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Abstract—We revisit the privacy-utility tradeoff of x-vector
speaker anonymization. Existing approaches quantify privacy
through training complex speaker verification or identification
models that are later used as attacks. Instead, we propose
a novel inference attack for de-anonymization. Our attack
is simple and ML-free yet we show experimentally that it
outperforms existing approaches.

Index Terms—Speaker Anonymization, Inference Attacks, Ma-
chine Learning

1. Introduction

The past decade has spurred major advances in user-
facing speech processing technologies. This include Auto-
matic Speech Recognition (ASR) [1], text-to-speech (TTS)
synthesis [2], and speaker identification or verification [3].
Another technology that has received recent attention, espe-
cially in academic work is speaker anonymization [4], [5],
[6], [7]. The goal of speaker anonymization is to transform
speech samples to obscure the identity of the speakers while
preserving the content.

A straightforward realization of a speaker anonymization
system is to use an ASR model to transcribe the input
speech and then synthesize a new audio sample matching
the transcription but with a different voice. This approach
perfectly protects the privacy of speakers and the resulting
audio samples are still useful for some downstream tasks
due to preserving the transcripts. However, it sacrifices
naturalness in the synthesized voice and discards all of the
prosodic features (pitch, emotionality, tone, etc.) present in
the original speech samples.

To ensure that we can preserve naturalness and prosody
in speech while anonymizing speakers, a number of ap-
proaches have been proposed [4], [5], [6], [8], [7]. Notably,
initiatives such as the VoicePrivacy Challenges [6], [9],
[8], [7] have been encouraging development and evalua-
tion of speaker anonymization techniques. One particularly
prominent approach is the use of x-vectors [10], which
are embeddings that capture speaker-specific characteristics
extracted from speech. Informally, x-vector anonymization
schemes transform this x-vector into a pseudo x-vector using
publicly available data (i.e., a public pool of other speakers’
x-vectors). This pseudo x-vector is then combined with the
transcript and pitch information (extracted from the input
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speech sample) to synthesize a new audio sample. When
the pseudo-x-vector is chosen to be significantly different
from the original speaker’s x-vector, the synthesized speech
sounds natural, as if it was uttered by another person.

However, despite substantial research, the privacy-utility
tradeoff of x-vector speaker anonymization is not fully char-
acterized. This is partially due to the fact that previous work
has primarily relied on empirical privacy evaluation using
speaker identification or speaker verification systems. Said
differently, existing approaches train deep learning models
to play the role of the attacker.

Training machine learning models as attacks has proven
successful in other contexts [11], [12]. However, for speaker
anonymization, we argue that using a model to identify
relevant patterns in speech to de-anonymize speakers is not
the best strategy. A better strategy is to design principled
inference attacks and use those as lower bounds to quantify
privacy. To demonstrate this, we propose a simple (ML-
free) de-anonymization attack that leverages the specifics of
the transformation of the original x-vector into the pseudo
x-vector. We show empirically that this attack significantly
outperforms current ML-based approaches based on training
speaker verification/identification models.

Our proposed attack is not only simpler and more ac-
curate than existing alternatives, it is also more computa-
tionally efficient as it does not require training any machine
learning models. Moreover, our attack is able to detect if the
target speaker is not within the set of considered suspects,
so it still infers information in such cases. Our results
call for re-aligning evaluation of the privacy-utility tradeoff
for x-vector speaker anonymization. Machine learning is a
powerful, but it should not be used as the sole strategy for
analyzing privacy-utility tradeoffs.

