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ABSTRACT

Estimation of ancestral admixture is essential for creating personal genealogies, studying human history, and
conducting genome-wide association studies (GWAS). The following three primary methods exist for estimating
admixture coefficients. The frequentist approach directly maximizes the binomial loglikelihood. The Bayesian
approach adds a reasonable prior and samples the posterior distribution. Finally, the nonparametric approach
decomposes the genotype matrix algebraically. Each approach scales successfully to datasets with a million
individuals and a million single nucleotide polymorphisms (SNPs). Despite their variety, all current approaches
assume independence between SNPs. To achieve independence requires performing LD (linkage disequilibrium)
filtering before analysis. Unfortunately, this tactic loses valuable information and usually retains many SNPs still
in LD. The present paper explores the option of explicitly incorporating haplotypes in ancestry estimation. Our
program, HaploADMIXTURE, operates on adjacent SNP pairs and jointly estimates their haplotype frequencies
along with admixture coefficients. This more complex strategy takes advantage of the rich information available
in haplotypes and ultimately yields better admixture estimates and better clustering of real populations in curated

datasets.

1. Introduction

Estimation of genetic admixture is key to reconstructing personal
genealogies and understanding population histories [1]. Adjusting for
genetic ancestry is also a necessary prelude to genome-wide associa-
tion studies (GWAS) for medical and anthropological traits [2]. Failure
to account for ancestry can lead to false positives due to population
stratification [3-5]. In these analyses, admixture coefficients serve as co-
variates adjusting for ancestry. Because admixture coefficients represent
the proportions of a person’s ancestry derived from different popula-
tions, they are more interpretable than principal components (PCs).

Admixture coefficients can be estimated simultaneously with allele
frequencies in known or latent populations. ADMIXTURE [6] is the
most widely-used likelihood-based software. It directly maximizes the
binomial likelihood of the admixture coefficients and allele frequencies
via alternating sequential quadratic programming [7]. Our recent Julia
version, OpenADMIXTURE [8], incorporates time-saving software en-
hancements and AIM (ancestry informative markers) preselection via
sparse K-means clustering [9]. STRUCTURE [10] and its extensions

fastStructure [11] and TeraStructure [12] rely on Bayesian inference.
SCOPE [13] replaces the genotype matrix by a low-rank matrix, which
is delivered by alternating least squares and randomized linear alge-
bra [14]. Each of the recent versions of these programs — OpenADMIX-
TURE, TeraStructure, and SCOPE — scales to biobank-size datasets of a
million people and a million single nucleotide polymorphisms (SNPs).

A regrettable limitation of most of these programs is their assump-
tion of independence for the alleles present at neighboring SNPs. To
avoid this patently false assumption, SNPs are filtered to remove SNPs
in linkage disequilibrium (LD). Filtering must reach a balance between
LD elimination and the loss of valuable AIMs. The LD-aware program
fineSTRUCTURE [15] scales poorly on large datasets [13], despite the
clear advantage of using ancestry informative haplotypes over individ-
ual SNPs [16-18].

The current paper demonstrates the value of haplotypes in admix-
ture estimation and population clustering. Given the combinatorial and
computational complexities encountered, we consider only haplotypes
formed from adjacent SNP pairs. Even with this limitation, haplotype
models offer substantial improvements in estimation and clustering in
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simulated and real datasets on well-separated ancestral populations.
Our new program, HaploADMIXTURE, builds on the high-performance
computing (HPC) techniques pioneered in OpenADMIXTURE [8]. By
leveraging the parallel processing capabilities of graphics processing
units (GPUs), HaploADMIXTURE is able to run in reasonable time.
In practice, only a minority of haplotypes are informative. To select
ancestry informative haplotypes, we exploit unsupervised sparse K-
means clustering via feature ranking [8,9]. This generic method, de-
noted by the acronym SKFR, selects the informative features (haplo-
types) driving cluster formation. Our experience suggests that the SKFR-
HaploADMIXTURE pipeline delivers the best admixture results currently
available with reasonable computing times.

2. Methods
2.1. Admixture likelihoods

Consider a sample of I unrelated individuals, B haplotype blocks,
and S SNPs per block. For our purposes S equals 1 or 2. Let x;, de-
note the length-S genotype vector for haplotype block b of individual
i. Each genotype of i counts the number of i’s reference alleles present
and is coded as a number from the set {0, 1,2}. Haplotypes are coded
as sequences of 0’s and 1’s, and every x;, = h;;,; + h;;, equals a sum
of a maternal and paternal haplotypes. The blocks are taken to be con-
tiguous, non-overlapping, and exhaustive. Haplotypes may be chosen
through feature selection as discussed in Section 2.4. Let p;,, > 0 be
the frequency of haplotype h of haplotype block b in population &, and
let g;; > 0 denote the fraction of i’s genome coming from population
k, where 1 < k < K. The loglikelihood of the sample under a binomial
distribution and independence of haplotype blocks is

L£(Q,P)
B

:ZZIOg[

i=1 b=1

( Z %Pkbh) ( g qkipkb,x”,—h)]» (€D)

h:h<x;, andx,b—h<1 k=

where x;, is the sum of the maternal haplotype 0 < h <1 and the
paternal haplotype x;, — h. The matrix Q has dimension K X I. Be-
cause there are 25 possible haplotypes per block, P has dimension
K X B x 25. The constraints 21,::1 qi; =1 and Y, pypp, = 1 hold for
each i and combination (k, b). The loglikelihood (1) simplifies by sym-
metry if any entry of x;, equals 1 (a heterozygous SNP). Because
maternal and paternal haplotypes are interchangeable, the number of
summands can be halved if the remaining sum of products is dou-
bled. When S =1 and i and b are fixed, the heterozygous genotype
1 has probability 2(}, qxiPrs0)(Xy dkiPrs1)> Which the log function
splits into a sum of logarithms. In fact, this simplification replicates
the binomial likelihood employed in ADMIXTURE and STRUCTURE.
When § = 2, the doubly heterozygous genotype has the probability
2[Z, lIkiPkb(OO)] (2 qkiPrb(1 bl +2 [Zk aipison] [Zk driPrscio], which
no longer splits under the log function. In addition, there are cases where
one of the genotypes is observed, but the other is missing. For example, if
the first genotype is heterozygous and the other is missing, the probabil-
ity equals [X quiPrsoo) + Lk diiProon ] [ X dkiPrsoy + X diiProcin)]»
and the loglikelihood (1) should be adjusted accordingly. Nonetheless,
as described in the next subsection, the whole loglikelihood is still
amenable to maximization.

