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Summary
Type 2 diabetes (T2D) is amajor risk factor for heart failure (HF) and has elevated incidence among individualswithHF. Since genetics and

HF can independently influenceT2D, collider biasmayoccurwhenT2D (i.e., collider) is controlled for bydesignor analysis. Thus,we con-

ducted a genome-wide association study (GWAS) of diabetes-relatedHFwith correction for collider bias.We first performed aGWAS of HF

to identify genetic instrumental variables (GIVs) for HF and to enable bidirectionalMendelian randomization (MR) analysis between T2D

andHF.We identified 61 genomic loci, significantly associatedwith all-causeHF in 114,275 individuals withHF and over 1.5million con-

trols of European ancestry. Using a two-sample bidirectionalMR approachwith 59 and82GIVs forHF andT2D, respectively, we estimated

that T2D increasedHF risk (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.04–1.10), while HF also increased T2D risk (OR 1.60, 95%

CI 1.36–1.88). Then we performed a GWAS of diabetes-related HF corrected for collider bias due to the study design of index cases. After

removing the spurious association of TCF7L2 locus due to collider bias, we identified two genome-wide significant loci close to PITX2

(chromosome 4) and CDKN2B�AS1 (chromosome 9) associated with diabetes-related HF in the Million Veteran Program and replicated

the associations in the UK Biobank. Our MR findings provide strong evidence that HF increases T2D risk. As a result, collider bias leads

to spurious genetic associations of diabetes-related HF, which can be effectively corrected to identify true positive loci.
Introduction

Heart failure (HF) is a complex, life-threatening syndrome

that results from structural and functional impairment of

ventricular filling or output. HF affects more than 64

million people worldwide,1 including 6 million adults in

the US.2 HF prevalence in the US is projected to increase

46% from 2012 to 2030, resulting in over 8 million adults

(R18 years old) with HF.3 In addition to high mortality

and morbidity, HF is also associated with high health

care costs with an estimated annual expenditure of $70

billion in the US by 2030.2

Type 2 diabetes (T2D) is a complex disease affecting

multiple organ systems. The prevalence of T2D has been

growing for the past two decades, with age-adjusted preva-

lence of 9.5% in 1999–2002 and 12% in 2013–2016 among

US adults. About 537 million adults live with diabetes

around the world, most in low- and middle-income coun-

tries (IDF Diabetes Atlas: https://diabetesatlas.org/). HF is

one of the most severe diabetes complications affecting

T2D individuals’ clinical outcomes and quality of life.4

Observational studies have consistently demonstrated an

increased risk of HF in individuals with diabetes compared

with those without diabetes, across demographic groups.

Even among individuals without T2D, higher levels of fast-
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ing glucose and hemoglobin A1c (HbA1c) were associated

with increased risk of HF hospitalization.5,6 The complex

pathogenesis of HF in T2D can include toxic effect of hy-

perglycemia, diabetic cardiomyopathy, coronarymicrovas-

cular dysfunction, and other comorbid conditions.7 T2D is

associated with a high incidence of both HF with reduced

ejection fraction (HFrEF) and HF with preserved ejection

fraction (HFpEF),8 regardless of heterogeneous etiologies,

clinical manifestation, and outcomes between HF sub-

types. Clinical trials have shown that anti-diabetic medica-

tions such as sodium-glucose cotransporter-2 (SGLT2)

inhibitors can reduce the risk for HF and subtypes.9–11

Therefore, further understanding of the genetic andmolec-

ular mechanisms of diabetes-related HF may lead to thera-

peutic targets of HF and HF subtypes.

Genome-wide association studies (GWASs) are designed

to identify genetic loci associated with disease and traits

by surveying genome-wide single-nucleotide polymor-

phisms (SNPs). Although no genetic variants have been

associated with diabetes-related HF, recent GWASs have

identified dozens of loci associated with all-cause HF12–14

and clinical subtypes, including HFrEF and HFpEF.12 Two

European ancestry-based GWASs of all-cause HF identified

11 and 20 genome-wide significant (GWS) loci using

47,309 and 51,571 individuals with HF, respectively.12,14
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A multi-ancestry GWAS of all-cause HF including 115,150

individuals with HF and over 1.5 million controls

identified a total of 47 GWS loci.13 Genetic and familial

studies also estimated the heritability of HF (h2 ranging

from 22% to 34%)12,15 and several diabetes complica-

tions, including diabetes-related cardiovascular disease

(h2 �18%) and diabetes-related stroke (h2 �14%),16 which

suggested substantial genetic contribution to diabetes-

related HF yet to be discovered.

Whenboth exposure (e.g., genetic variants) andoutcome

(e.g., HF) independently influence a common third variable

(e.g., T2D), collider bias can occur when the third variable

(i.e., collider) is controlled for by design or analysis. Thus,

the bidirectional relationship between T2D and HF can

introduce collider bias in the GWAS of diabetes-related HF

(both genetics and HF affect T2D). Mendelian randomiza-

tion (MR)methods can support such bidirectional relation-

ship usingproper instrumental variables of T2DandHF.MR

uses genetic variants robustly associated with exposures or

risk factors of interest as genetic instrumental variables

(GIVs) to estimate the causal and de-confounded relation-

ship between the exposure or risk factor with the disease

outcome.17 Recent genetic studies identified significant

but weak MR association between T2D and all-cause HF us-

ing two-sample MR approach (odds ratio [OR] 1.05–

1.08),12,14 compared to observational studies of T2D and

HF. Additionally, the estimated genetic correlation between

T2D and all-cause HF of 47.3%14 cannot be fully explained

by the moderate MR association between T2D (exposure)

and HF (outcome). On the other hand, the hypothesis

that HF increases the risk of T2D hasn’t been examined in

theMR framework, limited by strongGIVs forHF from large

independent samples. In the present study, we identified a

large set of GIVs of HF from a GWAS meta-analysis,

including 114,275 individuals with HF and 1,506,896 con-

trols of European ancestry. Then we performed a large scale

GWAS of diabetes-related HF and corrected for collider bias

using summary statistics of T2D GWAS to eliminate

spurious associations. We also examined and corrected for

potential collider bias in diabetes-adjusted GWAS of HF.
Subjects and methods

Study samples
The design of the Million Veteran Program (MVP) has been previ-

ously described.18 Veterans were recruited from over 60 Veterans

Health Administration (VHA) (Veterans Affairs [VA]) healthcare sys-

tems nationwide since 2011. The MVP has detailed phenotyping

through linking the large biobank to an extensive electronic health

record (EHR) database from2003 onward that integratesmultiple el-

ements such as diagnosis codes, procedure codes, laboratory values,

and imaging reports. AllMVP participantswere genotyped as part of

the study design. MVP has received ethical and study protocol

approval by theVACentral Institutional ReviewBoard inaccordance

with theprinciplesoutlined in theDeclarationofHelsinki. Informed

consent is obtained from all participants to provide blood for

genomic analysis and access to their full EHR within the VA prior
1482 The American Journal of Human Genetics 111, 1481–1493, July
to andafter enrollment. TheUKBiobank (UKB) is aprospective study

