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Abstract—There is a flurry of recent research papers proposing

novel differentially private machine learning (DPML) tech-

niques. These papers claim to achieve new state-of-the-art

(SoTA) results and offer empirical results as validation. How-

ever, there is no consensus on which techniques are most effec-

tive or if they genuinely meet their stated claims. Complicating

matters, heterogeneity in codebases, datasets, methodologies,

and model architectures make direct comparisons of different

approaches challenging.

In this paper, we conduct a reproducibility and replicability

(R+R) experiment on 11 different SoTA DPML techniques

from the recent research literature. Results of our investigation

are varied: while some methods stand up to scrutiny, others

falter when tested outside their initial experimental conditions.

We also discuss challenges unique to the reproducibility of

DPML, including additional randomness due to DP noise, and

how to address them. Finally, we derive insights and best

practices to obtain scientifically valid and reliable results.

Index Terms—Differential Privacy, Machine Learning, Repro-

ducibility

1. Introduction*

The reproducibility crisis that plagues machine learning
(ML) and ML-based science is well-documented [1], [2],
[3]. Due to the breadth and diversity of machine learning
applications, studies are conducted within specific domains
and application areas such as healthcare [4], [5], life sci-
ences [6], and security [7], [8].

The reproducibility of differentially private machine
learning (DPML) has so far received little attention. In a
nutshell, DPML seeks to protect the privacy of training data
of a model using the mathematical framework of differential
privacy (DP) [9], [10], [11]. While machine learning models
are typically trained with Stochastic Gradient Descent [12]
(SGD), DPML primarily leverages DP-SGD [13], a drop-
in replacement for SGD. DP-SGD iteratively updates model
parameters using the gradient like SGD, but also clips in-
dividual training points’ gradients prior to aggregation, and
adds Gaussian noise to updates. DP-SGD provably satisfies

*. We open source our codebase at: https://github.com/wenxuan-Bao/
Reliable-and-Generalizable-DPML.

differential privacy, but the model predictions quality is
often drastically degraded.

Recently, numerous research papers proposing novel
DPML techniques claim to achieve new state-of-the-art
(SoTA) results [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24]. These techniques and the DPML literature
more broadly have delivered remarkable improvements in
the utility-privacy tradeoff since DP-SGD was introduced
by Abadi et al [13] in 2016. Despite this, there is little
consensus regarding which techniques are most effective.
This is in part the result of the heterogeneity in codebases,
datasets and model architecture, making apples-to-apples
comparisons difficult to obtain.

In this paper, we conduct a reproducibility and repli-
cability (R+R) experiment on 11 different recent DPML
techniques. We focus on centralized machine learning —
leaving federated learning for future work — and computer
vision tasks, since these have received significant recent
attention and show great promise.

However, the purpose of our investigation is not to
point fingers or cast any specific work in a negative light.
We seek to understand what methodological steps make
DPML research reproducible and replicable and lead to re-
liable findings. We discover that a significant challenge with
DPML reproducibility — as opposed to (non-private) ML
reproducibility — is the additional randomness (e.g., noise
added to gradients, etc.). Variability in measured results is
often substantial, especially when few runs are performed
and (or) when few datasets/models are used. Averaging re-
sults of numerous runs could alleviate this issue. But DPML
training is much slower than non-private ML training [25],
[26], [20] so performing extensive evaluation is a major
computational burden.

The net effect of this additional randomness is that
reliable results are more difficult to obtain. A single lucky
run with higher performance than the baseline may be
(wrongly) interpreted as a new SoTA result. To overcome
this, we propose a framework based on paired t-tests [27]
and Cohen’s d [28]. This framework allows us to determine
which of our selected techniques indeed outperform their
baselines and also quantifies the additional variability of
DPML compared to non-private ML.

Stepping back, the concrete goals of our investigation are
threefold: (1) quantify the reproducibility of existing work to
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confirm or disconfirm SoTA claims, thereby separating the
wheat from the chaff; (2) identify which techniques provide
improvements that are scientifically sound and generalize
beyond the (necessarily) narrow experimental setting of their
originating papers; and (3) establish guidelines and best
practices that future research can adopt to maximize fair
comparisons and reduce false discovery risk.

The results of our investigations are mixed. Obtaining
implementations of the selected techniques was not a prob-
lem. Codebases were readily available in many cases and
when they were not, techniques could easily be implemented
based on research papers’ descriptions. We were able to
directly obtain results consistent with what all 11 selected
papers reported. However, when using the techniques out-
side of the narrow experimental settings of their original
papers (e.g., on a different dataset or with a different model
architecture), only 7 out of 11 completely delivered their
claimed improvements.