2.2. Maximum likelihood estimation

Estimation in HaploADMIXTURE and OpenADMIXTURE are similar.
The optimization machinery in both programs alternates estimation of
the per-population haplotype frequencies p,;, and the per-individual
admixture coefficients ¢;;. To allow easy parallelization with graph-
ics processing units (GPUs), we invoke the minorization-maximization
(MM) principle [19,20] to split sums appearing in the arguments to the
logarithms of the haplotype loglikelihood (1). The operative inequality

4385

Computational and Structural Biotechnology Journal 23 (2024) 4384-4395
n n

u
1 > 1 —1
og(u+v)> O ogu+ O ogv
u™ o u™ 1 pm o™ o u™ 1 pm
a1 om 8T m 2+ om 08T o
= u® logu + o logv +¢,
T om BT Ly pm OBV T

reduces to an equality when u = u™ and v = 0. Here the irrel-
evant constant ¢, depends only on the current values u™ and v

of u and v. The function (n')‘( o logu + ﬁ logv becomes a sur-
rogate for the function log(u + ) it replaces For example, when
S =2 and i presents a doubly heterozygous genotype, we take u =
2 [Zk qkipkb(OO)] [Zk qkipkb(ll)] and v=2 [Zk qkipkb(Ol)] [Zk qkipkb(IO)]'
Most genotype probabilities (all homozygous and singly heterozygous
genotypes) reduce to a single product where log splitting is unnecessary.
For haplotypes involving more than two SNPs, phase combinations be-
come more complex, code is harder to write, and computation slows.
For these reasons we venture no further than two-SNP haplotypes. Max-
imization of the surrogate function created by minorization enjoys the
ascent property of steadily increasing the loglikelihood. The ascent prop-
erty is the essence of the MM (minorization-maximization) principle
[19,20].
Minorization creates a surrogate function

I B
6. P10". P") =3 3 3wl tog ( Z Geabion )
h

i=1 b=1

s . P . (n) .
involving nonnegative weights w;,;  , many of which are 0 because they

correspond to haplotypes 1ncompatible with observed genotypes. Ex-
cept for revising the weights w; k;h at each iteration n, the surrogate
loglikelihood (2) is simpler to deal with than the actual loglikelihood.
Updating the admixture matrix Q = (g;;) can be done simultaneously
over columns (individuals /). Updating the haplotype frequency tensor
P = (py;y,) can be done simultaneously over its middle columns (blocks
b). Each such maximization must respect the nonnegativity constraints
on the proportions and their sum to 1 constraints. Very simple multi-
nomial updates of the p,,, can be achieved by splitting the argument
Zszl qyiPrp of the log function, but this second minorization slows con-
vergence dramatically.

The parallel updates of P and Q are structured around functions of
the form

G(r) = ij 10g<2cjkrk)
J k

subject to nonnegativity and sum to 1 constraints. The method of re-
cursive quadratic programming involves replacing G(r) by its local
quadratic approximation

) a2 G —r™)

0~ Gr™) + VG ™) (r = 1) + 2 (r =

and maximizing this approximation subject to the constraints. The re-
quired gradient and Hessian are

Z w;c; 2 Z chjc/T
VG(r)= and d°G(r) = - —_
Zk% 7 (chjkrk)z

where c}— is the jth row of the matrix C of nonnegative constants c;;.
Given the structure of the problem, the Hessian is block diagonal.
As a consequence, the computation of the gradients and Hessians of
G(Q, P | Q"™, P™) with respect to Q has time complexity O(25 I BK?)
and space complexity O(I K?). Computation of the gradients and Hes-
sians with respect to P again has time complexity O(25 I BK?) but now
space complexity O(25 BK?). The quadratic programming cost of up-
dating Q breaks down into I quadratic programs of size K with a single
equality constraint. By design, solving these small quadratic programs in
parallel circumvents the computation and storage of the massive Hes-
sian of the full objective. The cost of solving one of these quadratic
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programs is polynomial in K. The quadratic programming cost of up-
dating P breaks down into B quadratic programs of size 25 K with an
equality constraint for each population k. The cost of solving one of
these quadratic programs has complexity polynomial in 25 K. In prac-
tice, when .S = 2, the time needed for solving the quadratic programs
for Q is negligible compared to the time proportional to I B for comput-
ing gradients and Hessians. In contrast, the time needed for solving the
quadratic programs for P is comparable to the time needed for comput-
ing gradients and Hessians.

Our Julia implementation of HaploADMIXTURE allows users to in-
voke Nvidia graphics processing units (GPUs) to accelerate the evalua-
tion of gradients and Hessians and to solve the various quadratic pro-
grams. Convergence criteria can be set by the user. The default setting
for overall convergence mandates that the relative change in loglikeli-
hoods falls below 10~7.

2.3. Selection of K

We employ two devices to select the number of ancestral populations
K. First, the cross-validation method introduced in ADMIXTURE [21]
partitions the sample individuals into v folds. Each of the folds is held
out as a validation set, and the model is fit on the remaining training
individuals. Fitting on a training set is fast because it warm starts pa-
rameter values from the estimates garnered under the full dataset. Given
the haplotype frequencies P,,;, estimated on the training set fixed, we
estimate the admixture fractions Q,,,, on the validation set. This fitting
step is also fast because it qualifies as a straightforward convex problem.
Given P,,,;, and Q,,,;, we predict the genotype matrix of the validation
individuals. The deviance residual under a binomial model yields the
prediction error

(2—x,~j

2=y ’

where x is I X.S B true genotype matrix, and y is the predicted genotype
matrix. This error is then averaged across the different folds. We choose
the most parsimonious model whose prediction error is no more than
one standard error above the error of the best model (one standard error
rule).

