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Abstract. Checking satisfiability of formulae in the theory of linear
arithmetic has far reaching applications, including program verification
and synthesis. Many satisfiability solvers excel at proving and disprov-
ing satisfiability of quantifier-free linear arithmetic formulas and have
recently begun to support quantified formulas. Beyond simply checking
satisfiability of formulas, fine-grained strategies for satisfiability games
enables solving additional program verification and synthesis tasks.
Quantified satisfiability games are played between two players—SAT and
UNSAT—who take turns instantiating quantifiers and choosing branches
of boolean connectives to evaluate the given formula. A winning strategy
for SAT (resp. UNSAT) determines the choices of SAT (resp. UNSAT)
as a function of UNSAT’s (resp. SAT’s) choices such that the given for-
mula evaluates to true (resp. false) no matter what choices UNSAT (resp.
SAT) may make. As we are interested in both checking satisfiability and

synthesizing winning strategies, we must avoid conversion to normal-
forms that alter the game semantics of the formula (e.g. prenex normal
form). We present fine-grained strategy improvement and strategy syn-
thesis, the first technique capable of synthesizing winning fine-grained
strategies for linear arithmetic satisfiability games, which may be used
in higher-level applications. We experimentally evaluate our technique
and find it performs favorably compared with state-of-the-art solvers.

Keywords: Quantified Satisfiability · SMT · Game Semantics ·
Strategy Improvement

1 Introduction

Checking satisfiability of quantified formulae modulo the theory of linear (inte-
ger or real) arithmetic (LA) has applications to a broad class of problems (e.g.,
program verification and synthesis). Satisfiability modulo theory (SMT) solvers
excel at deciding satisfiability of the ground (quantifier free) fragment of first
order theories (e.g., LA). Other techniques like first order theorem solvers work
well for quantified formulae but have limited support for theories. Typically,
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SMT solvers either perform quantifier elimination, which is often computation-
ally expensive, or heuristically instantiate quantifiers, which is sound but incom-
plete for deciding satisfiability [19]. Recently, decision procedures have been
developed to check satisfiability of quantified LA formulae directly [4,5,8,18].
Notably, both Bjørner and Janota [4]’s and Farzan and Kincaid [8]’s decision
procedures are based on the game semantics of first-order logic.

The game semantics of first-order logic gives meaning to a formula as a two
player game [12]. Every (LA) formula induces a game between two players, SAT
and UNSAT. SAT tries to prove the formula satisfiable, while UNSAT tries to
prove it unsatisfiable. The players take turns instantiating quantifiers or choosing
a sub-formula of boolean connectives. SAT controls existential quantifiers and
disjunctions, while UNSAT controls universal quantifiers and conjunctions. SAT
wins the game if the chosen model satisfies the chosen sub-formula; otherwise,
UNSAT wins. A (LA) formula is satisfiable exactly when SAT has a winning
strategy—a function determining how SAT should instantiate existential quan-
tifiers and choose sub-formulae of disjuncts to prove the formula satisfiable—to
the induced game.

The game-theoretic view of formulae suggests a variation of the satisfiability
problem, in which the goal is not (just) to check satisfiability of a formula, but to
synthesize a winning strategy for one of the two players. Strategy synthesis can
be used as a decision procedure, but can also used for other tasks where a simple
yes or no is insufficient (e.g., program synthesis, angelic symbolic execution, or
invariant generation).

While the game semantics of first-order logic gives meaning to both quanti-
fiers and connectives, both Bjørner and Janota [4]’s and Farzan and Kincaid [8]’s
decision procedures only make use of the game semantics of quantifiers. To do
so, both techniques require the input formula to be in prenex normal form—the
formula is a sequence of quantifiers followed by a quantifier free formula. While
any formula may be converted into a prenex normal form, doing so is undesirable
for two reasons: (1) conversion to prenex normal form may increase the number
of quantifier alternations within the formula and (2) conversion to prenex normal
form may change the game semantics of the formula. Since prenex conversion
does not preserve game semantics, it cannot be used in applications that rely on
strategy synthesis rather than a yes/no answer.

Existing techniques for checking satisfiability of LA formulas are incapable
of producing strategies for both quantifiers and Boolean connectives [4,5,8,18].
While both Bjørner and Janota [4]’s and Farzan and Kincaid [8,9] use the game
semantics of LA formulas, they limit their scope to quantifiers via conversion to
prenex normal form. Furthermore, the procedure by Bjørner and Janota does
not produce an explicit term used to instantiate quantifiers. On the other hand,
while the techniques of both Reynolds et al. [18] and Bonacina et al. [5] exploit
the fine-grained (quantifier and Boolean connectives) structure of formulas, they
do not produce a winning strategy.

This paper presents a decision procedure for checking satisfiability of quanti-
fied LA formulae that exploits the fine-grained structure of a formula to produce
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a winning strategy for SAT or UNSAT for both quantifiers and Boolean connec-
tives. Our technique Fine-grained Strategy Improvement uses the fine-grained
structure of LA formulas to formulate a recursive procedure that iteratively
improves a candidate strategy via computing winning strategies to induced sub-
games. We generalize the notion of strategies and counter-strategy computation
from Farzan and Kincaid [8] to handle quantifiers and connectives as well as
allowing computing counter-strategies with a fixed prefix (to enable the recursive
nature of fine-grained strategy improvement). Fine-grained strategy improve-
ment improves upon existing techniques by (1) avoiding conversion to prenex
normal form or (2) allowing extraction of a proof object (a winning strategy)
that determines exactly how the formula is proven to be (un)satisfiable.

For simplicity, the remainder of this paper provides details for linear rational
arithmetic (LRA); however, the algorithmic details and game semantics provided
in this paper are directly applicable to any theory that admits an appropriate
term-selection function (cf. Sect. 5.1) including linear integer arithmetic (LIA).
In Sect. 2, we review the game semantics for linear arithmetic [12], and its relation
with LRA satisfiability. Sections 3, 4, and 5 present the procedure to compute
winning strategy skeletons, whose existence proves or disproves LRA satisfiabil-
ity. Section 6 shows how to compute a winning strategy from a strategy skeleton.
Sections 7 and 8 compares this work to others. The extended version1 contains
implementation details, proofs, and extended experimental results.

2 Fine-Grained Game Semantics for LRA Satisfiability

This section reviews the syntax (Sect. 2.1) of Linear Rational Arithmetic
(LRA) and its game semantics (Sect. 2.2).

2.1 Linear Rational Arithmetic

The syntax of LRA is formed from two sets—Terms and Formulas. The grammar
for terms and formulae parameterized over a set of variables X is as follows:

s, t ∈ Term(X) ::= c ∈ Q | x ∈ X | s + t | c · t

ϕ, ψ ∈ Formula(X) ::= t < 0 | t = 0 | ϕ ∧ ψ | ϕ ∨ ψ | ∀x. ϕ | ∃x. ϕ

Without loss of generality, this paper considers negation free formulae and
assumes that every variable bound by a quantifier within a formula to be distinct.
For a formula ϕ, FV (ϕ) denotes its free variables. Similarly, FV (t) denotes the
free variables of term t. A sentence is a LRA formula with no free variables. A
ground formula is a quantifier-free formula which may contain free variables.

