set and keep those
drugs’ information only in the test set. These selected 5%
drugs can be considered new drugs. The experimental results
for both datasets with new drugs are shown in Table IX. As
we see in the table, our model predicts DDIs effectively for
both datasets.

V. CONCLUSION

In this paper, we propose a novel GNN-based framework for
DDI prediction based on the chemical structures (SMILES) of

drugs. In contrast to existing graph-based models, we utilize
a novel hypergraph structure to depict higher-order structural
similarities between drugs. Following that, we propose a Hy-
pergraph GNN model with an encoder-decoder architecture to
learn the drug representation for DDI prediction. We develop
a hypergraph edge encoder to construct drug embeddings and
a decoder with drug representations to predict a score for each
drug pair, indicating whether two drugs interact. Finally, with
several experiments, we show that our method outperforms
different types of baseline models and also it is able to predict
DDIs for new drugs.

As future work, we plan to extend our model to address
other problems in bioinformatics, like protein-protein interac-
tion prediction, drug repurposing, and sequence classification.
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