with over 500,000 participants aged 40–69 years recruited in 2006–

2010 with extensive phenotypic and genotypic data.19 The UKB

was approved by the North West Multi-centre Research Ethics

Committee.
Phenotypic data
In theMVP, individuals with HF were identified as those with an In-

ternational Classification of Diseases (ICD)-9 code of 428.x or ICD-

10 code of I50.x and an echocardiogram performed within

6 months of diagnosis (median time period from diagnosis to echo-

cardiography was 3 days, interquartile range 0–32 days).12 Based on

our previous work, the requirement for echocardiogram improved

the specificity of HF diagnosis. The index diagnosis of HF was docu-

mented during an outpatient encounter in the majority of partici-

pants with HF. We utilized a natural language processing tool to

extract left ventricular ejection fraction (LVEF) from the VA Text

Integration Utilities documents including values measured within

and outside the VA.12,20,21 Non-HF controls excluded MVP partici-

pants with any recorded HF codes at any time based on their EHR

data. Diabetes was defined by both (1) either R1 use of the ICD-9

code 250.xx at a primary care provider visit or R2 uses of the

code in any setting and (2) an outpatient prescription of a diabetes

drug based on use of VHA national drug codes.22

In the UKB, we defined HF as the presence of self-reported HF,

pulmonary edema, or cardiomyopathy at any visit or an ICD-10

or ICD-9 billing code indicative of heart/ventricular failure or a

cardiomyopathy of any cause, as described and validated previ-

ously, and consistent with that used in recent GWASs of all-cause

HF.12,23 Similar to the MVP definition, non-HF controls excluded

participants with any self-reported HF or recorded HF codes at

any time. T2D was defined by the primary and secondary ICD-9

(250 diabetes mellitus, juvenile type excluded) and ICD-10 diag-

nosis codes (E11 non-insulin-dependent diabetes mellitus, E12

malnutrition-related diabetes mellitus, E13 other specified dia-

betes mellitus, E14 unspecified diabetes mellitus24), and self-re-

ported T2D at enrollment.
Genomic data
DNA extracted from participants’ blood was genotyped using a

customized Affymetrix Axiom biobank array. The array was en-

riched for both common and rare genetic variants of clinical sig-

nificance in different ethnic backgrounds. Genotype calling, qual-

ity-control procedures, and genotype imputation were previously

described.25 We excluded duplicate samples, samples with more

heterozygosity than expected, an excess (>2.5%) of missing geno-

type calls, or discordance between genetically inferred sex and

phenotypic gender.25 In addition, one individual from each

pair of related individuals (more than second-degree relatedness

as measured by the KING software26) were removed. Prior to

imputation, variants that were poorly called (genotype missing-

ness >5%), that weren’t in Hardy-Weinberg equilibrium (p

value < 10�20), or that deviated from their expected allele fre-

quency (>20%) observed in the 1000 Genomes reference data

were excluded. After pre-phasing using EAGLE v2.4,27 we then

imputed to the 1000 Genomes phase 3 version 5 reference panel

(1000G) using Minimac4.28 Imputed variants with poor imputa-

tion quality (r2 < 0.3) were excluded from further analyses.

The MVP participants were assigned to mutually exclusive racial/

ethnic groups using harmonized ancestry and race/ethnicity

(HARE), a machine learning algorithm that integrates genetically
11, 2024



inferred ancestry (GIA) with self-identified race/ethnicity (SIRE) as

previously described.29 Briefly, HARE uses GIA to refine SIRE for ge-

netic association studies in three ways: identifies individuals whose

SIRE are likely inaccurate, reconciles conflicts among multiple SIRE

sources, and imputes missing racial/ethnic information when the

predictive confidence is high. HARE assigned >98% of participants

with genotype data to one of four non-overlapping groups: non-

Hispanic European, non-Hispanic African, Hispanic, and non-His-

panic Asian Americans. The present GWAS of diabetes-related HF

focused on the MVP European ancestry.

To replicate the significant loci associated with diabetes-related

HF, we performed a similar genetic association analysis in the

UKB participants of European ancestry with available genomic

data. Additional sample exclusions were implemented for third-

degree or closer relatedness (UKB Data Field 22020 includes unre-

lated participants for the calculation of principal components),

sex chromosome aneuploidy, and excess missingness or heterozy-

gosity, as defined by the UKB.
All-cause HF GWAS meta-analysis
Imputed and directlymeasured genetic variants from theMVPEuro-

pean participants were tested for association assuming an additive

genetic model using PLINK2. The GWAS scan included variants

with minor allele frequency higher than 1%. Logistic regression of

all-cause HF was adjusted for age, sex, and the top ten genotype-

derived principal components. We meta-analyzed summary statis-

ticsofpreviouslypublishedHFGWASfromtheMVP(43,344 individ-

ualswithHF, 258,943 controls),12 HERMES (47,309 individuals with

HF, 930,014 controls),14 and FinnGen (23,622 individuals with HF,

317,939controls)30 studies,which includednon-overlappingpartic-

ipants of European ancestry using the random-effect meta-analysis

model implemented in GWAMA (genome-wide association meta

analysis).31 GWAS results were summarized using FUMA, a platform

that annotates, prioritizes, visualizes and interprets GWAS results.32

GWS SNPs (p< 53 10�8) were grouped into a genomic locus based

on either r2> 0.1 or distance between loci of<500kbusing the1000

Genomes European reference panel. Lead SNPs were defined within

each locus if theywere independent (r2< 0.1).We considered loci as

novel if the sentinel SNP was of genome-wide significance (p < 53

10�8) and located >1 Mb from previously reported GWS SNPs asso-

ciated with HF.

Based on the meta-analysis summaries of HF, we employed

multivariate gene-based analysis of genome-wide association

studies (MAGMA)33 to conduct gene and gene-set analysis by

aggregating genetic signals within individual genes, thus revealing

gene-based associations that extend beyond the single-marker

level. We also conducted tissue expression analysis on 54 distinct

tissue types using the Genotype-Tissue Expression34 (GTEx) data-

set, which offers extensive data on gene expression across a diverse

array of human tissues, encompassing various organs and biolog-

ical systems. Additionally, we conducted an analysis of 30 broader

tissue categories, omitting specific subtypes or regions, in order to

gain insights into gene expression patterns within major tissues.

Further, we delved into the functional significance of genes linked

to HF through gene set analysis and tissue enrichment analysis,

employing the data-driven expression-prioritized integration for

complex traits (DEPICT)35 tool. We applied the false discovery

rate36 (FDR), and associations with a corrected q value <0.2 were

deemed statistically significant.

