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Abstract
We investigate the fundamental three-body Coulomb process of elastic electron–positronium
(e−-Ps) scattering below the Ps(n= 2) threshold. Using the complex Kohn variational method
and trial wave functions that contain highly correlated Hylleraas-type terms, we accurately
compute 1,3S-, 1,3P-, and 1,3D-wave phase shifts, which may be considered as benchmark
results. We explicitly investigate the effect of the mixed symmetry term in the short-range part
of the 1,3D-wave trial wave function on the phase shifts and resonances. Using the complex
Kohn phase shifts we compute, for e−-Ps scattering, the elastic differential, elastic integrated,
momentum-transfer, and ortho-para conversion cross sections and determine the importance of
the complex Kohn D-wave phase shifts on these cross sections. In addition, using the
short-range part of the 1S-wave trial wave function for the bound-state of the purely leptonic ion
of Ps−, and the complex Kohn 1P trial wave function for the continuum state, we determine the
Ps− photodetachment cross section in the length, velocity, and acceleration forms.

Keywords: elastic electron scattering, positronium, photodetachment

1. Introduction

In 2011, Michishio and co-workers published an experimental
measurement of the photodetachment of the positronium neg-
ative ion (Ps−) through a new technique to produce the
ions efficiently using a sodium coated tungsten surface [1].
Their experimental techniques to produce an energy-tunable
positronium (Ps) beam were further detailed [2], and then
improved [3]. Michishio and co-workers have experiment-
ally observed the shape resonance just above the Ps(n= 2)
threshold [4], have performed threshold photodetachment
spectroscopy [5], and very recently have performed aniso-
tropic photodetachment of Ps− ions with linearly polarized
light [6]. Nagashima has presented a report on experiments
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on Ps− ions [7], and more recently, Nagashima et al have
reviewed the production of an energy-tunable Ps beam via
Ps− photodetachment [8]. An important use of Ps is to create
antihydrogen in the AEgIS [9–11] and the GBAR [12] exper-
iments at CERN very recently, Ps has been cooled to ultra-
low velocities with a chirped laser pulse [13–16]. An exper-
iment to produce the positronium positive (plus) ion (Ps+,
e+ + e+ + e−) has been proposed by [17, 18]. The purely
leptonic systems of Ps, Ps−, and Ps+ are ideal to be used in
tests of quantum electrodynamics [19, 20]. The experimental
observation of the photodetachment of Ps− [1, 8, 21] has
motivated further interest in accurate theoretical calculations.

In this paper, we present a non-relativistic treatment of
e−-Ps elastic scattering below the Ps(n= 2) threshold, ignor-
ing positron annihilation. We have presented our work at vari-
ous meetings [22–31]. The excitation threshold of Ps(n= 2)
occurs at k= 0.50 a.u., where k is the magnitude of the wave
vector of the electron relative to the center-of-mass of Ps,
which corresponds to an incident energy Ei of approxim-
ately 5.102 eV. (We use the conversion factor of 1 a.u. =
27.211 386 245 988 eV [32]). There have been prior calcu-
lations of 1,3S and 1,3P e−-Ps elastic scattering below the
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Ps(n= 2) threshold that employed the Kohn and inverse Kohn
variational methods. However, we use in addition to the Kohn
and inverse Kohn variational methods for 1,3S- and 1,3P-wave
scattering, the complex Kohn variational method. Cooper
et al [33, 34] have demonstrated that the complex Kohn vari-
ational method has less singularities than either the Kohn or
inverse Kohn methods. The Kohn-type variational methods
can provide benchmark results for the phase shifts of e−-
Ps scattering to which results from other methods can be
compared.

We apply the complex Kohn, Kohn, and inverse Kohn vari-
ational methods to 1,3D-wave e−-Ps scattering to compute the
phase shifts. Previously, the 1,3D-wave phase shifts have been
approximately obtained using the static exchange and adia-
batic exchange methods, as well as the O’Malley et al [35]
effective range theory (ERT) [36, 37]. However, to our know-
ledge there has been only one paper previously that has repor-
ted accurate 1,3D-wave phase shifts, using the close-coupling
method [38]. Furthermore, we study the effect of a mixed
symmetry term that is in the short-range portion of the 1,3D
trial wave function. We explicitly investigate the effect of this
term in the phase shifts and resonances. In the four-body Ps-
H scattering problem, Woods et al [39] ignored the mixed
symmetry term in their calculation due to the difficulty of
including it. Wu et al [40, 41] have since attributed the dif-
ferences in their results of the same system to this missing
term in the calculation of Woods et al [39]. We also compute
the elastic differential, elastic integrated, momentum-transfer,
and ortho-para conversion cross sections and study the effect
of including accurate D-wave phase shifts in these calcula-
tions. Importantly, the e−-Ps results can be used as mass-
scaled benchmarks for proton-protonium calculations that are
of interest in antihydrogen-H2 interactions [42, 43].

We use a highly-correlated Hylleraas-type 1S trial wave
function, that includes all interparticle distances, to determ-
ine the binding energy of Ps−. Using this bound-state wave
function of Ps−, its binding energy, and the complex Kohn
1P continuum wave function we accurately calculate the Ps−

photodetachment cross section in the length, velocity, and
acceleration forms. There have been prior accurate calcula-
tions of the Ps− photodetachment cross section in the length
and velocity forms [38, 44], but to our knowledge this is
the first paper reporting the cross section in the acceleration
form. Importantly, we resolve the long-standing discrepancy
between the calculation of the Ps− photodetachment cross
section of Ward et al [37] who used for the 1P continuum
the Kohn trial wave function with the calculations of Igarashi
et al [38] and Igarashi et al [44] who used close-coupling wave
functions.

There have been a number of prior calculations of phase
shifts and cross sections for e−-Ps scattering, resonance cal-
culations of the e−-Ps system, and calculations of the binding
energy of Ps− and the photodetachment cross section of Ps−.
The present calculations are an extension of the prior calcula-
tions of the Kohn and inverse Kohn 1,3S- and 1,3P-wave phase
shifts, 1S and 1,3P resonance parameters, binding energy, pho-
todetachment, and scattering cross section calculations given
in [36, 37, 45–49]. Basu and Ghosh [50, 51] performed 3- and

6-state close-coupling calculations to determine the 1,3S- and
1,3P-wave phase shifts for e−-Ps scattering, while Igarashi et al
performed 18- and 27-state close-coupling calculations with
B-splines to determine the 1,3S-, 1,3P-, 1,3D-, and 1,3F-wave
phase shifts [38].

Binding energy calculations have been previously per-
formed by Bhatia and Drachman using a Hylleraas wave
function [52], by Ho using a 946-term Hylleraas-type wave
function [53] and a double-basis set Hylleraas-type function
[54], by Kar and Ho [55], by Frolov [56–58], and by
Korobov [59] using exponential functions, and by Drake et
al. using a triple basis set in Hylleraas coordinates with
2528 terms [60]. It has also been determined by Haftel
and Mandelzweig using the correlation function hyperspher-
ical method [61], by Gilmore et al using a 9-state coupled
pseudostate approximation [62], by Blinov and Czarnecki
using dimensional scaling [63], and by Duan et al [64] using
generalized harmonic polynomials.

A pioneering photodetachment cross section calculation of
Ps− has been performed by Bhatia and Drachman [65, 66].
They used an asymptotic form of the bound-state wave func-
tion and a plane-wave treatment for the final-state wave func-
tion. Later, Frolov applied the long-range, asymptotic approx-
imation using the asymptotic form of the bound-state wave
function that he obtained from his accurate Ps− wave function
[58]. The photodetachment cross section has also been cal-
culated by Ermolaev and Mandal using a one-active-electron
model with a two-center atomic orbital expansion [67], by
Ghoshal and Ho using exponential cosine-screened Coulomb
potentials [68], and by Igarashi et al using the hyperspher-
ical close-coupling method [44], and Igarashi et al using the
close-coupling method with a B-spline expansion [38]. Bhatia
has recently computed cross sections for Ps− photodetach-
ment into various excited P states of Ps in which he used the
asymptotic form of a Ps− bound-state wave function [65] and a
plane wave for the final state [69]. Maniadaki et al have calcu-
lated the photodetachment cross section using a configuration
interaction method on a B-splines basis [70]. The Ps− pho-
todetachment cross section has recently been computed using
the complex coordinate rotation method with Gaussian basis
functions [71]. All of these previous calculations have repor-
ted the cross section in both the length and velocity forms, or
only the length form.

Resonance positions and widths for the e−-Ps system have
been reported by Ho [72] and by Bhatia and Ho [73, 74] who
used the complex coordinate rotation method with Hylleraas-
type functions. They have also been given by Kar and Ho [55,
75–78] and Kar et al [79] who used exponential functions.
Furthermore, they have also been determined by Basu and
Ghosh [50, 51, 80, 81] using 3-, 6-, and 9-state close-coupling
approximations, by Gilmore et al using a 9-state coupled
pseudostate approximation [62], by Usukura and Suzuki using
the stochastic variational method combined with the complex
scaling method [82], by Igarashi et al who did a time-delay
matrix analysis of their hyperspherical close-coupling results
[83], and by Igarashi using the complex rotation method with
hyperspherical coordinates [84]. In addition, Botero [85] and
Botero and Greene [86, 87] have obtained resonances using
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the adiabatic method with hyperspherical coordinates while
Zhou and Lin employed the hyperspherical close-coupling
method and obtained 1Se resonances below the Ps(n= 2) and
Ps(n= 3) thresholds [88].

