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Summary

Type 2 diabetes (T2D) is a major risk factor for heart failure (HF) and has elevated incidence among individuals with HE. Since genetics and
HF can independently influence T2D, collider bias may occur when T2D (i.e., collider) is controlled for by design or analysis. Thus, we con-
ducted a genome-wide association study (GWAS) of diabetes-related HF with correction for collider bias. We first performed a GWAS of HF
to identify genetic instrumental variables (GIVs) for HF and to enable bidirectional Mendelian randomization (MR) analysis between T2D
and HF. We identified 61 genomic loci, significantly associated with all-cause HF in 114,275 individuals with HF and over 1.5 million con-
trols of European ancestry. Using a two-sample bidirectional MR approach with 59 and 82 GIVs for HF and T2D, respectively, we estimated
that T2D increased HF risk (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.04-1.10), while HF also increased T2D risk (OR 1.60, 95%
CI 1.36-1.88). Then we performed a GWAS of diabetes-related HF corrected for collider bias due to the study design of index cases. After
removing the spurious association of TCF7L2 locus due to collider bias, we identified two genome-wide significant loci close to PITX2
(chromosome 4) and CDKN2B—AS1 (chromosome 9) associated with diabetes-related HF in the Million Veteran Program and replicated
the associations in the UK Biobank. Our MR findings provide strong evidence that HF increases T2D risk. As a result, collider bias leads

to spurious genetic associations of diabetes-related HF, which can be effectively corrected to identify true positive loci.

Introduction

Heart failure (HF) is a complex, life-threatening syndrome
that results from structural and functional impairment of
ventricular filling or output. HF affects more than 64
million people worldwide," including 6 million adults in
the US.” HF prevalence in the US is projected to increase
46% from 2012 to 2030, resulting in over 8 million adults
(>18 years old) with HE.” In addition to high mortality
and morbidity, HF is also associated with high health
care costs with an estimated annual expenditure of $70
billion in the US by 2030.”

Type 2 diabetes (T2D) is a complex disease affecting
multiple organ systems. The prevalence of T2D has been
growing for the past two decades, with age-adjusted preva-
lence of 9.5% in 1999-2002 and 12% in 2013-2016 among
US adults. About 537 million adults live with diabetes
around the world, most in low- and middle-income coun-
tries (IDF Diabetes Atlas: https://diabetesatlas.org/). HF is
one of the most severe diabetes complications affecting
T2D individuals’ clinical outcomes and quality of life.*
Observational studies have consistently demonstrated an
increased risk of HF in individuals with diabetes compared
with those without diabetes, across demographic groups.
Even among individuals without T2D, higher levels of fast-

ing glucose and hemoglobin Alc (HbAlc) were associated
with increased risk of HF hospitalization.>® The complex
pathogenesis of HF in T2D can include toxic effect of hy-
perglycemia, diabetic cardiomyopathy, coronary microvas-
cular dysfunction, and other comorbid conditions.” T2D is
associated with a high incidence of both HF with reduced
ejection fraction (HFtEF) and HF with preserved ejection
fraction (HFpEF),” regardless of heterogeneous etiologies,
clinical manifestation, and outcomes between HF sub-
types. Clinical trials have shown that anti-diabetic medica-
tions such as sodium-glucose cotransporter-2 (SGLT2)
inhibitors can reduce the risk for HF and subtypes.” "
Therefore, further understanding of the genetic and molec-
ular mechanisms of diabetes-related HF may lead to thera-
peutic targets of HF and HF subtypes.

Genome-wide association studies (GWASs) are designed
to identify genetic loci associated with disease and traits
by surveying genome-wide single-nucleotide polymor-
phisms (SNPs). Although no genetic variants have been
associated with diabetes-related HF, recent GWASs have
identified dozens of loci associated with all-cause HF'#'*
and clinical subtypes, including HFrEF and HFpEE.'* Two
European ancestry-based GWASs of all-cause HF identified
11 and 20 genome-wide significant (GWS) loci using
47,309 and 51,571 individuals with HF, respectively.'*"'*
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A multi-ancestry GWAS of all-cause HF including 115,150
individuals with HF and over 1.5 million controls
identified a total of 47 GWS loci."” Genetic and familial
studies also estimated the heritability of HF (h” ranging
from 22% to 34%)'*'> and several diabetes complica-
tions, including diabetes-related cardiovascular disease
(h? ~18%) and diabetes-related stroke (A% ~14%),'® which
suggested substantial genetic contribution to diabetes-
related HF yet to be discovered.

When both exposure (e.g., genetic variants) and outcome
(e.g., HF) independently influence a common third variable
(e.g., T2D), collider bias can occur when the third variable
(i.e., collider) is controlled for by design or analysis. Thus,
the bidirectional relationship between T2D and HF can
introduce collider bias in the GWAS of diabetes-related HF
(both genetics and HF affect T2D). Mendelian randomiza-
tion (MR) methods can support such bidirectional relation-
ship using proper instrumental variables of T2D and HE. MR
uses genetic variants robustly associated with exposures or
risk factors of interest as genetic instrumental variables
(GIVs) to estimate the causal and de-confounded relation-
ship between the exposure or risk factor with the disease
outcome.'” Recent genetic studies identified significant
but weak MR association between T2D and all-cause HF us-
ing two-sample MR approach (odds ratio [OR] 1.05-
1.08),'*'* compared to observational studies of T2D and
HF. Additionally, the estimated genetic correlation between
T2D and all-cause HF of 47.3%"* cannot be fully explained
by the moderate MR association between T2D (exposure)
and HF (outcome). On the other hand, the hypothesis
that HF increases the risk of T2D hasn’t been examined in
the MR framework, limited by strong GIVs for HF from large
independent samples. In the present study, we identified a
large set of GIVs of HF from a GWAS meta-analysis,
including 114,275 individuals with HF and 1,506,896 con-
trols of European ancestry. Then we performed a large scale
GWAS of diabetes-related HF and corrected for collider bias
using summary statistics of T2D GWAS to eliminate
spurious associations. We also examined and corrected for
potential collider bias in diabetes-adjusted GWAS of HFE.

