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Abstract—Graph representation learning is essential in apply-
ing machine learning methods on large-scale networks. Several
embedding approaches have shown promising outcomes in recent
years. Nonetheless, on massive graphs, it may be time-consuming
and space inefficient for direct applications of existing embedding
methods. This paper presents a novel graph compression ap-
proach based on dedensification called Enhanced Dedensification
with degree-based compression (EnD). The principal goal of our
system is to assure decent compression of large graphs that
eloquently favor their representation learning. For this purpose,
we first compress the low-degree nodes and dedensify them
to reduce the high-degree nodes’ loads. Then, we embed the
compressed graph instead of the original graph to decrease the
representation learning cost. Qur approach is a general meta-
strategy that attains time and space efficiency over the original
graph by applying the state-of-the-art graph embedding methods:
Node2vec, DeepWalk, RiWalk, and xNetMf. Comprehensive ex-
periments on large-scale real-world graphs validate the viability
of our method, which shows sound performance on single and
multi-label node classification tasks without losing accuracy.

Index Terms—Graph Compression, Graph Mining, Network
Embedding, Node Classification, GraphML

I. INTRODUCTION

In recent times graph mining has received special attention
and achieved a great performance for different real-world
problems by capturing complex information within graph data.
Specifically, network embedding has become a comprehensive
technique in network analysis to cope with the complexities.
It encodes the structural information of graphs into low-
dimensional vector spaces that preserve the local proximity of
vertices, i.e., using short random walks [12], [23], tracking
roles [13], [21], and decomposing matrices [24]. Through this,
it plays an essential role in extracting strong and informative
characteristics over the nodes of a graph. Recently, several
network embedding methods are proposed for different graph
mining problems: node classification [1], link prediction [27],
graph clustering [2], [28] and community detection [29].

Although these methods deliver a satisfactory performance,
they have some common challenges. One is that while these
methods operate well on sparse networks, quadratic time
complexity degrades performance on large-scale networks.
Also, with a short random walk or a small order, the ap-
proaches focus on the local structure of the networks. There-
fore, they cannot preserve the global structural patterns on
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large-scale networks. In some methods, layer-based structure
capturing [25] and matrix eigendecomposition [8] require high
computational space.

Furthermore, While they learn embeddings for high-degree
nodes, the quality of embedding for low-degree nodes is
suboptimal due to the lack of structural information and
over-focus on high-degree nodes. Besides, they use stochastic
gradient descent to attain a non-convex optimization goal.
Hence, that can be easily bound to unsound local minima for
poor hyper-parameter tuning. Since those initialize the embed-
dings randomly, similar nodes may get different representation
with local minima. One of the solutions to overcome these
problems is to reduce the graph’s size through compression,
eliminating noise and removing redundant information. Graph
compression converts an extensive network to a smaller one
without losing much information about the global structure of
the graph and the local relationship between the vertices.

This paper proposes a novel graph compression technique
based on ’dedensification.” It keeps high-degree nodes’ con-
nection information by installing compressor nodes that re-
move multiple edges without losing the graph information.
We enhance it with iterative dedensification that selects high-
degree nodes within a range and remove their edge loads
by installing a compressor node. However, as many real-
world networks follow power law distribution [16], [18],
which have many low-degree and few high-degree nodes,
with only dedensification, we may not be able to make the
comprehensive network much smaller. We present a degree-
based compression technique that creates high-degree nodes by
compressing low degrees to solve this problem. We consider
that high-degree nodes carry more crucial information in
graphs, and low-degree nodes may contain noisy information.
Hence, we compress the low-degree nodes into their high-
degree neighbors. This way, we get better information by
eliminating impact of high-degree nodes by eliminating noises.

We apply our compressing model for network embedding
problem. We choose four embedding methods as the base-
line. Two of them are community-based methods, Node2vec
[12] and DeepWalk [23], that consider nodes in the same
community to get similar embeddings. The other two are
structural embedding methods, RiWalk [21], and xNetMf [13],
that consider the role of nodes in the network.
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Our contributions to this research are as follows -

o New graph compression method. We represent a new
graph compression method through iterative dedensifica-
tion with enhancement via a degree-based compression.