The 1,3S scattering length calculations have been per-
formed by Bhatia and Drachman using their bound-state Ps−

function [66] and Kvitsinsky et al using the Faddeev equations
[89]. Ghoshal et al have determined the 1S scattering length
using their variational Ps− wave function and an ERT [90].
Various cross sections for e−-Ps scattering have been calcu-
lated by Igarashi et al [91] using the hyperspherical close-
coupling method, Basu and Ghosh using a 6-state close-
coupling approximation [50, 51], Gilmore et al using 9- and
30-state coupled pseudostate approximations [62], Kvitsinsky
et al using the Faddeev equations [89], and Melezhik and
Vukajlović using the adiabatic method [92].

Section 2 of this paper presents the application of the com-
plex Kohn, Kohn, and inverse Kohn variational methods to e−-
Ps scattering below the Ps(n= 2) threshold. It also presents the
trial wave functions that we use in the scattering and bound-
state calculations, a resonance fitting formula, a few ERT for-
mulas, and information on the Ps− binding energy calcula-
tion. Furthermore, it gives expressions for the Ps− photode-
tachment cross section in length, velocity, and acceleration
forms, and finishes with formulas for scattering cross sections.
Section 3 presents the 1,3S- and 1,3P-wave phase shifts for e−-
Ps scattering, 1S-, 1,3P-, and 1,3D-wave resonance paramet-
ers, 1,3S-wave scattering lengths, and the Ps− binding energy.
It also gives the Ps− photodetachment cross section in the
length, velocity, and acceleration forms. Furthermore, it gives
the 1,3D-wave phase shifts, and specifically, the effect of the
mixed symmetry term in the 1,3D-wave trial wave function
on the phase shifts and resonances. Finally, it gives various
scattering cross sections. Section 4 presents our concluding
remarks. Appendix A provides further numerical details for
the calculations of the binding energy, phase shifts, scattering
lengths, and resonance parameters, as well as giving the Kohn
and inverse Kohn phase shifts for the 1,3S- and 1,3P-waves.
Appendix B gives numerical details for the photodetachment
calculation. Note that we use atomic units throughout unless
stated otherwise.

2. Theory

2.1. Elastic e−-Ps scattering and Kohn-type variational
methods

Figure 1 shows the coordinate diagram for the e−-Ps system
where (r1,r2) are the position vectors of the two electrons with
respect to the position of the positron, and r3 = |r2 − r1| is
the inter-electronic distance [36, 37]. The Jacobi coordinates
for when electron 2 is bound and electron 1 is incident are
(r2,ρ= r1 − 1

2 r2), while the corresponding exchange Jacobi
coordinates for when electron 1 is bound and electron 2 is
incident are (r1,ρ ′ = r2 − 1

2 r1). In the center of mass frame,
the Hamiltonian for the system can be expressed as,

Figure 1. The e−-Ps coordinate system.

H=− 1
2µ1

∇2
r2 −

1
2µ2

∇2
ρ −

1
r1

− 1
r2

+
1
r3
, (1)

where

µ1 = µ(Ps) =
1
2

and µ2 = µ
(
Ps−

)
=

2
3
. (2)

The derivation and notation of the Kohn-type variational
methods that we present here largely follows that of [39]. The
functional for the scattering trial wave function Ψ±,t

l is given
by,

I
[
Ψ±,t
l

]
=
(
Ψ±,t
l LΨ±,t

l

)
, (3)

where l represents the partial wave, t indicates trial, the plus
and minus signs indicate the singlet and triplet, respectively,
and

L= 2µ2 (H−E) , (4)

in which the total energy of the system is given by,

E= EPs +
k2

2µ2
, (5)

where EPs =−1/4 is the ground-state energy of Ps. We are
assuming the trial wave function is a small variation δΨ±

l from
the exact wave function Ψ±

l ,

Ψ±,t
l =Ψ±

l + δΨ±
l . (6)

The variational in the functional is given by,

δ [I] =
(
L±,t− L±

)
detu+ I

[
δΨ±

l

]
, (7)

where L±,t represents the scattering quantity in the trial
wave function and L± is the corresponding quantity for the
exact wave function. Realizing that I[Ψ±

l ] = 0 and neglecting
I[δΨ±

l ], which is a second order term in δΨ±
l , yields the func-

tional for the variational (v) quantity L±,v,

L±,v = L±,t− I
[
Ψ±
l

]
/detu. (8)

For the complex Kohn variational method we have,

L±,t
l =−S±,t

l =−e2iδ
±,t
l , u=

[
−i 1
i 1

]
, (9)
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for the Kohn,

L±,t
l = K±,t

l = tanδ±,t
l , u=

[
1 0
0 1

]
, (10)

and for the inverse Kohn,

L±,t
l =−

(
K±,t
l

)−1
=−cotδ±,t

l , u=

[
0 1
−1 0

]
. (11)

The complex Kohn method gives less singularities than the
Kohn or inverse Kohn methods [33, 34].

Using the stationary property of the functional, one sets the
derivatives of the functional L±,v, equation (8), with respect to
each linear parameter to zero. For the S-wave, one has

∂L±,v

∂L±,t
= 0 and

∂L±,v

∂a±j
= 0, j = 1, . . .,N , (12)

where a±j represents the linear parameters in the short-range
part of the trial scattering wave function and N is the number
of terms in this part. Equation (12) leads to a set of (N+ 1)
linear equations which can be written in a matrix equation [39,
93–95], AX=−B,

(
C̃LC̃

) (
C̃Lφ±

1

)
. . .

(
C̃Lφ±

N

)(
φ±
1 LC̃

) (
φ±
1 Lφ

±
1

)
. . .

(
φ±
1 Lφ

±
N

)
...

...
. . .

...(
φ±
NLC̃

) (
φ±
NLφ

±
1

)
. . .

(
φ±
NLφ

±
N

)


L±,t

a±1
...
a±N



=−


(
C̃LS̃

)(
φ±
1 LS̃

)
...(

φ±
NLS̃

)
 . (13)

We give the definitions of C̃, S̃ and φ±
j in section 2.2. Finally,

we solve for L±,v,

L±,v =− 1
detu

[
BTX+

(
S̃LS̃

)]
, (14)

to obtain the phase shifts.

2.2. Trial wave functions

In this section we present trial wave functions for 1,3S-, 1,3P-,
and 1,3D-wave e−-Ps scattering that we use for all three Kohn-
type variational methods. We give the results of these calcula-
tions in section 3 and appendix A.

A general from for the trial wave function of partial wave l
for e−-Ps elastic scattering is given by,

Ψt,±
l =

√
k
2
(1±P12)φPs (r2)Yl0 (θρ,φρ)

(
S̃l+ L±,t

l C̃l
)

+
l+1∑
i=1

Φ±
i , (15)

where P12 is a permutation operator that interchanges the spa-
tial coordinates of the two electrons, and φPs(r2) is the exact
wave function of Ps(1s) which is given by,

φPs (r2) =
1√
8π

e−r2/2, (16)

and where θρ and φρ are the polar and the azimuthal angles,
respectively, of ρ. The trial wave function has a long-range
part,

√
k/2(1±P12)φPs(r2)Yl0(θρ,φρ)(S̃l+ L±,t

l C̃l), and a
short-range part,

∑
Φ±
i , that is a highly correlated func-

tion which includes all interparticle distances. The long-range
terms (S̃l, C̃l) are given by[

S̃l
C̃l

]
= u

[
S̄l
C̄l

]
=

[
u00 u01
u10 u11

][
S̄l
C̄l

]
, (17)

where

S̄l = jl (kρ) , and C̄l =−nl (kρ)
(
1− e−µρ

)n
, (18)

in which jl(kρ) and nl(kρ) are the spherical Bessel and
Neumann functions, respectively. Present in the C̄l definition
is a shielding function that removes the singularity of the
spherical Neumann function which is at the origin. The value
for the power of the shielding function n, and the nonlinear
variational parameter µ, varies for each partial wave. We give
the values of n and µ that we use in appendix A. Due to azi-
muthal symmetry the magnetic quantum number m is zero in
the spherical harmonic Ylm(θρ,φρ) in the long-range part of
the trial wave function.

For the short-range part, there are l+ 1 different
symmetries [96]. For the 1,3S-wave, the short-range part of
the trial wave function is a Hylleraas-type function given by,

Φ±
0 =

1√
2
Y00 (θρ,φρ)

N∑
j=1

a±j φ̄
±
j =

N∑
j=1

a±j φ
±
j . (19)

The short-range terms are given by,

φ̄±
j = e−α±s−γ±r3skj tljrmj

3 , (20)

where α± and γ± are nonlinear variational parameters and
s, t,r3 are the Hylleraas (elliptic) coordinates where s= r1 + r2
and t= |r1 − r2|. The number of terms N is determined by ω
[37, 95] where,

lj+ kj+mj ⩽ ω, (21)

and lj,kj,mj, and ω are non-negative integers. For the S-wave lj
must be even for the singlet case, and odd for the triplet case.
We give in table 1 the number of terms N for a given ω for the
1,3S, 1,3P, and 1,3D trial scattering wave functions.