A valuation, M : V → Q, maps a finite set of variables, V ⊆ X, to the
rationals. We use �t�M to denote the value of t within the valuation M—assuming

1 The extended version of this paper is available at https://pages.cs.wisc.edu/
∼tcmurphy4/docs/fine grained strategy synthesis.pdf.
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FV (t) ⊆ dom(M)—with the usual interpretation. M |= ϕ denotes that M

satisfies the formula ϕ (we say M is a model of ϕ).
For a valuation M , a variable x, and a rational constant c, M{x 	→ c} denotes

the valuation M except with x mapped to c.

M{x 	→ c} � λy.if y = x then c else M(y)

For a formula ϕ, variable x, and term t, ϕ[x 	→ t] represents the formula
obtained by substituting every free occurrence of x with t.

2.2 Fine-Grained Game Semantics

For a more thorough introduction, Hintikka describes the game semantics for
first-order formulae [12]. Every LRA sentence defines a satisfiability game, which
is played between two players: SAT and UNSAT. The players take turns choos-
ing instantiations for quantifiers and sub-formulae of connectives. SAT controls
the choices for existential quantifiers and disjunctions, while UNSAT controls
universal quantifiers and conjunctions.

Formally, a state of a LRA-satisfiability game for a LRA-sentence ϕ is
G(ψ,M), where ψ is a sub-formula of ϕ and M is a valuation. The initial state
of the satisfiability game for ϕ is G(ϕ, ∅). Below gives the rules of the game with
the assumption that FV (ψ) ⊆ dom(M).

G(t < 0,M) SAT wins if M |= t < 0 . Otherwise, UNSAT wins.

G(t = 0,M) SAT wins if M |= t = 0 . Otherwise, UNSAT wins.

G(ϕ ∧ ψ,M) UNSAT chooses to either play G(ϕ,M) or G(ψ,M).

G(ϕ ∨ ψ,M) SAT chooses to either play G(ϕ,M) or G(ψ,M).

G(∀x.ϕ,M) UNSAT picks c ∈ Q and then plays G(ϕ,M{x 	→ c}).

G(∃x.ϕ,M) SAT picks c ∈ Q and then plays G(ϕ,M{x 	→ c}).

A strategy for SAT or UNSAT determines that player’s next move as a
function of all the moves previously played. In the above definition of a LRA-
satisfiability game, the state G(ψ,M) implicitly represents the moves made so
far. This is made explicit by representing a play of the game as a sequence of
rational numbers (instantiating quantifiers) and the labels L and R (choosing
the left or right branch of a disjunction or conjunction). For the formula ϕ and
play π, we represent the sub-formula and valuation forming the state of the game
after playing π as ϕπ and mπ, respectively. Both are defined as follows:

ϕǫ � ϕ (∀x.ϕ)c·π � ϕπ (∃x.ϕ)c·π � ϕπ

M ǫ � ∅ M c·π � Mπ{x 	→ c} M c·π � Mπ{x 	→ c}

(ϕ ∧ ψ)L·π � ϕπ (ϕ ∧ ψ)R·π � ψπ (ϕ ∨ ψ)L·π � ϕπ (ϕ ∨ ψ)R·π � ψπ

ML·π � Mπ MR·π � Mπ ML·π � Mπ MR·π � Mπ
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If ϕπ does not evaluate using the above rules, then π is an illegal play and
ϕπ is undefined. In the remainder of this paper, we use “play” to mean “legal
play.” A play π is complete when ϕπ is an atom (neither player has any move
to make). For any complete play π, SAT wins if and only if Mπ |= ϕπ. Similarly,
UNSAT wins if and only if Mπ �|= ϕπ.

For any formula ϕ, ¬ϕ denotes the negation-free formula equivalent to the
negation of ϕ. The sentence ¬ϕ, induces the dual satisfiability game of ϕ – a
game played in the same manner as ϕ but with the roles of SAT and UNSAT
swapped. This duality is used to define terminology and algorithms explicitly
for SAT and implicitly for UNSAT as the corresponding SAT version for ¬ϕ.

Definition 1 (Strategy). Let M = Q ∪ {L,R} be the set of all moves, f :
M∗ → M be a partial function from sequences of moves to a move, and π a
sequence of moves. The play π conforms to f exactly when πi = f(π1, . . . , πi−1)
whenever f(π1, . . . , πi−1) is defined.

Let ϕ be a LRA-sentence, a SAT strategy for ϕ is a partial function f :
M∗ → M , which has the property that for any play π that conforms to f , (1) if
ϕπ is F ∨ G then f(π) is defined and f(π) ∈ {L,R} and (2) if ϕπ is ∃x.F then
f(π) is defined and f(π) ∈ Q.

The SAT strategy f is winning if every complete play that conforms to f

is won by SAT. It is well-known that ϕ is satisfiable if and only if SAT has a
winning strategy.

3 Fine-Grained Strategy Skeletons

This section defines fine-grained SAT strategy skeletons that form the basis
of our fine-grained strategy improvement algorithm (cf. Algorithm 1). A SAT
strategy skeleton is an abstraction that represents multiple possible strategies
that SAT may choose. Recall that in Sect. 2.2, we defined strategies to be a
function that maps a play of a satisfiability game to the next move of the game. A
strategy skeleton similarly maps a play of the satisfiability game to a finite set of
possible moves to play next. At a high-level, the strategy improvement algorithm
iteratively finds better and better strategy skeletons via the computation of
counter-strategy skeletons (cf. Sect. 5).

Example 1. To illustrate fine-grained strategy skeletons and the algorithms pre-
sented in this paper consider the formula ϕ which we use as a running example
throughout this paper:

ϕ � ∀x, z. (x = z ∨ (∃y. (x < y ∧ y < z) ∨ (z < y ∧ y < x)))

•

•

L

∀x̄

∀z̄

x̄ = z̄

The formula ϕ expresses the fact that for any pair of rational
numbers x and z, either x and z are equal or there is some value y

between x and z. To the right, we display a SAT strategy skeleton
for ϕ which we call S. The two • symbols act as placeholders for
the values chosen by UNSAT for the quantified variables x and z.
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The skeleton encodes that no matter what values (x̄ and z̄) UNSAT
chooses to instantiate x and y with, SAT chooses to play the left branch of the
disjunction leading to the atom x = z—at the end of the path we display x̄ = z̄,
which is this atom after substituting the placeholder values for UNSAT’s choice
for the formally bound variables.

