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Abstract

Objective: To integrate long-term daily continuous glucose monitoring (CGM) device data with electronic health
records (EHR) for patients with type 1 and type 2 diabetes (T1D and T2D) in the national Veterans Affairs
Healthcare System to assess real-world patterns of CGM use and the reliability of EHR-based CGM information.
Research Design and Methods: This observational study used Dexcom CGM device data linked with EHR
(from 2015 to 2020) for a large national cohort of patients with diabetes. We tracked the initiation and consis-
tency of CGM use, assessed concordance of CGM use and measures of glucose control between CGM device
data and EHR records, and examined results by age, ethnicity, and diabetes type.
Results: The time from pharmacy release of CGM to patients to initiation of uploading CGM data to Dexcom serv-
ers averaged 3 weeks but demonstrated wide variation among individuals; importantly, this delay decreased mark-
edly over the later years. The average daily wear time of CGM exceeded 22 h over nearly 3 years of follow-up.
Patterns of CGM use were generally consistent across age, race/ethnicity groups, and diabetes type. There was
strong concordance between EHR-based estimates of CGM use and Dexcom CGM wear time and between esti-
mates of glucose control from both sources.
Conclusions: The study demonstrates our ability to reliably integrate CGM devices and EHR data to provide
valuable insights into CGM use patterns. The results indicate in the real-world environment that CGM is
worn consistently over many years for both patients with T1D and T2D within the Veterans Affairs
Healthcare System and is similar across major race/ethnic groups and age-groups.
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Highlights

• We successfully integrated glucose data from continuous
glucose monitoring (CGM) devices with the national
Veterans Affairs Healthcare System EHR data in each
place for nearly 3000 patients with type 1 and type 2
diabetes.

• There was strong agreement between electronic health
records and Dexcom device data for both estimates of
CGM use and between measures of glucose control.

• Correlations between CGM-based glucose levels and
HbA1c levels were lower in African Americans, sug-
gesting greater mismatching between HbA1c and glu-
cose levels in this group.

• Patterns of CGM use demonstrated remarkable consis-
tency of CGM use over many years that was similar in
younger and older age-groups and across major race/
ethnicity groups.

Introduction

T he use of continuous glucose monitoring (CGM) has
seen significant recent growth, thanks to improvements

in sensor accuracy, enhanced user-friendliness, and the
expanded coverage of medical insurance reimbursements.
Simultaneously, efforts have been dedicated to establishing
the integration of CGM with other diabetes technology such
as insulin pumps1 and achieving consensus on recommenda-
tions for use and interpretation of CGM readings.2 This latter
effort has included identifying key CGM measurement
standards such as time in range (70–180 mg/dL—TIR) and
glycemic management index (GMI), as well as the minimum
number of days (14 days) of CGM wear to obtain reliable
and clinically useful metrics of CGM.3

CGM has demonstrated its effectiveness in improving gly-
cemic control in both type 1 and type 2 diabetes (T1D and
T2D).4–6 However, these studies have been primarily con-
ducted in shorter-term randomized clinical trials7–9 and thus
reflect the use of CGM in a relatively motivated subset of
patients, following careful study protocols that encouraged
consistent use of CGM. Thus, we know very little about the
short-term and long-term patterns of CGM use in the real
world and the potential value of its integration into the
increasingly common systems of electronic health records
(EHR). Several recent studies conducted in larger health care
systems have indicated that initiation of CGM, based on
insurance claims or pharmacy prescriptions, has been linked
with declines in HbA1c.10 Importantly, because of the
longer-term follow-up available in the EHR used in these
studies, investigators were able for the first time to compare
in large samples of T1D and T2D CGM users and nonusers
the effects of CGM use on common longer-term complica-
tions of diabetes and demonstrated reduced admission to
emergency rooms or hospitals10,11 and even reductions in
cardiovascular events.11 However, without the actual glucose
data, EHR-based assessments of CGM have limitations as
they (1) can only surmise CGM initiation by prescription
refills or patterns of claims data, (2) can only estimate pat-
terns and duration of CGM use by these same methods, and
(3) cannot test the relevance of currently recommended
CGM glycemic metrics (e.g., TIR) or develop improved met-
rics for the prediction of long-term outcomes.

To better understand the long-term patterns of CGM use
in a real-world setting and to understand and improve the
reliability and usefulness of EHR to study the nature and
benefits of CGM use on diabetes complications, we linked
CGM device data with the EHR data of users with T1D and
T2D of Dexcom CGM devices in the Veterans Affairs
Healthcare System. The objectives of this initial study of
linking CGM device data with EHR data were to (1) describe
and validate the construction of these cohorts of CGM users,
(2) examine the real-world short-term and long-term patterns
of use of CGM in both adult patients with T1D and T2D, (3)
examine the relationships between CGM data and EHR
measures of glycemic control, (4) identify the strengths and
limitations of EHR-only based data to estimate CGM use,
and (5) determine if these patterns of CGM use and relation-
ships between measures of glycemic control vary by age,
race/ethnicity, or diabetes type.