2. Background & Related Work

2.1. VoicePrivacy Challenge

As voice-based technologies become pervasive [13],
[14], concerns about protecting personal information em-
bedded in speech [15] have become increasingly urgent. In
response, the VoicePrivacy Challenge [9], [7], [8] offers a
platform for researchers to explore and compare state-of-the-
art methods to protect a speaker’s identity while preserving



critical linguistic content.! In the VoicePrivacy Challenge,
anonymization techniques are evaluated from both privacy
and utility perspectives. Typically privacy performance is
evaluated using the Equal Error Rate (EER) of a speaker ver-
ification/recognition model, which indicates how success-
fully a method prevents speaker re-identification, whereas
utility is evaluated using Word Error Rate (WER) and Un-
weighted Average Recall (UAR) comparing the anonymized
speech transcript to the original speech transcript. The
VoicePrivacy Challenge also provides several baseline sys-
tems to guide researchers, the most popular of which is the
class of x-vector speaker anonymization approaches [16],
[17], [18].

2.2. X-Vector Speaker Anonymization

A x-vector based speaker anonymization system [9],
[7] first extracts x-vectors, fundamental frequencies, and
bottleneck features from original speech. It then anonymizes
the speaker’s identity by replacing the original x-vector with
an average of numerous vectors selected from the public
x-vector pool, creating a pseudo-speaker x-vector. Finally,
using a neural source-filter model, it synthesizes a new
speech waveform that retains the original’s linguistic content
but sounds as though it was uttered by a different individual.

Fang et al. [4] introduced the first x-vector based speaker
anonymization method through voice conversion, which
adapts the x-vector of a speaker to match a target x-
vector. Following this, a number of other strategies were
proposed [19], [20], [21] that include random modifica-
tion of the embeddings, Singular Value Decomposition, and
Wasserstein GAN to generate the target x-vector.

Champion et al. [22] performed linkability and invert-
ibility attacks on anonymized x-vectors produced using
the baseline system of the VoicePrivacy challenge [23].
This work used two different embedding alignment algo-
rithms to evaluate x-vector based anonymization in scenar-
ios where the attacker was completely informed or semi-
informed about the original x-vector and its corresponding
anonymized x-vector. Unlike ours, they use a machine learn-
ing based method. Champion et al. [24] also analyzed x-
vector based speaker anonymization proposed by [4] where
the attacker has complete knowledge of the system.

There are different x-vector based speaker anonymiza-
tion techniques. In this paper, we use baseline B1 in the 2024
VoicePrivacy Challenge (which is baseline B1.b in the 2022
challenge). Fig. | shows its architecture. We consider it as
our main representative x-vector anonymization technique.

2.3. Privacy Evaluation

Privacy evaluation in the VoicePrivacy Challenge [9],
[71, [8] assumes the attacker trains an automatic speaker

1. https://www.voiceprivacychallenge.org/

2. Image source: https://github.com/Voice-Privacy-Challenge/
Voice-Privacy-Challenge-2022/blob/master/baseline/fig/B1b.jpg (License:
Creative Commons Attribution 4.0 International)
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Figure 1: Model architecture for x-vector speaker anonymization.”

verification (ASV) model on anonymized data. For each
speaker, the attacker computes an average embedding from
all anonymized enrollment utterances and compares it to
the embedding of an anonymized trial utterance to ver-
ify speaker identity. They use EER as evaluation metrics.
Srivastava et al. [17] evaluates privacy by assessing how
well the speaker anonymization methods prevent an attacker
from re-identifying the speaker using automatic speech
recognition (ASR) model. The privacy evaluation is quan-
titatively measured using linkability scores, which reflect
the likelihood of correctly linking anonymized speech to
the original speaker. It outlines various attacker knowledge
levels, ranging from ignorant (unaware of anonymization) to
semi-informed (aware of some details of the anonymization
method but not others), influencing how the attacker might
use the anonymized data to re-identify the speaker. Cham-
pion et al. [24] also evaluate the privacy of x-vector based
speaker anonymization but in a white-box setting when the
target selection is restricted to a specific identity. The privacy
evaluation is performed using the linkability metric with
an x-vector-PLDA based Automatic Speaker Verification
(ASV) system from the VoicePrivacy Challenge.