« Efficient graph representation learning on the com-
pressed graph. We apply random walk-based and role-
based embedding methods to our compressed graph. We
achieve substantial gains in embedding time over the
original graphs.

o Better classification performance. In the experiment,
we demonstrate that embedding with a compressed graph
improves efficiency and achieves similar or more satis-
factory accuracy in single and multi-label classification
tasks. While compressor nodes keep the high-degree
nodes’ information, super-nodes conserve the vertices’
local neighborhood. Therefore, by preserving the local
and global structures, the compressed graph does not lose
its effectiveness in embedding.

The rest of this research is organized as follows: In section II,
we represent related works for embedding and compression.
The results and experimental design are discussed in sec-
tion IV. Then, we discuss our proposed framework, includ-
ing compressing and embedding methodology in section III.
Finally, we report our conclusion in section V.

II. RELATED WORK

This section briefly discusses the related work in network
embedding and graph compression.

Network embedding. Since the initial stage many methods
have been proposed for network embedding. Earlier works like
PCA [31] and LE [26] (locally linear embedding) consider
graph embedding a dimension reduction problem. Although
these methods give satisfactory results on small graphs, they
are not scalable for massive networks as their time complexity
is the least quadratic. Later approaches focus on scalability
by applying matrix factorization or neural networks. Deep-
Walk [23] and Node2vec [12] adopt random walks with fixed
lengths to sample the local neighbors. They apply skip-gram
language model on these random walks by treating them as
sentences while Line [30] captures global and local structures
by using an objective function based on the order-based
proximity of nodes.

On the other hand, some structure-based graph embed-
ding methods use dynamic time wrapping [25] and diffusion
kernel [8] to learn nodes’ representation. One of the cur-
rent methods, RiWalk [21], establishes a role-driven function
by using Shortest-Path and Weisfiler-Lehman kernels. An-
other approach, REGAL, applies cross-network factorization
(xNetMf [13]) over the networks to achieve graphs’ structural
information. Other matrix factorization based techniques, e.g.,
GraRep [4] and NetMF [24], create an objective matrix for
embedding graphs.

Despite their considerable performance, some challenges
remain to handle. Some methods only focus on the node’s local
neighborhood instead of long-distance neighbors. Therefore,
they fail to capture the global structure of the graph. Besides,

massive graphs require enormous embedding space. Our graph
compressing method captures the graph’s local and global
information in latent embedding space with degree-based
compression and iterative dedensification. It also improves the
baselines’ efficiency.

Graph compressing. Recently a notable quantity of re-
search has been done on graph compression. Compressed
graphs are being applied for anomaly detection [3], efficient
graph reordering: on social [7] and biological networks [14],
graph pattern matching [10], query processing [11], shortest
path finding [19], community searching [3], [17], and numer-
ous scientific tasks. Several methods apply compression as
a preprocessing step to learn graph embedding. HARP [5],
MILE [20], and GraphZoom [6] first use graph coarsening
techniques, then compressed graphs learn the representation
and refine in the respective multi-level framework. NECL [15]
is another meta-strategy that compresses the nodes into super
nodes based on common neighbors’ similarity. However, our
approach differs from these approaches. It compresses the
networks based on a small degree value following iterative
dedensification and conserves the meaningful local and global
information between nodes. Besides, it decently deals with
time and outperforms the baselines.

III. METHODOLOGY

In this section, first, we explain a degree-based densifying
method that generates high-degree nodes. Next, we represent
our iterative dedensification method that summarizes the graph
by reducing the edges of the high-degree nodes. Finally, we
describe how to get the representation of the compressed graph
and its distribution to the original graph. Before explaining in
detail, we briefly introduce the necessary preliminaries.

Definition 1: A graph G = (Vg, Eg) where Vg denotes
the set of vertices and E¢q represents the set of edges. For a
vertex v € Vg, its neighbor set is denoted by N(v), where
N@w) =A{ulu € Vg : (u,v) € Eg}.

Definition 2: A compressed graph of an original graph
G = (Vg, Eg) is represented as Go = (Vo, Ec) where some
super-nodes Vyu, € Vo hold some sub-nodes Vi, ¢ Vo
and some super-edges Eg,, € Ec hold some sub-edges
Eqsup ¢ Ec.