We additionally conducted a transcriptome-wide association

study to explore the relationship between gene expression and
The America
HF loci using the software FUSION,37 based on the reference data-

sets obtained from GTEx34 V8, including gene expression profiles

across tissues including coronary artery, tibial artery, atrial

appendage, left ventricle, and skeletal muscle. We then performed

colocalization analysis using the coloc38,39 package in R to identify

shared regions between gene expression and HF. Five hypotheses

were evaluated for the colocalization analysis: (1) there is no asso-

ciation between the gene expression and HF; (2) there is signifi-

cant association between the gene expression and HF, but this as-

sociation is driven solely by the functional effects of the gene

expression; (3) there is significant association between the gene

expression and HF, but this association is driven solely by the ge-

netic variants identified in HF GWAS; (4) both the gene expression

and HF have independent associations with different genetic var-

iants; and (5) there is evidence for colocalization, indicating that

the gene expression and HF signals share common causal variant.

Colocalization was defined as maximum posterior probability of a

sharing causal variant between the gene expression and HF associ-

ation >0.75.

Additionally, for the identification of overlapping enhancer

regions potentially associated with HF, we employed the

EnhancerAtlas 2.0 database,40 which encompasses 295 enhancers

specific to various human tissues and cells. For the GWS HF loci,

we obtained tissue-specific cis expression quantitative trait

loci (eQTL) analysis results from the GTEx34 version 7 database

(https://gtexportal.org) based on the expression data of the

following 5 tissue types: coronary artery, tibial artery, atrial

appendage, left ventricle, and skeletal muscle. Genes with at least

one SNP in cis significantly associated at FDR of %0.05 were

included. For each gene, a specific threshold for nominal p values

was computed. Variants with a nominal p value below the gene-spe-

cific threshold were identified significant cis-eQTL.41
GIVs for T2D and all-cause HF
We selected independent genetic loci (r2 < 0.1) associated with

T2D from the large GWAS among participants of European

ancestry only ormultiple ancestries with predominantly European

ancestry participants by 2017.42 A total of 85 independent T2D-

associated SNPs were selected, including SNPs that are GWS

(p < 5 3 10�8) in at least one published GWAS of European

ancestry but not necessarily GWS in the 2017 T2D GWAS.42

Among the 85 SNPs, 82 were also present in the all-cause HF

GWAS meta-analysis and thus were used as the GIVs of T2D in

the downstream MR analysis. From the all-cause HF GWAS meta-

analysis described above, we identified independent GWS SNPs

as the GIVs for HF in the bi-directional MR analysis.
Two-sample bidirectional MR
Two-sample MR was conducted to examine possible bidirectional

causal associations between T2D and all-cause HF using GIVs from

previous GWAS of T2D42 and a large meta-analysis of all-cause HF

in the present study. Tominimize sample overlap in the two-sample

MR design, we used summary statistics of T2D GWAS without UKB

and MVP samples and all-cause HF GWAS from the MVP, HERMES,

and FinnGen studies, all from studies of European ancestry. We esti-

mated theMR association between T2D and all-causeHFusing three

complementarymethods: inverse-varianceweighted (IVW),median

weighted, andMR-Egger regression, as implemented intheRpackage

TwoSampleMR. We reported IVW estimates when the evidence of

pleiotropywasnot present.MR-Egger regressionwasused to identify

the horizontal pleiotropy indicated by significant intercept of the
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Table 1. Characteristics of the European American participants in the MVP included in the GWAS of diabetes-related and diabetes-
adjusted GWAS of heart failure

All (n ¼ 434,089) Diabetes (n ¼ 106,321) Non-diabetes (n ¼ 327,768)

HF (n ¼ 68,059)
Non-HF controls
(n ¼ 366,030) HF (n ¼ 31,346)

Non-HF controls
(n ¼ 74,975) HF (n ¼ 36,713)

Non-HF controls
(n ¼ 291,055)

Age, years (SD) 69.59 (9.628) 62.49 (14.11) 68.76 (8.44) 66.06 (9.80) 70.29 (10.48) 61.57 (14.88)

Male, n (%) 65884 (96.80) 336064 (91.81) 30509 (97.33) 71454 (95.30) 35375 (96.36) 264610 (90.91)

BMI, kg/m2 (SD) 31.14 (6.70) 29.30 (5.54) 33.33 (6.80) 31.80 (5.99) 29.26 (6.01) 28.66 (5.23)

Obesity, (BMI R30) 35106 (51.58) 145631 (39.79) 20778 (66.29) 43555 (58.09) 14328 (39.03) 102076 (35.07)

Atrial fibrillation, n (%) 22681 (33.33) 23703 (6.48) 10232 (32.64) 6378 (8.51) 12449 (33.91) 17325 (5.95)

Coronary artery
disease, n (%)

45739 (67.20) 79154 (21.63) 23091 (73.66) 26373 (35.18) 22648 (61.69) 52781 (18.13)

Chronic kidney
disease, n (%)

23610 (34.69) 34404 (9.40) 13615 (43.43) 13472 (17.97) 9995 (27.22) 20932 (7.19)

Diabetes n (%) 31346 (46.06) 74975 (20.48) 31346 (100) 74975 (100) 0 (0) 0 (0)

Hyperlipidemia, n (%) 59567 (87.52) 244010 (66.66) 29724 (94.83) 67780 (90.40) 29843 (81.29) 176230 (60.55)

Hypertension, n (%) 62596 (91.97) 228065 (62.31) 30573 (97.53) 67346 (89.82) 32023 (87.23) 160719 (55.22)

HF, heart failure; SD, standard deviation; n, number; BMI, body mass index.
regression (p value< 0.05). A random-effectsmodel was used to esti-

mate the MR association between exposure and outcome variables

for IVWandMR-Egger regression. MR-PRESSO (Mendelian random-

ization pleiotropy residual sum and outlier) was used to detect and

remove outlier GIVs to correct for potential horizontal pleiotropy.43

Asweonlyevaluate the relationshipbetweenT2DandHF,weconsid-

ered nominal p value of 0.05 as suggestive evidence for MR

association.

Latent heritable confounderMR (LHC-MR) is amethod designed

for analyzing GWAS summary statistics to estimate bidirectional

causal effects while accounting for potential heritable confounder

between a pair of traits.44 LHC-MR can overcome the limitations

of traditional MR, including under-exploitation of genome-wide

markers, sensitivity to the presence of a heritable confounder, and

potential sample overlap.44 LHC-MR extends the traditional MR

model by using a structural equationmodel incorporating the pres-

ence of a latent heritable confounder and estimates its contribution

to T2D and all-cause HF separately, while simultaneously esti-

mating the bidirectional causal effect between T2D and all-cause

HF. We applied this method to estimate the bidirectional relation-

ship between T2D and all-cause HF using summary statistics from

a large T2DGWAS42 and themeta-analysis ofHFGWAS, both in Eu-

ropean ancestry.