In this paper, we build on the concepts presented in [16],
[7] but propose a novel privacy attack by examining a
more knowledgeable adversary than has been considered
in related work, distinct from the framework used in [17].
Furthermore, our main insight is that x-vector speaker
anonymization can be attacked directly by leveraging how
they construct the pseudo x-vector from the original speech.
It is not necessary to train a complex ASI/ASV model and
hope it learns to de-anonymize.

3. Problem Statement

We frame the problem of speaker anonymization as
follows. The input is a speech sample a from a speaker
s whose identity we aim to protect. We use a speaker
anonymization method that produces an anonymized speech
sample y such that y approximately preserves the transcript
of a but obscures speaker identity. Some features, such as
gender, may still be identifiable, but the speaker should
be indistinguishable from other speakers that share those
features.” The adversary observes the anonymized speech

3. Some methods preserve gender by restricting the public pool of x-
vectors used to construct pseudo-speaker x-vector to the same gender as
the original speaker.



sample y and attempts to determine the identity of the
speaker, i.e., de-anonymize (re-identify) them.

3.1. Formalizing Embedding-based Anonymization

We think of embeddings being x-vectors but the for-
malization extends to other (potentially future) representa-
tions of an individual’s voice features. An Embedding-based
Anonymization Scheme is a tuple (Ext, Transf, Synth) of
algorithms where:

e Ext(a) — (z,t): Extract takes as input a speech sample
a and outputs a text transcript ¢ (a natural language
string) and a speaker embedding = € R* (the x-vector)
where £ is the embedding dimension (e.g., &£ = 512).

e Transf(x) — p: Transform takes as input a speaker
embedding x and transforms it (anonymizes it) into a
different pseudo speaker embedding p.

e Synth(¢,p) — y: Synthesize takes as input a text
transcript ¢ and a pseudo speaker embedding p and
produces an audio speech sample y as output.

This captures the idea and anonymization process of ex-
isting x-vector speaker anonymization schemes such as [6],
[9], [7]. That is, given an audio sample a to anonymize,
we use the function Ext(a) to extract its transcript ¢ and
x-vector z, then transform this x-vector into a pseudo x-
vector p using Transf(z), and then finally use the function
Synth(¢, p) to synthesize a new audio sample that matches
the characteristics of the speaker represented by p.

There are a few important remarks. Since x-vector trans-
formations rely on a public pool of embeddings, we can
think of Transf as including this pool implicitly. To capture
any randomness in the process of transforming an x-vector
into another pseudo x-vector, we can think of Transf as
having an auxiliary input r which is a source of randomness.
For the purposes of thinking about formal security, we can
even assume that r is derived (for each invocation) from a
cryptographic secret key, which is equivalent to thinking of
the randomness in Transf as coming from a PRNG seeded
with the secret key. To simplify the presentation we omit
this from the description and view Transf as probabilistic.

In our representative scheme, the VoicePrivacy Chal-
lenge’s x-vector anonymization implementation, the extract
function actually produces a tuple (x, Fy, By ) where x is
the x-vector (embedding), Fy is the pitch of the speaker,
and By represents the features of the transcript. Further,
the synthesis function Synth takes as input an pseudo x-
vector p in addition to Fy and By, and therefore it is im-
plicitly assumed that no information about speaker identity
is contained in Fj and Bp. Consistent with related work
Shamsabadi et al. [S] we found that this is assumption is
false empirically. We discuss this in Section 5.6.