Definition 3: Network embedding is a mapping ¢ : V —
RY, d << |V| which represents each vertex v € V as a point
in a low dimensional space R®. Here d is a parameter speci-
fying the number of dimensions of our feature representation.
For every source node u € V, we define Ng(u) through a
sampling strategy S. An embedding method seeks to maximize
the probability of observing a network neighborhood Ng(u)
for a node u conditioned on its feature representation, given

by ¢.
A. Degree-Based Compression

In degree-based compression we have two motivations.
Firstly, low-degree nodes could have noisy information, also,
they are primarily dependent on a few neighbors, so their
representation will be similar. Therefore, we may skip their
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Fig. 1: Degree Based Compression

learning but use their neighbors to assign embedding. Sec-
ondly, a densifying graph that merges low-degree nodes with
a neighbor may generate more high-degree nodes to use in the
dedensification part as the second step of our model.

For a specific degree value n, we merge the nodes with
degrees 1 to n (V! V2 ... V™) with their least-connected
neighbors. In the first step, we remove 1 — degree nodes (V1)
from the graph by accumulating them in the neighbor’s node.
We repeat this until there is no V! node in the graph. Then,
we deduct V2 to V™ nodes into their min-degree neighbor
to create a super-node V. The idea is that a sample node
merges with its lowest-degree neighbor for a specific degree
value. It produces a compressed graph G¢, with high-degree
nodes. In a particular stage, when a n-degree node merges
with the super-node, the super-node creates connections with
neighbors of the V™ node.

In Fig. 1, we demonstrate an example of degree-based
compression on a toy graph. It shows the degree-based com-
pression up to n = 3. At first, the V' node Vg coarsens into
Vg, (Fig. 1(b)). At this point, a V2 node V7 exists in the graph.
It accumulates into V3 because Degree(V3) < Degree(Vs).
In Fig. 1(b) V7 coarsens into V3. Next, between two 3—degree
nodes Vg and V5, in this example, Vg compresses first. Fig. 1(b)
depicts as Vj is the lowest-degree neighbor of Vg with degree
3, Vs merges to Vs. The green edges denote Vg’s other two
neighbors, V5 and V; connect to the new super-node Vg.
Hence, the degree of V5 increases to 4.

B. Iterative Dedensification

Iterative dedensification is inspired by a novel lossless
compressing method, ’dedensification’ [22], that reduces the
neighborhood around the high-degree nodes for pattern match-
ing problems. In many real-world graphs, low-degree nodes
are connected to numerous high-degree nodes. Even a group
of related low-degree nodes are connected to the same group
of high-degree nodes. As an example, in the toy graph on
Fig 2, low degree nodes, V1, V5, V3, V), are all connected to
the high degree nodes V5 and Vg. Dedensification’s primary
motivation is to reduce high-degree nodes’ loads without
losing connection. Learning to embed these high-degree nodes
takes more time, and also they include many random walks
that cause redundant information for training. Reducing their
degree without losing information helps to solve these prob-
lems.

For dedensification, the nodes in a graph are partitioned
into high-degree (V) and low-degree nodes’ (Vi) set. A

Fig. 2: Dedensification

threshold 7 differentiates high-degree from low-degree nodes.
If the degree of a node v € Vi is higher than given threshold,
Degree(v) > 7 and then we call the node v as high-degree
node.

To reduce the load around Vz, we can remove the edges of
these nodes, but we do not want to lose their information.
Therefore, a ‘compressor node’ is installed between these
high-degree nodes and their neighbors to keep the connections.

Definition 4: A compressor node No (where No ¢ Vi)
is an intermediate node that decouples high-degree nodes
from their incoming connections and summarizes the graph
by keeping the connections’ references within it.

For example, according to Fig. 2, in the first graph, for
7 = 3,it has four low-degree nodes (white), and two high-
degree nodes (orange). In the second graph, a compressor node
N5g is installed that preserves the connections’ information
between Vi and V. It reduces the number of edges in the
graph from eight to six, where the number of high-degree
nodes’ edges is one instead of four.

The high-degree nodes are decomposed into different sets to
install the compressor nodes. In general, for |V | = p number
of high-degree nodes, the number of sets is supposed to be
2P — (p + 1), which is exponential. An auxiliary-mapping !
technique maps the sets with their common neighbors and
executes only for p times. In each combination of high-
degree nodes, for the number of common neighbors, the edges
can be compressed into the ’compressor node.” For effective
dedensification, a particular condition is defined.

Condition 1: In any undirected graph for a specific T value,
a compressor node can be installed for n (n >= 2) numbers of
high-degree nodes if they have at least n+1 common neighbors
or vice-versa. If the condition satisfies, the number of edges
must reduce from the graph.