For the 1,3P-wave, the short-range part of the trial wave
function is given by,

4
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Table 1. Number of total short-range terms N for each e−-Ps
scattering trial wave function for a given ω, where ω is given by
equation (21).

ω N 1S (3S) N 1,3P N 1D (3D)

1 3 (1) 4 7 (5)
2 7 (3) 10 17 (13)
3 13 (7) 20 33 (27)
4 22 (13) 35 57 (48)
5 34 (22) 56 90 (78)
6 50 (34) 84 134 (118)
7 70 (50) 120 190 (170)
8 95 (70) 165 260 (235)
9 125 (95) 220 345 (315)
10 161 (125) 286 447 (411)
11 203 (161) 364 567 (525)
12 252 (203) 455 707 (658)
13 308 (252) 560 868 (812)
14 372 (308) 680 1052 (988)
15 444 (372) 816 1260 (1188)

2∑
i=1

Φ±
i =

1√
2

(
Y10 (θρ,φρ)ρ± Y10 (θρ ′ ,φρ ′)ρ ′) N1∑

j=1

a±j φ̄
±
j

+
1√
2

(
Y10 (θρ,φρ)ρ∓ Y10 (θρ ′ ,φρ ′)ρ ′) N∑

j=N1+1

b±j φ̄
±
j ,

(22)

where θρ′ and φρ ′ are the polar and the azimuthal angles,

respectively, of ρ
′
, and where lj is even in the first summa-

tion and odd in the second summation. Furthermore, N1 is the
number of short-range terms where lj is even, andN is the total
number of short-range terms. The linear variational paramet-
ers are a±j and b±j .

For the 1,3D-wave, the short-range part of the trial wave
function is given by,

3∑
i=1

Φ±
i =

1√
2

(
Y20 (θρ,φρ)ρ

2 ± Y20 (θρ ′ ,φρ ′)ρ ′2
) N1∑
j=1

a±j φ̄
±
j

+
1√
2

(
Y20 (θρ,φρ)ρ

2 ∓ Y20 (θρ ′ ,φρ ′)ρ ′2
) N2∑
j=N1+1

b±j φ̄
±
j

+
1√
2
ρρ ′ (Y11 (θρ,φρ)Y1,−1 (θρ ′ ,φρ ′)

+ Y10 (θρ,φρ)Y10 (θρ ′ ,φρ ′)

+Y1,−1 (θρ,φρ)Y11 (θρ ′ ,φρ ′))
N∑

j=N2+1

c±j φ̄
±
j ,

(23)

where lj is even in the first summation, odd in the second sum-
mation, and even (odd) in the third summation for the singlet
(triplet) case. Again N1 is the number of short-range terms in
the first symmetry,N2 is the number of short-range terms in the
first two symmetries, and N is the total number of short-range
terms. The linear variational parameters are a±j ,b

±
j , and c

±
j .

The third summation of the 1,3D-wave short-range part of the
trial wave function (RHS of equation (23)) is referred to as the

mixed symmetry term. In section 3.5 we discuss its importance
to the 1,3D-wave phase shifts and its effect on the resonances.
In section 3.6 we discuss the significance of the complex Kohn
D-wave phase shifts in the scattering cross sections.

2.3. Resonances

Below the Ps(n= 2) threshold there are Feshbach resonances
[97] in the e−-Ps system. In section 3 we compare the res-
onance parameters that we obtain with those found in the
literature [36, 37, 62, 72–75, 82, 83, 86]. We compute the pos-
itions and widths for the Feshbach resonances using the Breit-
Wigner formula [98–100] with a slowly varying background
of the form [101, 102],

δ (E) = tan−1 Γres

2(E−Eres)
+

2∑
i=0

(E)i , (24)

where

δres = tan−1 Γres

2(E−Eres)
, (25)

Eres is the position of the resonance, and Γres is the full width
at half maximum.

2.4. Effective range theories

In order to calculate the 1,3S-wave scattering lengths a±0 we
employ ERT formulas that were derived by explicitly taking
into account the polarization potential for e−-Ps elastic scat-
tering. The first is the ERT formula provided by O’Malley et al
[35] given by,

kcotδ±0 =− 1

a±0
+

πµ2α

3
(
a±0

)2 k+ 2µ2α

3a±0
k2 ln

(µ2α

16
k2
)
, (26)

where α= 36 is the electric dipole polarizability of Ps(1s).
The second is the ERT formula provided by Bransden

[103],

tanδ±0 =−a±0 k−
πµ2α

3
k2 − 4µ2α

3
a±0 k

3 ln(k) , (27)

which is derived from equation (4.3) of O’Malley et al [35].
(The procedure to obtain equation (27) is given by Macek
[104]. Levy and Keller obtained the expression for the phase
shift δ0 rather than for tanδ0 [105]).We useMathematica [106]
to fit both of these ERT formulas to the Kohn-type variational
1,3S phase shifts in order to determine the scattering lengths
and to obtain the R2 values for the fits.

In the elastic integrated, momentum-transfer, and ortho-
para conversion cross sections we use the 1,3F-wave phase
shifts that we determine using the O’Malley et al [35] ERT
formula for l⩾ 1, which is given by,

tanδl =
µ2απ k2

(2l− 1)(2l+ 1)(2l+ 3)
. (28)

We give the results of the scattering cross sections in
section 3.6.
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2.5. Binding energy of Ps−

For the calculation of the binding energy Eb of Ps− it is more
convenient to use the center of mass Hamiltonian expressed
solely in terms of r1 and r2, which is given by,

H=− 1
2µ1

∇2
r1 −

1
2µ1

∇2
r2 −∇r1 · ∇r2 −

1
r1

− 1
r2

+
1
r3
, (29)

where −∇r1 ·∇r2 is the mass polarization term [107].
We use for the bound-state wave function of Ps− the short-

range part of the 1S-wave trial wave function, equation (19),
and the Rayleigh–Ritz variational method, to determine the
binding energy of Ps−. Not only does this calculation provide
confidence in the accuracy of the short-range terms to describe
the Ps− system, but an accurate binding energy is important
for a reliable determination of the Ps− photodetachment cross
section. Note that we optimize the values of both of the non-
linear variational parameters of equation (20), α+ and γ+, for
this binding energy calculation separate from the phase shift
calculations. We give our choice of nonlinear parameters in
table A1 in appendix A.

2.6. The photodetachment of Ps−

Time-dependent perturbation theory is used to derive the
expressions for the photodetachment cross section for Ps− [36,
37, 47]. The length (L) form of the cross section is given by,

σλ (L) = 6.8115× 10−20k
(
k2 + γ2

)
|µL|2 cm2, (30)

where,

γ2 = 2µ2Eb, (31)

and the length matrix element is,

µL = k̂ · ⟨Ψf|r2 +µ2ρ|Ψi⟩, (32)

in which k̂ is the direction of the wave vector of the ejected
electron with respect to the center-of-mass of Ps. The velocity
(V) form of the cross section is given by,

σλ (V) = 2.7246× 10−19µ2
2

k
k2 + γ2

|µV|2 cm2, (33)

where the velocity matrix element is,

µV = k̂ · ⟨Ψf|
1
µ1

∇r2 +∇ρ|Ψi⟩. (34)

The acceleration (A) form of the cross section is given by,

σλ (A) = 1.2109× 10−19µ2
2

16k

(k2 + γ2)
3 |µ

A|2, (35)

where the acceleration matrix element is,

µA = k̂ · ⟨Ψf|
r1
r31

+
r2
r32
|Ψi⟩. (36)

Choosing the z-axis to be parallel to k̂ gives,

µLz = ⟨Ψf|z2 +µ2ρz|Ψi⟩, (37)

µVz = ⟨Ψf|
1
µ1

∂

∂z2
+

∂

∂ρz
|Ψi⟩, (38)

µA = ⟨Ψf|
z1
r21

+
z2
r22
|Ψi⟩. (39)

We compute the Ps− photodetachment cross section in the
length, velocity, and acceleration forms for energies below the
Ps(n= 2) threshold. In the matrix elements of equations (32),
(34) and (36), Ψi is the wave function for the 1S bound-state
of Ps− given by equations (19) and (20) and Ψf is the 1P con-
tinuum wave function of the e−-Ps system, which is normal-
ized according to,

⟨Ψf′ |Ψf⟩= (2π)3 δ (k ′ − k) . (40)

For the 1P continuum wave function, to obtain the normal-
ization of equation (40) one needs to multiply the complex
Kohn 1P trial wave function given by equations (9), (15),
(17), (18) and (22) by the factor i/2

√
12π/ke−iδ+1 , where δ+1

is the complex Kohn 1P trial phase shift. However, for the
Kohn 1P trial wave function given by equations (10), (15),
(17), (18) and (22), one needs to multiply it by the factor√
12π/kcosδ+1 . Although we compute the photodetachment

cross section using both the complex Kohn and Kohn 1P trial
wave functions, we present results in this paper using only the
complex Kohn. We note that Ward et al [37] multiplied their
Kohn 1P trial wave function by

√
12π/k, but they did not mul-

tiply it by cosδ+1 . This means that their normalization of Ψf

did not satisfy equation (40). However, multiplying their pho-
todetachment cross section (in length and velocity forms) by
the factor cos2 δ+1 brings their results in accord with the cross
section computed by Igarashi et al [38] and by Igarashi et al
[44]. Importantly, this resolves the discrepancy between these
different sets of prior results.