Research Design and Methods

This retrospective study combines CGM device data from
the Dexcom, Inc., database with data extracted from EHR in
the Department of Veterans Affairs (VA). CGM device data
were not originally available within VA EHR, so these two
datasets were manually merged for this research study using
cross-walk identification. The protocol was approved by the
Phoenix VA Health Care System Institutional Review Board
(IRB), which provided a waiver of consent for this analysis
of secondary data. Dexcom, Inc., received IRB exemption
from WCG IRB (www.wcgirb.com) for the study protocol
to share CGM patient data with the VA. We extracted all rel-
evant EHR data from the VA Corporate Data Warehouse, a
national repository of clinical and administrative information
from VA encounters that includes both inpatient and outpa-
tient visits, diagnoses, pharmacy and medication usage, vital
signs records, laboratory measurements, and general patient
demographic information.

CGM users in the VA EHR system

We identified patients with diabetes initiating CGM from
January 1, 2015, to December 31, 2020. All available ICD-9
and ICD-10 diagnostic codes were extracted from medical
encounters among Veterans aged ‡21 years or older with at
least one diagnosis of diabetes (ICD-9: 250 or ICD-10: E10,
E11, O24.0X, O24.1X) between 2002 and 2020. Initiators of
CGM (also subsequently referred to as EHR CGM users)
were identified as those with their first prescription (defined
as index date) between January 1, 2015, and December 31,
2020. CGM prescriptions were identified if they matched a
glucose sensor for devices available in the VA during this
time period. Although some patients used more than one
type of CGM during this time frame, only the periods of
time reflecting the use of Dexcom devices were considered
for analyses.

We also extracted longitudinal HbA1c measurements
from the EHR and made use of CGM prescription data from
January 2015 to January 2023, which encompass sensor
release dates and run-out dates, to define the proportion of
days covered (PDC) as a metric for assessing patient adher-
ence to CGM based on EHR.
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Dexcom CGM device-derived glucose metrics

CGMmeasures interstitial glucose concentrations and gen-
erates an estimated blood glucose value every 5 min, provid-
ing up to 288 individual readings for each day. The daily
CGM data are also aggregated to compute average daily esti-
mated glucose and the daily coefficient of variation of the glu-
cose levels observed. Other CGM metrics calculated from
daily estimated glucose values include TIR: time between 70
and 180 mg/dL; time-below-range: below 55 mg/dL and
below 70 mg/dL; and time-above-range: above 180 mg/dL
and above 250 mg/dL. GMI, an estimate of HbA1c, was also
computed from estimated glucose values. Dexcom CGM
device data were available from October 2015 to April 2023
and included records from 4585 users (also subsequently
referred to as Dexcom CGM users). Detailed information
regarding the quality control procedures applied to the Dex-
com data before analysis are outlined in the Supplementary
Material.

Study cohort

To identify individuals for this cohort, patients using
CGM were matched between datasets (VA EHR and Dex-
com CGM device glucose data) on first name, last name, and
date of birth. This matching process involved two methods:
an exact match using both the first and the last names along
with the complete date of birth and a slightly relaxed match
considering the first and last names along with the year and
month of birth only (Supplementary Fig. S1). Individuals
were identified as having T1D or T2D using a modified
Klompas algorithm, as previously described.12

We excluded persons who used Dexcom CGM devices
for <14 days (largely reflecting those not showing any
uploaded glucose activity) during the follow-up period and
those with duplicated daily CGM records (for details, see
Quality Control in the Supplementary Material). We also
omitted individuals without evidence of any prescription
sensor refills in VA EHR encompassing periods of Dexcom
CGM use (indicating non-VA sources of devices), as the
CGM start, stop, and duration of use could not be defined.
Furthermore, individuals who could not be identified as hav-
ing T1D or T2D were removed. Our final CGM cohort (suc-
cessfully matched between Dexcom records and VA EHR)
included a combination of those who used Dexcom CGM devi-
ces exclusively throughout the follow-up period (Dexcom-only
users) and mixed-device users who used both Dexcom and
other brand device(s) at different times during the follow-up.
Although we focused analyses on the large majority who were
Dexcom-only users, where appropriate, we stratified the results
based on user type (Dexcom-only users or Dexcom intermittent
users). However, all analyses of CGM activity were based only
on data fromDexcom devices.

Variable definitions

Metrics to describe patterns of CGM use. To assess the
patterns of CGM use, several key indicators were defined
and calculated for each individual:

1. EHR index date, Dexcom index date, and time between
EHR index date and CGM device index date: EHR
index date was the initial Dexcom CGM prescription

date extracted from the EHR data. Dexcom index date
was the CGM start date (reflecting the first glucose
reading) using device data extracted from the Dexcom
database. The time between the initial EHR index date
and the start of Dexcom data was then calculated.