Subjects and methods

Study samples

The design of the Million Veteran Program (MVP) has been previ-
ously described.'® Veterans were recruited from over 60 Veterans
Health Administration (VHA) (Veterans Affairs [VA]) healthcare sys-
tems nationwide since 2011. The MVP has detailed phenotyping
through linking the large biobank to an extensive electronic health
record (EHR) database from 2003 onward that integrates multiple el-
ements such as diagnosis codes, procedure codes, laboratory values,
and imaging reports. All MVP participants were genotyped as part of
the study design. MVP has received ethical and study protocol
approval by the VA Central Institutional Review Board in accordance
with the principles outlined in the Declaration of Helsinki. Informed
consent is obtained from all participants to provide blood for
genomic analysis and access to their full EHR within the VA prior

to and after enrollment. The UK Biobank (UKB) is a prospective study
with over 500,000 participants aged 40-69 years recruited in 2006—
2010 with extensive phenotypic and genotypic data.'” The UKB
was approved by the North West Multi-centre Research Ethics
Committee.

Phenotypic data

In the MVP, individuals with HF were identified as those with an In-
ternational Classification of Diseases (ICD)-9 code of 428.x or ICD-
10 code of 150.x and an echocardiogram performed within
6 months of diagnosis (median time period from diagnosis to echo-
cardiography was 3 days, interquartile range 0-32 days).'* Based on
our previous work, the requirement for echocardiogram improved
the specificity of HF diagnosis. The index diagnosis of HF was docu-
mented during an outpatient encounter in the majority of partici-
pants with HE. We utilized a natural language processing tool to
extract left ventricular ejection fraction (LVEF) from the VA Text
Integration Utilities documents including values measured within
and outside the VA.'*?%?! Non-HF controls excluded MVP partici-
pants with any recorded HF codes at any time based on their EHR
data. Diabetes was defined by both (1) either >1 use of the ICD-9
code 250.xx at a primary care provider visit or >2 uses of the
code in any setting and (2) an outpatient prescription of a diabetes
drug based on use of VHA national drug codes.””

In the UKB, we defined HF as the presence of self-reported HF,
pulmonary edema, or cardiomyopathy at any visit or an ICD-10
or ICD-9 billing code indicative of heart/ventricular failure or a
cardiomyopathy of any cause, as described and validated previ-
ously, and consistent with that used in recent GWASs of all-cause
HF.'>?? Similar to the MVP definition, non-HF controls excluded
participants with any self-reported HF or recorded HF codes at
any time. T2D was defined by the primary and secondary ICD-9
(250 diabetes mellitus, juvenile type excluded) and ICD-10 diag-
nosis codes (E11 non-insulin-dependent diabetes mellitus, E12
malnutrition-related diabetes mellitus, E13 other specified dia-
betes mellitus, E14 unspecified diabetes mellitus®*), and self-re-
ported T2D at enrollment.

Genomic data
DNA extracted from participants’ blood was genotyped using a
customized Affymetrix Axiom biobank array. The array was en-
riched for both common and rare genetic variants of clinical sig-
nificance in different ethnic backgrounds. Genotype calling, qual-
ity-control procedures, and genotype imputation were previously
described.”® We excluded duplicate samples, samples with more
heterozygosity than expected, an excess (>2.5%) of missing geno-
type calls, or discordance between genetically inferred sex and
phenotypic gender.”® In addition, one individual from each
pair of related individuals (more than second-degree relatedness
as measured by the KING software”®) were removed. Prior to
imputation, variants that were poorly called (genotype missing-
ness >5%), that weren’'t in Hardy-Weinberg equilibrium (p
value < 1072%), or that deviated from their expected allele fre-
quency (>20%) observed in the 1000 Genomes reference data
were excluded. After pre-phasing using EAGLE v2.4,%” we then
imputed to the 1000 Genomes phase 3 version 5 reference panel
(1000G) using Minimac4.?® Imputed variants with poor imputa-
tion quality (* < 0.3) were excluded from further analyses.

The MVP participants were assigned to mutually exclusive racial/
ethnic groups using harmonized ancestry and race/ethnicity
(HARE), a machine learning algorithm that integrates genetically
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inferred ancestry (GIA) with self-identified race/ethnicity (SIRE) as
previously described.”” Briefly, HARE uses GIA to refine SIRE for ge-
netic association studies in three ways: identifies individuals whose
SIRE are likely inaccurate, reconciles conflicts among multiple SIRE
sources, and imputes missing racial/ethnic information when the
predictive confidence is high. HARE assigned >98% of participants
with genotype data to one of four non-overlapping groups: non-
Hispanic European, non-Hispanic African, Hispanic, and non-His-
panic Asian Americans. The present GWAS of diabetes-related HF
focused on the MVP European ancestry.

To replicate the significant loci associated with diabetes-related
HE we performed a similar genetic association analysis in the
UKB participants of European ancestry with available genomic
data. Additional sample exclusions were implemented for third-
degree or closer relatedness (UKB Data Field 22020 includes unre-
lated participants for the calculation of principal components),
sex chromosome aneuploidy, and excess missingness or heterozy-
gosity, as defined by the UKB.