3.2. Privacy

A natural way to perform a de-anonymization attack is to
try to (approximately) invert the transformation Transf(-).
If we observe an anonymized speech sample with some
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Figure 2: Illustration of our proposed attack. The target speaker,
s, has released anonymized audio that the adversary is attempting
to identify. The adversary has a set of potential speakers, S’ and
they believe the speaker is a part of it. They anonymize audio from
these potential speakers. Finally, they extract an x-vectors from the
target anonymized audio z and from the set of anonymized audio
they just generated X’. The speaker in S’ whose x-vector most
closely matches x is the speaker of the target audio.
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pseudo-speaker embedding p, we want to identify the most
likely speaker embedding x such that Transf(xz) — p. This
can be viewed as an inference attack where the attacker
guesses based on some likelihood ratio or approximates it.
For example, suppose we have x-vectors x; and x» from
two distinct possible speakers and an (estimated) pseudo x-
vector p obtained from the anonymized audio. The attack
computes ratio: Pr(Transf(xzq) = p)/Pr(Transf(z2) = p).
The attacker guesses the first speaker if and only if the ratio
is larger than 1. The challenge is therefore to compute or
approximate the ratio. This is the approach of the attack we
propose in Section 4, although we avoid explicitly comput-
ing probabilities and use x-vector distances instead.

By contrast, the approach taken in the VoicePrivacy
challenges [6], [9], [7] and related work is to perform de-
anonymization by training an Automatic Speaker Verifica-
tion (ASV) model. This model is then fed the anonymized
speech sample and asked to predict the identity of the
speaker. This is how various methods for the challenge
are evaluated and compared to each other in terms of
privacy. There are a number of downsides with this ML-
based approach. In particular, it does not utilize fine-grained
information about the anonymization method (Transf) or its
invertibility. It requires training the ASV model which is
computationally intensive and the performance of the attack
depends on how well that model can learn speaker identity
from (anonymized) speech samples.

3.3. Utility

Privacy is not the only important criterion for speaker
anonymization. Otherwise we could simply transcribe the
original speech sample and then synthesize a new audio
sample for that transcript with a fixed voice (e.g., robotic
voice) independent of the original speaker. However, this
would not preserve features such as gender, age [25], emo-
tion [26], or tone/speaking style, etc.

In the literature and the VoicePrivacy challenge, utility is
often measured as distortion to the transcript (differences in
transcription from the original to the anonymized audio),
which are measured using WER (Word Error Rate). We



also measure FAD (Fréchet Audio Distance) [27], which
compares generated audio against a ground truth set of non-
generated audio to determine quality.

4. Methodology

4.1. VoicePrivacy Challenge

Consider how the VoicePrivacy Challenge anonymizes
audio [6], [7]. The system first extracts an Xx-vector, and
other data, such as pitch (£y) and linguistic features (By),
from the original audio. It then creates a pseudo x-vector
which is given, along with the Fy and By collected from
the original audio, to a Neural Source Filter model. The
model uses these to create the final anonymized audio.

The system uses a public pool of x-vectors, which
we denote as pool. This pool is constructed from a large
number of x-vectors gathered from independent audio. The
VoicePrivacy Challenge uses the “train-other-500” subset of
LibriTTS [28] as the source of this pool. There are thousands
of utterances from about 500 speakers. Finally, the pool is
divided by gender, which provides the ability to use either
the same or opposite gender pool as the original speaker. In
our experiments, we assume same gender pools.

To construct a pseudo x-vector, the affinity between
the original audio’s x-vector and every other vector in the
gender filtered pool is calculated. Affinity is a distance
between vectors, and can be calculated either using the
cosine distance or using PLDA. The list of affinity values
is then sorted and then the top 200 vectors are selected.
This may be the top 200 nearest vectors (highest affinity) or
the 200 farthest vectors (lowest affinity) from the original
x-vector. From there a subset of 100 vectors are randomly
selected, and then averaged together. This average vector is
the pseudo x-vector. This pseudo x-vector is then applied at
either the speaker level (all utterances of a speaker get the
same x-vector) or the utterance (each utterance gets its own
x-vector). We consider speaker-level for our experiments.
Finally, the pseudo x-vector is provided as input to the
generation model, along with Fy and By, to synthesize the
anonymized audio.

4.2. Proposed Inference Attack

To reiterate, a speaker s has several audio files a they
wish to anonymize. For example, these samples may consist
of the speaker reading several sentences from a book, each
sentence being a separate audio file also described as an “ut-
terance”. The speaker anonymizes a to get new anonymized
audio y. The adversary observes the anonymized speech
sample y and attempts to guess the identity of the speaker.
The adversary has access to the anonymization method, as
well as a set of potential speakers S, for which they have
audio samples A’. They believe that s is within S’, and they
attempt to identify them.