The second device for selecting K is the Akaike information criterion
(AIC) [22]. In the current setting

X;:
d(x,y)= Z Z [x,-j logy—ll{ +(2—x,-j)log
i ij

AIC=2[BKQ2® - 1)+ I(K — 1) - £(Q. P)|

The term BK (2% — 1)+ I(K — 1) counts the number of free parameters in
the model with K ancestral populations. The loglikelihood is evaluated
at the maximum likelihood estimates given K. We fit the model for
several different values of K and choose the K with the lowest value
of AIC. The virtue of AIC is that it requires less computation than full
cross-validation.

2.4. Sparse K-means with feature ranking for haplotypes

To select AIMs, sparse K-means with feature ranking (SKFR) [8,9]
has proved ideal. SKFR ranks and selects a predetermined number of fea-
tures (sparsity level) s based on their importance in K-means clustering.
HaploADMIXTURE requires input blocks of SNPs rather than individual
SNPs. The center for cluster j is a vector ¢ = (Cjg)- The loss in K-means
clustering is el Ziecj lle; - x;||?, where C; denotes the set of indi-
viduals belonging to cluster j, and each raw feature vector x; = h,, +h,
is a sum of unknown haplotypes. (If everyone is haplotyped, then SKFR
should operate on haplotypes.) In practice, the x; are standardized to
have a mean of 0 for each feature across the entire sample. A miss-
ing genotype x;, in x; is imputed by the center coordinate c;, when i
is assigned to cluster j [23]. To model haplotypes, the feature vector
x; is broken into vector blocks x;,. In identifying AIMs, Lloyd’s algo-
rithm [24] alternates updating cluster centers and reassigning feature
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vectors to clusters. At each iteration of the SKFR algorithm, the s blocks
giving the largest reduction in the loss are selected based on the decom-
position ||c; — x,~||2 =Y, lle, — x,'b||2~ The mean for a selected block
is cluster-specific. The mean for a non-selected block is taken to be 0.
Our sparsity inducing version of Lloyd’s algorithm converges when the
cluster centers and ancestry informative blocks stabilize.

2.5. Supervised inference of population

Given the population haplotype frequencies P, we can estimate pop-
ulation structure Q by fixing P and only updating Q. The problem
becomes convex and can be efficiently solved. This technique is used
for cross-validation and for our large-scale analysis of the UK Biobank
dataset.

2.6. Computational tactics

Most of the computational tactics introduced in OpenADMIXTURE
carry over to HaploADMIXTURE. For instance, HaploADMIXTURE sig-
nificantly reduces memory demands by directly converting the bit geno-
types stored in PLINK BED format [25] into numbers through the Open-
Mendel [26] package SnpArrays. Multithreading is employed through-
out HaploADMIXTURE. Multithreading not only promotes parallelism,
but also reduces memory usage by tiling the computation of gradients
and Hessians. CUDA GPU kernels are implemented for EM updates and
computing gradients and Hessians. When running SKFR for multiple
sparsity levels s, we start with the highest level of s and warm start Lloy-
d’s algorithm at the current level by its converged value at the previous
higher level. We refer the readers to Ko et al. [8] for further details.

2.7. Performance evaluation

2.7.1. Permutation matching of clusters

A promising similarity metric proposed by Behr et al. [27] is effective
in matching clusters defined by two admixture matrices 0! and Qz. This
metric faithfully matches similar clusters and is invariant when cluster
labels are permuted. The metric quantifies the similarity between cluster
m in Q' and cluster n in Q7 as

2 -1_ (ql- q2_)2
1 2 i=1\1mi ni
qH=1- ﬂ el

where N is the set of indices i for which qum. + qﬁ’. >0, and |N| is
the cardinality of N. To match the clusters delivered by two algo-
rithms, we solve the assignment problem that maximizes the crite-
rion X, > ¥, J (gl g?), subject to the constraints y,,, € {0,1} and
Zf Vim = Z,’: Yue = 1, where K is the number of clusters. In practice,
we relax the domain of y,,, to the unit interval and solve the simpli-
fied problem using linear programming via JuMP [28], a mathematical
optimization package in Julia.

2.7.2. Silhouette coefficient

The silhouette index s; is a measure of how similar object i is to its
own cluster (cohesion) compared to other clusters (separation) [29]. If
i belongs to cluster Cy, then the index s; reflects the two averages

~ Zjec\ (i) dist(x;, x;)

a, =
' G —1

. Zjec, dist(x;,x;)

b; =min ——————,
I#k ICl

where a; is the average distance of sample i from the other points in
Cy, and b; is the minimum average distance of sample i from the other
clusters. Given these values we define

bi—aq;

5= —.
" max{a;b;}
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Note that s; ranges from —1 to 1; the higher s; is, the better separated
the clusters are. Thus, the average silhouette value serves as a sensitive
measure of clustering quality.

2.7.3. Visualization

Stacked bar plots allow easy visualization of estimated admixture
proportions when clusters are matched consistently across computer
runs. Matching is accomplished by hierarchical clustering with complete
linkage based on the HaploADMIXTURE Q estimates. Hierarchical clus-
tering determines the order of samples within a population. One can
also apply hierarchical clustering to the set of populations and to the set
of continents. In the former case, clustering operates on cluster centers,
and in the latter case, on averages of cluster centers.