2. Duration of CGM device use, defined as the number of
days between the date of the first and the last Dexcom
CGM device data record.

3. Percentage of days with CGM use, defined as the pro-
portion of days, wherein at least one glucose reading
was uploaded.

4. Percentage of months with CGM use, defined as the
proportion of months having at least 14 days with at
least one glucose reading uploaded.

5. Hours of CGM use per day, averaged across the full
duration of use, calculated as the total of 5-min glucose
counts per day to convert into hours of CGM use, and
then averaged over all days of use (disregarding days
when the Dexcom device was not worn).

6. Gaps in CGM use, percentage of individuals who did
not use their Dexcom CGM or upload data from this
device for substantial periods of time (e.g., 30 or more
consecutive days).

For detailed calculations and descriptions of self-reported
race and ethnicity, see the Research Design Methods within
Supplementary Materials.

Concordance of PDC calculated between EHR prescrip-
tions and days of CGM use determined from Dexcom device
data.

We defined PDC for each individual from both EHR and
Dexcom device data.

1. EHR-based PDC, defined by CGM sensor refills extracted
from patients’ prescriptions and refills. Using EHR records,
we defined continuous use of CGM if an interruption in
sensor availability between prescription sensor refills was
less than 28 days (as patients often have small surplus sup-
plies that may permit continued CGM use during small
periods between refills). If this interval period exceeded 28
days, this was defined as a “gap” in use of CGM. We also
examined a 90-day gap in CGM use. Over each 30-day
segment, we assigned a binary EHR-based PDC variable to
denote either active CGMor gap periods. Detailedmethods
on the binary allocation are shown in Supplementary
Figure S2.

2. Dexcom CGM device-based PDC reflected the propor-
tion of days with at least 1 reading per day among each
30-day interval. For instance, if a participant wore the
device for 24 out of 30 days (with at least 1 reading per
day), CGM device-based PDC for that interval was 0.8
(reflecting a continuous variable).

Statistical analysis

TIR, GMI, and HbA1c. Daily TIR (%) was computed as
the number of counts of glucose readings falling between 70
and 180 mg/dL divided by the total counts of readings, con-
verting it to a percent (0%–100%). Daily GMI (%) was cal-
culated as 3.31 plus 0.02392 times the mean glucose level
(in milligrams per deciliter).13 We quantified the relationship
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between individuals’ HbA1c measurements recorded in the
EHR and their corresponding preceding 3 months’ TIR and
GMI derived from the Dexcom CGM data. Pearson correla-
tion coefficients were calculated between HbA1c, mean
GMI, and mean TIR and also between GMI and TIR, using
all readings from the CGM device of each individual.

PDC concordance. The absolute value of the difference
between the EHR-based PDC and Dexcom CGM device-
based PDC was designated as the PDC difference, and a
complementary measure, one minus the difference, was
defined as the PDC concordance. The concordance was com-
puted for each 30-day prescription/refill or gap period for
each patient. A PDC concordance value of 1 (reflecting com-
plete concordance) could occur in two scenarios. First, when
a patient consistently wore a CGM throughout the covered
period (in this case, both the EHR-based and the CGM
device-based PDCs are 1). Second, when a participant did
not have CGM, glucose values during the same EHR gap
period (both PDCs are 0). “Average PDC concordance”
was defined as the mean of PDC concordances for each indi-
vidual across all 30-day segments. EHR-based PDCs and
Dexcom CGM-based PDCs for multiple intervals during
follow-up in six representative participants are shown in
Supplementary Figure S3.

All statistical analyses were performed using R version
4.3.1 (https://www.r-project.org).

Results

Participants

After matching individuals using patient information from
both VA EHR and Dexcom databases, we identified 3137
individuals with both EHR data and CGM device readings.
Applying exclusion criteria detailed in the “study cohort”
section resulted in a final cohort of 2796 participants, com-
prising 2168 Dexcom-only users and 628 mixed-device users
(Supplementary Fig. S1). T2D CGM users tended to be
older, have higher body mass index and triglycerides, and
lower high-density lipoprotein cholesterol, estimated glo-
merular filtration rate, insulin pump, and glucagon use than
T1D CGM users (Table 1). Among T1D participants, 80.0%
identified as White, 15.7% African American, and 3.6% His-
panic. For patients with T2D, the corresponding percentages
were 75.1%, 17.9%, and 3.9%, respectively. Supplementary
Table S1 shows baseline characteristics for Dexcom-only
users, which were similar to those of the overall cohort
except for a slightly lower prevalence of insulin pump use.