As seen in Examples 1 and 4, SAT skeletons are tree-like structures that fol-
low the structure of ϕ. Formally, SAT strategy skeletons for a LRA-satisfiability
game ϕ, are represented as a set of paths. We use SKEL(ϕ, vars) to denote the set
of SAT strategy skeletons for ϕ whose terms may range over the set of variables
vars. For a sub-skeleton of a sentence, vars represents the set of variables that
in-scope in ϕ. The set of strategy skeletons for a sentence is thus SKEL(ϕ, ∅).
For a set of paths S, ℓ·S = {ℓ·π : π ∈ S} denotes the set obtained by prepending
each path in S with the label ℓ. Similarly, we define π ⇓ S = {π′ : π · π′ ∈ S}
to be the set of suffixes of π appearing in S. Formally, a skeleton is a subset
of (Term(X) ∪ {•, L,R})∗ (whose specific form depends on the formula ϕ). We
define SKEL as the least solution to the following set of rules:

ϕ is atomic

{ǫ} ∈ SKEL(ϕ, vars)

S ∈ SKEL(ϕ, vars)

L · S ∈ SKEL(ϕ ∨ ψ, vars)

S ∈ SKEL(ψ, vars)

R · S ∈ SKEL(ϕ ∨ ψ, vars)

S ∈ SKEL(ϕ, vars) T ∈ SKEL(ψ, vars)

(L · S) ∪ (R · T ) ∈ SKEL(ϕ ∧ ψ, vars)

S ∈ SKEL(ϕ, vars ∪ {x})

• · S ∈ SKEL(∀x. ϕ, vars)

t ∈ Term(vars) S ∈ SKEL(ϕ, vars ∪ {x})

(t · S) ∈ SKEL(∃x. ϕ, vars)

S, T ∈ SKEL(ϕ, vars)

(S ∪ T ) ∈ SKEL(ϕ, vars)

Just as strategies can be thought of as a collection of plays, strategy skeletons
can be thought of as a collection of strategies. Similar to strategies and plays,
we can determine when a strategy conforms to a strategy skeleton. We say a
SAT strategy f conforms to a strategy skeleton S when every complete play π

conforming to f conforms to S. A play π conforms to S, if there is some path
ρ ∈ S such that |π| = |ρ| and for each i we have (1) ϕπ0,...,πi−1 = ∃x.ψ for some
ψ and �x�Mπ

= �ρi�
Mπ

, or (2) ϕπ0,...,πi−1 is a disjunctive or conjunctive formula
and πi = ρi, or (3) ϕπ0,...,πi−1 is a universally quantified formula and ρi = •. A
strategy skeleton is winning if there is a winning strategy that conforms to it.

In order to develop a decision procedure that produces a winning strategy
skeleton, we first turn to the problem of determining if a SAT skeleton S for the
LRA satisfiability game G(ϕ,M) is winning. To determine if S wins the game
G(ϕ,M) we check if the losing formula lose(S, ϕ) is not satisfied by M (i.e., S

wins G(ϕ,M) if M �|= lose(S, ϕ)). This formulation results in a formula that is
existentially quantified and can be easily Skolemized to a quantifier free formula
and checked with an off-the-shelf SMT solver. Furthermore, we show in Sect. 5
that a model of the Skolemized formula can be used to construct an UNSAT
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strategy skeleton for ϕ that beats S. We define lose(S, ϕ) as follows:

lose(∅, ϕ) �true

lose({ǫ}, ϕ) �¬ϕ

lose(S, ϕ ∨ ψ) �lose(L ⇓ S, ϕ) ∧ lose(R ⇓ S, ψ)

lose(S, ϕ ∧ ψ) �lose(L ⇓ S, ϕ) ∨ lose(R ⇓ S, ψ)

lose(S,∃x.ϕ) �
∧

t·π∈S

lose(t ⇓ S, ϕ)[x 	→ t]

lose(S,∀x.ϕ) �∃x.lose(• ⇓ S, ϕ)

If M satisfies the losing formula lose(S, ϕ), then S is not a winning strategy
skeleton for the game G(ϕ,M). Intuitively, this implies that UNSAT can beat
SAT if SAT plays according to any strategy conforming to S. We use the intuition
to formalize when an UNSAT strategy skeleton U beats the SAT skeleton S.

Definition 2 (Counter Strategy). Fix a LRA-satisfiability game ϕ, play π

of ϕ, SAT skeleton S for ϕπ, and UNSAT skeleton U for ϕπ. U is a counter-

strategy of S (U beats S), if there is some strategy g conforming to U such
that for every strategy f conforming to S, UNSAT wins every complete play ππ′

such that π′ conforms to both f and g.

Crucially, it cannot be the case that U beats S and S beats
U . This asymmetry is ensures that the strategy improvement algo-
rithm makes progress towards verifying or falsifying the formula ϕ.

U

0

1

∧L R

•

∧L R

L L

∃x

∃z

∀ȳ0 �= 1

0 ≥ ȳ 1 ≥ ȳ

Example 2. Recall the initial strategy S from
Example 1, in which SAT always chose the
branch with the atom x = z no matter what
values UNSAT chose for x and z. The losing for-
mula of S is lose(S) � x̄ �= z̄ which summa-
rizes the choices of x̄ and z̄ that UNSAT may
make to falsify the atom x = z SAT choose. The
losing formula of S is satisfiable—e.g., with the
model M = {x̄ 	→ 0, z̄ 	→ 1}. Since the losing for-
mula is satisfiable, there must be some counter-
strategy that beats S. One such counter-strategy
U is depicted to the right—remember that the
UNSAT strategy U is a SAT strategy to the for-
mula ¬ϕ. As in Example 1, U is annotated with additional labels: terms are
labeled with the existential quantifier they are instantiating, each • is annotated
with the corresponding Skolem constants from lose(S, ϕ), and conjunctions are
grouped and highlighted to visually distinguish conjunctive branches from dis-
junctive branches. Finally, each leaf of the skeleton is labeled with the atomic
formula reached after substituting the terms and Skolem constants for each quan-
tified variable.
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The skeleton U states that UNSAT will always choose 0 to instantiate x and
1 to instantiate z. If SAT chooses the left branch, then the play is over and
UNSAT wins. Otherwise, SAT chooses the right branch and a symbolic value ȳ

to instantiate y. Then SAT chooses to either play the left or right branch of the
resulting sub-game. If SAT chose left then UNSAT will chose to play the left
sub-game and the play ends in the atom 0 ≥ ȳ. Otherwise, when SAT plays the
right sub-game, UNSAT chooses to play the resulting left sub-game and play
ends in the atom 1 ≥ ȳ.

Proposition 1. Let S be a SAT strategy for the game G(ϕ,M). S is winning
if and only if M |= lose(S, ϕ).