2.8. Real datasets

To evaluate its performance, we applied HaploADMIXTURE to four
different real-world datasets: the 1000 Genomes Project (TGP) [30,31],
the Human Genome Diversity Project (HGDP) [32,33], the Human Ori-
gins (HO) [34] project, and the UK Biobank data (UKB) [35]. (We ad-
hered to compliance agreements in each case.) The TGP dataset includes
genotypes from the 2012-01-31 Omni Platform after filtering to exclude
related individuals, individuals with less than a 95% genotyping suc-
cess rate, and variants with minor allele frequency (MAF) less than 1%.
The filtered dataset contains 1718 unrelated individuals and 1,854,622
SNPs. The self-reported ancestry labels range over 26 different popula-
tions grouped into continental populations of African (AFR), Admixed
American (AMR), East Asian (EAS), European (EUR), and South Asian
(SAS) descent. The HGDP dataset contains 940 individuals across 32
self-reported populations and 642,950 SNPs after filtering by the same
criteria applied to the TGP data. The self-reported population labels
are further grouped into seven continental labels: Europe, Middle East,
Central South Asia, East Asia, Africa, America, and Oceania. The HO
dataset includes 1931 individuals across 163 populations and 385,088
SNPs. Here, filtering excludes individuals with less than 99% genotyping
success rate and SNPs with MAF less than 5%. No continental popula-
tion labels are provided for HO. Our discussion of results focuses on
the TGP dataset. Corresponding results for HGDP and HO appear in the
Supplementary Materials. For the UK Biobank data, we select 488,154
individuals with a 95% or better genotyping rate and 178,734 SNPs
shared with the TGP dataset and having at least 1% MAF.

2.9. Simulations

The model for simulating genetic admixture is a variant of the
Pritchard-Stephens-Donnelly (PSD) model [10], with allele frequencies
sampled from the Balding-Nicolas model [36] that follows a beta distri-
bution:

iid 1-F
Pio1 ~ Beta <—ST

1-F
pA,—ST(l—p,o)

FST FST

i .

s, ~ Dirichlet(aly), regional centers
iid . .

q.; ~ Dirichlet(ys;),

where p, is the allele frequency and Fg; is the fixation index. Chiu
et al. [13] introduced the second line’s extra level of Dirichlet sampling
to simulate populations gathered around regional centers. This is accom-
plished by first sampling T" regional centers s, from the Dirichlet(alg)
distribution. Then for each regional center, I /T of the admixture vectors
q.; are sampled around the center s;, with a high value of the parameter
y =50.

To model SNPs in linkage disequilibrium, we sample two haplo-
types separately by sequential Bernoulli sampling, instead of sampling
them independently. Haplotypes h;;; and h;;, are sampled from the
conditional Bernoulli distribution given h;;_;); and A;;_;y, respec-

tively, so that the Pearson correlation coefficient between 4;;, and
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Table 1

Root-mean-square errors of the estimated admixture proportions on the
simulated datasets, 10,000 SNPs, a = 0.02. Root-mean-square error checks
the accuracy of the estimated admixture coefficients; the lower, the better. Five
populations were used for the simulation, with 1000 individuals and 10,000
SNPs for various values of p, the correlation between two nearby SNPs. Each
value is averaged over five simulation runs. The best value for each p is in
italics.

AIMs HaploADMIXTURE OpenADMIXTURE SCOPE TeraStructure
p=0.75
10,000 0.0108 0.0415 0.0575 0.0737
2000 0.0127 0.0419
1500 0.0134 0.0429
1000 0.0150 0.0447
500 0.0203 0.0486
p=0.5
10,000  0.0087 0.0285 0.0476  0.0579
2000 0.0119 0.0308
1500 0.0131 0.0320
1000 0.0152 0.0338
500 0.0214 0.0381
=025
10,000 0.0098 0.0199 0.0415 0.0434
2000 0.0150 0.0228
1500 0.0168 0.0239
1000 0.0194 0.0256
500 0.0259 0.0295
p=0
10,000 0.0141 0.0167 0.0393 0.0294
2000 0.0193 0.0198
1500 0.0212 0.0209
1000 0.0237 0.0226
500 0.0293 0.0266
hi(j—1ym is a constant p and the marginal distribution of 4;;, follows

Bernoulli(}, qx;p;)- To specify the underlying parameters p, and Fgr,
we randomly sampled SNPs from chromosome 1 of the TGP dataset and
used their minor allele frequencies and the estimated fixation indexes.
If any minor allele frequency fell below 0.005, we clamped it to 0.005.

3. Results
3.1. Simulation studies

We simulated datasets with different numbers of SNPs, values of
the concentration parameter a € {0.02,0.05,0.1}, and correlation be-
tween nearby SNPs p € {0,0.25,0.5,0.75} as described in Section 2.9.
Tables 1, 2, and 3 display root-mean-square errors (RMSE) for a = 0.02
and 10,000, 100,000, and 1,000,000 simulated SNPs, respectively. Re-
sults with different values of « are available in the Supplemental Mate-
rials in Tables S2-S7. RMSE is estimated by

RVSEQ) = \/m
ik

where Q are the true values and Q are the estimates. When the popu-
lations are easily distinguishable with @ =0.02, and p =0.75, HaploAD-
MIXTURE performs better than OpenADMIXTURE, SCOPE, and TeraS-
tructure, as HaploADMIXTURE accounts for LD. OpenADMIXTURE per-
forms better for 1,000,000 SNPs with lower LD with the correlation
coefficients of 0, 0.25, and 0.5. When lower numbers of AIMs selected
by sparse K-means are used, HaploADMIXTURE and OpenADMIXTURE
both maintain their performance reasonably well, sometimes even im-
proving on the results found with all of the SNPs. As populations get
harder to distinguish with higher value of a«, HaploADMIXTURE begins
to struggle. For all of the cases evaluated, the AIC correctly selects K = 5.
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Table 2

Root-mean-square errors of the estimated admixture proportions on the
simulated datasets, 100,000 SNPs, @ = 0.02. Root-mean-square error checks
the accuracy of the estimated admixture coefficients; the lower, the better. Five
populations were used for the simulation, with 1000 individuals and 100,000
SNPs for various values of p, the correlation between two nearby SNPs. Each
value is averaged over five simulation runs. The best value for each «a is in
italics.