2.7. Scattering cross sections

We calculate various cross sections for e−-Ps scattering and
we study the importance of the D-wave complex Kohn phase
shifts on these cross sections. We compute the elastic integ-
rated cross section σel, the elastic differential cross section
dσel/dΩ, the momentum-transfer cross section σm [103], and
the ortho-para conversion cross section σc. The formulas for
these cross sections are given by,

σ±
el

(
k2
)
=

4
k2

∞∑
l=0

(2l+ 1)sin2 δ±l
[
πa20

]
, (41)

dσ±
el

dΩ
(θ,k)

=

∣∣∣∣∣
∞∑
l=0

1
2ik

(2l+ 1)
(
e2iδ

±
l − 1

)
Pl (cosθ)

∣∣∣∣∣
2 [
a20sr

−1
]
,

(42)
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σ±
m

(
k2
)
=

4
k2

∞∑
l=0

(l+ 1)sin2
(
δ±l − δ±l+1

) [
πa20

]
, (43)

σc
(
k2
)
=

1
4k2

∞∑
l=0

(2l+ 1)sin2
(
δ+l − δ−l

) [
πa20

]
. (44)

Baltenko and Segal [108] discusses ortho-para conversion
of Ps in a cool plasma.

In an unpolarized beam of electrons there will be three
times as many electrons in the triplet state as the singlet
state, and thus the spin-weighted cross section formulas are
given by,

σel =
1
4

(
σ+
el + 3σ−

el

) [
πa20

]
, (45)

dσel

dΩ
=

1
4

(
dσ+

el

dΩ
+ 3

dσ−
el

dΩ

) [
a20sr

−1
]
, (46)

σm =
1
4

(
σ+
m + 3σ−

m

) [
πa20

]
. (47)

We give in section 3.6 the zero-energy limits of the cross
sections that we calculate using the singlet a+0 and triplet a−0
S-wave scattering lengths. The formulas for the zero-energy
cross sections are,

σel (0) = σm (0) =
(
a+0

)2
+ 3

(
a−0

)2 [
πa20

]
, (48)

dσel

dΩ
(θ,0) =

1
4

[(
a+0

)2
+ 3

(
a−0

)2] [
a20sr

−1
]
, (49)

σc (0) =
1
4

(
a+0 − a−0

)2 [
πa20

]
. (50)

3. Results

3.1. 1,3S-wave phase shifts and resonances

We compute the 1,3S-wave phase shifts using the complex
Kohn, Kohn, and inverse Kohn variational methods. Although
the Kohn-type variational methods do not provide a rigorous
upper bound on the results, one finds that in general there is
an empirical upper bound. Generally, the higher the ω value,
the larger the phase shift results will be due to the additional
terms present in the short-range part of the trial wave func-
tions. However, in these calculations linear dependence can
cause anomalous behavior in the phase shift results when com-
puted with an ω value that is too large. Therefore, a balance
must be achieved in selecting an ω large enough to produce
a numerically converged result while avoiding linear depend-
ence. We discuss in appendix A the numerical work for the
phase shift calculations.

In tables 2 and 3 we present the 1S-wave and 3S-wave phase
shifts, respectively, that we compute with the complex Kohn
variational method. We compare these results with the previ-
ous calculations that used the Kohn variational method [36],
and the close-coupling calculations of Igarashi et al [38]. The
second column of these tables show the complex Kohn phase
shifts for a ω value, which we refer to as best ω, in which the

convergence ratio R(ω),

R(ω) =
tanδ (ω)− tanδ (ω− 1)

0.5(tanδ (ω)+ tanδ (ω− 1))
, (51)

is the smallest for when the tangent of the phase shift is
an increase from the previous value. There are sometimes
instances where the convergence ratio is very small but the
tangent of the phase shift decreases slightly. In these instances
we select the smaller ω value for the best ω. The third column
shows results that we generate using the lowest of these best
ω values for the entire k-range. Over a majority of the k-range
we consider for the singlet, and the entirety of the k-range for
the triplet phase shifts, the complex Kohn best ω results are
an improvement over prior Kohn-type variational results as
the phase shifts are larger, and thus theoretically closer to the
empirical upper bound. There are instances in table 2 where
our 1S complex Kohn results are slightly less than our Kohn
results and those previously reported. The difference in these
results is in the third significant figure and can be attributed to
the choice of nonlinear parameters. The complex Kohn results
agree well with those of Igarashi et al [38].

In table A2 of appendix A we give our Kohn and inverse
Kohn 1,3S phase shifts. We obtain our results using a higher,
or equal, ω value for the Kohn and inverse Kohnmethods com-
pared to prior results. Our optimized Kohn results agree to
at least the second decimal place with the previously repor-
ted Kohn phase shifts in tables 2 and 3 [36]. The difference
between our Kohn and inverse Kohn phase shifts is at least in
the third decimal place.

Table 4 presents the position and width for the 1S reson-
ance of the e−-Ps system we obtain using the inverse Kohn
method, along with comparisons from the literature. We com-
pute the position and width for this resonance using the Breit-
Wigner formula with a slowly varying background given by
equation (24). We compute these parameters over a range of ω
values from 6–12, and quote them in table 4 for ω= 11. These
parameters for ω= 11 compare favorably with those in the lit-
erature. For each set of resonance parameters, we present the
largest ω value that produces stable positions and widths. We
find no resonances for the 3S-wave.

We calculate S-wave singlet a+0 and triplet a−0 scatter-
ing lengths using two different ERT formulas, equations (26)
and (27), and 1,3S phase shifts from the k-range of 0.000 01
to 0.001 that we obtain using the three Kohn-type variational
methods. In table 5 we present the results of the calculations
using the Kohn 1S phase shifts and compare these results with
those in the literature. Based on the R2 value we generate by
using the Mathematica fits [106], we use equation (26) for the
singlet case and equation (27) for the triplet case. The scatter-
ing lengths that we use in the zero-energy cross sections are
a+0 = 11.9 and a−0 = 4.81. In appendix A we give plots of the
tangent of the S-wave phase shift vs. k, with our generated fits.

3.2. Binding energy

We use the Rayleigh–Ritz variational method and the 1S
bound-state trial wave function, equation (19), to determine

7
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Table 2. Comparison of the complex Kohn 1S-wave phase shifts δ+0 for e−-Ps scattering with the prior Kohn [36] and 18-state
close-coupling [38] results. Phase shifts are given in radians and ω is given by equation (21). For details on how we select a best ω see
section 3.1 and appendix A.

k
Complex Kohn variational
δ+0 (best ω) [present]

Complex Kohn
variational δ+0

(ω= 8) [present]
Kohn variational
δ+0 (ω = 9) [36]

Close-coupling
δ+0 (18-state) [38]

0.05 2.554 (10) 2.554 2.544 —
0.10 2.062 (8) 2.062 2.047 2.056
0.15 1.669 (9) 1.669 1.665 —
0.20 1.391 (12) 1.345 1.376 1.378
0.25 1.155 (12) 1.155 1.154 —
0.30 0.983 (9) 0.983 0.984 0.983
0.35 0.850 (9) 0.850 0.851 —
0.40 0.746 (11) 0.746 0.747 0.746
0.45 0.665 (11) 0.664 0.664 —
0.50 0.609 (9) 0.609 0.597 —

Table 3. Comparison of the complex Kohn 3S-wave phase shifts δ−0 for e−-Ps scattering with the prior Kohn [36] and 18-state
close-coupling [38] results. Phase shifts are given in radians and ω is given by equation (21). For details on how we select a best ω see
section 3.1 and appendix A.

k
Complex Kohn variational
δ−0 (best ω) [present]

Complex Kohn
variational δ−0

(ω= 8) [present]
Kohn variational
δ−0 (ω = 9) [36]

Close-coupling
δ−0 (18-state) [38]

0.05 −0.261 (13) −0.262 −0.264 —
0.10 −0.536 (10) −0.536 −0.537 −0.536
0.15 −0.797 (10) −0.797 −0.799 —
0.20 −1.034 (10) −1.034 −1.036 −1.033
0.25 −1.244 (10) −1.245 −1.248 —
0.30 −1.430 (10) −1.431 −1.434 −1.430
0.35 −1.593 (10) −1.593 −1.598 —
0.40 −1.736 (11) −1.738 −1.741 −1.736
0.45 −1.863 (8) −1.863 −1.868 —
0.50 −1.974 (10) −1.974 −1.979 —

Table 4. Resonance positions and widths of the e−-Ps system. Positions are given in eV and widths are given in meV in curly brackets. The
ω value that we use for each state is in parentheses and is given by equation (21).