Algorithm 1: Satisfiability modulo LRA

Function Solve(ϕ,Mπ,S)
Input: LRA Formula ϕ = ψπ for

some sentence ψ.
Valuation Mπ : (x0, . . . , xn) → Q such
that FV (ϕ) ⊆ dom(Mπ).
S a SAT skeleton for ϕ.
switch has-counter-strategy(S, Mπ, ϕ) do

case Counter-strategy U do

〈π′, U ′〉 ← peel(ϕ, U);

switch Solve(¬ϕπ
′

, Mπ ∪ Mπ
′

, U ′) do

case Sat U ′′ do

return Unsat π′ · U ′′

case Unsat S′ do

return Solve(ϕ, Mπ, S ∪ (¬π′) · S′)
case default do

return Sat S

Function Strategy-Improvement(ϕ)
Let S ∈ SKEL(ϕ, ∅) be any skeleton
for ϕ;

switch Solve(ϕ, λx. ⊥, S) do

case Sat S′ do
return true

case Unsat U do
return false

4 Fine-Grained Strategy Improvement

This section presents an algorithm for deciding LRA satisfiability (Algorithm 1).
At a high level, the algorithm produces a winning strategy skeleton via fine-
grained strategy improvement. Algorithm 1 iteratively improves the current
player (SAT)’s strategy. Each iteration attempts to compute a counter-strategy
for the opposing player (UNSAT), fixes the opposing player’s initial moves and
recursively solves the resulting sub-game. If the opposing player wins the sub-
game, then they win the game, and a winning strategy can be constructed using
the synthesized initial moves and the winning strategy for the subgame. If the
opposing player loses the subgame, the current player’s winning strategy for the
subgame is used to improve their strategy. The algorithm then proceeds to the
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next iteration of the current game and repeats until a winning player can be
determined.

Algorithm 1 assumes that UNSAT makes the first move in the game G(ϕ,M).
If SAT would instead play first, Algorithm 1 may be applied to ¬ϕ and the result
negated. The first step of the strategy improvement algorithm initializes a SAT
skeleton. Any SAT skeleton S ∈ SKEL(ϕ, ∅) may be used.

After initialization, the algorithm will check if a counter-strategy exists (cf.
Sect. 5). If there is no counter-strategy, then necessarily SAT’s current skeleton
S must be winning. Otherwise, UNSAT has a counter-strategy U that beats S.
The auxiliary function peel uses ϕ and U to compute π′—the leading universal
and conjunctive moves—and U ′—the remaining skeleton (i.e. U = π′ · U ′). The
algorithm continues by fixing the moves in π′ and having the players swap places
while solving the resulting sub-game ¬ϕπ′

. Formally, peel is defined as follows:

peel(∀x.F, U) �
〈

t · π, U
′
〉

where
〈

π, U
′
〉

= peel(F, U
′′) and U = t · U

′′

peel(F ∧ G, U) �
〈

L · π, U
′
〉

where
〈

π, U
′
〉

= peel(F, U
′′) and U = L · U

′′

peel(F ∧ G, U) �
〈

R · π, U
′
〉

where
〈

π, U
′
〉

= peel(G, U
′′) and U = R · U

′′

peel(ϕ, U) � 〈ǫ, U〉 otherwise

By construction, the leading UNSAT moves of a counter-strategy must form
a single path—Algorithm 3 only chooses a single term or conjunct when con-
structing a counter-strategy. This ensures that peel is properly defined. After
peeling off the leading universal and conjunctive moves from U , the algorithm
recursively solves the resulting sub-game (from the point-of-view of UNSAT by
recursing on ¬ϕπ′

instead of ϕπ′

).
After the recursive call, either SAT or UNSAT has a winning skeleton to

G(¬ϕπ′

,Mπ′

). If SAT wins G(¬ϕπ′

,Mπ′

) with the skeleton U ′′, then UNSAT
must win G(ϕπ′

,Mπ′

) with the UNSAT skeleton U ′′. Since UNSAT controls the
initial moves π′, we may conclude that UNSAT wins the entire game G(ϕ,M)
and return the winning UNSAT skeleton π′ · U ′′.

Otherwise, UNSAT wins G(¬ϕπ′

,Mπ′

) with the skeleton S′. The sub-
skeleton S′ can be extended to counter U by prepending every path of S′ with
the “negation” of π′ the initial moves of UNSAT. Note that by construction, π′

consists only of terms instantiating universal quantifiers or L or R denoting a
choice of a conjunctive branch. We define the negation of π′ as follows: each term
in π′ is replaced with a •—i.e. (¬π′)i = π′

i if π′
i ∈ {L,R}, otherwise (¬π′)i = •.

Technically, (¬π′) ·S′ is not a skeleton when π′ contains conjunctive moves—the
resulting set of paths only covers one of the branches, while a SAT skeleton must
cover both branches of a conjunction—however, when unioned with S the initial
skeleton for SAT, the final result is a skeleton that counters U .
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Example 3.

Continuing Example 1, let us suppose that we begin Algorithm 1 with the
SAT strategy skeleton S depicted in Example 1 (which simply takes the left
branch of the disjunction). S is not winning, since the UNSAT player may choose
different values for x and z to invalidate the equality—one such counter-strategy
U for S appears above. After using peel to construct π′ and U ′, Algorithm 1
recursively solves the sub-game ¬ϕπ′

� x �= z ∧ ∀y. (x ≥ y) ∨ (y ≥ z) ∧ (z ≥
y) ∨ (y ≥ x) starting with U ′ and the model Mπ′

= {x 	→ 0, z 	→ 1}. The sub-
game is played with the role of the two players switched—the recursive call uses
the formula ¬ϕπ′

rather than ϕπ′

—thus, U ′ is a SAT skeleton for the resulting
sub-game and the assumption that the top-level connective of ϕ is controlled by
UNSAT is maintained.

The recursive call returns that UNSAT won the game G(¬ϕπ′

,Mπ·π′

) with
the skeleton S′. The skeleton S′ will instantiate y with the average of x and z

and chose the left disjunct x < y < z, which clearly beats U ′ when x is 0 and z

is 1.

While S1 counters U , it is not yet winning. SAT will lose any play where
UNSAT instantiates x and z such that z < x. On the next iteration of the game
the algorithm finds U1 a counter-skeleton to S1. Just as before the procedure
splits apart U1 and solves the induced sub-game. The procedure finds that SAT
wins the sub-game with the skeleton S′

1. The new skeleton is extended and
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Algorithm 2: Check if a given strategy skeleton has a counter-strategy

Function has-counter-strategy(S, M0, ϕ)

Input: LRA formula ϕ.
Valuation M0 : (x0, . . . , xn) → Q s.t.
FV (ϕ) ⊆ dom(M0)
S a SAT strategy skeleton for ϕ

foreach π such that π • π′ ∈ S for some π′ do
H[π•] ← fresh rational variable

foreach π such that πLπ′ ∈ S for some π′ and

ϕπ is a conjunction do

H[πL] ← fresh Boolean variable
H[πR] ← fresh Boolean variable

lose ← true

foreach π ∈ S do

win ← ϕπ{x �→ M0(x) : x ∈ dom(M)}
conds ← true

for i ← |π| to 1 do

π′ ← π1, . . . , πi−1

if ϕπ
′

= F ∧ G then

conds ← conds ∧ (win ⇒ H[π′ · πi])
win ← H[π′ · L] ∧ H[π′ · R]

else if ϕπ
′

= ∃x.F then

win ← win[x �→ πi]
conds ← conds[x �→ πi]

else if ϕπ
′

= ∀x.F then

win ← win[x �→ H [π′•]]
conds ← conds[x �→ H [π′•]]

lose ← lose ∧ (¬win) ∧ conds

if lose is satisfiable then

Let M be an extension of M0 satisfying lose

〈U, G〉 ← CSS(ϕ, M, M0, ǫ, S)
return Counter-strategy U

return None

combined with S1 to form S2 and the current game ϕ continues starting from
S2; however, on the next iteration, the procedure determines that S2 has no
counter-strategy and is thus a winning SAT skeleton for the game ϕ.