All-cause HF GWAS meta-analysis

Imputed and directly measured genetic variants from the MVP Euro-
pean participants were tested for association assuming an additive
genetic model using PLINK2. The GWAS scan included variants
with minor allele frequency higher than 1%. Logistic regression of
all-cause HF was adjusted for age, sex, and the top ten genotype-
derived principal components. We meta-analyzed summary statis-
tics of previously published HF GWAS from the MVP (43,344 individ-
uals with HE, 258,943 controls),'> HERMES (47,309 individuals with
HE, 930,014 controls),’* and FinnGen (23,622 individuals with HE,
317,939 controls)*’ studies, which included non-overlapping partic-
ipants of European ancestry using the random-effect meta-analysis
model implemented in GWAMA (genome-wide association meta
analysis).”’ GWAS results were summarized using FUMA, a platform
that annotates, prioritizes, visualizes and interprets GWAS results.*?
GWS SNPs (p < 5 x 10~%) were grouped into a genomic locus based
on either 1* > 0.1 or distance between loci of <500 kb using the 1000
Genomes European reference panel. Lead SNPs were defined within
each locus if they were independent (1* < 0.1). We considered loci as
novel if the sentinel SNP was of genome-wide significance (p < 5 x
1078) and located >1 Mb from previously reported GWS SNPs asso-
ciated with HE.

Based on the meta-analysis summaries of HF, we employed
multivariate gene-based analysis of genome-wide association
studies (MAGMA)*® to conduct gene and gene-set analysis by
aggregating genetic signals within individual genes, thus revealing
gene-based associations that extend beyond the single-marker
level. We also conducted tissue expression analysis on 54 distinct
tissue types using the Genotype-Tissue Expression®* (GTEx) data-
set, which offers extensive data on gene expression across a diverse
array of human tissues, encompassing various organs and biolog-
ical systems. Additionally, we conducted an analysis of 30 broader
tissue categories, omitting specific subtypes or regions, in order to
gain insights into gene expression patterns within major tissues.
Further, we delved into the functional significance of genes linked
to HF through gene set analysis and tissue enrichment analysis,
employing the data-driven expression-prioritized integration for
complex traits (DEPICT)*® tool. We applied the false discovery
rate®® (FDR), and associations with a corrected q value <0.2 were
deemed statistically significant.

We additionally conducted a transcriptome-wide association
study to explore the relationship between gene expression and

HF loci using the software FUSION,*” based on the reference data-
sets obtained from GTEx** V8, including gene expression profiles
across tissues including coronary artery, tibial artery, atrial
appendage, left ventricle, and skeletal muscle. We then performed
colocalization analysis using the coloc*** package in R to identify
shared regions between gene expression and HF. Five hypotheses
were evaluated for the colocalization analysis: (1) there is no asso-
ciation between the gene expression and HF; (2) there is signifi-
cant association between the gene expression and HF, but this as-
sociation is driven solely by the functional effects of the gene
expression; (3) there is significant association between the gene
expression and HF, but this association is driven solely by the ge-
netic variants identified in HF GWAS; (4) both the gene expression
and HF have independent associations with different genetic var-
iants; and (5) there is evidence for colocalization, indicating that
the gene expression and HF signals share common causal variant.
Colocalization was defined as maximum posterior probability of a
sharing causal variant between the gene expression and HF associ-
ation >0.75.

Additionally, for the identification of overlapping enhancer
regions potentially associated with HF we employed the
EnhancerAtlas 2.0 database,*’ which encompasses 295 enhancers
specific to various human tissues and cells. For the GWS HF loci,
we obtained tissue-specific cis expression quantitative trait
loci (eQTL) analysis results from the GTEx** version 7 database
(https://gtexportal.org) based on the expression data of the
following 5 tissue types: coronary artery, tibial artery, atrial
appendage, left ventricle, and skeletal muscle. Genes with at least
one SNP in cis significantly associated at FDR of <0.05 were
included. For each gene, a specific threshold for nominal p values
was computed. Variants with a nominal p value below the gene-spe-
cific threshold were identified significant cis-eQTL.*!

GIVs for T2D and all-cause HF

We selected independent genetic loci (r* < 0.1) associated with
T2D from the large GWAS among participants of European
ancestry only or multiple ancestries with predominantly European
ancestry participants by 2017.%> A total of 85 independent T2D-
associated SNPs were selected, including SNPs that are GWS
( < 5 x 107% in at least one published GWAS of European
ancestry but not necessarily GWS in the 2017 T2D GWAS.*
Among the 85 SNPs, 82 were also present in the all-cause HF
GWAS meta-analysis and thus were used as the GIVs of T2D in
the downstream MR analysis. From the all-cause HF GWAS meta-
analysis described above, we identified independent GWS SNPs
as the GIVs for HF in the bi-directional MR analysis.

Two-sample bidirectional MR

Two-sample MR was conducted to examine possible bidirectional
causal associations between T2D and all-cause HF using GIVs from
previous GWAS of T2D** and a large meta-analysis of all-cause HF
in the present study. To minimize sample overlap in the two-sample
MR design, we used summary statistics of T2D GWAS without UKB
and MVP samples and all-cause HF GWAS from the MVP, HERMES,
and FinnGen studies, all from studies of European ancestry. We esti-
mated the MR association between T2D and all-cause HF using three
complementary methods: inverse-variance weighted (IVW), median
weighted, and MR-Egger regression, asimplemented in the R package
TwoSampleMR. We reported IVW estimates when the evidence of
pleiotropy was not present. MR-Egger regression was used to identify
the horizontal pleiotropy indicated by significant intercept of the
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Table 1.
adjusted GWAS of heart failure

Characteristics of the European American participants in the MVP included in the GWAS of diabetes-related and diabetes-

All (n = 434,089)

Diabetes (n = 106,321)

Non-diabetes (n = 327,768)

Non-HF controls

HF (n = 68,059) (n = 366,030)

HF (n = 31,346)

Non-HF controls
(n = 291,055)

Non-HF controls

(n = 74,975) HF (n = 36,713)

Age, years (SD) 69.59 (9.628) 62.49 (14.11)

Male, n (%) 65884 (96.80) 336064 (91.81)