Among those techniques that disappointed in new exper-
imental settings, we found notable methodological pitfalls
such as a lack of ablation studies, narrow sets of evaluation
tasks, and results reported for a single run only. To avoid
these pitfalls in future research and maximize the chance of
reproducibility and replicability, we derive guidelines and a
concrete checklist.

Summary of contributions:

• We conduct a thorough reproducibility and replicability
evaluation of 11 recent SoTA DPML techniques, showing
their variance in generalizability and reliability.

• We introduce a framework utilizing paired t-tests, specif-
ically tailored to assess the inherent variability and repro-
ducibility challenges unique to DPML.

• We propose comprehensive guidelines and a checklist to
enhance future DPML research, aiming to standardize
practices and reduce the prevalence of invalid claims.

2. Background & Related Work

We provide background related to supervised learning,
ML reproducibility, and DPML. Appendix A provides ad-
ditional background.

2.1. Supervised Learning

A model maps data points (e.g., images) into (predicted)
labels. The model itself is represented by a parameter vector
and it is trained by minimizing a loss function that mea-
sures the discrepancy between predicted and actual labels
of a training dataset. This is done using an optimization
algorithm such as Stochastic Gradient Descent (SGD) [12].

Stochastic Gradient Descent (SGD). SGD is an iterative
optimization procedure that has been extensively studied
and has many variants [29]. Its mini-batch version is most
commonly used and the one we refer to (unless otherwise
stated) as SGD. It is illustrated in Algorithm 1 (Appendix C).
Informally, the algorithm computes the gradient of the loss
with respect to the parameter vector and iteratively updates
the current solution accordingly until convergence.

2.2. ML Reproducibilty

There are notable recent concerns regarding repro-
ducibility in machine learning [1], [6], [2], [3]. For instance,
Kapoor et al. [1] highlight that the reproducibility crisis in
ML, particularly the problem of data leakage. Tatman et
al. [30] suggest a taxonomy for reproducibility with three
levels. Raff et al. [31] focus on independent reproducibility,
where they implement 255 papers and record the features of
each paper. They find that papers with a greater empirical
focus are more reproducible. Pineau et al. [2] report on
the NeurIPS 2019 reproducibility program and discuss the
various factors that can lead to unreliable or false results.
Heil et al. [6] propose reproducibility standards for machine
learning in the life sciences.

2.3. Differential Privacy

Differential privacy (DP) [11] is defined as follows.

Definition 1. A randomized algorithm F is said to satisfy

(ε, δ)-differential privacy if for any neighboring datasets

D0, D1 and any output set S ⊆ Range(F ), it holds that:

Pr(F (D0) ∈ S) ≤ exp(ε) Pr(F (D1) ∈ S) + δ ,

where probabilities are taken over randomness in F , and
ε > 0 is called the privacy budget. The smaller ε is the
more stringent the privacy guarantee. We must also ensure
that δ is sufficiently small. In the definition, D0 and D1 are
neighboring if one can be obtained from the other by adding
exactly one example.

An important concept for DP algorithms is sensitivity.
Informally, sensitivity measures the maximum change in
the output caused by the inclusion/exclusion of exactly one
example. The (global) sensitivity of a function g can be
denoted as ∆g and is defined as

∆g = max ||g(D0)− g(D1)||,

where the maximum is taken over pairs of neighboring
datasets D0, D1 and || · || denotes a norm like the l1-norm
or the l2-norm.

2.4. Differentially Private Machine Learning

There are numerous randomized learning algorithms that
meet differential privacy such as output perturbation [10] or
objective perturbation [32]. However, the most widely used
technique is the Differentially Private Stochastic Gradient
Descent (DP-SGD) of Abadi et al. [13].

DP-SGD. In essence, DP-SGD computes gradients and
applies gradient updates in a similar fashion as SGD, but
uses the Gaussian mechanism to add noise to the aggregate
mini-batch gradient. However, since the sensitivity of the
mini-batch gradient to a single example is unbounded, the
per-example gradients are clipped prior to aggregation to
ensure that their l2-norm is smaller than a clipping threshold
C > 0. This guarantees that the sensitivity of the mini-batch
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TABLE 1: Selected 11 papers for experiments. Here we use Gen-
eralizability (G), and Reliability (R) to measure Reproducibility
and Reliability.  means the paper satisfies all requirements in
that part. G# means satisfying part of them and # means satisfying
none of them. A more detailed version can be found in Table 15.