State Present (ω)

Ho/Bhatia &
Ho/Kar & Ho [55,
72, 74, 75, 77]

Botero and
Greene [86] Gilmore et al [62]

Usukura and
Suzuki [82]

Ward [36] Ward
et al [37] Igarashi et al [83]

1S 4.734 (11)
{1.17}

4.734
{1.2}

4.7253/4.6815
{—}

4.739 43
{1.204}

4.733 972
{1.153}

4.768
{1.6}

4.733 40
{1.17}

1P 5.088 (11)
{0.0327}

5.084 29
{0.024}

5.0998
{—}

5.094 450
{0.0693}

—
{—}

5.094
{—}

5.084 31
{0.03}

3P(A) 4.808 (13)
{3.48}

4.807 53
{3.467}

—
{—}

4.811 719
{3.548}

—
{—}

4.808
{3.50}

4.807 52
{3.54}

3P(B) 5.095 (14)
{0.81}

5.085 89
{0.446}

—
{—}

5.098 854
{0.484}

—
{—}

5.101
{1.00}

5.086 08
{0.44}

1D(A) 4.955 (11)
{0.04}

4.954 849 32
{0.050}

—
{—}

4.961 945
{0.0479}

—
{—}

—
{—}

4.954 89
{0.049}

1D(B) 5.101 (13)
{—}

5.101 05
{—}

—
{—}

—
{—}

—
{—}

—
{—}

5.100 91
{0.000 63}

3D 5.097 (11)
{—}

5.099 7458
{0.087}

—
{—}

—
{—}

—
{—}

—
{—}

5.099 74
{0.000 063}
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Table 5. Comparison of the 1,3S scattering lengths a±0 for e−-Ps
scattering we calculate using the Kohn phase shifts with others
given in the literature. The results in boldface are the ones we use in
the evaluation of the zero-energy cross sections.

Calculation a+0 a−0

Equation (26) 11.9 4.86
Equation (27) 11.9 4.81
Ward et al [37] 12.0 4.6
Bhatia and Drachman [66] 12.233 —
Kvitsinsky et al [89] 11.98 4.78
Ghoshal et al [90] 12.242 —

Table 6. Convergence of the binding energy Eb of the Ps
− ion with

respect to variation of the ω value, where ω is given by
equation (21).

ω
Number of
terms (N)

Binding
energy Eb

1 3 0.008 216 71
2 7 0.010 871 87
3 13 0.011 012 00
4 22 0.011 927 67
5 34 0.011 955 64
6 50 0.011 998 75
7 70 0.012 002 39
8 95 0.012 004 55
9 125 0.012 004 87
10 161 0.012 005 01

Table 7. The binding energy Eb of the Ps
− ion. (∗(∗∗) converted

from Ryd (eV) to a.u.).

Calculation Binding energy Eb

Present (ω= 10) 0.012 005 01
Ward (ω= 8) [36] 0.012 004 62
Ho∗ (946 terms) [53] 0.012 005 070 21
Kar and Ho [55] 0.012 005 0702
Frolov [58] 0.012 005 070 232 980 107 770 400 51
Korobov [59] 0.012 005 070 232 980 1077(3)
Drake et al [60] 0.012 005 070 232 980 107 627
Gilmore et al∗∗ [62] 0.0119

the binding energy of Ps−. Table 6 shows the convergence
of the calculation with respect to the ω value. In table 7
we compare our result with the previous variational result of
Ward [36] and with the result of Ho who used a 946-term
Hylleraas function [53]. We also compare our result with the
result of Kar and Ho [55], of Frolov [58], and of Korobov [59]
who used exponential functions. Additionally in this table we
give the result of Drake et al who used a triple basis set in
Hylleraas coordinates with 2528 terms [60] and with the res-
ult of Gilmore et al who used a 9-state coupled pseudostate
approximation [62].

Our results that we give in table 7 are an improvement
over prior results [36] using the same form of the 1S bound-
state trial wave function due to the higher ω value we use in

the computation, which was made possible by converting the
calculation (except for the eigenvalue matrix routune) from
double to quadruple precision. The increased ω value allows
for more terms in the trial wave function, and thus a theor-
etically more accurate wave function that produces a larger
binding energy value. We optimize the two nonlinear para-
meters, α+ and γ+, in the 1S bound-state trial wave func-
tion, equations (19) and (20), for our binding energy calcula-
tion and we give the values of these parameters in table A1 in
appendix A. The Rayleigh–Ritz variational method provides a
rigorous bound for the binding energy and thus the larger the
value the more accurate the result. We think that the results of
Frolov [58], Korobov [59], and Drake et al’s [60] are the most
accurate ones in table 7. Our present result agrees well with
their reported results, with a percent difference of approxim-
ately 0.0005% when compared to either of their results.

3.3. 1,3P-wave phase shifts and resonances

We compute the 1,3P-wave phase shifts and resonance para-
meters. As for the 1,3S-wave, we compute the 1,3P-wave phase
shifts with the complex Kohn, Kohn, and inverse Kohn vari-
ational methods. We compare in tables 8 and 9 the complex
Kohn 1,3P-wave phase shifts with the prior results that used the
Kohn variational method [37], and the 18-state close-coupling
results of Igarashi et al [38]. There are instances where our
complex Kohn results are slightly less than the prior Kohn-
type variational results. However, it is deemed more beneficial
to employ the complex Kohn method as it has fewer singular-
ities than the other variational methods. The 1P phase shifts
are of importance due to their direct contribution to the Ps−

photodetachment cross section, and of particular interest in the
1P-wave phase shifts is the cusp that appears to be due to the
onset of the Ps(n= 2) shape resonance. The effect of this cusp
behavior can be seen in the photodetachment cross section res-
ults presented in the next section. We present in figure 2(a)
closer view of the 1P-wave cusp that we obtain with the com-
plex Kohn method.

We discuss in appendix A numerical details for the 1,3P
scattering calculation and give the Kohn and inverse Kohn
phase shift results in table A3. For a number of cases, we are
able to obtain phase shifts with a higher ω value for the Kohn
and inverseKohnmethods compared to prior calculations [37].
When compared to the previously reported Kohn 1,3P phase
shifts [37] our Kohn results generally agree to within two
decimal places. However, for the 1P phase shift for k= 0.50
the agreement is only to the first decimal place. The differ-
ence between our Kohn and inverse Kohn phase shift results
is at least in the third decimal place.

In table 4, for the 1P resonance and the 3P resonance (A)
we report values from the inverse Kohnmethod whereas for 3P
resonance (B) they are from theKohnmethod.We compute the
positions and widths for these resonances using the resonance
fitting formula equation (24) over a range of ω values from
9–15. Of note is the width for the 1P resonance we record in
table 4, which had not been previously reported using a Kohn-
type variational method.

9
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Table 8. Comparison of the complex Kohn 1P-wave phase shifts δ+1 for e−-Ps scattering with the prior Kohn [37] and 18-state
close-coupling [38] results. Phase shifts are given in radians and ω is given by equation (21). For details on how we select a best ω see
section 3.1 and appendix A.

k
Complex Kohn variational
δ+1 (best ω) [present]

Complex Kohn
variational δ+1

(ω= 8) [present]

Kohn
variational

δ+1 (ω = 9) [37]
Close-coupling

δ+1 (18-state) [38]

0.05 −0.0007 (8) −0.0007 −0.0006 —
0.10 −0.038 (9) −0.038 −0.038 −0.0379
0.15 −0.123 (9) −0.123 −0.123 —
0.20 −0.235 (10) −0.235 −0.235 −0.235
0.25 −0.353 (10) −0.353 −0.353 —
0.30 −0.463 (11) −0.463 −0.463 −0.463
0.35 −0.558 (11) −0.559 −0.559 —
0.40 −0.635 (10) −0.635 −0.635 −0.634
0.45 −0.687 (10) −0.687 −0.687 —
0.50 −0.663 (8) −0.663 −0.664 —

Table 9. Comparison of the complex Kohn 3P-wave phase shifts δ−1 for e−-Ps scattering with the prior Kohn [37] and 18-state
close-coupling [38] results. Phase shifts are given in radians and ω is given by equation (21). For details on how we select a best ω see
section 3.1 and appendix A. Asterisks indicate a value that we believe to be a typo in the original publication.

k
Complex Kohn variational
δ−1 (best ω) [present]

Complex Kohn
variational δ−1

(ω= 8) [present]

Kohn
variational

δ−1 (ω = 9) [37]
Close-coupling

δ−1 (18-state) [38]

0.05 0.031 (8) 0.031 0.031 —
0.10 0.192 (10) 0.192 0.192 0.192
0.15 0.483 (10) 0.483 0.484 —
0.20 0.706 (10) 0.706 0.707 0.707
0.25 0.784 (10) 0.784 0.784 —
0.30 0.778 (10) 0.777 0.778 0.778
0.35 0.737 (10) 0.737 0.737 —
0.40 0.687 (11) 0.686 0.687 0.687
0.45 0.641 (11) 0.640 0.641 —
0.50 0.661 (12) 0.660 ∗∗∗ —

3.4. The photodetachment of Ps−

We present in figure 3 the photodetachment cross-section in
the length, velocity, and acceleration forms that we compute
using our bound-state wave function for ω= 10, the corres-
ponding binding energy, and the 1P complex Kohn trial wave
function with the best ω value. The cusp behavior in the 1P-
wave phase shifts just below the Ps(n= 2) threshold is reflec-
ted in the photodetachment cross section. We compare our res-
ults with the length form of Igarashi et al [44] and Bhatia and
Drachman [65] in which their length and velocity forms are
identical. (We note that we use WebPlotDigitizer [109] to read
the photodetachment cross section of Igarashi et al [44] given
in figure 1 of their paper) We find that our length, velocity,
and acceleration forms are in very good agreement with each
other, and with the length form of Igarashi et al [44]. Also,
our results using the complex Kohn 1P continuum wave func-
tion agree very well with our results that we obtain (but we do
not show in this paper), using the Kohn 1P continuum wave
function [110]. In appendix B we present numerical details of
the calculation of the Ps− photodetachment cross section in
the length, velocity, and acceleration forms.