BMI, kg/m? (SD) 31.14 (6.70) 29.30 (5.54)

Obesity, (BMI >30) 35106 (51.58) 145631 (39.79)

Atrial fibrillation, n (%) 22681 (33.33) 23703 (6.48)

Coronary artery
disease, n (%)

45739 (67.20) 79154 (21.63)

Chronic kidney
disease, n (%)

23610 (34.69) 34404 (9.40)

Diabetes n (%) 31346 (46.06) 74975 (20.48)

Hypertlipidemia, n (%) 59567 (87.52) 244010 (66.66)

Hypertension, n (%) 62596 (91.97) 228065 (62.31)

68.76 (8.44)
30509 (97.33)
33.33 (6.80)

20778 (66.29)
10232 (32.64)

23091 (73.66)

13615 (43.43)

31346 (100)
29724 (94.83)
30573 (97.53)

66.06 (9.80) 70.29 (10.48) 61.57 (14.88)

71454 (95.30) 35375 (96.36) 264610 (90.91)

31.80 (5.99) 29.26 (6.01) 28.66 (5.23)

43555 (58.09) 14328 (39.03) 102076 (35.07)

6378 (8.51) 12449 (33.91) 17325 (5.95)

26373 (35.18) 22648 (61.69) 52781 (18.13)

13472 (17.97) 9995 (27.22) 20932 (7.19)

74975 (100) 0 (0) 0 (0)

67780 (90.40) 29843 (81.29) 176230 (60.55)

67346 (89.82) 32023 (87.23) 160719 (55.22)

HF, heart failure; SD, standard deviation; n, number; BMI, body mass index.

regression (p value < 0.05). A random-effects model was used to esti-
mate the MR association between exposure and outcome variables
for IVW and MR-Egger regression. MR-PRESSO (Mendelian random-
ization pleiotropy residual sum and outlier) was used to detect and
remove outlier GIVs to correct for potential horizontal pleiotropy.**
Aswe only evaluate the relationship between T2D and HF, we consid-
ered nominal p value of 0.05 as suggestive evidence for MR
association.

Latent heritable confounder MR (LHC-MR) is a method designed
for analyzing GWAS summary statistics to estimate bidirectional
causal effects while accounting for potential heritable confounder
between a pair of traits.** LHC-MR can overcome the limitations
of traditional MR, including under-exploitation of genome-wide
markers, sensitivity to the presence of a heritable confounder, and
potential sample overlap.** LHC-MR extends the traditional MR
model by using a structural equation model incorporating the pres-
ence of alatent heritable confounder and estimates its contribution
to T2D and all-cause HF separately, while simultaneously esti-
mating the bidirectional causal effect between T2D and all-cause
HE. We applied this method to estimate the bidirectional relation-
ship between T2D and all-cause HF using summary statistics from
alarge T2D GWAS** and the meta-analysis of HF GWAS, both in Eu-
ropean ancestry.

GWAS of diabetes-related HF and diabetes-adjusted HF

We conducted a GWAS of diabetes-related HF using all-cause HF
individuals and controls'* among 106,321 diabetes individuals of
European ancestry from the MVP cohort (Table 1). Among them,
a total of 31,346 are HF individuals with comorbid T2D, and
74,975 are non-HF diabetes controls. The genetic association of dia-
betes-related HF was adjusted for age, sex, and top 10 principal com-
ponents (PCs). Using the same statistical model, we also performed
the GWAS of diabetes-related HF among 26,431 unrelated diabetes
individuals of European ancestry from the UKB, including 3,506 in-
dividuals developed HE. To explore the potentially similar collider
bias in diabetes-adjusted HE, we also conducted GWASs of all-cause
HF adjusted for T2D status among 434,089 MVP participants of Eu-
ropean ancestry, adjusted for age, sex, T2D status, and top 10 PCs.

Correction for collider bias using Slope-Hunter for
GWAS of diabetes-related HF

The Slope-Hunter method was developed for correcting collider bias
in conditional GWAS using genetic effects of the collider (i.e., T2D)
and the outcome variable (i.e., HF).*> The method employs model-
based clustering to identify and utilize variants that specifically
affect T2D to estimate an adjustment factor under the assumption
that these variants explain more variability in T2D compared to
other variant clusters. The method was implemented in the Slope-
Hunter R package (https://github.com/Osmahmoud/SlopeHunter).
We obtained GWAS summary statistics for diabetes-related HF and
T2D from the MVP study and considered 7,700,660 variants (minor
allele frequency [MAF] >0.01) present in both datasets. An indepen-
dent set of SNPs was obtained after performing lingkage disequilib-
rium (LD) pruning using PLINK2 software (r* threshold of 0.1
within 250 SNP windows) using the European ancestry population
of the 1000 Genomes reference panel. The threshold of p < 0.001
was used to define SNP-T2D associations and to fit the main
model-based clustering.

Correction for collider bias using instrument effect
regression method for GWAS of diabetes-related HF
Under the assumption that the direct genetic effects on HF are in-
dependent of those on T2D, we additionally used the instrument
effect regression% (IER) method to correct for the index event bias
of the diabetes-related HF GWAS. The analysis was performed
using R package indexevent, using the aforementioned indepen-
dent set of SNPs after LD pruning and the improved version of
the simulation extrapolation (SIMEX) algorithm*”*® to estimate
the bias term with 10 simulations performed in each stage of the
SIMEX adjustment.

Correction for collider bias for GWAS of diabetes-
adjusted HF

Similarly, we performed sensitivity analysis for the GWS loci of the
diabetes-adjusted HF GWAS identified using FUMA.** Both Slope-
Hunter and IER methods were applied to correct for the bias. In
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addition, we used mtCOJO™’ to estimate the genetic effects on HF
conditioning on T2D.