GWAS of diabetes-related HF and diabetes-adjusted HF
We conducted a GWAS of diabetes-related HF using all-cause HF

individuals and controls12 among 106,321 diabetes individuals of

European ancestry from the MVP cohort (Table 1). Among them,

a total of 31,346 are HF individuals with comorbid T2D, and

74,975 are non-HF diabetes controls. The genetic association of dia-

betes-related HFwas adjusted for age, sex, and top 10 principal com-

ponents (PCs). Using the same statistical model, we also performed

the GWAS of diabetes-related HF among 26,431 unrelated diabetes

individuals of European ancestry from the UKB, including 3,506 in-

dividuals developed HF. To explore the potentially similar collider

bias in diabetes-adjusted HF, we also conducted GWASs of all-cause

HF adjusted for T2D status among 434,089 MVP participants of Eu-

ropean ancestry, adjusted for age, sex, T2D status, and top 10 PCs.
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Correction for collider bias using Slope-Hunter for

GWAS of diabetes-related HF
The Slope-Huntermethodwas developed for correcting collider bias

in conditional GWAS using genetic effects of the collider (i.e., T2D)

and the outcome variable (i.e., HF).45 The method employs model-

based clustering to identify and utilize variants that specifically

affect T2D to estimate an adjustment factor under the assumption

that these variants explain more variability in T2D compared to

other variant clusters. The method was implemented in the Slope-

Hunter R package (https://github.com/Osmahmoud/SlopeHunter).

We obtained GWAS summary statistics for diabetes-related HF and

T2D from theMVP study and considered 7,700,660 variants (minor

allele frequency [MAF]>0.01) present in both datasets. An indepen-

dent set of SNPs was obtained after performing lingkage disequilib-

rium (LD) pruning using PLINK2 software (r2 threshold of 0.1

within 250 SNP windows) using the European ancestry population

of the 1000 Genomes reference panel. The threshold of p < 0.001

was used to define SNP-T2D associations and to fit the main

model-based clustering.
Correction for collider bias using instrument effect

regression method for GWAS of diabetes-related HF
Under the assumption that the direct genetic effects on HF are in-

dependent of those on T2D, we additionally used the instrument

effect regression46 (IER) method to correct for the index event bias

of the diabetes-related HF GWAS. The analysis was performed

using R package indexevent, using the aforementioned indepen-

dent set of SNPs after LD pruning and the improved version of

the simulation extrapolation (SIMEX) algorithm47,48 to estimate

the bias term with 10 simulations performed in each stage of the

SIMEX adjustment.
Correction for collider bias for GWAS of diabetes-

adjusted HF
Similarly, we performed sensitivity analysis for the GWS loci of the

diabetes-adjusted HF GWAS identified using FUMA.32 Both Slope-

Hunter and IER methods were applied to correct for the bias. In
11, 2024
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Figure 1. Overview of study design
In the GWAS of diabetes-related HF, PITX2 and CDKN2B�AS1 are the two GWS loci; TCF7L2 highlighted in red is the GWS locus due to
collider bias.
addition, we used mtCOJO49 to estimate the genetic effects on HF

conditioning on T2D.
Results

The present study consists of a large meta-analysis of

all-cause HF in the European ancestry to enable the bidirec-

tional MR study of T2D and HF followed by a GWAS of dia-

betes-related HF with collider bias correction (Figure 1).

The primary study population consisted of 106,321 MVP

participants with T2D diagnosis out of 434,089 with Euro-

pean ancestry, predominantly male. In the GWAS of dia-

betes-related HF, we included 31,346 HF individuals

with comorbid T2D and 74,975 non-HF diabetes controls

(Table 1). Individuals with HF were older and had higher

prevalence of obesity, atrial fibrillation, coronary artery

disease, chronic kidney disease, hyperlipidemia and hyper-

tension with or without T2D (Table 1). The prevalence of

all-cause HF was higher among T2D individuals (29.5%)

than that among non-diabetes participants (11.2%). In

the UKB, we included 26,431 T2D individuals with Euro-

pean ancestry. Among them, 3,506 developed HF using

clinical diagnosis codes (Table S1). Similarly, individuals

with HF had significant (p < 0.001) older age, higher prev-

alence of cardiometabolic risk factors, and more comorbid-

ities than the control populations without HF.
Genome-wide meta-analysis of all-cause HF

A total of 10,835,443 SNPs withMAF>1% in any one of the

three studies (i.e., MVP, HERMES, and FinnGen) were
The America
included in the meta-analysis of all-cause HF among Euro-

pean ancestry. We identified a total of 61 independent

GWS loci (Table S2) associated with all-cause HF, including

24 novel loci (Table 2) compared with previous reported HF

GWAS.12–14 Overlapping with a T2D GWAS,42 59 out of 61

HF-associated SNPs also had summary statistics and were

used as the GIVs for all-cause HF in the two-sampleMR anal-

ysis (Table S2).

The gene-based test based on the HF GWAS meta-anal-

ysis mapped to 19,051 protein coding genes and resulted

in 86 statistically significant genes at p < 2.62 3 10�6

(Table S3). Tissue expression analysis revealed several tissue

types relevant to the heart and blood vessel, including cor-

onary artery, tibial artery, atrial appendage, left ventricle,

and skeletal muscle (Tables S4 and S5). Gene-set analysis

showed various protein-protein interaction networks

(Table S6), and colocalization analysis provided evidence,

suggesting that both the gene expression and most signals

related to HF share a common causal variant (Table S7). HF

loci overlap with enhancer regions that play a role in con-

trolling gene expression (Table S8), and eQTL analysis

identified SNPs that have an impact on the regulation of

gene expression in HF-related tissues (Table S9).

Bidirectional MR analysis between T2D and all-cause HF

A total of 82 GIVs for T2D (Table S10) and 59 for HF had

summary statistics in both T2D and HF GWAS. IVW-MR

method showed significant MR association in both direc-

tions (Figure 2; Table S11), suggesting potential causal ef-

fect of T2D on HF (OR 1.07, 95% confidence interval [CI]

1.04–1.10, p ¼ 7.02 3 10�7), as well as potential causal
n Journal of Human Genetics 111, 1481–1493, July 11, 2024 1485