Our proposed inference attack works as follows. First,
the attacker extracts an x-vector x from the observed

Algorithm 1 De-Anonymization Attack

Input: y: Anonymized audio files from target speaker s;
pool: Public pool of x-vectors;
S’: Set of potential speakers;
A’: Original utterances from speakers in S’
Output: s} in S’ that is most likely to be s
1: procedure EXTRACT_XVECTOR(audio)
2: Given several samples of audio from a speaker extract an
x-vector for that speaker.
3: end procedure
4: procedure ANONYMIZE(audio, pool)
Run representative x-vector anonymization method to ob-
tain anonymized audio.
6: end procedure
7: x < Extract_xvector(y)
8: for s; in S’ do

W

9: y; < Anonymize(a;, pool)
10: x} < Extract_xvector(y,)
11: dist; « ||=} — z|2
12: end for

13: return s, with the lowest dist

anonymized speech sample y. This is done using the x-
vector extractor from the VoicePrivacy Challenge, based on
Snyder et al. [29]. In principle, this extracted x-vector should
be similar, if not identical, to the pseudo x-vector used to
create it. In practice, there are significant differences due
to the audio generation and x-vector retrieval process. We
will discuss this problem later. The attacker then simulates
the anonymization process for each speaker in S’. From
this, the attacker obtains anonymized audio for each speaker
in S’ from which they extract x-vectors. This yields a set
X'’ of x-vectors where each x-vector z; € X' represents
the speaker embedding/identity of s;. Finally, the attacker
compares each z; to x to find the speaker most similar to
the original target s (using [y distance). Algorithm 1 shows
details of the attack method.

This attack works by leveraging the pseudo x-vector
construction method. One may expect the anonymized audio
to contain no information about the identity of the original
speaker, since it is constructed from the pseudo x-vector.
However, the pseudo x-vector is not constructed indepen-
dently from the original speaker x-vector, thus it carries
statistical information from it. The specific steps of selecting
the 200 nearest/farthest x-vectors (to the original speaker x-
vector) from the pool leaks information about it through the
affinity/distance. In the ideal case for the adversary, the 200
nearest/farthest x-vectors acts as fingerprint for the speaker
identity s. In such cases, the inference attacks only needs
to overcome the uncertainty of the 100 randomly selected
x-vectors from within the 200 nearest/farthest x-vector set.

5. Experiments

5.1. Setup

To evaluate our method we apply the VoicePrivacy Chal-
lenge anonymization process to the Libri_Dev dataset [30].



TABLE 1: Attack accuracy and utility for different pseudo x-vector construction methods. We show accuracy for our main attack method
under the Same and Different adversary models, as well as an ASI model using Same, Different, and Original adversary models. For
utility, we show the WER and FAD of all pseudo x-vector methods. Random Single has the lowest attack accuracy and best utility.

| (Ours) Same  (Ours) Different | ASI Same  ASIDiff ~ ASI Orig | WER  FAD
Original Audio 100 96.7 79.3 70.1 79.3 5.4 2.1
200 Farthest 100 76.3 34.5 19.6 9.2 7.4 7.5
200 Nearest 100 77.6 43.6 20.2 12.6 7.8 7.2
50 Farthest 100 65.7 324 18.2 11.1 7.7 7.5
50 Nearest 100 73.9 31.5 17.8 14.7 7.6 6.9
Random Average 100 46.3 36.3 18 9.8 6.4 7.4
Random Single 20 11.2 33.2 14.6 53 6.9 6.5

TABLE 2: Pseudo x-vector construction methods. All consist of
selecting a World of nearest or farthest x-vectors from pool, then
averaging a random subset of them together. Random Single is the
exception since it only uses a single x-vector instead of an average.