Theorem 1. Algorithm 1 is a decision procedure for LRA satisfiability.

5 Computing Counter-Strategies

When a strategy skeleton is not winning—its losing formula is satisfiable—the
opposing player must have a counter-strategy that beats every strategy that
conforms to the strategy skeleton. Given a model of the losing formula, this
section shows how to construct such a counter-strategy skeleton.

At a high level, Algorithm 1 uses Algorithm 2 to (1) determine if a strategy
skeleton S is winning and (2) if S is not winning to return a counter-strategy
U that beats S (and returning none if S is winning). Given a LRA satisfiability
game G(ϕ,M) and skeleton S, Algorithm 2 computes (a formula equisatisfiable
to) lose(S, ϕ), then uses Algorithm 3 to synthesize a counter-strategy to S if
lose(S, ϕ) is satisfied by M .

Algorithm 2 first constructs the losing formula. The first step of which intro-
duces a new Herbrand constant for each path to a universal quantifier and a fresh
Boolean variable for each path to a conjunct within ϕ. The produced formula is
equisatisfiable to the losing formula described in Sect. 3. By existentially quan-
tifying the introduced Boolean variables and Skolem constants lose becomes
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Algorithm 3: Constructing a counter-strategy

Function CSS(ϕ, M , Mπ, π, S)

Input: LRA formula ϕ.
Valuation M : Image(H) → (Q ∪ B)

with M |= lose(ϕπ, S)
Valuation Mπ : (x0, . . . , xn) → Q s.t.

FV (ϕπ) ⊆ dom(Mπ)
π a path fixing SAT’s initial moves
S the strategy skeleton for ϕπ

Output: 〈U, F 〉 where Mπ |= F and
U is an unsat skeleton that beats S on
G(ϕπ, M ′) for any M ′ satisfying F

if S = ∅ then
return 〈Any skel ∈ SKEL(¬ϕπ, dom(Mπ)), ⊤〉

else if ϕπ is atomic then
return 〈{ǫ}, ¬ϕπ〉

else if ϕπ = ϕl ∧ ϕr then

if ¬�H[π · L]�M then

〈Ul, Fl〉 ← CSS(ϕl, M, Mπ, π · L, L ⇓ S)
return 〈L · Ul, Fl〉

else

〈Ur, Fr〉 ← CSS(ϕr, M, Mπ, π · R, R ⇓ S)
return 〈R · Ur, Fr〉

else if ϕπ = ϕl ∨ ϕr then

〈Ul, Fl〉 ← CSS(ϕl, M, Mπ, π · L, L ⇓ S)
〈Ur, Fr〉 ← CSS(ϕr, M, Mπ, π · R, R ⇓ S)
return 〈(L · Ul) ∪ (R · Ur), Fl ∧ Fr〉

else if ϕπ = ∀x.ϕ′ then

Mπ• ← Mπ{x �→ �H[π•]�M}
〈U, F 〉 ← CSS(ϕ′, M, Mπ•, π•, • ⇓ S)
t ← select(Mπ•, x, F )
return 〈t · U, F [x �→ t]〉

else if ϕπ = ∃x.ϕ′ then

U ← ∅
G ← true

foreach t such that t · π′ ∈ S for some π′ do

Mπ·t ← Mπ{x �→ �t�M
π

}
〈

U+, F+
〉

← CSS(ϕ′, M, Mπ·t, π · t, t ⇓ S)
F ← F ∧ (F+[x �→ t])
U ← U ∪ U+

return 〈•U, F 〉

logically equivalent to lose(S, ϕ). The introduced Boolean variables enable an
explicit encoding of UNSAT’s choice of conjunct within the losing formula. This
allows a model of the losing formula (if one exists) to explicitly track which
branch UNSAT has a counter-strategy for. The algorithm computes the losing
formula on a path-by-path basis. It does so by computing when SAT could win
the given path and taking its negation (i.e., (¬win) ∧ conds). We use win to
denote if the path could be won by SAT—note that for conjunctions SAT must
be able to win both of the conjuncts—and conds to constrain the introduced
Boolean variables (i.e., H(π) represents if the sub-skeleton rooted at π is win-
ning). After constructing lose, Algorithm 2 checks if the formula is satisfiable. If
lose is unsatisfiable, then S is a winning skeleton for the (sub-)game ϕ and has
no counter-strategy. Otherwise, there is a model of lose, that can be used with
Algorithm 3 to produce an UNSAT skeleton that beats S.

Algorithm 3 recursively decomposes S and ϕ to produce a counter-strategy.
Before recursing, a model of the bound variables (Mπ) and the path-prefix π is
constructed. For universals, the valuation is extended using the model of lose,
and for existentials the valuation is extended by evaluating the term instantiating
the quantifier using the model of the previously bound variables. To ensure that
the recursive call produces a counter-skeleton that beats the sub-skeleton of S,
M must be a model of the losing formula of the sub-skeleton. Whenever ϕ is
not conjunctive this is trivially true, as lose(ϕ, S) is a conjunction of the losing
formulae for the sub-skeletons. This ensures that the model of the parent formula
is also a model of all sub-formulae. In the case when ϕ is a conjunction, the
Boolean variables introduced to construct the losing formula determine which of
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the subformulae are also modeled by M . If the introduced Boolean variable for a
given conjunct is false in the model M , then it must be that the given conjunct
also evaluates to false in the given model. This condition ensures that M is also
model of the losing formula of the sub-skeleton and thus that the recursive call
computes a counter-strategy to the given sub-skeleton. The algorithm then goes
back up and constructs a counter-strategy. For atomic formula, there is only
one possible strategy, the empty strategy. For conjuncts, the counter-strategy
simply extends a counter-strategy for the left or right branch of the conjunct
depending on which branch has a counter-strategy in model M—it is possible
both have a counter strategy in model M , taking either or both counter-strategies
produces a counter-strategy. For disjunctions, a counter-strategy combines a
counter-strategy for both the left and right disjuncts. If the strategy S only takes
one of the two branches, then any skeleton for the disjunct may be returned. For
universal quantifiers, we use model based term selection to select a term t to
instantiate x such that t satisfies the same atoms of G within the given module
Mπ• (cf. Sect. 5.1). For existentials, we construct a counter-strategy as the union
of a counter-strategy for each choice SAT had made.