Techniques Paper Year
Reproducibility
G R

Model architecture Klause et al. [14] 2022 G# #

Model architecture Sander et al. [15] 2023 G# G#

Hyperparameter selection Dormann et al. [16] 2021 G# G#

Augmentation multiplicity De et al. [17] 2022   

Augmentation multiplicity Bao et al. [18] 2024   

Feature selection Tramèr and Boneh [19] 2020 G# G#

Gradient Clipping Bu et al. [20] 2022 G# G#

Gradient Clipping Bu et al. [21] 2024  G#

Fine-tuning technique Cattan et al. [22] 2022 G# #

Fine-tuning technique Luo et al. [23] 2021  G#

Fine-tuning technique Tang et al. [24] 2024   

gradient sum is at most C. In other words, the noisy gradient
is calculated as:

ḡ =
1

L

∑

i

clipC(gi) +N (0, σ2C2I) ,

where L is the number of examples in the mini-batch, gi is
the gradient vector of example i, and σ is the noise level. For
completeness, we provide a complete description of the DP-
SGD algorithm in Algorithm 2 (Appendix C). Since it is an
iterative algorithm where gradients are computed multiple
times over the same data, careful privacy budget account
and composition is required [13].

A notable drawback of per-example gradient clipping as
used in DP-SGD is processing speed. The running time for
one epoch with DP-SGD is between 10 to 30 times slower
than with SGD [25], [26].

Privacy-utility trade-off. There is a natural tradeoff be-
tween privacy and utility when training the model with DP-
SGD. This is because the smaller the privacy budget ε the
more noise needs to be added to the clipped gradients and
thus the more distortion the training process will experience.
In this paper, we think of privacy as the total privacy budget
ε and of utility as a combination of test accuracy of the
trained model and also training time and memory usage.

3. Selected papers

3.1. Selection Criteria

To identify papers for inclusion, we took a deep dive
in the DPML literature from 2020 to the time of writ-
ing. We also included papers appearing only on arXiv,
as some with claimed state-of-the-art methods such as
De et al. [17], are hosted there. Due to space constraints
we do not provide here a comprehensive overview of the
DPML literature. We refer interested readers to recent sur-
veys [33], [34], [35], [36], [37].

For a paper to be considered SoTA, it must explicitly
claim this status. To ensure a fair and straightforward com-
parison, we focused on papers employing DP-SGD methods
and presenting their main results on computer vision tasks.

From our literature search, we identified 11 papers that
are the most representative samples, listed in Table 1. These
papers were selected based on the following criteria:

1) They claim to achieve SoTA performance in DPML.
2) Their proposed methods are innovative and straightfor-

ward to implement or their code is open source.
3) They represent the latest and most promising research

directions, thus providing a comprehensive overview of
the current SoTA.

These characteristics make the selected papers particularly
noteworthy and suitable for inclusion.

3.2. Selected Papers

Here is a brief overview of the selected papers.

Tuning existing architectures. Klause et al. [14] proposed
an architecture modification on ResNet, adding a normal-
ization layer after the residual block called ScaleNorm.
They claim that ScaleNorm can improve the speed of con-
vergence, and they achieve SoTA performance on CIFAR-
10 when trained from scratch. Sander et al. [15] propose
changing the order of layers in a ResNet block. They show
experimentally that changing the order of activation and nor-
malization layers has a significant impact on performance.
Specifically, they find that using normalization before ReLU
leads to improved performance compared to using ReLU
before batch normalization.

Hyperparameter Tuning. Dormann et al. [16] investigate
that the inherent sampling noise in SGD and Gaussian noise
in DP-SGD is equivalent to achieving privacy. They propose
a novel hyperparameters tuning method using a large batch
size and high noise multiplier to achieve SoTA performance.

Data Augmentation: Augmentation multiplicity. De et
al. [17] advocate for the use of large batches and replace
batch normalization with group normalization, and weight
standardization. They also propose to create several self-

augmentations of each example and then average their
gradients before clipping. This does not affect the privacy
analysis because it happens prior to clipping (thus any given
example only affects one clipped gradient value per mini-
batch). This is particularly effective and results in a new
SoTA on CIFAR-10 when trained from scratch.

Data Augmentation: Mixup. Bao et al. [18] introduced
two techniques, DP-MIXSELF and DP-MIXDIFF, to integrate
mixup [38] into DP-SGD. DP-MIXSELF is similar to De
et al. [17] but employs mixup as an augmentation, while
DP-MIXDIFF utilizes a text-to-image diffusion model to cre-
ate class-specific synthetic examples that are then mixed up
with actual training data. Both achieve SoTA performance
across various datasets and settings.