Characterizing patterns of CGM device use

In Table 2, we characterized patterns of CGM use, making
use of actual uploaded glucose data in Dexcom-only users,
as there was less certainty about start and stop dates for non-
Dexcom devices. We observed no substantial differences in
use patterns between patients with T1D and patients with
T2D. The median time from the EHR index date (first pre-
scription release date) to the Dexcom index date (starting
glucose uploading to the Dexcom servers) was 22.0 days for
individuals with T1D and 21.0 days for those with T2D
(Table 2 and Supplementary Fig. S4). However, the corre-
sponding 75th quantiles were 230.5 days and 122.0 days,

indicating that many patients with T1D and T2D required
much longer to begin providing glucose data. Interestingly,
the median and 75th quantile time decreased markedly over
time and was approximately 14 days and 44 days (75th quan-
tile) for patients with T1D and T2D by 2020. The median
duration of CGM device use was approximately 3 years for
patients with either T1D or T2D. CGM devices were worn
for a median of *90% of the days during this long duration
of wear for both diabetes types. The proportion of partici-
pants with >90% of days with CGM use was higher among
patients with T1D (52.7%) than with T2D (48.7%). Even
when CGM use duration was restricted to increasingly lon-
ger minimum intervals (i.e., 180 days, 1 year, 2 years, and
3 years) during the follow-up period, as opposed to 14 days
(the original exclusion criterion), the proportion with over
90% of days with CGM use was consistent for patients with
T1D and T2D (see Supplementary Fig. S5). Similarly, T1D
and T2D groups consistently wore CGM devices for a
median duration exceeding 22 h/day (interquartile range
[IQR]: 21 to *23 h) (Table 2 and Supplementary Fig. S6).
However, 44.6% of patients with T1D and 46.5% of patients
with T2D experienced at least one gap of at least 30 days during
follow-up. This percentage decreased to 25.1% for patients with
T1D and 25.2% for patients with T2D with gaps of 120 days or
longer. White, non-Hispanic users with T1D tended to have the
longest duration of use, for example, 3.2 years, whereas Hispanic
users with T1D had the lowest duration of use (Supplementary
Table S2). Older participants tended to have longer intervals
between EHR index date and CGM device index date and
slightly shorter duration of use but fewer long gaps in use and a
higher percentage of days with CGM use. For a more detailed
breakdown of results by diabetes type, ethnicity, and age catego-
ries (<65 and ‡65 years), see Supplementary Table S2. Mixed-
device users exhibited similar CGM use patterns for the percent-
age of days, months, gaps, and average hours per day but as
expected a shorter duration of Dexcom device use (Supplemen-
tary Table S3).

Correlations between HbA1c values from EHR and mean TIR

and mean GMI measured by CGM devices

The correlation between HbA1c and mean TIR exhibited a
strong negative association (-0.78 for patients with T1D and
-0.71 for patients with T2D) (Table 3). There was also a
robust positive association between HbA1c levels and mean
GMI (0.79 for patients with T1D and 0.74 for patients with
T2D in Dexcom-only users). When comparing these correla-
tions across different race/ethnicity groups (Supplementary
Table S4), associations were attenuated for African Americans
compared with Whites in both T1D and T2D patient groups.
No notable differences were observed in correlations between
younger (<65) and older (‡65) age-groups for patients with
T1D and T2D. The correlations between TIR and GMI (both
determined by the CGM device) were -0.89 and -0.90 for par-
ticipants with T1D and T2D, respectively. These correlations
were equally strong in all race/ethnic groups and age-groups.

PDC concordance

Table 4 presents PDC concordance for CGM (median
[IQR]) use between EHR and Dexcom data across individu-
als categorized by diabetes type, ethnicity, and age-groups.
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Overall, concordance between the two data sources was
high (‡0.80) for both the 28-day and the 90-day gap thresh-
olds. Patients with T1D had slightly higher concordances
(median [IQR]: 0.82 [0.61, 0.93]) compared with their T2D
counterparts (0.80 [0.56, 0.92]). Concordance was somewhat
lower for African American patients with T2D compared with

theWhite and Hispanic patients with T2D, whereas older indi-
viduals demonstrated higher concordance compared with the
younger age-group for patients with T1D and T2D (Table 4
and Supplementary Fig. S7).

The PDC concordances with 90-day gaps were about 0.05
higher than those using 28-day gaps for all subgroups with
almost no difference from the PDC concordances using 60-day
gaps (results are not shown), suggesting that for the majority of
patients, gaps in CGM use lasted no more than 2 months.

Conclusions

In this study, we linked long-term daily CGM device data
with VA EHR clinical data for large cohorts of patients with
T1D and T2D. This permitted us to gain valuable insights into
CGM use patterns across a large national health care setting
and to clarify the reliability of EHR-based information for
CGM. These findings provide novel information about how
CGM is used by patients with T1D and T2D and by patient
subgroups in a real-world environment. Moreover, comparing
actual CGM device data with EHR CGM records helps dem-
onstrate both the quality and the reliability of EHR CGM data.