Table 2. Twenty-four novel genome-wide significant loci associated with all-cause HF

rsID Gene Chr. Pos. (hg19) EA NEA EAF OR (95% CI) p value

rs28416760 INPP5B 1 38409112 T A 0.73 1.03 (1.02, 1.04) 1.40 3 10�8

rs17163313 MIA3 1 222799625 G T 0.71 1.03 (1.02, 1.04) 3.54 3 10�8

rs7564469 ZEB2 2 145258445 C T 0.16 1.04 (1.03, 1.05) 2.57 3 10�9

rs3820888 SPATS2L 2 201180023 C T 0.40 1.03 (1.02, 1.04) 1.43 3 10�10

rs6796042 FOXP1 3 71530120 A G 0.62 1.03 (1.02, 1.04) 7.35 3 10�9

rs17253722 SHROOM3 4 77367287 G A 0.57 1.03 (1.02, 1.04) 4.57 3 10�8

rs6842241 EDNRA 4 148400819 A C 0.14 1.04 (1.02, 1.05) 4.67 3 10�8

rs72810976 CPEB4 5 173309057 G A 0.68 1.03 (1.02, 1.04) 1.05 3 10�8

rs117321970 FHL5 6 97071980 T C 0.05 1.07 (1.05, 1.10) 2.81 3 10�8

rs3918226 NOS3 7 150690176 T C 0.08 1.05 (1.03, 1.07) 3.54 3 10�8

rs4733328 NRG1 8 32259246 G A 0.14 1.04 (1.03, 1.05) 3.44 3 10�8

rs11774829 RP11-127H5.1 8 105978368 T A 0.88 1.05 (1.03, 1.07) 3.76 3 10�10

rs7873569 TMEM245 9 111796753 A T 0.57 1.03 (1.02, 1.04) 1.61 3 10�8

rs71311904 BDNF 11 27742447 C CCATTT 0.82 1.05 (1.03, 1.06) 3.32 3 10�9

rs113104597 CHD4 12 6703172 C T 0.16 1.04 (1.03, 1.05) 1.21 3 10�8

rs34682944 DIP2B 12 50982864 A G 0.31 1.03 (1.02, 1.05) 1.07 3 10�8

rs112403212 SCARB1 12 125303254 T C 0.14 1.05 (1.03, 1.06) 7.99 3 10�9

rs10161594 ATP4B 13 114306243 G C 0.14 1.04 (1.03, 1.06) 1.09 3 10�8

rs58472533 AMN 14 103385634 G A 0.20 1.04 (1.03, 1.05) 5.49 3 10�10

rs17483686 IREB2 15 78733390 T A 0.33 1.03 (1.02, 1.04) 1.55 3 10�9

rs11634851 ABHD17C 15 81028965 G C 0.45 1.03 (1.02, 1.04) 4.87 3 10�8

rs11861290 CMIP 16 81548522 A G 0.76 1.04 (1.03, 1.05) 2.27 3 10�10

rs11656489 ADORA2B 17 15837141 G C 0.19 1.04 (1.02, 1.05) 6.15 3 10�9

rs17608766 GOSR2 17 45013271 C T 0.15 1.04 (1.03, 1.06) 6.24 3 10�10

Gene, gene abbreviation of the gene closest to the sentinel SNP; Chr., chromosome; Pos., position; T2D, type 2 diabetes; HF, heart failure; EA, effect allele; NEA,
non-effect allele; EAF, effect allele frequency; OR: odds ratio; CI, confidence interval.
Novel locus: a 1 Mb region around the sentinel SNP (5500 kb) not overlapping with any previously reported genome-wide significant locus (5500 kb region
centered around the sentinel SNP of each locus). Only the summary statistics of the sentinel SNPs are reported in the table.
effect of HF on T2D (OR 1.60, 95% CI 1.36–1.88, p ¼
1.55 3 10�8). The MR-Egger method didn’t support a sig-

nificant intercept, which indicates limited pleiotropy.

Therefore, we used IVW results as the primary MR esti-

mates in the bidirectional MR analysis. Only the HF effect

on T2D showed significant positive association in MR-

Egger analysis. After removing 5 (rs10965223, rs635634,

rs7903146, rs1061810, and rs1558902) and 2 (rs600038

and rs11642015) outliers for T2D and HF, respectively,

the MR-PRESSO analysis showed similar significant MR as-

sociations between T2D and HF in both directions using

IVM and MR-Egger methods (Figure 2; Table S11).

Using LHC-MR method, we also identified bi-direc-

tional relationship between all-cause HF and T2D.

Similar to two-sample MR results, T2D is associated

with higher risk for HF with moderate effect size (OR

1.09, 95% CI 1.06–1.13, p value 3.95 3 10�7). Mean-

while, HF is associated with higher risk for T2D with
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much larger effect size (OR 1.95, 95% CI 1.55–2.44,

p value 6.82 3 10�9).

GWAS of diabetes-related HF with Slope-Hunter

correction

In the GWAS of diabetes-related HF among 106,321 indi-

viduals with diabetes (31,346 individuals with all-cause

HF, 29.5%), we identified nine suggestively significant

(p value <10�6) loci including three GWS (p value <5 3

10�8) loci associated with diabetes-related HF (Table 3;

Figure 3). The inflation factor of the GWAS is 1.04. One dia-

betes-related HF-associated locus located on chromosome

10 (TCF7L2) is strongly associated with T2D but not asso-

ciated with all-cause HF in the meta-analysis (p value of

0.57), which can be affected by collider bias. After Slope-

Hunter correction, the TCF7L2 locus was no longer associ-

ated with diabetes-related HF (OR 1.02, 95% CI 0.99–1.05,

p value 0.15). After IER correction, the association between
11, 2024



IVW IVW MR−PRESSO

T2D −−> HF

HF −−> T2D

1.0 1.2 1.4 1.6 1.8 2.0
Odds Ratio

1.07 (1.04 - 1.10), p=7.02E-7

1.06 (1.03 - 1.08), p=3.33E-7

1.42 (1.26 - 1.60), p=4.85E-9

1.60 (1.36 - 1.88), p=1.55E-8

Figure 2. Forest plot of bidirectional MR between T2D and all-
cause HF
95% CI of OR is included in the parentheses. IVW, inverse-vari-
ance weighted; MR, Mendelian randomization; p, p value.
the TCF7L2 locus remained GWS. However, the associa-

tions of TCF7L2 with diabetes-related HF, or diabetes-

adjusted HF diminished after collider bias correction using

Slope-Hunter (Tables 3 and S12) and mtCOJO (Table S12).

Meanwhile, the other two loci (Figure S1) on chromosome

4 (sentinel SNP rs17513625 close to PITX2, OR 1.25, 95%

CI 1.16–1.35, p value 9.98 3 10�9) and 9 (sentinel SNP

rs4977575 close to CDKN2B�AS1, OR 1.06, 95% CI 1.04–

1.08, p value 2.91 3 10�9) remained GWS after Slope-

Hunter correction for collider bias (Figure 4). Interestingly,

the genetic association of chromosome 4 locus with HF

was much weaker among 327,768 MVP participants

without T2D (OR 1.07, 95% CI 1.00–1.14, p value 0.039),

presenting an example that T2D may increase the genetic

association of HF (interaction p value 0.016). We pursued

replication of two GWS loci on chromosome 4 and 9 using

the UK Biobank study participants with European ancestry

(Table S1). After applying the Slope-Hunter correction to

the GWAS of diabetes-related HF adjusted for age, sex,

and top ten PCs, consistent associations were identified

for rs17513625 (PITX2 locus, OR 1.19, 95% CI 1.02–1.40,

p value 0.027) and rs4977575 (CDKN2B�AS1 locus, OR

1.08, 1.03–1.14, p value 0.0034), respectively.