AIMs HaploADMIXTURE OpenADMIXTURE SCOPE TeraStructure
p=0.75
100,000  0.0089 0.0195 0.0258  0.0403
20,000 0.0092 0.0183
15,000 0.0092 0.0185
10,000 0.0090 0.0192
5000 0.0090 0.0207
p=0.5
100,000 0.0061 0.0285 0.0200 0.0195
20,000 0.0068 0.0112
15,000 0.0068 0.0118
10,000 0.0070 0.0123
5000 0.0074 0.0137
p=025
100,000  0.0035 0.0056 0.0162  0.0158
20,000 0.0043 0.0070
15,000 0.0045 0.0076
10,000 0.0050 0.0082
5000 0.0061 0.0094
p=0
100,000  0.0034 0.0042 0.149 0.0085
20,000 0.0050 0.0058
15,000 0.0055 0.0062
10,000 0.0062 0.0067
5000 0.0078 0.0079
Table 3

Root-mean-square errors of the estimated admixture proportions on
the simulated datasets, 1,000,000 SNPs, a = 0.02. Root-mean-square error
checks the accuracy of the estimated admixture coefficients; the lower, the bet-
ter. Five populations were used for the simulation, with 1000 individuals and
1,000,000 SNPs for various values of p, the correlation between two nearby
SNPs. Each value is averaged over five simulation runs. The best value for each
p is in italics.

AIMs HaploADMIXTURE OpenADMIXTURE SCOPE TeraStructure
p=0.75

1,000,000 0.0087 0.0154 0.0119 0.0119
200,000 0.0089 0.0123

150,000 0.0088 0.0110

100,000 0.0085 0.0097

50,000 0.0081 0.0094

p=0.5

1,000,000 0.0058 0.0052 0.0079 0.0097
200,000 0.0063 0.0040

150,000 0.0064 0.0040

100,000 0.0063 0.0042

50,000 0.0063 0.0049

p=0.25

1,000,000 0.0029 0.0014 0.0058 0.0042
200,000 0.0093 0.0028

150,000 0.0094 0.0029

100,000 0.0096 0.0031

50,000 0.0099 0.0034

p=0

1,000,000 0.0045 0.0009 0.0051 0.0045
200,000 0.0020 0.0015

150,000 0.0021 0.0017

100,000 0.0022 0.0019

50,000 0.0025 0.0023
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Table 4
Entropy per SNP per individual of P for TGP,
HGDP, and HO.

Software TGP HGDP HO

HaploADMIXTURE 0.303 0.344 0.360
OpenADMIXTURE 0.347 0.414 0.444
SCOPE 0.347 0.339 0.422
TeraStructure 0.393 0.432 0.474

3.2. Real-world datasets

3.2.1. Selection of K

To assess the performance of HaploADMIXTURE, we computed AIC
values and performed cross-validation to select the best K for the real-
world datasets. For TGP, both AIC and cross-validation select K =7,
while TeraStructure selects K = 8. For HGDP, AIC selects K = 7, but
cross-validation and TeraStructure select K = 10. For HO, AIC selects
K =12, cross-validation selects K = 10, and TeraStructure selects K =
14. On balance, we prefer AIC because of its computational efficiency
and parsimony. This preference is bolstered by the notable differences
observed in the graphs between TeraStructure and OpenADMIXTURE
covered in Section 3.2.2. In the following sections, we use the same val-
ues of K across all the tools we compare. We use K =7 for TGP and
HGDP, and K = 12 for HO, as selected by AIC. For the UK Biobank
dataset, we choose K =7 as in the TGP dataset, as we perform super-
vised inference based on the result from the TGP data. In total, Hap-
loADMIXTURE estimates 25,976,734 parameters for TGP, 9,007,880
parameters for HGDP, 18,507,396 parameters for HO, and 8,421,630
parameters for UKB.

3.2.2. Visualization

Figs. 1, S2, and S3 illustrate the admixture proportions inferred from
the TGP, HGDP, and HO datasets by HaploADMIXTURE, OpenADMIX-
TURE, SCOPE, and TeraStructure. The general structure seems similar
across the programs, with some differences. For example, TeraStructure
tends to rely on a single European (EUR) population in TGP, while the
other programs tend to rely on two. Section 3.2.4 summarizes the ability
of the programs to separate self-identified populations. Previous publi-
cations of Chiu et al. [13] and Ko et al. [8] incorrectly match individuals
to populations because of a data reading error. Figure S2 fixes this error
and clearly separates the different continental populations.

Figs. 2, S4, and S6 show the structures inferred by HaploADMIX-
TURE operating on AIMs chosen through sparse K-means clustering.
Figs. 3, S5, and S7 display the structures inferred by OpenADMIXTURE
in the same circumstances. Evidently, HaploADMIXTURE faithfully re-
produces the general structure with fewer AIMs than OpenADMIXTURE.
In particular, OpenADMIXTURE fails to distinguish European popula-
tions from Middle-Eastern populations on the HGDP data. Figs. 4, S8,
and S9 display the structure inferred by HaploADMIXTURE for differ-
ent numbers of populations K as discussed in Section 3.2.1.

3.2.3. Loglikelihood and entropy

Table S8 displays the likelihood of the fitted models. Since the bi-
nomial model of OpenADMIXTURE is a submodel of the model of Hap-
loADMIXTURE, the maximum loglikelihood of the former is always less
than the maximum loglikelihood of the latter based on the same SNP set.
Table 4 shows the entropy of P, the array of genotype/haplotype fre-
quencies for each dataset. The entropy decrease in HaploADMIXTURE
compared to OpenADMIXTURE quantifies the additional information
available in haplotypes. The entropy of P using HaploADMIXTURE for
TGP, HGDP, and HO show 12.7%, 16.9%, and 18.9% reductions, re-
spectively, compared to OpenADMIXTURE. TeraStructure has higher
entropy than OpenADMIXTURE, and SCOPE has entropy similar to Ope-
nADMIXTURE on TGP and HO datasets. On HGDP, SCOPE has a similar
entropy to HaploADMIXTURE. Note that the SCOPE model does not di-
rectly optimize the binomial loglikelihood model.
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(A) HaploADMIXTURE