Figure 2. Cusp in the complex Kohn 1P-wave phase shifts for
e−-Ps scattering.

3.5. 1,3D-wave phase shifts and resonances

Figures 4 and 5 show the 1D- and 3D-wave phase shifts,
respectively, for the Kohn-type variational methods using
the best ω values, and compares them to the 18-state close-
coupling result [38]. There is excellent agreement between the
results from the three Kohn-type variational methods we use,
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Figure 3. Comparison of the Ps− photodetachment cross section in
the length, velocity, and acceleration forms using the complex Kohn
method for the 1P continuum wave function, and with the
photodetachment cross section in the length form using the
close-coupling 1P continuum wave function [44], and with the
photodetachment cross section of Bhatia and Drachman [65].

Figure 4. Comparison of the complex Kohn, Kohn, and inverse
Kohn 1D phase shifts for e−-Ps scattering together with the 18-state
close-coupling [38] 1D-wave phase shifts.

and also good agreement with the close-coupling results [38].
We optimize the nonlinear parameters for the 1,3D-wave phase
shifts and obtain results that are converged with respect to ω.
Table 10 provides results for the Kohn and inverse Kohn 1,3D
phase shifts, while tables 11 and 12, respectively, compares
the 1D and 3D complex Kohn phase shifts with the 18-state
close-coupling results [38]. In appendix A we present further
details of the phase shift calculations.

Table 4 shows the positions we obtain for three D res-
onances and the width for the first of the 1D resonances.
It also shows a comparison with results from the literat-
ure. We compute the parameters using the resonance fitting

Figure 5. Comparison of the complex Kohn, Kohn, and inverse
Kohn 3D phase shifts for e−-Ps scattering together with the 18-state
close-coupling [38] 3D-wave phase shifts.

formula, equation (24), over a range of ω values from 8–13.
The singlet resonance (A) parameters we report are from
the complex Kohn method, the resonance (B) position is
from the inverse Kohn method while the triplet resonance
position is from the Kohn method. There is good agree-
ment with the positions of the three resonances with those in
the literature.

Of particular interest in the 1,3D-wave calculation is the
effect of the mixed-symmetry term in the trial wave func-
tion that is required for this higher partial wave. Tables 11
and 12 show a comparison of the results of the complex Kohn
phase shifts we computewith andwithout themixed symmetry
term using our best ω values and a constant ω value of ω= 6.
When calculating the phase shifts with the constant ω value,
we use the same nonlinear parameters for both the calcula-
tions with and without the mixed symmetry term for direct
comparison. For the best ω case, it is clear that in general in
the 1D-wave case the mixed symmetry term contributes more
substantially to the phase shift results as k increases. There
is a single k-value (k = 0.05) that produces a higher phase
shift in the calculation without the mixed symmetry term than
with it when using the best ω value. This difference is min-
imal but can probably be attributed to the higher ω value that
the calculation without the mixed symmetry term converges
to. When comparing the calculations at the constant ω value,
including the mixed symmetry term always produces a phase
shift equal to or greater than the calculation without the mixed
symmetry term, and again the increase in the phase shift res-
ult is more substantial for higher k values. For the 3D-wave
and best ω case, the mixed symmetry term contributes, in gen-
eral, negligibly to the phase shifts. There are two values of k
(k= 0.05,0.45) where the phase shifts are slightly larger in
the calculation without the mixed symmetry term than in the
one with. However, for these two k-values, the best ω value is
larger in the computation without the mixed symmetry term.
For the other k-values, the phase shifts are identical to the pre-
cision given for the two computations. When comparing the
3D phase shifts at the constant ω value of ω= 6, the results
with and without the mixed symmetry term are identical to the
precision given.
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Table 10. Kohn and inverse Kohn 1,3D-wave phase shifts δ±2 for e−-Ps scattering. Phase shifts are given in radians and ω is given by
equation (21). For information on of how a best ω is chosen see text.

k
Kohn variational δ+2
(best ω)

Inverse Kohn
variational δ+2
(best ω)

Kohn vari-
ational δ−2 (best
ω)

Inverse Kohn
variational
δ−2 (best ω)

0.05 0.002 (11) 0.002 (9) 0.002 (10) 0.001 (12)
0.10 0.010 (9) 0.010 (11) 0.004 (9) 0.004 (9)
0.15 0.034 (9) 0.034 (11) −0.001 (9) −0.001 (9)
0.20 0.082 (10) 0.082 (8) −0.021 (11) −0.021 (10)
0.25 0.153 (10) 0.153 (8) −0.056 (11) −0.056 (10)
0.30 0.230 (11) 0.230 (11) −0.099 (9) −0.099 (10)
0.35 0.296 (11) 0.295 (11) −0.144 (9) −0.143 (10)
0.40 0.340 (9) 0.341 (10) −0.183 (9) −0.183 (9)
0.45 0.367 (9) 0.367 (10) −0.214 (9) −0.214 (9)
0.50 0.382 (9) 0.382 (11) −0.233 (10) −0.233 (9)

Table 11. Comparison of the complex Kohn 1D-wave phase shifts δ+2 for e−-Ps scattering with and without the mixed symmetry term and
with the prior 18-state close-coupling [38] results. Phase shifts are given in radians and ω is given by equation (21). For details on how we
select a best ω see section 3.1 and appendix A.

k

Complex Kohn w/o
mixed symmetry δ+2
(best ω)

Complex Kohn w/o
mixed symmetry

δ+2 (ω= 6)

Complex Kohn with
mixed symmetry δ+2
(best ω)

Complex Kohn
with mixed
symmetry
δ+2 (ω= 6)

Close-
coupling δ+2
(18-state) [38]

0.05 0.002 (8) 0.001 0.001 (6) 0.001 —
0.10 0.010 (9) 0.010 0.010 (8) 0.010 0.0101
0.15 0.034 (9) 0.033 0.034 (8) 0.033 —
0.20 0.082 (8) 0.082 0.082 (7) 0.082 0.0823
0.25 0.153 (8) 0.151 0.153 (7) 0.153 —
0.30 0.227 (10) 0.227 0.230 (9) 0.230 0.230
0.35 0.291 (10) 0.290 0.295 (9) 0.295 —
0.40 0.333 (8) 0.332 0.341 (12) 0.340 0.341
0.45 0.356 (8) 0.353 0.368 (12) 0.365 —
0.50 0.364 (11) 0.363 0.382 (11) 0.381 —

Table 12. Comparison of the complex Kohn 3D-wave phase shifts δ−2 for e−-Ps scattering with and without the mixed symmetry term and
with the prior 18-state close-coupling [38] results. Phase shifts are given in radians and ω is given by equation (21). For details on how we
select a best ω see section 3.1 and appendix A.

k

Complex Kohn w/o
mixed symmetry

δ−2 (best ω)

Complex Kohn
w/o mixed
symmetry
δ−2 (ω= 6)

Complex Kohn with
mixed symmetry

δ−2 (best ω)

Complex Kohn
with mixed
symmetry
δ−2 (ω= 6)

Close-
coupling δ−2
(18-state) [38]

0.05 0.002 (8) 0.001 0.001 (6) 0.001 —
0.10 0.004 (8) 0.004 0.004 (7) 0.004 0.004 05
0.15 −0.001 (8) −0.001 −0.001 (7) −0.001 —
0.20 −0.021 (8) −0.022 −0.021 (10) −0.022 −0.0214
0.25 −0.056 (8) −0.057 −0.056 (10) −0.057 —
0.30 −0.099 (12) −0.100 −0.099 (10) −0.100 −0.0992
0.35 −0.143 (12) −0.145 −0.143 (10) −0.145 —
0.40 −0.183 (13) −0.185 −0.183 (11) −0.185 −0.183
0.45 −0.213 (13) −0.220 −0.214 (11) −0.220 —
0.50 −0.232 (11) −0.233 −0.232 (8) −0.233 —

We search for 1,3D resonances in a calculation without
the mixed symmetry term. We find a single 1D resonance
at 4.977 eV with a width of 0.004meV. This corresponds to
1D resonance A in table 4, however the parameters of the

calculation using the mixed symmetry term agree better with
the other results in the literature. Interestingly, in the calcula-
tion without the mixed symmetry term we do not obtain the
singlet resonance B and the triplet resonance.

12



J. Phys. B: At. Mol. Opt. Phys. 58 (2025) 075203 W Mitchell and S J Ward

Figure 6. The spin-weighted elastic differential cross section for e−-Ps scattering at two viewing rotations.

Figure 7. The spin-weighted elastic differential cross section for
e−-Ps scattering versus the scattering angle θ for two different l
ranges and at various k-values (k= 0.1,0.3, & 0.5).

3.6. Scattering cross sections

In the calculation of the scattering cross sections, for the 1,3S-,
1,3P-, and 1,3D-waves we use the complex Kohn phase shifts
that we compute with the best ω values. For the 1,3D-wave, we
explicitly include the mixed symmetry term in the trial wave
function.