Method

200 Farthest

200 Nearest

50 Farthest

50 Nearest
Random Average
Random Single

| Description

Average 100 vectors out of 200 farthest
Average 100 vectors out of 200 nearest
Average 25 vectors out of 50 farthest
Average 25 vectors out of 50 nearest
Average 100 vectors of the entire pool
A single vector from the entirety of pool

Libri_dev_trials_m/f are considered the original
pool of audio A belonging to speakers .S, which is then
anonymized. Libri_dev_enrolls is used as the adver-
sary’s target pool, S’ when a separate and distinct pool is
required. There are 29 unique speakers in .S/, which is the
number of unique speakers in Libri_dev_enrolls. For
some experiments we use a smaller subset to show how the
size of S’ influences attack accuracy. Each speaker s; is
associated with a;, composed of several utterances of the
speaker reading sentences from a book. The exact number
of utterances depends on the speaker.

We wish to examine how the pseudo x-vector generation
parameters affect privacy and utility. We discussed how
the VoicePrivacy Challenge constructs pseudo x-vectors in
Section 4, by gathering a World of 200 nearest / farthest
x-vectors from which 100 are randomly selected. We con-
sider both settings to evaluate our representative method.
We further evaluate a smaller World of 50 from which 25
are sampled, to show how the size of the pool potentially
influences the privacy of the speakers. Finally, we also eval-
uate two additional scenarios that should provide maximum
privacy. The first takes the average of 100 randomly selected
x-vectors from the entire pool and uses it as the pseudo x-
vector. The second selects a single x-vector from the pool
randomly and uses it as the pseudo x-vector. Since the
selection of pseudo x-vector in those two scenarios is not
dependent on the original speaker or speech, there should
be no leakage.

5.2. Attack Scenarios

Recall that in our threat model the adversary knows
the anonymization method, the pseudo x-vector construc-

TABLE 3: Different adversary knowledge levels we evaluate. We
evaluate Same, Different, and Unknown for our attack. We evaluate
Same, Different, and Original for the ASI model.

Knowledge | Description

Same The target’s original non-anonymized audio is in A’
Different The target speaker s is in S’ but with different utterances
Original (AST only) Original non-anonymized audio to train model

tion method, and any other parameters. As a result, the
adversary can replicate steps taken during the anonymization
process, such as x-vector extraction and pseudo x-vector
construction. The adversary also has access to a set of
potential speakers S’, for whom the adversary has original
non-anonymized audio samples A’.

In Table 3 we propose three attack scenarios that map
onto different adversarial knowledge levels, representing
how closely the adversary’s audio samples mirror the sam-
ples used by the anonymization method. Our most powerful
attack assumes that the adversary knows the original speaker
is within that set and that the audio samples are the same as
the ones used to generate the target audio y, i.e. A’ = A. We
also evaluate a weaker, but perhaps more realistic scenario,
where S’ contains the target speaker, but with different
audio samples, i,e, A’ # A. For the ASI model, we also
evaluate the scenario where the adversary does not have any
anonymized audio and trains only on the original audio. We
further evaluate the scenario where the adversary does not
know if the target speaker is within S’

Attacks. We evaluated our proposed inference attack,
implemented as described in Section 4. As a comparison
point, we use an Automatic Speaker Identification (ASI)-
based attack, which attempts to identify the original speaker
by examining anonymized audio samples rather than the
x-vectors. More specifically, we train an ASI neural net-
work [31] using data corresponding to the assumed adver-
sary knowledge levels and perform inference to re-identify
the target speakers. We train until loss stops decreasing,
usually around 10 epochs. We use the Libri_dev male
and female subsets as training samples. Related work often
relies on an ASV (which takes in audio files and a claimed
identity to verify the speaker) for this. Instead, we opted
to use a speaker identification model since it better fits our
attack scenario, having a set of audio files and attempting
to classify each one as a certain speaker.
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Figure 3: Attack accuracy for different pseudo x-vector construc-
tion methods under the Different adversary knowledge level. All
construction methods, except for random, perform much better than
random guessing. As the adversary’s pool size increases, the attack
accuracy decreases before leveling out around a pool of size 20.