(B) OpenADMIXTURE

(C) SCOPE

(D) TeraStructure

Populations

L_YRI | Lwk | ACB |ASW| GIH | cDX | KHV | JPT

| cHs | cHB | FIN

| GBR | CEU | 1BS | TSI |PUR|CLM| PEL |MXL |

YRI: Yoruba in Ibadan, Nigeria

LWK: Luhya in Webuye, Kenya

ACB: African Caribbean in Barbados
ASW: African Ancestry in SW USA
GIH: Gujarati Indians in Houston, USA

KHV: Kinh in Ho Chi Minh City, Vietnam
JPT: Japanese in Tokyo, Japan

CHS: Han Chinese in South China

CHB: Han Chinese in Beijing, China

CDX: Chinese Dai in Xishuangbanna, China

FIN: Finnish in Finland

GBR: British in England and Scotland

CEU: NW European Ancestry in Utah, USA
IBS: Iberian in Spain

TSI: Toscani in Italy

PUR: Puerto Rican in Puerto Rico

CLM: Colombian in Medellin, Colombia

PEL: Peruvian in Lima, Peru

MXL: Mexican Ancestry in Los Angeles, USA

Superpopulations

AFR | SAS | EAS

| EUR

AFR: African

SAS: South Asian

EAS: East Asian

EUR: European

AMR: Admixed American

Fig. 1. Ancestry estimation of TGP data samples. (a) Using HaploADMIXTURE with all SNPs, (b) OpenADMIXTURE with all SNPs, (c) SCOPE, and (d) TeraStructure.
The results are presented in stacked bar plots, where the y-axis indicates the proportion of total ancestry. The x-axis shows all samples arranged by population labels.

3.2.4. Evaluation of estimated admixture

Silhouette coefficients offer another way of quantifying performance.
These are based on the ancestry labels implicit in the estimated Q ma-
trix. The average silhouette coefficient is preferable to the training errors
of linear classifiers and their cross-entropies [13,8] because training
error is discrete, and a single individual can unduly influence cross-
entropy. We additionally matched clusters as discussed in Section 2.7.1
and computed root-mean-square error (RMSE) from the SKFR clusters
derived from all SNPs.

Tables 6, S10, and S11 display mean silhouette coefficients for Hap-
loADMIXTURE, OpenADMIXTURE, SCOPE, and TeraStructure. Since
one of the continental populations is known to be admixed Americans,
we also provide the result without them in Table S9. Tables S12-S14
show continent-by-continent mean silhouette coefficients, and Tables
$15-S18 show region-by-region mean silhouette coefficients. HaploAD-
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MIXTURE generally performs well in grouping populations by both
continent and region. OpenADMIXTURE performs equally well in group-
ing by continent but in grouping regional labels, HaploADMIXTURE
shows consistently higher value of the mean silhouette. For TGP and
HGDP, TeraStructure is the best at distinguishing continental labels but
falters in distinguishing regional labels, particularly in the TGP data
where Middle-Eastern and European populations are lumped. For HGDP,
SCOPE is the best at distinguishing the 32 regional labels but struggles
compared to HaploADMIXTURE and OpenADMIXTURE in distinguish-
ing African continental populations from each other. For the HO dataset,
HaploADMIXTURE and OpenADMIXTURE perform similarly in distin-
guishing the 163 regional labels, followed by SCOPE and TeraStructure.

When the analysis is based on AIMs, HaploADMIXTURE usually per-
forms better than OpenADMIXTURE. In the single instance of 5000 AIMs
for TGP, HaploADMIXTURE suffers in distinguishing regional subpop-
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(A) HaploADMIXTURE, All SNPs

1.0
0.8
0.6
0.4
0.2
0.0

(B) HaploADMIXTURE, 100,000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

(C) HaploADMIXTURE, 80,000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

(D) HaploADMIXTURE, 60,000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

(E) HaploADMIXTURE, 40,000 AlMs

1.0
0.8
0.6
0.4
0.2
0.0

(F) HaploADMIXTURE, 20,000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

(G) HaploADMIXTURE, 10,000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

(H) HaploADMIXTURE, 5000 AlMs

1.0
0.8
0.6
0.4
0.2
0.0

Populations

YRI | twk | AcB |asw| GiH | cox | kHv | JpT | cHs | cHB | FIN | GBR | cEu | iBS | TSI |PUR|cm| PEL |MxL]|

Superpopulations
AFR | SAS | EAS | EUR I AMR

Fig. 2. Ancestry estimation of TGP samples using different numbers of AIMs with HaploADMIXTURE. The results are presented in stacked bar plots, where the
y-axis indicates the proportion of total ancestry. The x-axis shows all samples arranged by population labels.
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(A) OpenADMIXTURE, All SNPs
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0.6
0.4
0.2
0.0

(B) OpenADMIXTURE, 100,000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

(C) OpenADMIXTURE, 80,000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

(D) OpenADMIXTURE, 60,000 AlMs

1.0
0.8
0.6
0.4
0.2
0.0

(E) OpenADMIXTURE, 40,000 AlMs

1.0
0.8
0.6
0.4
0.2
0.0

(F) OpenADMIXTURE, 20,000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

(G) OpenADMIXTURE, 10,000 AlMs

1.0
0.8
0.6
0.4
0.2
0.0

(H) OpenADMIXTURE, 5000 AIMs

1.0
0.8
0.6
0.4
0.2
0.0

Populations

YRI | twk | AcB |asw| GiH | cox | kHv | JpT | cHs | cHB | FIN | GBR | cEu | 1BS | TSI |PUR|cim| PEL |MxL ]|

Superpopulations
AFR | SAS | EAS | EUR I AMR

Fig. 3. Ancestry estimation of TGP data samples using different numbers of AIMs with OpenADMIXTURE. The results are presented in stacked bar plots, where
the y-axis indicates the proportion of total ancestry. The x-axis shows all samples arranged by population labels.
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(A) K =
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4 (BIC)

(B) K= 7 (AIC, CV)

(C) K = 8 (TeraStructure)

Populations
| Yri | wwk | AcB |asw| GiH | cox | kHv | Jpt | cHs | cHB | PN | GBR | CEU | 1BS Tsl | PUR | cLM | PEL | MXL |
Superpopulations
| AFR | SAS | EAS | EUR | AMR |

Fig. 4. Structure inferred for TGP data samples using HaploADMIXTURE for different K. (a) K =4 as selected by Bayesian information criterion, (b) K =7 as
selected by cross-validation and Akaike information criterion, (c) K = 8 as selected by the validation likelihood method in TeraStructure. The results are presented
in stacked bar plots where the y-axis indicates the proportion of total ancestry. The x-axis shows all samples arranged by population labels.