For example in Fig. 3(a), in accordance with Condition 1,
for 7 = 3 node V7 and Vg, so, (n = 2) are high-degree
nodes (orange colored nodes) having 4 common neighbors
{Va, V3, V4, Vs} that is greater than (n + 1 = 3). So, the
number of incoming edges to V7 and Vg is 8 (bold black
edges). In Fig. 3(b), after dedensification, a compressor node
Ng7 is installed. For those four common neighbors and two
high-degree nodes, the number of edges is 6 (bold orange
edges).

Yauziliary — mapping: An efficient hashing technique that maps the

high-degree nodes’ with their common neighbors. The details in [22].
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Fig. 3: Iterative Dedensification

Fig. 3(c) shows that for 7 = 2, node Vjy is a high-degree
node, along with node Vg7 (Vg7 for Fig. 3(b)) and node V.
In this graph, high-degree nodes of G (V7 and V3) are low-
degree nodes for G3’s high-degree nodes. Node Vg and Vgr
, 80, (n = 2) have two common neighbors {V2,V,} that is
less than (n + 1). Therefore, dedensification is unattainable
for graph size augmentation. However, nodes Vg; and Vj
have three common neighbors {V3, V7, V;} that are equal to
n + 1. So the condition is satisfied. Fig. 3(d) illustrates a
new compressor node Ng7g where the two high-degree nodes’
number of connections reduces from 6 to 5.

When the conditions of dedensification satisfy in a graph,
an iterative dedensification is also applicable to it. In the
experiment, we apply iterative dedensification by changing the
threshold 7 from max to min. For the iteration range from high
to low the original graph is continuously dedensified from
Ghighs» Ghigh—1, ---- 0 Giow. In Fig. 3, for a range (3 to 2),
G is first dedensified to G5, and then again, G5 is dedensified
to G3. The number of edges reduces from 14 to 12.

The benefit of dedensification is that the compressed graph’s
reconstruction to the original graph is easy because the com-
pressor node holds the edge information. Hence, it is lossless.
While it increases the number of nodes by establishing the
compressor nodes, it decreases the number of edges a lot;
Besides, we alleviate the nodes’ increment problem with
degree-based compression that reduces the number of nodes.
So, our final compressed graph has less number of nodes and
edges.

In Algorithm 1, we briefly describe the overall compression
process. After degree-based compression in line 1 — 5, the
graph is dedensified for a specific range high to low. We get
the high-degree nodes to dedensify for specific 7 value. The
high-degree nodes are decomposed into different sets (line 15).
Next, for each set Vg, if every node has a more common
neighbor than its size |Vyg| (condy) or vice-versa (conds),
all of its nodes are compressed to a compressor node (line
22). Lines 23 — 25 show the rest of the connecting process of
the compressor node.

Algorithm 1: Overall Graph Compression Algorithm

Input: A Graph G, Degree n
Output: A Compressed Graph G¢
1 for V; €Vg do

2 for d <+ 1tondo

3 | Compress Recursively for Degree(V;) = d

4 end

5 end

6 Next, n — degree compressed graph will be dedensified
TV +— QD VL D ;Sc + O

8 for 7 < high to low do

9 for (Vi € Vg.) do

10 if Degree(V;) > 7 then

1 Ve <~ Va UV;

12 Vi <~ Vae—Vu

13 end

14 end

15 Vi'’s nodes are decomposed by auxiliary mapping
16 Svy < Vs, Visy...... ,Vis,

17 for Vs € Sy, do

18 Cn + CommonNeighbors(V(V € Vus))

19 condy, = (|VH5‘ > 2) and ‘CN‘ > (|VH5'| -+ 1)
20 conds = (|CN| > 2) and |VH5‘ > (|CN| + 1)
21 if condy or conds then

2 N¢ < Compress(Y(V € Vus))

23 Cut(Vys, N(VHs) )

24 Connect (N¢, Vus)

25 Connect (N¢, N(Vus))

26 Sc¢ <+ Sc U N¢

27 Sc is the compressor nodes’ set.

28 end

29 end

30 end

C. Network Embedding and Distribution

The goal of network embedding is to extract nodes’ essential
feature information. However, it must deal with the mainte-
nance of space and time while preserving similar effectiveness
as the baselines. Hence, we apply embedding methods on the
compressed graph instead of the original graph and get the
representations for compressed nodes. Then, we distribute the
compressed nodes’ embedding to the original graph’s nodes.