Using the p value cutoff of 0.001, 10�4, and 10�5, we

investigated if the selection of GIVs and the slope esti-

mates are sensitive to the parameter setting in the Slope-

Hunter method (Table S13). The estimated slope ranged

from �0.198 to �0.219 with overlapping 95% CIs.

Different p value cutoffs had little impact on Slope-

Hunter corrected GWAS of diabetes-related HF. Across all

threshold levels, the two GWS loci remained the same,

and the TCF7L2 locus was not significantly associated

with diabetes-related HF (p value >0.05).
Discussion

The present study aimed to elucidate the relationship be-

tween T2D and HF and identify the genetic loci of dia-
The America
betes-related HF. Using GWS loci from a large meta-anal-

ysis of all-cause HF, we conducted a bidirectional MR

analysis to investigate the relationship between T2D and

HF. The estimates from the two-sample MR strongly sup-

ported that not only is T2D a risk factor of HF, but also,

HF increases the risk for T2D. As a result, a diabetes-strati-

fied or a diabetes-adjusted HF GWASmay identify spurious

genetics associations due to collider bias (both HF and ge-

netic factors can affect T2D). We adopted a recently devel-

oped method, Slope-Hunter, to correct for such collider

bias in the GWAS of diabetes-related GWAS among over

100,000 individuals with diabetes from the MVP. The

Slope-Hunter method assumes that the model-based clus-

tering algorithm correctly identifies the valid GIVs. This

tends to be the case when the largest number of similar ra-

tios bcGY=bGX comes from the valid GIVs.50 In many simu-

lation scenarios, Slope-Hunter performs well with correct

type-1 error and increased power over instrument effect

regression. However, Slope-Hunter has poor performance

when the invalid GIVs explain more or equal variation in

the index event than the valid GIVs and have strong

negative correlation of effects.45 After removing the T2D-

associated TCF7L2 locus by Slope-Hunter correction, we

identified two GWS loci associated with diabetes-related

HF located on chromosome 4 (PITX2) and chromosome

9 (CDKN2B�AS1). Although both loci have been associ-

ated with all-cause HF,12,13 the effect size of the SNP

(PITX2) was larger among T2D individuals than that

among non-T2D participants. In addition, the sentinel

SNP rs17513625 is weakly correlated with the established

atrial fibrillation-associated PITX2 locus (LD r2 of 0.115

with rs17042175 in the European ancestry). By definition

of collider bias, we anticipated that the collider bias could

also affect the diabetes-adjusted GWAS of all-cause HF.

Without Slope-Hunter correction, we identified 22 GWS

loci associated with all-cause HF among European ancestry

(Table S12; Figure S2). Two loci located on chromosome 1

(C1orf185) and chromosome 10 (TCF7L2) were not GWS

after Slope-Hunter correction. Both loci were significantly

associated with T2D (Table S12). One unique assumption

of IER is that the collider bias b is constant across SNPs

and may be estimated by the linear regression of b0GY on

bGX across many SNPs.46 This assumption may be violated

as the shared genetic component between T2D and HF can

be substantial. Therefore, Slope-Hunter can be effective in

the correction of collider bias in the present study because

the estimate of bias b relies on a subset of SNPs with likely

causal effect (Tables 3 and S12).

Observational studies consistently demonstrated that

diabetes increases the risk for HF. On the other hand, HF

induces metabolic impairment, which leads to higher

incidence of T2D among individuals with HF than in com-

parable general populations. Significant MR associations

from the present study supported the bidirectional causal

relationship between T2D and all-cause HF. Regardless of

the directionality of the effects, adults with both diabetes

and HF can have 8.8-fold higher mortality rate than
n Journal of Human Genetics 111, 1481–1493, July 11, 2024 1487



Table 3. Genomic loci associated with diabetes-related HF (genomic loci with p < 10�6) with correction for collider bias using Slope-Hunter and instrument effect regression

rsID Gene Chr. Position EA NEA EAF

Diabetes-related
HF GWAS T2D GWAS HF GWAS meta-analysis

Diabetes-related HF
GWAS after Slope-
Hunter correction

Diabetes-related HF
GWAS after instrument
effect regression
correction

OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p OR (95% CI) p

rs602633 PSRC1a 1 109821511 G T 0.78 1.06 (1.04,
1.09)

3.83 3
10�7

1.00 (0.99,
1.02)

0.518 1.05 (1.04,
1.06)

6.75 3
10�17

1.06 (1.04,
1.09)

3.11 3
10�7

1.06 (1.04,
1.09)

7.00 3 10�7

rs17513625 PITX2a,b 4 111848270 A G 0.02 1.24 (1.15,
1.34)

1.72 3
10�8

1.03 (0.98,
1.08)

0.280 1.11 (1.08,
1.14)

6.63 3
10�14

1.25 (1.16,
1.35)

9.98 3
10�9

1.23 (1.14,
1.33)

4.95 3 10�8

rs55730499 LPAa 6 161005610 T C 0.07 1.11 (1.07,
1.15)

1.87 3
10�7

1.00 (0.97,
1.02)

0.767 1.1 (1.08, 1.12) 1.79 3
10�23

1.11 (1.06,
1.15)

3.02 3
10�7

1.11 (1.07,
1.15)

1.91 3 10�7

rs4977575 CDKN2B�AS1a,b 9 22124744 G C 0.5 1.06 (1.04,
1.08)

2.40 3
10�8

1.02 (1.01,
1.03)

1.74 3 10�3 1.06 (1.05,
1.07)

1.37 3
10�31

1.06 (1.04,
1.08)

2.91 3
10�9

1.05 (1.03,
1.08)

2.50 3 10�7

rs1837530484 LINC02881 10 44738619 CA C 0.91 1.10 (1.06,
1.14)

5.68 3
10�7

1.00 (0.97,
1.02)

0.681 1.02 (1, 1.05) 0.0306 1.09 (1.06,
1.14)

9.37 3
10�7

1.10 (1.06,
1.14)

5.30 3 10�7

rs201426892 AGAP5 10 75439094 G A 0.99 1.78 (1.42,
2.24)

5.17 3
10�7

1.07 (0.94,
1.21)

0.287 – – 1.81 (1.44,
2.27)

3.23 3
10�7

1.76 (1.4, 2.21) 1.10 3 10�6

rs11196211 TCF7L2c 10 114817009 A C 0.69 1.07 (1.05, 1.1) 1.16 3
10�9

0.80 (0.79,
0.81)

2.50 3
10�235

1 (0.99, 1.01) 0.569 1.02 (0.99,
1.05)

0.154 1.12 (1.1, 1.15) 8.70 3
10�24

rs4403799 AMPD3 11 10330455 G A 0.11 1.08 (1.05,
1.12)

9.58 3
10�7

0.99 (0.97,
1.01)

0.497 1.03 (1.02,
1.05)

5.57 3 10�6 1.08 (1.05,
1.12)

2.05 3
10�6

1.08 (1.05,
1.12)