Table 5

Root-mean-square error of sparse K-means
(SKFR) from the baseline for HaploADMIXTURE
and OpenADMIXTURE on the TGP dataset. Root-
mean-square error (RMSE) from baseline compares
estimated admixture coefficients of SKFR to those es-
timated using all SNPs; the lower, the better.

SNPs HaploADMIXTURE ~ OpenADMIXTURE
100,000 0.093 0.089
80,000 0.087 0.091
60,000 0.085 0.093
40,000 0.082 0.113
20,000 0.077 0.162
10,000 0.065 0.166
5000 0.132 0.181

ulations. In the case of HGDP under AIM selection, OpenADMIXTURE
has trouble distinguishing between Middle-Eastern and European popu-
lations and adds a population to Africa. This anomaly is visible in Figure
S4. HaploADMIXTURE with AIMs retains the power to distinguish the
Middle-Eastern and European populations. For the HO dataset, Hap-
loADMIXTURE performance with AIMs better mimics its performance
with all SNPs than OpenADMIXTURE does in the same comparison. Ta-
bles 5, S19, and S20 display RMSE from the baseline of all SNPs for
the TGP, HGDP, and HO datasets, respectively. For the TGP dataset, as
we choose fewer AIMs, the mean silhouette tends to decrease, except
for 10,000 and 5000 SNPs in OpenADMIXTURE. However, these excep-
tional cases yield poorer separation of populations than HaploADMIX-
TURE with all SNPs. This suggests that parsimony alone is an imperfect
criterion for judging admixture estimation.

3.2.5. Computational efficiency

Given the computational improvements incorporated in HaploAD-
MIXTURE, the analyses reported here finish in a reasonable amount of
time. HaploADMIXTURE’s cost per iteration with .§ =2 SNPs per hap-
lotype block is less than eight times that of OpenADMIXTURE. Given
that the number of frequency parameters quadruples, it takes four times
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longer to compute gradients and Hessians. While the time for solving
quadratic programs is still negligible for Q, quadratic programming for
P takes longer, comparable to the time needed to compute gradients and
Hessians on a GPU. Since 16-threaded ADMIXTURE was 16 times slower
than GPU-accelerated OpenADMIXTURE [8], HaploADMIXTURE’s per-
iteration performance is still faster than that of ADMIXTURE. Balanced
against these gains is the fact that the number of iterations until conver-
gence increases. This reflects the greater complexity of the likelihood,
the increased number of parameters, and the cost of parameter splitting
by the MM principle.

Table S21 shows the average runtime using five random initial points
for the TGP, HGDP, and HO datasets ignoring AIMs. Despite requiring
more iterations to converge, HaploADMIXTURE takes less than 16 times
longer than OpenADMIXTURE. Because runtime is proportional to the
number of blocks B of SNPs employed, preprocessing with AIM selec-
tion to reduce B is recommended if speed is critical. For example, on
the TGP data, it takes 2 minutes for sparse K-means to select 100,000
AlIMs, and then another 12 minutes to run HaploADMIXTURE on the fil-
tered dataset, for a total of just 14 minutes. Even so, running on AIMs
yields admixture coefficients comparable to running on the full set of
1.8 million SNPs. The latter more onerous computations take 2 hours
and 8 minutes. If one opts to preselect AIMs by sparse K-means, the
time needed for SKFR in HaploADMIXTURE is not much different from
that for OpenADMIXTURE. Indeed, the speed of the SKFR algorithm is
minimally affected by the switch to haplotypes. SKFR and HaploAD-
MIXTURE directly operate on PLINK BED-formatted data, so the total
memory footprint of each is less than twice the size of the BED file.

3.2.6. Large-scale analysis of the UK biobank data

For the 488,154 individuals selected from the UKB dataset, we un-
dertook supervised inference of population structure using the haplo-
type frequencies P obtained from the TGP dataset. Our analysis is lim-
ited to K =7 subpopulations and the SNPs shared by the TGP and UKB
datasets.

Clustering performance is based on three sets of labels. The first set
(L1) uses 20 raw self-identified ancestry labels, excluding “do not know”
and “prefer not to answer.” The second set (L2) uses 8 of the 20 labels:
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Performance comparison of HaploADMIXTURE, OpenADMIXTURE, SCOPE,
and TeraStructure on the TGP dataset. Performance is measured by the mean
silhouette coefficient of the population labels on the space of estimated admix-
ture coefficients, Q; the higher, the better. The best value in the mean silhouette
is in italics; these range over [—1,1].

SNPs HaploADMIXTURE OpenADMIXTURE SCOPE TeraStructure
Continental labels

1,854,622 0.606 0.591 0.528 0.671

100,000 0.558 0.524

80,000 0.540 0.525

60,000 0.541 0.526

40,000 0.526 0.533

20,000 0.528 0.481

10,000 0.522 0.500

5000 0.521 0.626
Regional labels

1,854,622 0.423 0.413 0.418 0.335

100,000 0.360 0.347

80,000 0.353 0.329

60,000 0.335 0.296

40,000 0.317 0.225

20,000 0.277 0.147

10,000 0.206 0.035

5000 0.083 0.025

Table 7

Performance comparison of HaploADMIXTURE, OpenADMIXTURE,
and SCOPE on the UKB dataset. Performance is measured by the mean
silhoutte coefficient of the population labels on the space of estimated
admixture coefficients, Q; the higher, the better. The best value in the
mean silhouette is in italics; these range over [-1, 1]. TeraStructure does
not run within 24 hours.