5.3. Results

Table 1 gives the results for our attack at different ad-
versary knowledge levels and pseudo x-vector construction
methods. We find that at the Same adversary knowledge
level, we are able to achieve perfect de-anonymization ac-
curacy at all sizes of S’ and for (nearly) all generation
parameters. Random Average and Random Single achieve
better accuracy than expected, due to leakage of Fjy and
By features in the x-vector extraction process, which we
further discuss later on.

Results for the Different adversary knowledge scenario
are shown in Fig. 3. Arguably this is a more realistic
adversary scenario, and is reflective of the most knowledge-
able adversary considered in related work. Nevertheless, our
inference attack still achieves high re-identification accuracy.

Table 1 also shows the results for the ASI at various ad-
versarial knowledge levels. As expected the model performs
better with stronger adversaries. Perhaps, due to the small
sample sizes for each speaker in Libri_devw, it is unable
to achieve high accuracy.

Overall results suggest that training complex deep neural
networks as an attack is unnecessary, as our (ML-free)
inference attacks performs as well or better without training
any model. It only requires knowledge of the anonymization
method and the public pool of x-vectors. Furthermore, given
the high success rate, the anonymization methods considered
do not appear to provide meaningful privacy.

5.4. Open World Evaluation

We also evaluated the open world setting where it is
not known if the original speaker s is within the set S of
possible targets. The question in this case is whether the
attack is resilient to the possibility that the original speaker
is not in the target set.

To evaluate this, we use our inference attack, but we only
include the target speaker s within S’ with probability 0.5
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Figure 4: ROC curves for identifying if a speaker is within the
potential target pool when anonymized using different pseudo
x-vector construction methods. All results shown are under the
Different adversary knowledge level. AUC is far above random
guessing for all. Not shown is the Same adversary knowledge level,
which has AUC=1 for all pseudo x-vector construction methods,
except Random Single, which is still above random guessing.

each time. Our attack accounts for this as follows. Instead
of sorting possible speaker by their distance to the x-vector
uses to construct the anonymized audio, the attack compares
the minimum distance against a threshold. If the distance is
smaller than the threshold then the adversary will declare the
target is within the set. To determine a suitable threshold,
the adversary can perform the attack in a setting where the
speaker s is within the set S’ to estimate the distribution of
x-vector [ distances and then derive a threshold value from
it (e.g., choosing a threshold at or above a given percentile).

We found that in the Same adversary knowledge setting
we again get perfect accuracy, i.e., we are able to select
a threshold without any false positives or false negatives.
Fig. 4 shows the ROC curves for the Different adversary
knowledge scenario. We observe that even in this case, the
adversary is able to identify if the speaker is present with
high accuracy.

5.5. Other Experimental Results

Time Comparison. Anonymizing Libri_dev took ap-
proximately 21 minutes, most of it to extract all the neces-
sary information and generate the anonymized audio. Note
that both attacks methods (ours and ASI/ASV) must perform
this step. However, from there it took approximately 12
minutes to train the ASI model to convergence, solely on
Libri_dev. Note that the ASV used in the VoicePrivacy
Challenge can take up to 10 hours to train on their recom-
mended dataset. However, the only time consuming step in
our attack is extracting x-vectors from Libri_dev, which
only takes approximately 2 minutes. Our attack is thus much
faster, and needs no training or additional models.

Utility. To evaluate how the different generation parameters
influenced utility, we compare anonymized audio against



non-anonymized audio using WER and FAD. While utility is
maintained across methods, Random Single has high utility
across both metrics. Our results suggest Random Single is
the best option, since it also achieves the highest privacy
across all knowledge levels.

TABLE 4: Results for our normalized scenario, where the generator
is given the same FO and BN regardless of the input audio. Hence
the only difference between audio files is the x-vector used to
generate it. We also show the accuracy for our Same and Different
knowledge level attacks for comparison.