7.55 3 10�7

rs797765 SLC6A13 12 372438 G A 0.78 1.06 (1.04,
1.09)

8.12 3
10�7

0.98 (0.96,
0.99)

2.76 3 10�3 1.02 (1.01,
1.03)

0.0016 1.06 (1.03,
1.08)

7.61 3
10�6

1.07 (1.04,
1.09)

1.40 3 10�7

Chr., chromosome; Position, human genome build hg19; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; HF, heart failure; GWAS, genome-wide association study; T2D, type 2 diabetes; OR, odds ratio; CI,
confidence interval.
aGWS loci associated with all-cause HF in the meta-analysis of the European ancestry
bGWS association (p value <5 3 10�8) before and after Slope-Hunter correction
cGWS association (p value <5 3 10�8) with diabetes-related HF but not significant (p value>0.05) after Slope-Hunter correction.
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Figure 3. Manhattan plot of diabetes-
related HF GWAS without correction for
collider bias
Redhorizontal line indicatesGWSthreshold
of nominal p value of 53 10�8.
those without HF (32.7 vs. 3.7 per 1,000 person-years).51

Thus, managing T2D and hyperglycemia can be effective

to prevent HF, to mitigate T2D progression, and eventually

reduce mortality among individuals with HF. SGLT2 inhib-

itors are a new class of antidiabetic medications that reduce

hyperglycemia through inhibition of glucose reabsorption

in the renal proximal tubules. They significantly reduced

the risk of HF-related hospitalization and cardiovascular

death.9–11 SGLT2 inhibitors are recommended for individ-

uals with HF irrespective of diabetes status.52

Both T2D and HF are complex clinical conditions

involving numerous risk factors and pathways. Recent

studies identified subtypes of T2D using risk factor and

biomarker data that presented differential clinical out-

comes.53,54 Analyses of T2D-associated loci also revealed

genetic clusters linking with pathophysiological pathways

underlying T2D,55 supporting the heterogeneity of T2D

mechanism. On the other hand, the heterogeneity of HF

has been well documented, even among the major

clinical subtypes. Based on the measurement of LVEF,

recent guidelines categorized HF into HFrEF, HFpEF, HF

with mildly reduced EF (HFmrEF), and HF with improved

EF (HFimpEF), with HFrEF and HFpEF as the dominant

forms.52 Not surprisingly, HFrEF and HFpEF have distin-

guishable risk profiles, different response to treatments,

and contrasting clinical prognosis. EvenwithinHFpEF sub-

type, the evidence of heterogeneous subtypes has emerged

to support precision treatment and prognosis,56 which

holds the promise for mitigating the growing burden of

HFpEF in the aging population. A recent large GWAS of

HFrEF and HFpEF also highlighted the different genetic ar-

chitecture between two HF clinical subtypes, and sup-

ported the phenotypic heterogeneity of HFpEF.12 However,

the limited number of HF subtype GWAS and identified

loci, the power of the bidirectional MR between T2D and

HF subtypes, and the GWAS are suboptimal. Particularly,

only one HFpEF-associated loci close to FTO has been

reported. Since the FTO locus is highly pleiotropic, it

cannot be used as a GIV of HFpEF in the MR analysis.

The future GWASs of HF subtypes would provide more

GIVs to robustly estimate the relationship between T2D

and HF subtypes and accurately identify genetic loci of
The American Journal of Human Gen
HF with comorbid conditions with

correction of potential collider bias.

We acknowledge that the MVP and

the UKB participants were recruited

from the health care systems and

may not fully represent the popula-

tions in the clinical system or the gen-

eral population. However, the genetic
associations with cardiometabolic diseases reported in the

biobank cohorts are consistent with other cohorts.12,57,58

Recent research has highlighted the potential influence of

selection bias on genetic findings.59 While the genetic asso-

ciations with cardiometabolic diseases reported in the bio-

bank cohorts are consistent with other cohorts,12,57,58 selec-

tion bias of such large biobank cohorts can impact genetic

association findings, including those identified in the pre-

sent study. Causal effect of T2D on HF could also be related

to clinical diagnosis procedures of T2D andHF. For example,

people are more likely to be identified with HF if they have

T2D would contribute to the causal association. In the pre-

sent study, we cannot rule out some contribution from

possible increased attention to risk factors, including

glucose levels along with blood pressure and lipid levels,

in the clinical diagnosis of HF.

Conclusion

Global trend of growing T2D and HF requires improved

intervention and prevention strategies for diabetes-related

HF, a syndrome with high morbidity and mortality.

Exploring the genetic architecture of diabetes-related HF

would greatly help understand the mechanism and path-

ophysiology of the condition as shown in recent GWAS of

human diseases. However, the complexity of genetic

factors underlying T2D and HF, as well as the relationship

between them, created a unique challenge in the identifi-

cation of true genetic associations with diabetes-related

HF. We have demonstrated the evidence supporting the

bidirectional relationship between T2D and HF, addressed

the impact of collider bias on the GWAS of diabetes-

related HF, identified and replicated two genetic loci in

the MVP and UK Biobank, two large biobank studies.

The study design and analytical workflow can be

extended to other studies of diabetic complications,

particularly outcomes related to HF and HF subtypes. In

light of growing precision medicine studies focusing on

certain disease subgroups or individuals with specific co-

morbid conditions, this case study presented the key con-

siderations of epidemiologic, genetic, and biostatistical

evidence and methods for such complex disease research

in target populations.
etics 111, 1481–1493, July 11, 2024 1489



Figure 4. Manhattan plot of diabetes-
related HF GWAS after correction for
collider bias
Red horizontal line indicates genome-wide
significance threshold of nominal p value
of 5 3 10�8. Only independent genetic
variants after LD-pruning were included.
Data and code availability

Due to the US Department of Veterans Affairs (VA) regu-

lations and our ethics agreements, the analytic datasets

used for this study are not permitted to leave the Million

Veteran Program (MVP) research environment and VA

firewall. This limitation is consistent with other MVP

studies based on VA data. However, the MVP data are

made available to researchers with an approved VA and

MVP study protocol. The dbGAP accession number for

the full summary level association data of the genome-

wide association analyses in the MVP and the meta-

analysis from this report is dbGAP: phs001672. The

only restriction is that use of the data is limited to

health/medical/biomedical purposes and does not

include the study of population origins or ancestry. Use

of the data does include methods development research

(e.g., development and testing of software or algo-

rithms), and requestors agree to make the results of

studies using the data available to the larger scientific

community.
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quist, K., and Zöller, B. (2018). A Swedish Nationwide Adoption

Study of the Heritability of Heart Failure. JAMACardiol. 3, 703–

710. https://doi.org/10.1001/jamacardio.2018.1919.

16. Kim, J., Jensen, A., Ko, S., Raghavan, S., Phillips, L.S., Hung, A.,

Sun, Y., Zhou, H., Reaven, P., and Zhou, J.J. (2022). Systematic

Heritability and Heritability Enrichment Analysis for Diabetes

Complications in UK Biobank and ACCORD Studies. Diabetes

71, 1137–1148. https://doi.org/10.2337/db21-0839.