On average, it required about 3 weeks for patients with
T1D and T2D to start uploading glucose data to Dexcom
servers and potentially sharing these data with providers.
However, there was wide variation in this time frame, with
nearly a quarter of patients with T1D and T2D taking 231
and 122 days, respectively, to generate these data. Although
this did not appear to vary among race/ethnic groups, it did
appear to be delayed more in older individuals. A multitude
of reasons (e.g., patient concerns about revealing personal
data; complexity of, and interest of providers in, viewing and
using the data; insufficient experienced staff to provide the
needed education to patients and providers) may help explain
the longer delays in CGM device data becoming available.
Whether a person used a dedicated receiver device or their
smartphone to view their glucose readings likely also influ-
enced when data were uploaded. Although data from the
CGM are automatically uploaded from a smartphone, using
the receiver device requires the user to connect the receiver
to a personal computer to upload data. As upload delays
decreased over time, alongside improvements in CGM tech-
nology and training options for patients and providers, it
highlights the value of comprehensive technology support to
ensure timely initiation and effective utilization of CGM.

Importantly, once the use of CGM (Dexcom users) was
started, it was typically used with high levels of consistency
over long periods of time. Remarkably, the average wear
time per day over a median of nearly 3 years was over 22 h
for patients with T1D and T2D. However, nearly 25% of
patients had at least one apparent gap in CGM use of greater
than 120 days. Gaps in use of CGM by patients are to be
expected, just like they have gaps in their use of most medi-
cations. Although we cannot identify these reasons, they
undoubtedly reflect a range of behaviors, including forgetting
or being unable to refill the sensors as scheduled, taking inten-
tional breaks away from sensors, or having problems with
their devices and/or transmitters. Consistency of CGM use for
both T1D and T2D trended slightly higher in White, non-
Hispanics, and in individuals >65 years old. Overall, these
results provide unique insights into the CGM use patterns in a
real-world environment and highlight the consistent long-term

TABLE 1. BASELINE CHARACTERISTICS BY DIABETES TYPE

T1D T2D

n (%) 970 (34.7) 1826 (65.3)
Index year, %
2015 5.1 1.6
2016 7.7 3.7
2017 9 3.9
2018 19.7 18.5
2019 36.2 41.2
2020 22.4 31.1

Age at index (years),
median [IQR]

56.0 [48.0, 66.0] 65.0 [55.0, 71.0]

Gender, % male 88.2 91.5
BMI (kg/m2), median

[IQR]
27.9 [24.8, 31.1] 31.5 [27.2, 36.4]

Ethnicity, %
White, non-Hispanic 80.0 75.1
African American 15.7 17.9
White, Hispanic 3.6 3.9
Other 0.8 3.1

U.S. region, %
South 37.8 39.0
Midwest 24.1 22.7
West 25.7 20.9
Northeast 12.4 17.3

LDL (mg/dL), median
[IQR]

83 [66, 105] 76 [59, 98]

HDL (mg/dL), median
[IQR]

51 [42, 63] 42 [34, 53]

Triglycerides (mg/dL),
median [IQR]

89 [63, 132] 130 [85, 196]

Creatinine (mg/dL),
median [IQR]

1.0 [0.9, 1.2] 1.1 [0.9, 1.4]

HbA1c (%), median
[IQR]

8.3 [7.4, 9.3] 8.1 [7.3, 9.2]

eGFR (mL/min/
1.73m2), median
[IQR]

85 [67, 99] 71 [52, 89]

Insulin pump use, % 30.1 14.0
Any insulin use, % 96.4 95.2
Glucagon use, % 34.3 20.1
Statin use, % 72.0 79.7
Any non-insulin diabetes

medications, %
19.9a 55.4

DCSI Weighted Score, %
Score = 0 24.2 14.7
Score = 1 27.5 21.6
Score = 2 17.6 18.1
Score ‡ 3 30.6 45.6

Data are presented as median (interquartile range [IQR]) for
numerical variables and n (%) for categorical variables.

aThe majority of noninsulin diabetes medication used in T1D was
metformin.
BMI, body mass index; DCSI, diabetes complication severity

index; eGFR, estimated glomerular filtration rate; HDL, high-den-
sity lipoprotein; LDL, low-density lipoprotein; T1D, type 1 diabe-
tes; T2D, type 2 diabetes.
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use of these devices with only modest differences among dia-
betes type, race/ethnicity, and age groups.

The use of calculated PDC based on prescription refills is a
common approach to estimate medication use in EHR. Appro-
priately accounting for medication use is critical for a wide
variety of real-world research questions pursued through
EHR. However, validation of this approach is limited given
the difficulty ascertaining actual medication ingestion.
Although we and others have applied a similar approach to
estimate CGM adherence from EHR data based on calcula-
tions of PDC,11 confirmation of the reliability of this approach
greatly enhances confidence in future investigations of CGM
based on comprehensive EHR and medical claims data. Our
current data demonstrate strong concordance between the esti-
mated use of CGM using EHR PDC and more direct measures
based on accumulated estimated glucose values from CGM
devices. These data also suggest that CGM use identified
through EHR is a reasonable proxy of the consistency of
CGM use. Interestingly, the reliability of EHR for tracking use
of CGM, although still quite good, appeared slightly lower in
African Americans and Hispanic groups. However, the num-
ber of CGM users in these two groups was smaller compared
with the White, non-Hispanic group, which may result in less
stable concordance estimates. Nonetheless, our overall data

indicate relatively similar degrees of EHR reliability and wear
patterns among the different race/ethnic groups and support
equitable use of CGMs among diverse ancestry.