Results

The present study consists of a large meta-analysis of
all-cause HF in the European ancestry to enable the bidirec-
tional MR study of T2D and HF followed by a GWAS of dia-
betes-related HF with collider bias correction (Figure 1).
The primary study population consisted of 106,321 MVP
participants with T2D diagnosis out of 434,089 with Euro-
pean ancestry, predominantly male. In the GWAS of dia-
betes-related HF, we included 31,346 HF individuals
with comorbid T2D and 74,975 non-HF diabetes controls
(Table 1). Individuals with HF were older and had higher
prevalence of obesity, atrial fibrillation, coronary artery
disease, chronic kidney disease, hyperlipidemia and hyper-
tension with or without T2D (Table 1). The prevalence of
all-cause HF was higher among T2D individuals (29.5%)
than that among non-diabetes participants (11.2%). In
the UKB, we included 26,431 T2D individuals with Euro-
pean ancestry. Among them, 3,506 developed HF using
clinical diagnosis codes (Table S1). Similarly, individuals
with HF had significant (p < 0.001) older age, higher prev-
alence of cardiometabolic risk factors, and more comorbid-
ities than the control populations without HE.

Genome-wide meta-analysis of all-cause HF
A total of 10,835,443 SNPs with MAF >1% in any one of the
three studies (i.e., MVP, HERMES, and FinnGen) were

included in the meta-analysis of all-cause HF among Euro-
pean ancestry. We identified a total of 61 independent
GWS loci (Table S2) associated with all-cause HE, including
24 novel loci (Table 2) compared with previous reported HF
GWAS.'>'* Overlapping with a T2D GWAS,** 59 out of 61
HF-associated SNPs also had summary statistics and were
used as the GIVs for all-cause HF in the two-sample MR anal-
ysis (Table S2).

The gene-based test based on the HF GWAS meta-anal-
ysis mapped to 19,051 protein coding genes and resulted
in 86 statistically significant genes at p < 2.62 x 10°°
(Table S3). Tissue expression analysis revealed several tissue
types relevant to the heart and blood vessel, including cor-
onary artery, tibial artery, atrial appendage, left ventricle,
and skeletal muscle (Tables S4 and S5). Gene-set analysis
showed various protein-protein interaction networks
(Table S6), and colocalization analysis provided evidence,
suggesting that both the gene expression and most signals
related to HF share a common causal variant (Table S7). HF
loci overlap with enhancer regions that play a role in con-
trolling gene expression (Table S8), and eQTL analysis
identified SNPs that have an impact on the regulation of
gene expression in HF-related tissues (Table S9).

Bidirectional MR analysis between T2D and all-cause HF

A total of 82 GIVs for T2D (Table S10) and 59 for HF had
summary statistics in both T2D and HF GWAS. IVW-MR
method showed significant MR association in both direc-
tions (Figure 2; Table S11), suggesting potential causal ef-
fect of T2D on HF (OR 1.07, 95% confidence interval [CI]
1.04-1.10, p = 7.02 X 1077), as well as potential causal
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Table 2. Twenty-four novel genome-wide significant loci associated with all-cause HF

rsiD Gene Chr. Pos. (hg19) EA NEA EAF OR (95% CI) p value

1528416760 INPP5B 1 38409112 T A 0.73 1.03 (1.02, 1.04) 1.40 x 1078
1517163313 MIA3 1 222799625 G T 0.71 1.03 (1.02, 1.04) 3.54 x 1078
157564469 ZEB2 2 145258445 C T 0.16 1.04 (1.03, 1.05) 2.57 x 107°
153820888 SPATS2L 2 201180023 C T 0.40 1.03 (1.02, 1.04) 1.43 x 10°1°
156796042 FOXP1 3 71530120 A G 0.62 1.03 (1.02, 1.04) 7.35x 107
1517253722 SHROOM3 4 77367287 G A 0.57 1.03 (1.02, 1.04) 4,57 x 1078
156842241 EDNRA 4 148400819 A C 0.14 1.04 (1.02, 1.05) 4,67 x 1078
1572810976 CPEB4 5 173309057 G A 0.68 1.03 (1.02, 1.04) 1.05 x 1078
15117321970 FHLS 6 97071980 T C 0.05 1.07 (1.05, 1.10) 2.81 x 1078
153918226 NOS3 7 150690176 T C 0.08 1.05 (1.03, 1.07) 3.54 x 1078
154733328 NRG1 8 32259246 G A 0.14 1.04 (1.03, 1.05) 3.44 x 1078
1511774829 RP11-127H5.1 8 105978368 T A 0.88 1.05 (1.03, 1.07) 3.76 x 10710
157873569 TMEM245 9 111796753 A T 0.57 1.03 (1.02, 1.04) 1.61 x 1078
1571311904 BDNF 11 27742447 C CCATTT 0.82 1.05 (1.03, 1.06) 3.32 x 107°
15113104597 CHD4 12 6703172 C T 0.16 1.04 (1.03, 1.05) 1.21 x 1078
1534682944 DIP2B 12 50982864 A G 0.31 1.03 (1.02, 1.05) 1.07 x 1078
15112403212 SCARB1 12 125303254 T C 0.14 1.05 (1.03, 1.06) 7.99 x 1077
1510161594 ATP4B 13 114306243 G C 0.14 1.04 (1.03, 1.06) 1.09 x 1078
1558472533 AMN 14 103385634 G A 0.20 1.04 (1.03, 1.05) 5.49 x 1071
1517483686 IREB2 15 78733390 T A 0.33 1.03 (1.02, 1.04) 1.55 x 1077
1511634851 ABHD17C 15 81028965 G C 0.45 1.03 (1.02, 1.04) 4.87 x 1078
rs11861290 CMIP 16 81548522 A G 0.76 1.04 (1.03, 1.05) 2.27 x 10°1°
1511656489 ADORA2B 17 15837141 G C 0.19 1.04 (1.02, 1.05) 6.15 x 1077
1517608766 GOSR2 17 45013271 C T 0.15 1.04 (1.03, 1.06) 6.24 x 1071°

Gene, gene abbreviation of the gene closest to the sentinel SNP; Chr., chromosome; Pos., position; T2D, type 2 diabetes; HF, heart failure; EA, effect allele; NEA,
non-effect allele; EAF, effect allele frequency; OR: odds ratio; Cl, confidence interval.