We compute the spin-weighted elastic differential cross
section using the 1,3S-, 1,3P-, and 1,3D-wave complex Kohn
phase shifts, and show the results in figures 6–8. Figure 6
shows 3D plots of the cross section. Figure 7 shows the cross
section at various k-values versus the scattering angle and
figure 8 shows the cross section at various scattering angles
versus the k-value, both for two different l ranges. The com-
plex Kohn 1,3D-wave phase shifts have significant effect on the
spin-weighted elastic differential cross section for the larger k
values and near the forward and backward direction.

Figure 9 shows the results for the spin-weighted elastic
integrated cross section for several different l ranges using the
complex Kohn phase shifts for the 1,3S-, 1,3P-, 1,3D-waves and
the O’Malley et al ERT l⩾ 1 formula [35] for the 1,3F-wave. It
can be seen that at higher k, the inclusion of the D-wave phase
shifts leads to a noticeable change in the cross section result.

Figure 8. The spin-weighted elastic differential cross section for
e−-Ps scattering versus k for two different l ranges and at various
scattering angles (θ = 0◦,90◦, & 180◦).

However, when including the F-wave using the O’Malley et al
[35] ERT l⩾ 1 formula, the change in results is negligible. The
elastic integrated cross section that we compute agrees well
with the hyperspherical close-coupling calculation of Igarashi
et al [91] and the 9-state coupled pseudostate calculation of
Gilmore et al [62]. (The comparison is not shown). Using
equation (48), we calculate a zero-energy elastic integrated
cross section value of 211πa20. In comparison, Ward et al
reported a zero-energy value of 208πa20 [37] and Kvitsinsky
et al reported a value of 212.07πa20 [89], while Melezhik and
Vukajlović gave a near-zero value of 292.1πa20 [92].

Figure 10 shows the results for the spin-weighted
momentum-transfer cross section for a variety of l ranges
using the complex Kohn phase shifts for the 1,3S-, 1,3P-, 1,3D-
waves and the O’Malley at al. ERT l⩾ 1 formula [35] for
the 1,3F-wave. The inclusion of the D-wave phase shifts pro-
duces a noticeable increase to the cross section results at
k-values above k≈ 0.05, which becomes more significant
for larger k. Inclusion of the F-wave using the O’Malley
et al [35] ERT l⩾ 1 formula produces a minor change in
the results above k≈ 0.30 but the results are almost identical
below.

13



J. Phys. B: At. Mol. Opt. Phys. 58 (2025) 075203 W Mitchell and S J Ward

Figure 9. The spin-weighted elastic integrated cross section for
e−-Ps scattering that we compute using the complex Kohn
1,3S-,1,3P-, and 1,3D-wave phase shifts and the O’Malley et al ERT
l⩾ 1 formula [35] for the 1,3F-wave phase shifts.

Figure 10. The spin-weighted momentum-transfer cross section
that for e−-Ps scattering we compute using the complex Kohn 1,3S-,
1,3P-, and 1,3D-wave phase shifts and the O’Malley et al ERT l⩾ 1
formula [35] for the 1,3F-wave phase shifts.

Figure 11 shows the results for the ortho-para conversion
cross section for multiple l ranges that we compute using the
complex Kohn for the 1,3S-, 1,3P-, and 1,3D-waves and the
O’Malley et al ERT l⩾ 1 formula [35] for the 1,3F-wave. The
D-wave phase shifts produce an increase in the cross section
above k≈ 0.20, which becomes more significant with increas-
ing k. The effect on the cross section of the F-wave phase
shifts that we compute using the O’Malley ERT l⩾ 1 for-
mula, equation (28) is negligible. The cross section agrees
well with the hyperspherical close-coupling results of Igarashi
et al [91] and with the 9-state coupled pseudostate results of
Gilmore et al [62]. (The comparison is not shown). Using
equation (50) we calculate a zero-energy ortho-para conver-
sion cross section value of 12.6πa20, which agrees fairly well

Figure 11. The ortho-para conversion cross section for e−-Ps
scattering that we compute using the complex Kohn 1,3S-, 1,3P-, and
1,3D-wave phase shifts and the O’Malley et al ERT l⩾ 1 formula
[35] for the 1,3F-wave phase shifts.

with the prior results of Ward of 13.7πa20 [36] and well with
the value reported by Kvitsinsky et al of 12.96πa20 [89].

4. Conclusion

We have examined the scattering of electrons by Ps below
the Ps(n= 2) threshold. Using the complex Kohn, Kohn, and
inverse Kohn variational methods we have computed accur-
ate 1,3S-, 1,3P-, and 1,3D-wave phase shifts that may be con-
sidered benchmark. Our 1,3S, 1,3P and 1,3D phase shifts agree
well with the Kohn 1,3S and 1,3P phase shifts previously com-
puted by Ward [36] and Ward et al [37] and with the 18-state
close-coupling 1,3S-, 1,3P-, and 1,3D-wave phase shifts com-
puted by Igarashi et al [38]. We have investigated the effect
that the mixed symmetry term in the complex Kohn 1,3D-wave
trial wave function has on both the phase shifts and resonances.
The e−-Ps results can be used, with mass scaling, as bench-
mark results for proton-protonium calculations for antihydro-
gen investigations [42, 43].

We have examined closely the cusp behavior of the com-
plex Kohn 1P phase shifts just below the Ps(n= 2) threshold,
which reflects itself in the Ps− photodetachment cross section.
Using the 1P continuum wave function for the e−-Ps system
that we obtained from the complex Kohn variational method
we computed the cross section in the length, velocity, and
acceleration forms. This work was motivated by the exper-
imental observation of the photodetachment of Ps− [1, 21].
There is very good agreement between the different forms of
the photodetachment cross section and our results agree very
well with the length form of the cross section computed by
Igarashi et al [44] who employed the hyperspherical close-
coupling method for the 1P continuum wave function.

We have calculated the elastic differential, elastic integ-
rated, momentum-transfer, and ortho-para conversion cross
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sections for e−-Ps scattering, and have shown the importance
of the complex Kohn D-wave phase shifts in each of these
cross sections. Using the S-wave scattering lengths that we
determined from our Kohn S-wave phase shifts we have eval-
uated the zero-energy cross sections.

Data availability statement

The data that support the findings of this study are available
upon reasonable request from the authors.

It is expected that the results will be available in William
Mitchell’s Ph.D. dissertation [110].

Acknowledgments

We wish to thank Drs. Klaus Bartschat, Mike Charlton, John
Humberston, Yasayuki Nagashima, Martin Plummer, Peter
Van Reeth, and Takuma Yamashita for their communications.
S J W acknowledges support from NSF Grant PHY-2207886.
We appreciate nodal hours from TACC Lonestar 6 and support
from UNT Research Computing.

Appendix A. Numerics for the calculations of the
binding energy, phase shifts, scattering lengths,
and resonance parameters

We give in table A1 the optimized nonlinear parameters for the
binding energy calculation, and the 1,3S-, 1,3P-, and 1,3D-wave
e−-Ps phase shift calculations. We optimized the nonlinear
variational parameters by varying each parameter independ-
ently and selecting parameter values that produced the largest
phase shift result. Each parameter was varied between 0 and 1
and we started with same choice of parameters used by Ward
et al [36, 37, 45–48]. For the integrations that appear in the
binding energy calculation, we use Gauss–Laguerre quadrat-
ure withω+ 2 integration points, whereω is defined according
to equation (21). We solve the matrix equation using LAPACK
routine DSYGV [111].

We use Gauss–Laguerre quadrature for the integrals in the
calculations of the 1,3S-, 1,3P-, and 1,3D-wave phase shifts.
For the 1,3S- and 1,3P-wave matrix elements involving long-
range terms we use 95 integration points, whereas for sim-
ilar matrix elements for the 1,3D-wave we use 350 integra-
tion points. The Gauss–Laguerre quadrature, with n′ quad-
rature points, is exact (to within numerical accuracy) for
polynomials of order (2n ′ − 1). We use for the integra-
tion of matrix elements involving short-range-short-range
terms ω+ 2(l+ 1) integration points, where l refers to the
partial wave. To solve the matrix equation (equation (13)
and similar equations for the higher partial waves) we use
LAPACK routine DGESV for the Kohn and inverse Kohn
methods, whereas we use ZGESV for the complex Kohn
method [111].

For each partial wave l we optimize the nonlinear paramet-
ers α±,γ±,µ±, at four different k values, and we use these
nonlinear parameters in four k ranges. We give in table A1
the k ranges and parameter values for the different partial
waves. For the 1,3S-wave the k values for the optimization
are k= 0.02,0.20,0.40, and 0.49, while for the 1,3P-wave the
k values are k= 0.02,0.07,0.40, and 0.49, and for the 1,3D-
wave they are k= 0.02,0.07,0.30, and 0.49. We take for the
power n in the shielding function (equation (18)) the value of
2l+ 3. We select the ω value, which we refer to as the best
ω, for the Kohn and inverse Kohn methods in a similar way
to how we select the best ω for the complex Kohn method
and in which we discuss in section 3.1. However, for the 1,3S-
and 1,3P-waves we consider the Kohn and inverse Kohn results
together and we also consider the difference between the Kohn
and inverse Kohn tangent of the phase shifts. We give Kohn
and inverse Kohn phase shifts in table A2 for the 1,3S-wave,
table A3 for the 1,3P-wave, and table 10 for the 1,3D-wave.