We need to have a connected graph as the input for
the embedding methods to distribute information across the
network. This step is done before compression because our
compressing strategy must generate a connected compressed
graph. If a graph is not connected, we track the following
steps to make it connected. We separate the largest connected
component from the compressed graph and keep it in a list set.
Next, For the rest of the graph, we repeatedly follow the same
step and add every most significant connected component to
the list set in descending order (based on node size, |V|). We
select the node with the minimum degree (min-degree nodes)
from each connected component. Finally, we connect every
two components’ min-degree nodes in the order within the
list set. Hence, this process makes a graph connected.

For example, in Fig. 4, the connected components C(1),
C(2), C(3) and C(4) are stored in the list-set where, C(1) >
C(2) > C(3) > C(4) in terms graph size. First, we extract
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Fig. 4: Converting a disconnected graph to a connected graph

a min-degree node for each component: V4, Vi;, V14 and
Vi6. Finally, we create connections (bold blue dashed edges)
through the min-degree nodes from the largest connected
component to the smallest.

Next, we embed the compressed graph and distribute super-
nodes’ representation to their connected vertices in the original
graph. The distribution process ends when all nodes get the
representation. Fig. 5 depicts the process, a reversal demon-
stration of Fig. 1 in degree-based compression. The number of
solid gray nodes is the same as the number of embedded nodes.
In the beginning, Fig. 5(a) represents a graph with six vertices
coarsened from a nine nodes graph. The embedded nodes (V)
are V...V and non-embedded nodes (V+4) are V7, Vg and
V. At first, non-embedded vertex Vg gets new representations
from the average of its three embedded neighbors V4, V1, and
V5. Likewise, vertices V7, Vy € V44 get their representation
(Fig. 5(c) and Fig. 5(d)) and the number of embedded node
is updated to 7 and 8 respectively. Finally, the original graph
is fully embedded where |V,| = |V| = 9 (Fig. 5(e)). After
representation learning, a machine learning model is applied
to classify the nodes.

IV. EXPERIMENT DESIGN AND ANALYSIS

This section first provides an overview of the datasets and
embedding methods for experiments. Then, we present the
performance of the proposed method in single-label and multi-
label node classification tasks. We further measure the impact
of the crucial parameter n — degree in these tasks.

A. Datasets

In our experiments, we use five real-world graphs? (Table I:
graphs’ statistics). Cora is a citation network of machine
learning-related papers. The network consists of scientific
publications classified into seven classes, and each paper has a
single topic. CiteSeer is another citation network of computer
science-related publications. The labels represent the papers’
research topics, where papers are classified into six distinct
types. Wiki treats web pages as the vertices and hyperlinks
as the connections. The web pages are of 17 different types.
DBLP is another co-authorship network in computer science.
The labels represent the author’s research areas where an
author may have different research alignments. BlogCatalog
is a bloggers’ social network where bloggers are the vertices
and relationships are the edges. It is a multi-labeled dataset
where labels represent bloggers’ publication categories.

Zhttps://lings.org/datasets/

Fig. 5: Embedding Distribution

B. Baseline Methods

To evaluate the performance of our compressing method,
we apply DeepWalk (DW), Node2vec (N2V), RiWalk, and
xNetMf as the baseline embedding methods on the compressed
networks. While DeepWalk and Node2vec are proximity-based
models that preserve the network’s contextual information,
RiWalk and xNetMf are structure-based models that maintain
the network’s role-based information.

Parameter Settings: For evaluation, we first obtain ver-
tices’ embedding vectors using the methods mentioned in
the previous section. Next, we use these vectors as the node
features to train the classifier. Then, we sample one portion of
the labeled vertices for training and another for testing. For
a detailed comparison, we change the percentage of labeled
training vertices and the degree value n. We later calculate
the Macro-F1 and Micro-F1 scores along with the embedding
times to check the effectiveness and efficiency of the proposed
method.

Furthermore, to have a detailed comparison between our
method and the baseline methods, we vary the percentage
of the training data from 10% to 80% for the BlogCatalog
network and 5% to 80% for the other four networks. For DW
and N2V baselines, we take 5% of labeled data for training,
while for RiWalk and xNetMf, it is 80% as their original
research. To ensure our experiments’ reliability, we ran the
classification process for ten different seeds and recorded
the average Micro-F1 and Macro-F1 scores. The machine
configuration for our experiment is a server running Ubuntu
14:04 with 4 intel 2.6Hz 10-core CPUs and 48 GB of Memory.