Novel locus: a 1 Mb region around the sentinel SNP (=500 kb) not overlapping with any previously reported genome-wide significant locus (+ 500 kb region
centered around the sentinel SNP of each locus). Only the summary statistics of the sentinel SNPs are reported in the table.

effect of HF on T2D (OR 1.60, 95% CI 1.36-1.88, p =
1.55 x 10~®). The MR-Egger method didn’t support a sig-
nificant intercept, which indicates limited pleiotropy.
Therefore, we used IVW results as the primary MR esti-
mates in the bidirectional MR analysis. Only the HF effect
on T2D showed significant positive association in MR-
Egger analysis. After removing 5 (rs10965223, rs635634,
1s7903146, 151061810, and rs1558902) and 2 (rs600038
and 1s11642015) outliers for T2D and HF, respectively,
the MR-PRESSO analysis showed similar significant MR as-
sociations between T2D and HF in both directions using
IVM and MR-Egger methods (Figure 2; Table S11).

Using LHC-MR method, we also identified bi-direc-
tional relationship between all-cause HF and T2D.
Similar to two-sample MR results, T2D is associated
with higher risk for HF with moderate effect size (OR
1.09, 95% CI 1.06-1.13, p value 3.95 x 10’7). Mean-
while, HF is associated with higher risk for T2D with

much larger effect size (OR 1.95, 95% CI 1.55-2.44,
p value 6.82 x 1077).

GWAS of diabetes-related HF with Slope-Hunter
correction

In the GWAS of diabetes-related HF among 106,321 indi-
viduals with diabetes (31,346 individuals with all-cause
HE 29.5%), we identified nine suggestively significant
(p value <10°°) loci including three GWS (p value <5 X
1078) loci associated with diabetes-related HF (Table 3;
Figure 3). The inflation factor of the GWAS is 1.04. One dia-
betes-related HF-associated locus located on chromosome
10 (TCF7L2) is strongly associated with T2D but not asso-
ciated with all-cause HF in the meta-analysis (p value of
0.57), which can be affected by collider bias. After Slope-
Hunter correction, the TCF7L2 locus was no longer associ-
ated with diabetes-related HF (OR 1.02, 95% CI 0.99-1.05,
p value 0.15). After IER correction, the association between
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Figure 2. Forest plot of bidirectional MR between T2D and all-

cause HF
95% CI of OR is included in the parentheses. IVW, inverse-vari-
ance weighted; MR, Mendelian randomization; p, p value.

the TCF7L2 locus remained GWS. However, the associa-
tions of TCF7L2 with diabetes-related HF, or diabetes-
adjusted HF diminished after collider bias correction using
Slope-Hunter (Tables 3 and S12) and mtCOJO (Table S12).
Meanwhile, the other two loci (Figure S1) on chromosome
4 (sentinel SNP rs17513625 close to PITX2, OR 1.25, 95%
CI 1.16-1.35, p value 9.98 x 107%) and 9 (sentinel SNP
154977575 close to CDKN2B—AS1, OR 1.06, 95% CI 1.04-
1.08, p value 2.91 x 10~°) remained GWS after Slope-
Hunter correction for collider bias (Figure 4). Interestingly,
the genetic association of chromosome 4 locus with HF
was much weaker among 327,768 MVP participants
without T2D (OR 1.07, 95% CI 1.00-1.14, p value 0.039),
presenting an example that T2D may increase the genetic
association of HF (interaction p value 0.016). We pursued
replication of two GWS loci on chromosome 4 and 9 using
the UK Biobank study participants with European ancestry
(Table S1). After applying the Slope-Hunter correction to
the GWAS of diabetes-related HF adjusted for age, sex,
and top ten PCs, consistent associations were identified
for rs17513625 (PITX2 locus, OR 1.19, 95% CI 1.02-1.40,
p value 0.027) and rs4977575 (CDKN2B—AS1 locus, OR
1.08, 1.03-1.14, p value 0.0034), respectively.

Using the p value cutoff of 0.001, 10~*, and 107>, we
investigated if the selection of GIVs and the slope esti-
mates are sensitive to the parameter setting in the Slope-
Hunter method (Table S13). The estimated slope ranged
from —-0.198 to —0.219 with overlapping 95% CIs.
Different p value cutoffs had little impact on Slope-
Hunter corrected GWAS of diabetes-related HF. Across all
threshold levels, the two GWS loci remained the same,
and the TCF7L2 locus was not significantly associated
with diabetes-related HF (p value >0.05).

Discussion

The present study aimed to elucidate the relationship be-
tween T2D and HF and identify the genetic loci of dia-