5.1 Term Selection

When generating a counter-strategy, Algorithm 3 makes use of the auxiliary
function select to select a term t to instantiate x. The function select is a
(model-guided) term selection function [8].

Given a formula F , a variable x ∈ FV (F ) free in F , and a model M |= F

of F , we require select(M,x, F ) to return a term t over the free variables of
F excluding x (i.e., FV (t) ⊆ FV (F ) \ {x}) such that M satisfies F when t is
substituted for x (i.e., M |= F [x 	→ t]). Furthermore, to ensure that Algorithm 1
is a decision procedure, we require that for any formula F and variable x ∈
FV (F ) select has finite image (i.e., the set {select(M,x, F ) : M |= F} is
finite).

For LRA, we define select as follows. Without loss of generality, we assume
that any atom of F that contains x is written as x = s, x < s, or x > s for some
s. Let EQ(M,x, F ) contain the term s if and only if x = s is an atom of F and
�x�M = �S�M . Similarly UB(M,x, F ) contains the term s if and only if x < s is
an atom of F and �x�M < �s�M . Finally, let LB(M,x, F ) contain the term s if
and only if x > s is an aotm of F and �x�M > �s�M . Furthermore, if EQ(M,x, F )
is not empty, let eq(M,x, F ) be any s ∈ EQ(M,x, F ). If UB(M,x, F ) is not
empty, then let lub(M,x, F ) be a term s ∈ UB(M,x, F ) such that for any
other s′ ∈ UB(M,x, F ), �s�M ≤ �s′�M . Similarly, if LB(M,x, f) is not empty,
then let glb(M,x, F ) be a term s ∈ LB(M,x, F ) such that for any other s′ ∈
LB(M,x, F ), �s�M ≥ �s′�M .

select =































eq(M, x, F ) if EQ(M, X, F ) �= ∅
1

2
(lub(M, x, F ) + glb(M, x, F )) if UB(M, x, F ) �= ∅ and LB(M, x, F ) �= ∅

lub(M, x, F ) − 1 if UB(M, x, F ) �= ∅

glb(M, x, F ) + 1 if LB(M, X, F ) �= ∅

0 otherwise
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For further details on model-guided term selection (including term selection
for linear integer arithmetic), we refer the reader to Farzan and Kincaid [8]. While
this paper so far has focused on satisfiability of LRA, we note that Algorithm 1
is a decision procedure for any theory that admits a term selection function
with finite image. In fact, the only change required is to swap select with an
appropriate term selection function for the desired theory.

6 Synthesizing Fine-Grained Strategies

Section 4 presents an algorithm that computes a winning strategy skeleton that
either proves or refutes satisfiability of a LRA sentence. This section shows how
to generalize the technique of [8] to compute a winning fine-grained strategy from
a winning fine-grained strategy skeleton. As described in Sect. 2 a SAT strategy
is a function from plays to either a rational number (for existential quantifiers)
or the labels L and R (for disjunctions).

Strategies vs Skeletons. In Sects. 3, 4, and 5, our techniques and discussion
focused on how to compute a winning strategy skeleton. While computing a
winning strategy skeleton is sufficient to determine satisfiability of a formula, it
may be insufficient for other tasks. For example for use in program verification
and synthesis tasks (e.g., to determinize non-deterministic choices, synthesize
safety conditions, etc.). By definition, a strategy skeleton S is winning if some
strategy g that conforms to S is winning.

Computing Winning Strategies. This section focuses on how to extract a winning
strategy from a winning strategy skeleton S for the game G(ϕ,M). To do so,
we construct a system of constrained horn clauses (CHCs) whose solution we
use to produce a winning strategy from a winning skeleton. The produced CHC
rules represent when the strategy skeleton is losing. Since the strategy skeleton
is winning, the rules are satisfiable and a model satisfying the CHCs exists. The
process starts by labeling each leaf of S with the atom reached, substituting
each of the terms instantiating existential quantifiers. Formally, for any path π

of S (from the root to a leaf), we label the leaf (rooted at π) with the formula
substϕ(¬ϕπ, π). The function substϕ applies a substitution based on the given
path in reverse order of the appearance of each existential quantifier.

substϕ(G, ǫ) � G

substϕ(G, π · L) � substϕ(G, π)

substϕ(G, π · R) � substϕ(G, π)

substϕ(G, π•) � substϕ(G, π)

substϕ(G, π · t) � substϕ(G[x 	→ t], π) where ϕπ = ∃x.F
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For a strategy skeleton S, define its nodes N = {π : ∃π′. ππ′ ∈ S} to be
prefixes of paths in S. Furthermore, define Succ : N → 2N to the set of imme-
diate suffixes. For each node π of S, we introduce an uninterpreted relation
Rπ(x1, . . . , xn) where x1, ..., xn = FV (ϕπ) are the free variables of ϕπ. We pro-
duce the following rules:

substϕ(¬ϕπ, π) ⇒Rπ(. . . ) if ϕπ is atomic
(

∨

π′∈Succ(π)

Rπ′(. . . )

)

⇒Rπ(. . . ) if ϕπ is conjunctive

(

∧

π′∈Succ(π)

Rπ′(. . . )

)

⇒Rπ(. . . ) otherwise

Rǫ(x1, . . . , xn) ⇒x1 �= M(x1) ∨ · · · ∨ xn �= M(xn)

For each π ∈ N , Rπ represents the set of all M ′ such that π ⇓ S loses the
game G(ϕπ,M ′). Of note, the last rule requires that Rǫ does not contain M (i.e.,
that S must win the game G(ϕ,M)). Since the overall skeleton is winning, the
rules are satisfiable. A solution for each relation Rπ may be computed using an
off-the-shelf CHC solver. Applying the negated solution as a guard for each path
of the skeleton, produces a winning strategy. Technically, the guards should be
determinized to produce a function; however, any such determinization will result
in a winning strategy. Formally, for each node π such that ϕπ is an existential
or disjunctive formula, we produce the function:

fπ(x1, ..., xk) if ¬Rπ′

1
then l1 elif . . . else lm

where FV (ϕϕ) � {x1, . . . , xk}, Succ(π) � {π′
1, . . . , π

′
m}, and where each child

π′
i is reached with label li in S. Furthermore, for each path π ∈ (Q∪{L,R})∗ such

that ϕπ is an existential or disjunctive formula, define f ′(π) to be fπ(c1, . . . , cn)
where each ci = Mπ(xi) for each free variable xi ∈ FV (ϕπ). Finally define f(π)
to be f ′(π) if f ′(π) ∈ {L,R} and otherwise define f(π) to be �f ′(π)�Mπ

. The
function f is a strategy conforming to S that wins the game G(ϕ,M).