Not surprisingly, there were good correlations between Dex-
com CGM data and HbA1c estimates of glycemic control within
the EHR. Specifically, both TIR and GMI extracted from CGM
data demonstrated correlation values of -0.7 and 0.8, respec-
tively. The strength of these relationships between CGMmetrics
and HbA1c values was quite similar to those reported in random-
ized clinical trials of CGM that have simultaneously tracked
HbA1c values.14,15 Interestingly, these correlations with HbA1c
were weaker in those identifying as African American. These
findings are very consistent with reports that African Americans
have HbA1c values (compared with other race/ethnic groups)
that align less well with mean glucose levels whether coming
from CGM data or other longitudinal measurements of glucose.
Correlations between TIR and GMI (both calculated from CGM
device estimated glucose values) were strong (nearly -0.9) and
did not differ among race/ethnic groups.16,17 Overall, these
results provide strong internal validation of the successful inte-
gration of the two different sources of CGM users and support
the reliability of the extracted data.

A novel feature of this study was the ability to integrate CGM
device data with EHR data on nearly three thousand patients.
This large and diverse cohort bolsters the robustness and gener-
alizability of our results. It also allowed us to demonstrate the
generally similar patterns of CGM use among different race/eth-
nic and age groups. As we and others have demonstrated, rates
of CGM use and diabetes technology in general are lower in cer-
tain race and ethnic groups and in older individuals11,18–22; our
findings that CGM use is similar in these groups may help
change provider perceptions about who may effectively adopt
this technology. The long duration of follow-up within the VA
EHR also allowed us to demonstrate persistent high-level adher-
ence to CGMwith minimal drop-off in use over many years.

A potential limitation of the study is that we were limited
to Dexcom CGM device data that may not reflect patterns of
use of all CGM systems on the market. Although the number
of women using CGM was relatively modest, the patterns of
results within women seemed consistent with the whole cohort
(Supplementary Table S5). Although analyses in this study
were based on CGM device data aggregated to the level of
daily glucose metrics, future studies will provide even more

TABLE 3. CORRELATIONS OF HBA1C IN VA EHR WITH TIR
AND GMI FROM CGM DEVICE DATA IN DEXCOM-ONLY

USERS BY DIABETES TYPE

T1D T2D

n (%)a 652 (33.7) 1280 (66.3)
Total number of HbA1c
measurements

3813 7452

Median duration of CGM
use (years)b

2.8 2.5

Correlation between HbA1c
and mean TIR

-0.774 -0.707

Correlation between HbA1c
and mean GMI

0.791 0.738

aUsers without appropriate overlapping Dexcom data and EHR
HbA1c values were excluded.

bThe duration of use reflected CGM records used to calculate the
mean TIR/GMI.
GMI, glucose management indicator; TIR, time in range.

TABLE 2. MEASURES OF CGM USE IN DEXCOM-ONLY USERS BY DIABETES TYPE

T1D T2D

n (%) 719 (33.2) 1449 (66.8)
Time between EHR index date and CGM device index date (days), median [IQR] 22.0 [6.0, 230.5] 21.0 [5.0, 122.0]
Duration of CGM use (years), median [IQR] 3.1 [2.2, 4.0] 2.9 [1.8, 3.7]
Percentage of days with CGM use (%), median [IQR] 91.0 [70.7, 96.5] 89.5 [71.0, 96.1]
Percentage of months with CGM use, median [IQR] 89.7 [69.2, 94.3] 88.2 [66.7, 93.8]
Hours of CGM use per day, median [IQR] 22.5 [21.4, 23.0] 22.2 [21.0, 22.9]
Gap in CGM use, %a

‡30 days 44.6 46.5
‡60 days 33.0 34.6
‡120 days 25.1 25.2

aUsers were excluded from calculations of gap thresholds if their overall duration of use was shorter than that gap period. Each day of
CGM use required at least ‡1 glucose count to be present. Percentage of months with CGM use was defined as the proportion of months
having at least 14 days with at least one glucose reading uploaded.
CGM, continuous glucose monitoring; EHR, electronic health record.