betes-related HE. Using GWS loci from a large meta-anal-
ysis of all-cause HF, we conducted a bidirectional MR
analysis to investigate the relationship between T2D and
HE. The estimates from the two-sample MR strongly sup-
ported that not only is T2D a risk factor of HF, but also,
HF increases the risk for T2D. As a result, a diabetes-strati-
fied or a diabetes-adjusted HF GWAS may identify spurious
genetics associations due to collider bias (both HF and ge-
netic factors can affect T2D). We adopted a recently devel-
oped method, Slope-Hunter, to correct for such collider
bias in the GWAS of diabetes-related GWAS among over
100,000 individuals with diabetes from the MVP. The
Slope-Hunter method assumes that the model-based clus-
tering algorithm correctly identifies the valid GIVs. This
tends to be the case when the largest number of similar ra-
tios 85y /Bgx comes from the valid GIVs.”” In many simu-
lation scenarios, Slope-Hunter performs well with correct
type-1 error and increased power over instrument effect
regression. However, Slope-Hunter has poor performance
when the invalid GIVs explain more or equal variation in
the index event than the valid GIVs and have strong
negative correlation of effects.*> After removing the T2D-
associated TCF7L2 locus by Slope-Hunter correction, we
identified two GWS loci associated with diabetes-related
HF located on chromosome 4 (PITX2) and chromosome
9 (CDKN2B—AS1). Although both loci have been associ-
ated with all-cause HF,'>'® the effect size of the SNP
(PITX2) was larger among T2D individuals than that
among non-T2D participants. In addition, the sentinel
SNP 1s17513625 is weakly correlated with the established
atrial fibrillation-associated PITX2 locus (LD 1? of 0.115
with rs17042175 in the European ancestry). By definition
of collider bias, we anticipated that the collider bias could
also affect the diabetes-adjusted GWAS of all-cause HF.
Without Slope-Hunter correction, we identified 22 GWS
loci associated with all-cause HF among European ancestry
(Table S12; Figure S2). Two loci located on chromosome 1
(Clorf185) and chromosome 10 (TCF7L2) were not GWS
after Slope-Hunter correction. Both loci were significantly
associated with T2D (Table S12). One unique assumption
of IER is that the collider bias b is constant across SNPs
and may be estimated by the linear regression of f'gy on
Bax across many SNPs.*® This assumption may be violated
as the shared genetic component between T2D and HF can
be substantial. Therefore, Slope-Hunter can be effective in
the correction of collider bias in the present study because
the estimate of bias b relies on a subset of SNPs with likely
causal effect (Tables 3 and S12).

Observational studies consistently demonstrated that
diabetes increases the risk for HE. On the other hand, HF
induces metabolic impairment, which leads to higher
incidence of T2D among individuals with HF than in com-
parable general populations. Significant MR associations
from the present study supported the bidirectional causal
relationship between T2D and all-cause HF. Regardless of
the directionality of the effects, adults with both diabetes
and HF can have 8.8-fold higher mortality rate than
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Table 3. Genomic loci associated with diabetes-related HF (genomic loci with p < 10 °) with correction for collider bias using Slope-Hunter and instrument effect regression
Diabetes-related HF
Diabetes-related HF GWAS after instrument
Diabetes-related GWAS after Slope- effect regression
HF GWAS T2D GWAS HF GWAS meta-analysis Hunter correction correction
rsiD Gene Chr. Position EA NEA EAF OR (95% CI) p OR (95%Cl) p OR (95% Cl) p OR (95% CI) p OR (95% CI) p
1602633 PSRC1? 1 109821511 G T  0.78 1.06 (1.04, 3.83 x 1.00 (0.99, 0.518 1.05 (1.04, 6.75 x 1.06 (1.04, 3.11 x 1.06 (1.04, 7.00 x 1077
1.09) 1077 1.02) 1.06) 107 1.09) 1077 1.09)
rs17513625  PITX2*" 4 111848270 A G  0.02 1.24 (1.15, 1.72 x 1.03 (0.98, 0.280 1.11 (1.08, 6.63 x 1.25 (1.16, 9.98 x 1.23 (1.14, 495 x 1078
1.34) 1078 1.08) 1.14) 1014 1.35) 10~° 1.33)
1s55730499  LPA® 6 161005610 T C  0.07 1.11 (1.07, 1.87 x 1.00 (0.97, 0.767 1.1(1.08,1.12) 1.79 x 1.11 (1.06, 3.02 x 1.11 (1.07, 1.91 x 1077
1.15) 1077 1.02) 10723 1.15) 1077 1.15)
154977575 CDKN2B-AS1** 9 22124744 G C 0.5 1.06 (1.04, 2.40 x 1.02 (1.01, 1.74 x 10~ 1.06 (1.05, 1.37 x 1.06 (1.04, 2.91 x 1.05 (1.03, 2.50 x 1077
1.08) 1078 1.03) 1.07) 10731 1.08) 107? 1.08)
51837530484 LINC02881 10 44738619 CA C  0.91 1.10 (1.06, 5.68 x 1.00 (0.97, 0.681 1.02 (1, 1.05) 0.0306 1.09 (1.06, 9.37 x 1.10 (1.06, 5.30 x 1077
1.14) 1077 1.02) 1.14) 1077 1.14)
1s201426892 AGAPS 10 75439094 G A 0.99 1.78 (1.42, 5.17 x 1.07 (0.94, 0.287 - - 1.81 (1.44, 3.23 x 1.76 (1.4, 2.21) 1.10 x 10~
2.24) 1077 1.21) 2.27) 1077
rs11196211  TCF7L2° 10 114817009 A C  0.69 1.07 (1.05,1.1) 1.16 x 0.80 (0.79, 2.50 x 1(0.99,1.01) 0.569 1.02 (0.99, 0.154 1.12 (1.1, 1.15) 8.70 x
107° 0.81) 107235 1.05) 10724
rs4403799  AMPD3 11 10330455 G A  0.11 1.08 (1.05, 9.58 x 0.99 (0.97, 0.497 1.03 (1.02, 5.57 x 107 1.08 (1.05, 2.05 x 1.08 (1.05, 7.55x 1077
1.12) 1077 1.01) 1.05) 1.12) 10°° 1.12)
15797765 SLC6A13 12 372438 G A 0.78 1.06 (1.04, 8.12 x 0.98 (0.96, 2.76 x 107 1.02 (1.01, 0.0016 1.06 (1.03, 7.61 x 1.07 (1.04, 1.40 x 1077
1.09) 1077 0.99) 1.03) 1.08) 10~ 1.09)