\ Same  Different Normalized

Original Audio 100 96.7 100
200 Farthest 100 76.3 93

200 Nearest 100 77.6 93.1
50 Farthest 100 65.7 79.3
50 Nearest 100 73.9 99.6
Random Average 100 46.3 3.5

Random Single 20 11.2 34

5.6. Idiosyncrasies of X-Vector Anonymization

Recall that Random Single and Random Average should
have no privacy leakage. Yet, the results (Table 1) show
that our attack on these methods achieve well above ran-
dom guessing accuracy. This should not happen because
the pseudo x-vectors should contain no information about
the original speaker. We discovered that the reason for the
empirical outperformance is leakage of information about
Fy and By into the anonymized audio. We believe this was
also observed indirectly by Shamsabadi et al. [5].

To evaluate how this affects our attack success, we
performed the attack again while forcibly setting the Fj
and By features to ensure no leakage from them. This
means both y and 3’ will have the same utterances, pitch
values, and parameters, except for the pseudo x-vector used
to generate them. We call this the normalized scenario.
Results are shown in Table 4 where we see that (as expected)
both Random Average and Random Single achieve only
random guessing accuracy. Recall the size of .S’ is based on
Libri_dev_enrolls, which contains 29 unique speak-
ers. Therefore, random guessing accuracy is 3.45%. Our at-
tack on other methods also sees small decreases to accuracy,
but can still easily identify the speaker most of the time.

6. Discussions & Limitations

Discussion. Although not the focus of our paper, we
found empirically that is surprisingly easy to identify audio
that has been anonymized with x-vector based methods
when compared against non-anonymized audio. We fine-
tuned a Whisper [32] model to distinguish between audio
anonymized with 200 farthest pseudo x-vectors and non-
anonymized audio samples from the same dataset and found
it easily reached perfect accuracy. This is likely due to a
combination of averaged pseudo x-vectors resulting in very

neutral sounding audio. We believe this is noteworthy, espe-
cially in light of the recent attention on deepfake audio [33],
[34]. However, it is unlikely to be major issue for speaker
anonymization except in scenarios where concealing that
anonymization has taken place is essential.

Our results suggest that any x-vector anonymization that
carries information from the original x-vector to the pseudo
x-vector can be broken. However, preserving features such
as tone, pitch, gender, etc. may be essential for utility. This is
why approaches that achieve stronger privacy such as those
based on differential privacy [5], [35] or methods such as
Random Single and Random Average may not be practical
in many scenarios. Random Single, in particular, also has
the potential drawback that it selects the x-vector of an
actual speaker from the pool and thereby essentially results
in impersonating that individual.

Limitations. Our machine learning experiments using
speaker identification (ASI) to classify audio as belonging
to one of several speaker. This makes sense in our setting.
Nevertheless it would be appropriate in future work to
consider the case of speaker verification (ASV) for the
attack model, where a model is trained to recognize audio
as belonging to a single speaker.

Another limitation is scalability, which we have not
evaluated, especially in cases where the pool contains a very
large number (e.g., millions) of distinct speakers. This is
particularly challenging since our attack needs to compare
the distances of all potential targets against the pool, which
quickly becomes prohibitive as the pool size grows. Future
work may consider optimizations to narrow down the po-
tential pool, or speed up comparisons.

7. Conclusions & Future Directions

We proposed a novel attack on x-vector speaker
anonymization that does not require any additional model
training. The existence of this attack and its outperfor-
mance of existing automated speaker identification attack
approaches underlines the importance of considering the
specifics of the anonymization process, and not just the end
result audio hoping that attack models will learn to identify
relevant patterns during training.

Future research can build on our results by taking
into account the invertibility of pseudo x-vector generation
methods to optimize the privacy-utility tradeoff. Additional
assessments of utility through user study experiments could
further improve pseudo x-vector construction methods.
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