Figures A1 and A2 present the tangent of the Kohn 1,3S
phase shifts we use to fit equations (26) and (27) for the scat-
tering lengths, along with the tangent of the 1,3S phase shifts
we obtain from the fitted functions. We use an ω value of 10
for the 1S phase shifts, an ω value of 15 for the 3S phase shifts,
and we use the nonlinear parameter values that we quote in
table A1.
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Table A1. Values of the nonlinear variational parameters that we use for the binding energy and e−-Ps phase shift calculations given as
α|γ|µ. The Kohn and inverse Kohn calculations have the same parameters. We give the parameters we use in the complex Kohn calculations
in parentheses. The ∗ indicates the nonlinear parameters for the calculations done without the mixed symmetry term.

k-range

State 0⩽ k< 0.10 0.10⩽ k< 0.30 0.30⩽ k< 0.48 0.48⩽ k⩽ 0.50

1S 0.20 | 0.001 | 0.20
(0.20 | 0.025 | 0.125)

0.30 | 0.01 | 0.15
(0.30 | 0.01 | 0.15)

0.40 | 0.005 | 0.40
(0.40 | 0.007 | 0.40)

0.40 | 0.02 | 0.60
(0.375 | 0.001 | 0.50)

3S 0.20 | 0.001 | 0.40
(0.175 | 0.001 | 0.10)

0.30 | 0.035 | 0.20
(0.30 | 0.001 | 0.15)

0.40 | 0.035 | 0.30
(0.40 | 0.013 | 0.175)

0.40 | 0.045 | 0.30
(0.40 | 0.025 | 0.30)

State 0⩽ k< 0.05 0.05⩽ k< 0.10 0.10⩽ k< 0.48 0.48⩽ k⩽ 0.50

1P 0.15 | 0.005 | 0.30
(0.125 | 0.0055 | 0.45)

0.15 | 0.03 | 0.225
(0.075 | 0.02 | 0.275)

0.30 | 0.06 | 0.225
(0.30 | 0.10 | 0.22)

0.36 | 0.06 | 0.34
(0.36 | 0.05 | 0.225)

3P 0.15 | 0.006 | 0.25
(0.15 | 0.006 | 0.30)

0.15 | 0.039 | 0.225
(0.175 | 0.0405 | 0.225)

0.275 | 0.08 | 0.35
(0.275 | 0.075 | 0.38)

0.30 | 0.055 | 0.425
(0.30 | 0.065 | 0.44)

1D 0.125 | 0.002 | 0.005
(0.075 | 0.0035 | 0.065)

0.20 | 0.001 | 0.125
(0.17 | 0.02 | 0.30)

0.20 | 0.08 | 0.275
(0.325 | 0.02 | 0.25)

0.40 | 0.065 | 0.30
(0.37 | 0.07 | 0.40)

1D∗ 0.125 | 0.002 | 0.01
(0.075 | 0.005 | 0.50)

0.20 | 0.04 | 0.175
(0.125 | 0.02 | 0.225)

0.30 | 0.03 | 0.25
(0.35 | 0.06 | 0.225)

0.36 | 0.065 | 0.33
(0.36 | 0.06 | 0.38)

3D 0.225 | 0.006 | 0.15
(0.10 | 0.0005 | 0.35)

0.15 | 0.035 | 0.175
(0.125 | 0.035 | 0.20)

0.275 | 0.085 | 0.40
(0.275 | 0.035 | 0.15)

0.30 | 0.01 | 0.65
(0.30 | 0.20 | 0.25)

3D∗ 0.15 | 0.006 | 0.075
(0.125 | 0.001 | 0.20)

0.15 | 0.035 | 0.175
(0.075 | 0.045 | 0.175)

0.275 | 0.08 | 0.60
(0.275 | 0.03 | 0.20)

0.30 | 0.03 | 0.45
(0.30 | 0.15 | 0.25)

Binding Energy Eb: α
+ = 0.329, γ+ = 0.0482

Table A2. 1,3S-wave phase shifts δ±0 for e−-Ps scattering. Phase shifts are given in radians and ω is given by equation (21). For information
on of how we choose a best ω see section 3.1 and appendix A.

k
Kohn variational δ+0
(best ω)

Inverse Kohn
variational δ+0
(best ω)

Kohn variational
δ−0 (best ω)

Inverse Kohn
variational
δ−0 (best ω)

0.05 2.553 (9) 2.553 (9) −0.261 (13) −0.261 (13)
0.10 2.056 (12) 2.056 (12) −0.536 (11) −0.536 (11)
0.15 1.671 (12) 1.671 (12) −0.797 (11) −0.797 (11)
0.20 1.379 (13) 1.379 (13) −1.034 (12) −1.034 (12)
0.25 1.155 (13) 1.155 (13) −1.244 (12) −1.244 (12)
0.30 0.984 (9) 0.983 (9) −1.430 (12) −1.430 (12)
0.35 0.851 (9) 0.850 (9) −1.593 (12) −1.593 (12)
0.40 0.747 (11) 0.746 (11) −1.737 (10) −1.737 (10)
0.45 0.665 (9) 0.665 (9) −1.863 (12) −1.863 (12)
0.50 0.603 (10) 0.604 (10) −1.974 (12) −1.974 (12)
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Table A3. 1,3P-wave phase shifts δ±1 for e−-Ps scattering. Phase shifts are given in radians and ω is given by equation (21). For information
on of how we choose a best ω see section 3.1 and appendix A.

k
Kohn variational δ+1
(best ω)

Inverse Kohn
variational δ+1
(best ω)

Kohn variational δ−1
(best ω)

Inverse Kohn
variational
δ−1 (best ω)

0.05 −0.0006 (12) −0.0006 (12) 0.031 (13) 0.031 (13)
0.10 −0.038 (13) −0.038 (13) 0.192 (12) 0.192 (12)
0.15 −0.123 (13) −0.123 (13) 0.484 (12) 0.484 (12)
0.20 −0.235 (10) −0.235 (10) 0.707 (13) 0.707 (13)
0.25 −0.353 (10) −0.353 (10) 0.784 (13) 0.784 (13)
0.30 −0.463 (11) −0.463 (11) 0.778 (13) 0.778 (13)
0.35 −0.558 (11) −0.558 (11) 0.737 (13) 0.737 (13)
0.40 −0.635 (8) −0.635 (8) 0.687 (9) 0.687 (9)
0.45 −0.687 (8) −0.687 (8) 0.641 (9) 0.641 (9)
0.50 −0.636 (13) −0.637 (13) 0.656 (11) 0.653 (11)

Figure A1. The tangent of the 1S phase shift vs. k for e−-Ps
scattering. The dots represent the tangent of the Kohn 1S phase
shifts (ω= 10) and the solid line is the tanδ+0 we obtain from fitting
the Kohn 1S phase shifts to equation (26). The R2 value for this fit is
0.999 9996. Note equation (26) is for kcotδ+0 and the plot is for
tanδ+0 .

We obtain the resonance parameters using the Breit-Wigner
formula with a slowly varying background (equation (24)).
For our calculations we revise the Fortran code [101, 102] for
equation (24). The revised code calls the subroutine DNLSFU
from MATH77 [112] for the nonlinear least squares fit.

Appendix B. Numerics for calculations of the Ps−

photodetachment cross section in the various
forms

For the calculation of the Ps− photodetachment cross section
in the length, velocity, and acceleration forms we use a highly
correlated Hylleraas-type trial wave function that contains 161
terms for the 1S bound-state, the corresponding binding energy
Eb, the complex Kohn trial 1P-wave function for the 1P e−-
Ps continuum and the corresponding trial phase shifts. For
the integrals for the short-range-short-range matrix elements
in the calculation of the photodetachment cross section in all
three forms we use 0.5(ωb +ωp)+ 4 quadrature points, where

Figure A2. The tangent of the 3S phase shift vs. k for e−-Ps
scattering. The dots represent the tangent of the Kohn 3S phase
shifts (ω= 15) and the solid line is the tanδ−0 we obtain from fitting
the Kohn 3S phase shifts to equation (27). The R2 value for this fit is
0.999 9748.

ωb is the ω value for the binding energy calculation (ωb = 10)
and ωp is the best ω value for the complex Kohn 1P e−-Ps scat-
tering calculation.

For the integrals for the matrix elements that involve long-
range terms for the photodetachment cross section in the
length and velocity forms, we use Gauss–Laguerre quadrat-
ure with 1300 quadrature points. However, due to the form of
the dipole operator in the acceleration form (see equation (36))
of the photodetachment cross section, we treat the integrals for
the matrix elements that involve long-range terms with special
care near the origin. We split each integral over each respect-
ive interparticle distance into two integrals that range from 0
to a constant c, and from c to∞. We perform the former using
Gauss-Legendre quadrature and the latter using shiftedGauss–
Laguerre quadrature [113],

ˆ ∞

0
f(x)dx=

ˆ c

0
f(x)dx+

ˆ ∞

c
f(x)dx. (B.1)

We set c= 10−6 and we use 50 quadrature points in both the
Gauss–Legendre and shifted Gauss–Laguerre quadrature.
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