INTEGRATING CGM RECORDS WITH EHR 811

D
ow

nl
oa

de
d 

by
 U

C
LA

 D
IG

IT
A

L 
C

O
LL

 S
V

C
S 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
21

/2
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



granular assessments of intraday glucose patterns and glucose
fluctuations in relation to clinical outcomes in EHR data.
Another limitation of the study is that EHR data may contain
missing data. For example, 3.6% and 4.8% of participants
with T1D and T2D, respectively, receiving CGMs, were not
on insulin therapy, which may reflect the small percentage of
individuals who receive one or more medications from outside
the VA that are not captured in VAmedication files.

In conclusion, we have successfully integrated CGM
device data with long-term clinical data from patients within
the Veterans Affairs national health care system. We have
identified patterns of Dexcom CGM use across a large and
diverse cohort and demonstrated that in a real-world environ-
ment, there is remarkably consistent and sustained use of the
devices across race/ethnic groups and in young and old
patients. Using Dexcom device data, we have also demon-
strated high concordance with EHR estimates of CGM use
and the expected relationships with HbA1c values from
these records. Thus, this work lays the foundation for a myr-
iad of future studies examining the relationships between
CGM metrics of glucose control and development of short-
term and long-term diabetes complications.
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TABLE 4. AVERAGE PDC CONCORDANCE IN DEXCOM-ONLY USERS BY DIABETES TYPE, ETHNICITY, AND AGE GROUPS

4A. T1D T2D

n (%) 719 (33.2) 1449 (66.8)
PDC concordance,a median [IQR]
28-day gap threshold 0.82 [0.61, 0.93] 0.80 [0.56, 0.92]
90-day gap threshold 0.89 [0.61, 0.98] 0.85 [0.55, 0.97]

4B.

T1D (n = 719)

White, Non-Hispanic African American White, Hispanic Baseline age < 65 Baseline age ‡ 65

n (%) 548 (76.2) 113 (15.7) 25 (3.5) 500 (69.5) 219 (30.5)
PDC concordance,a median [IQR]
28-day gap threshold 0.83 [0.61, 0.94] 0.82 [0.64, 0.91] 0.75 [0.47, 0.92] 0.80 [0.59, 0.93] 0.88 [0.64, 0.95]
90-day gap threshold 0.90 [0.62, 0.98] 0.87 [0.64, 0.96] 0.80 [0.44, 0.98] 0.86 [0.60, 0.98] 0.94 [0.66, 0.99]

4C.

T2D (n = 1449)

White, Non-Hispanic African American White, Hispanic Baseline age < 65 Baseline age ‡ 65

n (%) 1034 (71.4) 245 (16.9) 56 (3.9) 687 (47.4) 762 (52.6)
PDC concordance,a median [IQR]
28-day gap threshold 0.81 [0.53, 0.93] 0.77 [0.59, 0.88] 0.81 [0.58, 0.91] 0.78 [0.56, 0.91] 0.82 [0.55, 0.93]
90-day gap threshold 0.86 [0.54, 0.98] 0.81 [0.56, 0.94] 0.85 [0.61, 0.97] 0.81 [0.57, 0.96] 0.88 [0.54, 0.98]

Average PDC concordance in all T1D and T2D Dexcom-only users (Panel 4A) and by diabetes type across ethnicity and age groups (Panels 4B and C).
aPDC concordance (defined in Methods and Supplementary Fig. S2 reflects the average PDC concordance across all 30-day segments for each patient. The gap

thresholds reflect the maximum EHR gap in days of CGM use allowed to link two consecutive segments of prescription-based CGM use, for example, if the gap in
EHR CGM use between refills was greater than 28 days, then that period was marked as a gap in use.

PDC, proportion of days covered.

812 OKUNO ET AL.

D
ow

nl
oa

de
d 

by
 U

C
LA

 D
IG

IT
A

L 
C

O
LL

 S
V

C
S 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
21

/2
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 



Supplementary Table S2
Supplementary Table S3
Supplementary Table S4
Supplementary Table S5

References

1. Espinoza J, Xu NY, Nguyen KT, Klonoff DC. The need for
data standards and implementation policies to integrate
CGM data into the electronic health record. J Diabetes Sci
Technol 2023;17(2):495–502.

2. Longo R, Sperling S. Personal versus professional continu-
ous glucose monitoring: When to use which on whom. Dia-
betes Spectr 2019;32(3):183–193.

3. Battelino T, Danne T, Bergenstal RM, et al. Clinical targets
for continuous glucose monitoring data interpretation: Rec-
ommendations from the international consensus on time in
range. Diabetes Care 2019;42(8):1593–1603.

4. Beck RW, Riddlesworth TD, Ruedy K, et al. Continuous glu-
cose monitoring versus usual care in patients with type 2 dia-
betes receiving multiple daily insulin injections: A randomized
trial. Ann Intern Med 2017;167(6):365–374.

5. Park C, Le QA. The effectiveness of continuous glucose
monitoring in patients with type 2 diabetes: A systematic
review of literature and meta-analysis. Diabetes Technol
Ther 2018;20(9):613–621.