Chr., chromosome; Position, human genome build hg19; EA, effect allele; NEA, non-effect allele; EAF, effect allele frequency; HF, heart failure; GWAS, genome-wide association study; T2D, type 2 diabetes; OR, odds ratio; Cl,

confidence interval.
#GWS loci associated with all-cause HF in the meta-analysis of the European ancestry
PGWS association (p value <5 x 107%) before and after Slope-Hunter correction

°GWS association (p value <5 x 1078) with diabetes-related HF but not significant (p value>0.05) after Slope-Hunter correction.
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those without HF (32.7 vs. 3.7 per 1,000 person-years).”’
Thus, managing T2D and hyperglycemia can be effective
to prevent HE, to mitigate T2D progression, and eventually
reduce mortality among individuals with HE. SGLT2 inhib-
itors are a new class of antidiabetic medications that reduce
hyperglycemia through inhibition of glucose reabsorption
in the renal proximal tubules. They significantly reduced
the risk of HF-related hospitalization and cardiovascular
death.” "' SGLT2 inhibitors are recommended for individ-
uals with HF irrespective of diabetes status.””

Both T2D and HF are complex clinical conditions
involving numerous risk factors and pathways. Recent
studies identified subtypes of T2D using risk factor and
biomarker data that presented differential clinical out-
comes.’*>* Analyses of T2D-associated loci also revealed
genetic clusters linking with pathophysiological pathways
underlying T2D,>® supporting the heterogeneity of T2D
mechanism. On the other hand, the heterogeneity of HF
has been well documented, even among the major
clinical subtypes. Based on the measurement of LVEF,
recent guidelines categorized HF into HFrEF, HFpEF, HF
with mildly reduced EF (HFmrEF), and HF with improved
EF (HFimpEF), with HFrEF and HFpEF as the dominant
forms.>* Not surprisingly, HFtEF and HFpEF have distin-
guishable risk profiles, different response to treatments,
and contrasting clinical prognosis. Even within HFpEF sub-
type, the evidence of heterogeneous subtypes has emerged
to support precision treatment and prognosis,”® which
holds the promise for mitigating the growing burden of
HFpEF in the aging population. A recent large GWAS of
HFrEF and HFpEF also highlighted the different genetic ar-
chitecture between two HF clinical subtypes, and sup-
ported the phenotypic heterogeneity of HFpEF.'? However,
the limited number of HF subtype GWAS and identified
loci, the power of the bidirectional MR between T2D and
HF subtypes, and the GWAS are suboptimal. Particularly,
only one HFpEF-associated loci close to FTO has been
reported. Since the FTO locus is highly pleiotropic, it
cannot be used as a GIV of HFpEF in the MR analysis.
The future GWASs of HF subtypes would provide more
GIVs to robustly estimate the relationship between T2D
and HF subtypes and accurately identify genetic loci of

12 13 14 15 17

Red horizontal line indicates GWS threshold
of nominal p value of 5 x 1072,

HF with comorbid conditions with
correction of potential collider bias.

We acknowledge that the MVP and
the UKB participants were recruited
from the health care systems and
may not fully represent the popula-
tions in the clinical system or the gen-
eral population. However, the genetic
associations with cardiometabolic diseases reported in the
biobank cohorts are consistent with other cohorts.'*>”>*
Recent research has highlighted the potential influence of
selection bias on genetic findings.”” While the genetic asso-
ciations with cardiometabolic diseases reported in the bio-
bank cohorts are consistent with other cohorts,'?°”°% selec-
tion bias of such large biobank cohorts can impact genetic
association findings, including those identified in the pre-
sent study. Causal effect of T2D on HF could also be related
to clinical diagnosis procedures of T2D and HE. For example,
people are more likely to be identified with HF if they have
T2D would contribute to the causal association. In the pre-
sent study, we cannot rule out some contribution from
possible increased attention to risk factors, including
glucose levels along with blood pressure and lipid levels,
in the clinical diagnosis of HE.

19 21

Conclusion

Global trend of growing T2D and HF requires improved
intervention and prevention strategies for diabetes-related
HF, a syndrome with high morbidity and mortality.
Exploring the genetic architecture of diabetes-related HF
would greatly help understand the mechanism and path-
ophysiology of the condition as shown in recent GWAS of
human diseases. However, the complexity of genetic
factors underlying T2D and HEF, as well as the relationship
between them, created a unique challenge in the identifi-
cation of true genetic associations with diabetes-related
HE. We have demonstrated the evidence supporting the
bidirectional relationship between T2D and HF, addressed
the impact of collider bias on the GWAS of diabetes-
related HF, identified and replicated two genetic loci in
the MVP and UK Biobank, two large biobank studies.
The study design and analytical workflow can be
extended to other studies of diabetic complications,
particularly outcomes related to HF and HF subtypes. In
light of growing precision medicine studies focusing on
certain disease subgroups or individuals with specific co-
morbid conditions, this case study presented the key con-
siderations of epidemiologic, genetic, and biostatistical
evidence and methods for such complex disease research
in target populations.
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Data and code availability

Due to the US Department of Veterans Affairs (VA) regu-
lations and our ethics agreements, the analytic datasets
used for this study are not permitted to leave the Million
Veteran Program (MVP) research environment and VA
firewall. This limitation is consistent with other MVP
studies based on VA data. However, the MVP data are
made available to researchers with an approved VA and
MVP study protocol. The dbGAP accession number for
the full summary level association data of the genome-
wide association analyses in the MVP and the meta-
analysis from this report is dbGAP: phs001672. The
only restriction is that use of the data is limited to
health/medical/biomedical purposes and does not
include the study of population origins or ancestry. Use
of the data does include methods development research
(e.g., development and testing of software or algo-
rithms), and requestors agree to make the results of
studies using the data available to the larger scientific
community.

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2024.05.018.
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