17. Zheng, J., Baird, D., Borges, M.C., Bowden, J., Hemani, G., Hay-

cock, P., Evans, D.M., and Smith, G.D. (2017). Recent Develop-

ments in Mendelian Randomization Studies. Curr. Epidemiol.

Rep. 4, 330–345. https://doi.org/10.1007/s40471-017-0128-6.

18. Gaziano, J.M., Concato, J., Brophy, M., Fiore, L., Pyarajan, S.,

Breeling, J., Whitbourne, S., Deen, J., Shannon, C., Humph-

ries, D., et al. (2016). Million Veteran Program: A mega-bio-

bank to study genetic influences on health and disease.

J. Clin. Epidemiol. 70, 214–223. https://doi.org/10.1016/j.jcli-

nepi.2015.09.016.

19. Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L.T.,

Sharp, K., Motyer, A., Vukcevic, D., Delaneau, O., O’Connell,

J., et al. (2018). The UK Biobank resource with deep phenotyp-

ing and genomic data. Nature 562, 203–209. https://doi.org/

10.1038/s41586-018-0579-z.

20. Kurgansky, K.E., Schubert, P., Parker, R., Djousse, L., Riebman,

J.B., Gagnon, D.R., and Joseph, J. (2020). Association of pulse

rate with outcomes in heart failure with reduced ejection frac-

tion: a retrospective cohort study. BMC Cardiovasc. Disord.

20, 92. https://doi.org/10.1186/s12872-020-01384-6.

21. Patel, Y.R., Robbins, J.M., Kurgansky, K.E., Imran, T., Orkaby,

A.R., McLean, R.R., Ho, Y.L., Cho, K., Michael Gaziano, J.,

Djousse, L., et al. (2018). Development and validation of a

heart failure with preserved ejection fraction cohort using

electronic medical records. BMC Cardiovasc. Disord. 18,

128. https://doi.org/10.1186/s12872-018-0866-5.

22. Rhee, M.K., Ho, Y.L., Raghavan, S., Vassy, J.L., Cho, K., Gag-

non, D., Staimez, L.R., Ford, C.N., Wilson, P.W.F., and Phillips,

L.S. (2019). Random plasma glucose predicts the diagnosis of

diabetes. PLoS One 14, e0219964. https://doi.org/10.1371/

journal.pone.0219964.

23. Aragam, K.G., Chaffin, M., Levinson, R.T., McDermott, G.,

Choi, S.H., Shoemaker, M.B., Haas, M.E., Weng, L.C., Lindsay,

M.E., Smith, J.G., et al. (2019). Phenotypic Refinement of

Heart Failure in a National Biobank Facilitates Genetic Discov-

ery. Circulation 139, 489–501. https://doi.org/10.1161/CIR-

CULATIONAHA.118.035774.

24. Zhong, H., Magee, M.J., Huang, Y., Hui, Q., Gwinn, M., Gan-

dhi, N.R., and Sun, Y.V. (2020). Evaluation of the Host Genetic

Effects of Tuberculosis-Associated Variants Among Patients

With Type 1 and Type 2DiabetesMellitus. Open Forum Infect.

Dis. 7, ofaa106. https://doi.org/10.1093/ofid/ofaa106.

25. Hunter-Zinck, H., Shi, Y., Li, M., Gorman, B.R., Ji, S.G., Sun,

N., Webster, T., Liem, A., Hsieh, P., Devineni, P., et al. (2020).

Genotyping Array Design and Data Quality Control in the

Million Veteran Program. Am. J. Hum. Genet. 106, 535–548.

https://doi.org/10.1016/j.ajhg.2020.03.004.
n Journal of Human Genetics 111, 1481–1493, July 11, 2024 1491

https://doi.org/10.1161/HHF.0b013e318291329a
https://doi.org/10.1161/CIR.0000000000000691
https://doi.org/10.2337/db10-0165
https://doi.org/10.1161/CIRCULATIONAHA.106.661405
https://doi.org/10.1161/CIRCULATIONAHA.106.661405
https://doi.org/10.3390/jcm10163682
https://doi.org/10.1002/ehf2.12782
https://doi.org/10.1002/ehf2.12782
https://doi.org/10.1056/NEJMoa1504720
https://doi.org/10.1161/CIRCULATIONAHA.117.032038
https://doi.org/10.1056/NEJMoa1812389
https://doi.org/10.1056/NEJMoa1812389
https://doi.org/10.1038/s41467-022-35323-0
https://doi.org/10.1038/s41467-022-34216-6
https://doi.org/10.1038/s41467-022-34216-6
https://doi.org/10.1038/s41467-019-13690-5
https://doi.org/10.1038/s41467-019-13690-5
https://doi.org/10.1001/jamacardio.2018.1919
https://doi.org/10.2337/db21-0839
https://doi.org/10.1007/s40471-017-0128-6
https://doi.org/10.1016/j.jclinepi.2015.09.016
https://doi.org/10.1016/j.jclinepi.2015.09.016
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1186/s12872-020-01384-6
https://doi.org/10.1186/s12872-018-0866-5
https://doi.org/10.1371/journal.pone.0219964
https://doi.org/10.1371/journal.pone.0219964
https://doi.org/10.1161/CIRCULATIONAHA.118.035774
https://doi.org/10.1161/CIRCULATIONAHA.118.035774
https://doi.org/10.1093/ofid/ofaa106
https://doi.org/10.1016/j.ajhg.2020.03.004


26. Manichaikul, A., Mychaleckyj, J.C., Rich, S.S., Daly, K., Sale,

M., and Chen, W.M. (2010). Robust relationship inference

in genome-wide association studies. Bioinformatics 26,

2867–2873. https://doi.org/10.1093/bioinformatics/btq559.

27. Loh, P.R., Palamara, P.F., and Price, A.L. (2016). Fast and accu-

rate long-range phasing in a UK Biobank cohort. Nat. Genet.

48, 811–816. https://doi.org/10.1038/ng.3571.

28. Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A.E., Kwong,

A., Vrieze, S.I., Chew, E.Y., Levy, S., McGue, M., et al. (2016).

Next-generation genotype imputation service and methods.

Nat. Genet. 48, 1284–1287. https://doi.org/10.1038/ng.3656.

29. Fang, H., Hui, Q., Lynch, J., Honerlaw, J., Assimes, T.L., Huang,

J., Vujkovic, M., Damrauer, S.M., Pyarajan, S., Gaziano, J.M.,

et al. (2019). Harmonizing Genetic Ancestry and Self-identi-

fied Race/Ethnicity in Genome-wide Association Studies.

Am. J. Hum. Genet. 105, 763–772. https://doi.org/10.1016/j.

ajhg.2019.08.012.

30. Kurki, M.I., Karjalainen, J., Palta, P., Sipilä, T.P., Kristiansson,
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