Consider the winning skeleton S2 from Example 3. The left side of Example 4
shows the set of rules to label S2, depicted as a tree (whose shape follows exactly
from the shape of S2). The graph should be interpreted as saying that a node’s
label is implied by the combination of each of its children’s labels. For nodes 5
and 6, the labels of its children should be combined using disjunctive, otherwise,
the label of its children should be combined conjunctively. For example, the rule
for node 1, should be read as R2(x̄, z̄) ∧ R3(x̄, z̄) ⇒ R1(), while the rule for
node 5 should be read as R7(x̄, z̄) ∨ R8(x̄, z̄) ⇒ R5(x̄, z̄). The middle column
of Example 4 shows a possible solution to the set of rules, and the left-hand
side shows the winning strategy extracted from S2 using the given solution. The
strategy f•• states that given UNSAT’s choices of x̄ and z̄ to instantiate x and z,
if UNSAT chose equal values for x and y then SAT will chose the left branch—
which results in SAT’s immediate win—otherwise SAT will chose to play the
right branch. f••R and f••R x̄+z̄

2

are interpreted similarly.
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Example 4.

Rules:

R0()

R1()

R2(x̄, z̄) R3(x̄, z̄)

R4(x̄, z̄)

R5(x̄, z̄) R6(x̄, z̄)

R7(x̄, z̄) R8(x̄, z̄) R9(x̄, z̄) R10(x̄, z̄)

x̄ �= z̄

x̄ ≥ x̄+z̄
2

x̄+z̄
2 ≥ z̄ z̄ ≥ x̄+z̄

2
x̄+z̄

2 ≥ x̄

Labels:

R0() 	→ ⊥

R1() 	→ R0()

R2(x̄, z̄) 	→ x̄ �= z̄

R3(x̄, z̄) 	→ x̄ = z̄

R4(x̄, z̄) 	→ x̄ = z̄

R5(x̄, z̄) 	→ x̄ ≥ x̄+z̄
2 ∨ x̄+z̄

2 ≥ z̄

R6(x̄, z̄) 	→ z̄ ≥ x̄+z̄
2 ∨ x̄+z̄

2 ≥ x̄

R7(x̄, z̄) 	→ x̄ ≥ x̄+z̄
2

R8(x̄, z̄) 	→ x̄+z̄
2 ≥ z̄

R9(x̄, z̄) 	→ z̄ ≥ x̄+z̄
2

R10(x̄, z̄) 	→ x̄+z̄
2 ≥ x̄

Strategy:

f••(x̄, z̄) � if x̄ = z̄ then L else R

f••R(x̄, z̄) �
x̄ + z̄

2

f••R x̄+z̄

2

(x̄, z̄) � if x̄ < z̄ then L else R

7 Experimental Evaluation

We extend the tool SimSat—a prototype implementation of the coarse-grained
strategy improvement algorithm from Farzan and Kincaid [9]—with the fine-
grained strategy improvement procedureSimSat is implemented in OCaml using
Z3 [7] to handle ground formulas.

Our experiments aim to answer the following questions: (1) is fine-grained
SimSat competitive with state-of-the-art SMT solvers? (2) how much of the
difference between coarse-grained SimSat and fine-grained SimSat is driven by
considering non-prenex normal form formulas and how much is due to the new
strategy improvement algorithm? (3) what is the overhead of computing a win-
ning fine-grained strategy after checking satisfiability of a formula?

We compare fine-grained SimSat to coarse-grained SimSat as well as to Z3
(version 4.11.2) [7], CVC5 (version 1.0.0) [1], and YicesQS [11]. Z3 implements
the procedure from Bjørner and Janota [4], CVC5 implements the procedure
from Reynolds et al. [18], and YicesQS implements the procedure from Bonacina
et al. [5].

We evaluate each tool on three suites of benchmarks: SMT-LIB2, Termina-
tion, and Simulation. Each benchmark is described in detail below. All experi-
ments were conducted on a desktop running Ubuntu 18.04 LTS equipped with
a 4 core Intel(R) Xeon(R) processor at 3.2GHz and 12 GB of memory. Each
experiment was allotted a maximum of five minutes to complete.

To answer (1), fine-grained SimSat is compared to coarse-grained SimSat,
CVC5, YicesQS, and Z3. This section does not consider other solvers and meth-
ods (e.g. quantifier elimination) as Reynolds et al. [18], Bjørner and Janota [4],
and Bonacina et al. [5] show that their methods outperform other existing solvers
and methods for quantified LIA and LRA formulas. To answer (2) we consider
three variants of fine-grained SimSat. The first variant, “prenex,” first converts
the input formula to prenex-normal form before running the decision procedure.
The second variant, “miniscope,” miniscopes (reduces the scope of quantifiers)
the formula before running the decision procedure, and the final variant, “fine,”



QLA Satisfiability via Fine-Grained Strategy Improvement 105

Fig. 1. (a) A cactus plot showing x instances solved within y seconds per solver. (b)
Log scale plot of strategy synthesis time (y-axis) vs satisfiability time (x-axis) (Color
figure online)

applies the decision procedure without modifying the input formula. Finally, to
answer (3) we wish to measure the efficacy of our algorithm for strategy syn-
thesis, but we know of no other algorithm capable of synthesizing strategies for
fine-grained games with which to establish a baseline. Instead, we measure the
overhead of synthesizing a strategy on top of synthesizing a strategy skeleton.
SMT-LIB2. This suite of benchmarks consists of 2419 LRA and 616 LIA bench-
marks. All benchmarks come from SMT-LIB2 [3]. All LIA benchmarks come from
industrial problems. The LRA benchmarks consists of 1800 randomly generated
formulas in prenex normal form with varying quantifier depth (see Monniaux
[15] for detailed descriptions) and 619 industrial benchmarks.
Termination. This suite of benchmarks consists of 200 LIA formulas. The for-
mulas are derived from Zhu and Kincaid’s [21] method for proving termination of
programs (see Sects. 5 and 6 for details on how formulas are constructed). Each
formula encodes a sufficient condition for which a program is terminating—the
program terminates if the formula is valid. The suite of benchmark consists of
a formula for each program in the “polybench” and “termination” benchmarks
from Zhu and Kincaid’s evaluation section [21].
Simulation. This suite of benchmarks consists of 2060 LIA formulas. The formu-
las represent when the state of two integer message passing programs are weakly
similar for the next n instructions. For complete details see Chap. 4 of [16], which
uses fine-grained strategy synthesis to determinize angelic choice when proving
weak simulation between two integer message passing programs.
Results. Table 1 and Figs. 1a 1b summarize the results of the experiments.
Figure 1a is a cactus plot. Each line represents a solver’s performance. Each
point (x, y) within the line for a solver represents that x instances were indi-
vidually solved in under y seconds by the given solver. The closer the line is
to the x-axis the better the solver performed. Table 1 breaks down the results
a little further by (sub-)suite of benchmarks. Each entry shows the number of
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Table 1. Number of instances solved per suite of benchmarks—UltimateAutomizer,
psyco, tptp, Mjollnir, keymaera, and Scholl are sub-categories of SMT-LIB2.