6. Tamborlane WV, Beck RW, Bode BW, et al. Continuous
glucose monitoring and intensive treatment of type 1 diabe-
tes. N Engl J Med 2008;359(14):1464–1476.

7. Jackson MA, Ahmann A, Shah VN. Type 2 diabetes and the
use of real-time continuous glucose monitoring. Diabetes
Technol Ther 2021;23(S1):S27–S34.

8. Teo E, Hassan N, Tam W, Koh S. Effectiveness of continu-
ous glucose monitoring in maintaining glycaemic control
among people with type 1 diabetes mellitus: A systematic
review of randomised controlled trials and meta-analysis.
Diabetologia 2022;65(4):604–619.

9. Uhl S, Choure A, Rouse B, et al. Effectiveness of continuous
glucose monitoring on metrics of glycemic control in type 2
diabetes mellitus: A systematic review and meta-analysis of
randomized controlled trials. J Clin Endocrinol Metab 2023.

10. Karter AJ, Parker MM, Moffet HH, et al. Association of real-
time continuous glucose monitoring with glycemic control and
acute metabolic events among patients with insulin-treated dia-
betes. JAMA 2021;325(22):2273–2284.

11. Reaven PD, Newell M, Rivas S, et al. Initiation of continuous
glucose monitoring is linked to improved glycemic control and
fewer clinical events in type 1 and type 2 diabetes in the veter-
ans health administration. Diabetes Care 2023;46(4):854–863.

12. Klompas M, Eggleston E, McVetta J, et al. Automated detection
and classification of type 1 versus type 2 diabetes using electronic
health record data. Diabetes Care 2013;36(4):914–921.

13. Bergenstal RM, Beck RW, Close KL, et al. Glucose Management
Indicator (GMI): A new term for estimating A1C from continuous
glucose monitoring. Diabetes Care 2018;41(11):2275–2280.

14. Vigersky RA, McMahon C. The relationship of hemoglobin
A1C to time-in-range in patients with diabetes. Diabetes
Technol Ther 2019;21(2):81–85.

15. Beck RW, Bergenstal RM, Cheng P, et al. The relationships

between time in range, hyperglycemia metrics, and HbA1c.
J Diabetes Sci Technol 2019;13(4):614–626.

16. Gonzalez A, Deng Y, Lane AN, et al. Impact of mis-
matches in HbA(1c) vs glucose values on the diagnostic
classification of diabetes and prediabetes. Diabet Med
2020;37(4):689–696.

17. Staimez LR, Kipling LM, Nina Ham J, et al. Potential mis-
classification of diabetes and prediabetes in the U.S.: Mis-
matched HbA1c and glucose in NHANES 2005–2016.
Diabetes Res Clin Pract 2022;189:109935.

18. Lai CW, Lipman TH, Willi SM, Hawkes CP. Racial and
ethnic disparities in rates of continuous glucose monitor ini-
tiation and continued use in children with type 1 diabetes.
Diabetes Care 2021;44(1):255–257.

19. Fantasia KL, Wirunsawanya K, Lee C, Rizo I. Racial dis-
parities in diabetes technology use and outcomes in type 1
diabetes in a Safety-Net Hospital. J Diabetes Sci Technol
2021;15(5):1010–1017.

20. Agarwal S, Schechter C, Gonzalez J, Long JA. Racial-eth-
nic disparities in diabetes technology use among young
adults with type 1 diabetes. Diabetes Technol Ther 2021;
23(4):306–313.

21. Toschi E, Munshi MN. Benefits and challenges of diabetes
technology use in older adults. Endocrinol Metab Clin
North Am 2020;49(1):57–67.

22. Auzanneau M, Eckert AJ, Meyhofer SM, et al. Area depri-
vation and demographic factors associated with diabetes
technology use in adults with type 1 diabetes in Germany.
Front Endocrinol (Lausanne) 2023;14:1191138.

Address correspondence to:
Tomoki Okuno, MS

Department of Biostatistics
University of California

Los Angeles
Los Angeles
CA 90095

USA
E-mail: tomokiokuno0528@g.ucla.udu

Peter Reaven, MD
Phoenix VA Health Care System (111E)

Phoenix
AZ 85012

USA

E-mail: Peter.Reaven@va.gov

Jin J. Zhou, PhD
University of California

Los Angeles
Los Angeles
CA 90095

USA

E-mail: jinjinzhou@ucla.edu

INTEGRATING CGM RECORDS WITH EHR 813

D
ow

nl
oa

de
d 

by
 U

C
LA

 D
IG

IT
A

L 
C

O
LL

 S
V

C
S 

fr
om

 w
w

w
.li

eb
er

tp
ub

.c
om

 a
t 0

7/
21

/2
5.

 F
or

 p
er

so
na

l u
se

 o
nl

y.
 

mailto:tomokiokuno0528@g.ucla.udu
mailto:Peter.Reaven@va.gov
mailto:jinjinzhou@ucla.edu