The most important parameter for degree-based compres-
sion is the n-degree. We set n = 5 as the cutting point
for compression. The iterative dedensification range on Blog-
Catalog is set from 4000 to 399. The range for the other
four networks is from 150 to 29. In the case of embedding,
we set the representation size to 128. For the random walk-
based methods DeepWalk and Node2vec, we set the following

TABLE I: Graphs Statistics.

Dataset | [V[ | [E| | #of class | Label
Cora 2,708 5,278 7 Single
CiteSeer 3,264 4,536 6 Single
Wiki 2405 12,761 17 Single
DBLP 27,199 | 66,832 4 Multi
BlogCatolog | 10,312 | 333,983 39 Multi
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TABLE II: Performance comparison for the single-label classification task.

Macro-F1 Micro-F1 Time
Graphs BL ‘ EnD ‘ Gain % BL ‘ EnD ‘ Gain % BL EnD | Gain %
N2V 66.63 66.34 -0.43 68.53 67.76 -1.18 196.51  31.31 84.06
Cora DW 64.62 65.98 2.10 66.60 68.36 2.65 10.19 1.938 80.99
RiWalk | 64.83 76.56 18.08 66.86 77.84 16.49 9.60 2.001 79.15
xNetMf | 70.34 73.95 5.14 71.85 75.90 5.65 12.51 1.28 89.72
N2V 43.01 43.19 0.41 46.38 47.51 2.45 229.48  20.49 91.07
CiteSeer DW 3949 44.14 11.770 | 4243 49.35 16.30 11.93 1.90 84.08
RiWalk | 33.68 46.43 37.87 39.14 52.74 34.74 10.91 1.84 83.07
xNetMf | 38.94 47.31 21.51 4548 55.18 21.31 12.13 1.264 89.59
N2V 35.89 36.27 1.08 48.23 48.71 0.99 198.96 127.32 36.00
Wiki DW 3691 37.13 0.61 49.21 51.11 3.86 9.67 5.302 45.17
RiWalk | 46.44 49.82 7.28 61.54 63.60 3.34 17.21 9.939 42.24
xNetMf | 47.37 49.60 4.70 63.47 63.95 0.75 12.37 6.68 45.99
0.9 - 0.6 - 0.50 -
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Fig. 6: Macro-F1 scores for single-label classification with n-degree variation

parameters: the number of random walks = 40, walk-length
= 10, and window size = 10. In the case of Node2vec, we
set the return parameter p = 1 and the in-out parameter
p = 0.25. In the case of RiWalk, the number of random walks,
window size, and walk length are the same as DeepWalk.
We set the Weisfiler — Lehman kernel for getting the
networks’ structural information and set the neighborhood
distance (k) = 4. In xNetMf, The maximum hop distance
has been set to 30 for the BlogCatalog. For other networks,
the distance is set to 5. We also set the discount factor as 0.1
and the learning rate as 1.

C. Classification

This section compares our method with the baselines in
single-label and multi-label classification tasks. In the first
task, we study the graphs whose nodes have only one label,
whereas, in the second task, graphs’ nodes have multiple
labels.

1) Single-label Classification: In single-labeled datasets,
each node has a single label from multi-class values. We
employ the multi-class Support Vector Machine (SVM) as
the classifier for the classification task, which uses the one-
vs-rest scheme. Table II shows the performance comparisons
in single-label classification task. EnD either achieves almost
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similar scores or outperforms the baselines. Among the notable
outcomes on the CiteSeer network, EnD achieves 37.87% and
21.51% in the Macro-F1 score for RiWalk and xNetMf. Be-
sides, we obtain 18.08% and 5.14% gain for these methods on
the Cora network. In Micro-F1 performance, on CiteSeer, the
gains are 16.30%, 34.74%, and 21.31% gain for DW, RiWalk,
and xNetMf, respectively. For the last two baselines on the
Cora network, the gains are 16.49% and 5.65%. Furthermore,
our method obtains significant gain on embedding time over
the baselines for all single labeled graphs. For Cora and
CiteSeer, the gains are about or over 80% for all the baselines.

In addition, Fig. 6a, 6b and 6¢c demonstrate the variation
of Macro-F1 scores for varying degrees from 3 to 15 in
single-label classification tasks. Generally, the scores gradually
degrade for the increment of the degree values from 5. Note
that xNetMf embeds a graph if its number of vertices is greater
than or equal to the representation size. In Fig. 6a for n > 10
and in Fig. 6b for n > 8 the compressed networks’ number
of nodes drop below the representation size (128) and those
become unable for embedding by xNetMf.