Benchmarks Miniscope Fine Prenex Coarse CVC5 YicesQS Z3 Any All Total

Simulation 2060 2060 2060 2059 2059 1972 2060 2060 1972 2060

UltimateAutomizer 316 316 315 315 345 82 242 349 60 372

psyco 189 189 189 189 189 146 189 189 146 189

tptp (LIA) 46 46 46 46 46 42 46 46 42 46

Termination 200 200 200 196 195 0 166 200 0 200

All LIA 2811 2811 2810 2805 2834 2242 2703 2850 2220 2867

Mjollnir 1597 1584 1586 1578 1300 1800 1541 1800 1177 1800

keymaera 222 222 222 222 222 222 222 222 222 222

Scholl 372 373 372 373 362 374 372 374 359 374

tptp (LRA) 23 23 23 23 23 23 0 23 0 23

All LRA 2214 2202 2203 2196 1907 2419 2135 2419 1781 2419

All 5025 5013 5013 5001 4741 4661 4861 5269 4001 5286

instances from the given suite of benchmarks by the given solver. The “Any”
column counts the number of instances solved by any of the solvers, while the
“All” column counts the number of instances solved by every solver. The “total”
column details the total number of instances (solved and unsolved) within the
suite of benchmarks. For each suite of benchmark, bolded values highlight which
solver(s) solved the most instances of that set of benchmarks.

Overall, all solvers performed well. In fact, Fig. 1a shows that all solvers solved
the first 4200 instances in under a second. The Figure zooms into the x-axis after
this point to highlight the differences between solvers. The experiments show
that the SimSat variants all behaved similarly and out-performed CVC5, Z3,
and YicesQS overall. Of the SimSat variants, the miniscoped variant performed
best, followed by the normal fine-grained variant, then the fine-grained prenex
variant and lastly the coarse-grained variant.

Looking into each suite of benchmarks further, Table 1 shows that while
YicesQS solved the fewest instances overall, it actually solved all LRA formulas.
Similarly, while CVC5 performed the worst on LRA, it was the best performer
on LIA instances, solving 23 more LIA instances than the miniscoped SimSat
variant—the next best performer. In both scenarios, the miniscoped SimSat
variant placed a close second. CVC5 performed well on the industrial bench-
marks; however, struggled with the randomly generated Mjollnir benchmarks,
perhaps due to the bottom-up instantiation strategy of its implemented deci-
sion procedure [18]. YicesQS excelled at the LRA formulas but failed to solve
many of the simulation and termination benchmarks. Overall, Z3 performed well
but struggled more with the UltimateAutomizer and Termination benchmarks—
benchmarks where conversion to prenex normal form increased quantifier alter-
nations significantly.

Finally, Fig. 1b summarizes the cost of computing a winning fine-grained
strategy after checking satisfiability of the given formula—i.e. how much time in
seconds did it take to compute a winning strategy from a winning strategy skele-
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ton. Figure 1b, plots a point for each formula within the Simulation benchmark.
A point has four associated values: (1) its x position represents how much time
is required to prove the formula Sat or Unsat (e.g. time to run “Fine” SimSat
variant), (2) its y position represents the amount of time in seconds required to
compute a winning strategy from a winning strategy skeleton, (3) its size visually
quantifies the number of AST-nodes within the produced winning strategy, and
(4) a node is blue if the formula is won by SAT and red if it is won by UNSAT.
The smallest computed strategy consisted of a single node (move), while the
largest strategy consisted of 448 nodes. Across all instances, the it took roughly
18.4% extra time to additionally compute a winning strategy over just deter-
mining satisfiability of a formula. The maximum time to compute a strategy is
1.4 s.

8 Discussion and Related Works

The closest techniques to Algorithm 1 are the QSMA algorithm of Bonacina et
al. [5] and the coarse-grained strategy improvement algorithm of Farzan and Kin-
caid [8]. Fine-grained and course-grained strategy improvement algorithms are
similar in that they both use model-based term selection to synthesize counter-
strategies to find better and better strategies for each player; however, they differ
in a few key ways. Fine-grained strategy synthesis works for formulae that are not
in prenex normal form. Additionally, while the coarse-grained strategy improve-
ment iterates between skeletons for the two players computing a counter-strategy
to the previous player’s most recent skeleton, the fine-grained strategy improve-
ment algorithm chooses a sub-game to focus on and solve before returning to
the current game. The coarse-grained algorithm iterates over “global” strate-
gies, where the fine-grained algorithm builds up a strategy by recursively solving
sub-games. While Algorithm 1 and QSMA share a similar high-level recursive
structure and used model-based techniques, the method of solving sub-formulae
differ. The QSMA algorithm uses over- and under-approximations to abstract
quantified sub-formulae when determining satisfiability of the current formula
whereas Algorithm 1 uses winning strategies of sub-games and model-based term
selection to synthesize counter-strategies and ultimately yield a winning strategy
to the current formula.

Algorithm 1 also shares some similarities with QSAT the quantified satis-
fiability algorithm of Bjørner and Janota [4] which is also based on the game
semantics of FOL. For formulas in prenex normal form, QSAT and Algorithm 1
both fix a strategy for the first quantifier and then recursively compute a strat-
egy for the remaining quantifiers and back-tracks if no winning strategy exists
for the current player; however, the notion of strategy used differs. In QSAT,
a strategy selects a subset of the literals in the formula—whose free variables
belong to the prefix of quantifiers already explored—that constrains the possible
strategies of the remaining quantifiers.

Finally, Algorithm 1 shares similarities with the counter-example instanti-
ation method of Reynolds et al. [18]. Both methods work for formulas beyond
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prenex normal form and use model based projection techniques to instantiate
quantifiers; however, Algorithm 1 uses a top-down approach to synthesize win-
ning strategies, while counter-example instantiation uses a bottom-up technique
to instantiate and eliminate quantifiers one quantifier block at a time.

Other methods for LRA/LIA formulas include heuristic instantiation and
quantifier elimination. Heuristic instantiation is sound but incomplete and was
traditionally the method of choice for many SMT solvers (e.g. CVC4 [2]). Tra-
ditional quantifier elimination methods (e.g. Fourier-Motzkin elimination [14],
Ferrante-Rackoff [10], and Weispfenning [20] algorithms for LRA, and Cooper’s
algorithm [6], and Pugh’s Omega test [17] for LIA) are sound and complete for
LRA/LIA but are extremely costly. Monniaux developed a lazy quantifier elim-
ination method for LRA based on polyhedral projection that performs better in
practice [15]. However, Bjørner and Janota show that their algorithm dominates
the use of Monniaux’s method as a [4]. Finally, Komuravelli et al. [13] intro-
duced model-based projection which under-approximates quantifier elimination
for LA and is closely related to the model-based term selection function we use
in Sect. 5.1.
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