HaploADMIXTURE HaploADMIXTURE OpenADMIXTURE SCOPE
Unsupervised Supervised

L3 - Continental labels

0.540 0.991 0.471 0.257
L2 - Regional labels

0.037 -0.284 0.030 0.019
L1 - Detailed labels

-0.013 -0.303 -0.064 -0.086

British, Irish, Indian, Pakistani, Bangladeshi, Caribbean, African, and
Chinese, removing mixed and uncertain population labels. Finally, for
the third label set (L3), the 8 groups are merged by continent and re-
duce to British-Irish, Indian-Pakistani-Bangladeshi, Caribbean-African,
and Chinese.

Table 7 shows the clustering performance of the resulting admix-
ture coefficients. In unsupervised inference, HaploADMIXTURE consis-
tently separates the different sets of ancestry labels the best, followed
by OpenADMIXTURE, and then SCOPE. Supervised HaploADMIXTURE
run using the P of the TGP performs significantly better on continental
labels (L3) because TGP contains a substantial amount of relevant con-
tinental information. However, because haplotype frequency estimates
rely on only 1718 individuals, supervised HaploADMIXTURE falters in
distinguishing fine-grained populations compared to unsupervised Hap-
loADMIXTURE.

Supervised inference is advantageous in that it takes much less time,
namely 4 hours on an Nvidia L4 GPU with 24 GB memory. In contrast
unsupervised inference takes around 11 hours. Unsupervised OpenAD-
MIXTURE takes 6 hours. To its credit, SCOPE’s randomized linear alge-
bra takes just 1 hour and 10 minutes on a 72-core CPU instance.
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4. Discussion

This paper introduces a technique for global ancestry estimation
that converts linkage disequilibrium from a liability to an asset. Our
program HaploADMIXTURE exploits multithreading, GPU acceleration,
and sparse K-means clustering to identify ancestry informative haplo-
types. Although these advances also appear in OpenADMIXTURE, our
earlier upgrade of the ADMIXTURE [6] software, they require substan-
tial modification to handle haplotypes. For instance, in the construction
of AIMs, sparse K-means must now operate on haplotypes rather than
SNPs. Likelihood calculation becomes more complicated because of in-
creased phase ambiguity. Nevertheless, these technical hurdles can be
overcome with computational speed and memory demands on a par with
or better than that of the original ADMIXTURE. Computation times scale
linearly in the number of haplotype blocks. To keep computational costs
in check, our haplotypes span just two SNPs. Even with this limitation,
we see substantial gains in ancestry estimation precision. Extending hap-
lotype blocks to include more than two SNPs is theoretically possible
and would further increase information content, particularly for those
regions of the human genomes showing little recombination. However,
this extension would quickly hit a combinatorial wall in computing the
25 haplotype frequencies given .S SNPs per block. The greater phase
ambiguity encountered would complicate computer code and slow the
convergence of recursive quadratic programming, the optimization en-
gine in HaploADMIXTURE.

The admixture coefficients delivered by HaploADMIXTURE demon-
strate a good separation of populations at the continental and regional
levels in both real and simulated datasets. The other admixture pro-
grams tested often perform well on one level and poorly on the other.
The admixture estimates from HaploADMIXTURE are more accurate
than the competition as measured by mean square prediction error. In
our experience, cross-validation and AIC produce reasonable estimates
of the number of ancestral populations K. AIC is much faster than cross-
validation. It will be interesting to see whether Bayesian or algebraic
methods can be adapted to exploit haplotypes. The algebraic program
SCOPE relies on alternating least squares, so its adaptation would re-
quire passing from matrix to tensor decompositions.

Estimation of admixture proportions given known populations and
known haplotype frequencies is possible with HaploADMIXTURE, as
shown in Section 3.2.6. One simply fixes P and updates only Q. This
simplification is also invoked in the time-consuming process of cross-
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validation. For best results, partial maximization requires curating the
most informative pairs of SNPs in large population panels. Partial max-
imization is a parameter-separated convex problem that is easily solved
on biobank-scale data.

Of course, estimation of human ancestry is fraught with interpreta-
tion pitfalls, errors in assumptions, and, for ancient populations, lack
of relevant data. The issues are carefully covered in Pritchard’s online
book [37]. See especially Chapters 3.1 and 3.2. For modern popula-
tions, readers should keep in mind the utility of long conserved haplo-
type blocks in assigning ancestry. Chromosome painting identifies these
blocks and can be accomplished rapidly as part of haplotying [38].

Advances in technology and the rapid expansion of human biobanks
have pushed software development to the top of the agenda in ge-
nomics. The “All of Us” [39] databank contains more than 400,000 of
individuals, of whom 250,000 are whole genome sequenced. The UK
Biobank contains more than 488,000 genotyped individuals. Accurate
and scalable adjustment for ancestry is a supremely important task in
understanding these data.

Modeling haplotypes adds vital information in ancestry analysis,
yields more precise estimates of admixture coefficients, and distin-
guishes subpopulations better. Our GPU-accelerated implementation,
HaploADMIXTURE, maintains computational efficiency while improv-
ing accuracy of admixture coefficients and distinguishing subtle popu-
lation variation better. HaploADMIXTURE is a thoughtful extension of
OpenADMIXTURE, the open-source upgrade of the widely-used ADMIX-
TURE software. HaploADMIXTURE builds on Julia’s high-performance
computing environment and leverages potent OpenMendel tools. As
HaploADMIXTURE is expanded and improved over time, we hope that
it will ultimately receive the wide acceptance already enjoyed by AD-
MIXTURE.

Web resources

» OpenADMIXTURE, https://github.com/OpenMendel/OpenADMIX
TUREjL.

+ Sparse K-means with Feature Ranking, https://github.com/kose-y/
SparseKmeansFeatureRanking.jl.

* SnpArrays, https://github.com/OpenMendel/SnpArrays.jl.

» SCOPE, https://github.com/sriramlab/SCOPE.
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Data availability

The HaploADMIXTURE package can be found at https://github.com/
OpenMendel/HaploADMIXTURE.jl. The code for the experiments and
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github.com/kose-y/HaploADMIXTURE-resources.
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