2) Multi-label Classification: In multi-labeled networks,
a node can belong to more than one class. We employ a
one-vs-rest logistic regression model as the classifier for the
classification task. The model fits with L2 regularization and
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TABLE III: Performance comparison for the multi-label classification task.

Macro-F1 Micro-F1 Time
Graphs BL EnD | Gain % BL EnD | Gain % BL EnD Gain %
N2V 63.01 63.42 0.65 66.03  66.96 1.41 2048.24  474.62 76.89
DBLP DW 60.99 63.46 4.05 64.26 66.69 3.78 113.06 26.57 76.49
RiWalk | 63.39 65.15 2.77 67.60 68.91 1.934 353.67 38.28 89.18
xNetMf | 64.81 65.76 1.47 68.77 69.35 0.85 998.56 85.411 91.45
N2V 2429 2428 -0.072 | 38.33 3791 -1.116 | 3058.79 1414.04 53.77
Blog- DW 21.05 22.04 4.68 36.53 37.04 1.39 49.33 41.017 16.86
Catalog | RiWwalk | 15.09 19.18 27.16 29.79  33.17 11.37 484.34 456.10 5.83
xNetMf | 14.79 18.80 27.11 20.84  32.89 10.24 719.35  685.346 4.73
0.66 : 0.26 :
065 DW N2V ® Riwalk ®  xNetMmf 0.25 * DW N2V ® Riwalk ®  xNetMmf
0.64 O — 0.24
foo Lt b B
E 0.624 ¢ T o] E 021 g
= 0.61 i = 0.20 :
0.60 * 0.19 e e = i
0.59 0.18 v

3 4 5 6 7 8 9
Change of Degree

10 15

(a) DBLP

3 4 5 6 7 8 9
Change of Degree

10 15

(b) BlogCatalog

Fig. 7: Macro-F1 scores for nulti-label classification with n-degree variation

is implemented by LibLinear [9].

Table III illustrates that our method performs near or better
than most of the baselines on all networks. The Marco-F1
and Micro-F1 scores on the DBLP dataset are almost close
to the baselines. On the BlogCatalog network for RiWalk and
xNetMf, the Macro-F1 scores’ gains are near 27%, and the
Micro-F1 scores’ gains are about 11%. However, the improve-
ment in embedding time is close to or more than 75% for each
baseline. Our method archives the highest gain for xNetMf,
which is 91.447%. Although in the BlogCatalog network, the
gain in embedding time is little for DW, RiWalk, and xNetMf,
it is significant for N2V, which is 53.771%. Furthermore, for
the increase of degree values from 3 to 15, Figure 7a and
7b depict Macro-F1 scores for multi-label classification. On
the DBLP dataset, score curves raise slightly and decrease
after 8 degrees. On BlogCatalog, for DW and N2V, after little
fluctuation, scores gradually decrease. However, for RiWalk
and xNetMf, after a slight increase, the score curves fluctuate
between 19% and 20%.

D. Graph Compression and Degree Increment

This section presents how graph size decreases and nodes’
degree increase by compression for each dataset. In Table IV,
symbol |V4F| represents number of nodes whose degrees
increase after 5 — degree compression. Besides, \?Ttl denotes
the degree-increment per incremented node that is over 1.5
for all networks and more than 2 on Cora (2.28), CiteSeer

(2.15) and DBLP networks (2.06). As we see in Table V,
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Cora, CiteSeer and DBLP networks obtain an impressive gain
in both node (84.45%, 91.57% and 77.99%) and edge (67.89%,
75.15% and 59.46%) compression. The ratio is also notable
for Wiki, 34.47% on vertices and 25.69% on edges. For scale-
freeness and complex structure, compression of BlogCatalog is
challenging. Although the vertex compression gain is negative,
its edge compression achieves a sensible gain (19.42%).

V. CONCLUSION

This paper proposes a new graph compression method for
efficient graph representation learning. Our approach uses
degree-based compression and iterative dedensification to en-
sure effective graph compression for fluent graph embedding
in different networks. Moreover, these learned representation
vectors achieve notable Macro-F1 and Micro-F1 scores on
single and multi-label classification tasks over the baselines.
Hence, our method leverages efficient graph embedding on
networks and performs competently on node classification
tasks without losing the effectiveness of the originals.
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