Feature selection. Tramèr and Boneh [19] propose to use
handcrafted features and show that a model trained on these
features can outperform models trained from scratch without
such features. Specifically, they use a Scattering Network as
a feature extractor with Group Normalization. They combine
it with the linear model and deep models in experiments
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and show that all of them outperform models that do not
use feature selection.

Clipping: Auto-Clipping. Bu et al. [21] and Yang et
al. [39] proposed a new clipping technique called Auto
clipping which can be defined as follows: ḡt ← gt ·

1
||gt||2+γ .

This method removes the clipping threshold instead of
using methods to find it. They add a parameter γ which
can be relatively stable from case to case to preserve the
gradients’ magnitude information. They show the conver-
gence of DP-SGD with Auto clipping is the same as SGD.
In experiments, they show that DP-SGD with Auto clipping
has a slightly better performance than DP-SGD with basic
clipping. They claim to match or outperform SoTA.

Clipping: Mixed Ghost Clipping. By combining and
extending previous works [40], [41], [42], Bu et al. [20]
propose a technique called Mixed Ghost Gradient Clipping
which does not require computing per-sample gradients.
They use ghost norm to compute gradient norm without ac-
tually computing gradients and second back-propagation to
transfer weighted loss to weighted gradients. Their method
yields computation time and memory close to non-private
optimization. They claim to achieve a new SoTA perfor-
mance on CIFAR-10 and CIFAR-100.

Fine-tuning: Selective Fine-tuning. Luo et al. [23] propose
a new fine-tuning technique targeted at the normalization
layer and a percentage of parameters in convolution layers
that have high magnitudes. Cattan et al. [22] propose fine-
tuning the first and last layers to improve performance
(an increase of 3.2% accuracy compared to fine-tuning the
whole model). They claim to achieve SoTA performance.

Fine-tuning: Random Process Pre-training. Tang et al.
[24] introduce a method to pre-train models on random
process data [43], [44], eliminating reliance on existing
public datasets. Their three-phase process starts with pre-
training the model’s feature extractor on this data. Next, they
train the classification layer solely on private data, freezing
the feature extractor. In the last phase, the entire model is
fine-tuned on private data. Their approach achieves SoTA
results, underlining its effectiveness.

4. Methodology

In this section, we describe our evaluation methodology,
research questions, and experimental setup. We then propose
a framework to establish whether a method provides statis-
tically significant improvements over a baseline. We justify
the need for this framework by empirically measuring the
consequences of the additional randomness and variability
of DPML (compared to non-private ML).

4.1. Methodology & Research questions

We reproduce each of the 11 selected DPML papers
using either code open-sourced by the authors or our re-
implementation of techniques as described in the paper. We
seek to answer the following questions:

(RQ1) Do the proposed methods achieve their claims?
(RQ2) Are improvements obtained outside of the experi-

mental settings used in the papers?
(RQ3) What part(s) of the model should be DP fine-tuned?
(RQ4) Can different techniques be combined?
(RQ5) What techniques are the most promising?
(RQ6) What are important methodological guidelines to

ensure scientifically sound and reliable findings?

4.2. Experiments Setup

Datasets. We chose the following 9 datasets: CIFAR-10,
CIFAR-100, MNIST, Fashion-MNIST, EuroSAT, ISIC 2018,
PathMNIST, Caltech 256, SUN397 and Oxford Pet because
they are either used in the 11 papers we evaluated or have a
large domain gap to the pretrain dataset. We provide more
details for these datasets in Appendix B.

Setup. To ensure a fair comparison, all our experiments
are conducted using PyTorch and Opacus [45]. While some
works, such as that of De et al. [17], provide open-source
code written in JAX, we utilize a reproduced PyTorch
version based on the code proposed by Sander et al. [15].
The same codebase was also used by Tang et al. [24] and
Bao et al. [18]. Choice of codebase matters as there are
notable performance differences, typically in the range of
1-2%, between the JAX and PyTorch versions of [17], as
highlighted in some related work [15], [18].

Unless otherwise specified, we adopt the Wide-ResNet
16-4 models as the base model, which is also used in De
et al. [17], Klause et al. [14], Tang et al. [24], Bao et al.
[18] and Sander et al. [15]. To implement DP-SGD, we use
Opacus [45] and make necessary modifications based on
different experimental requirements. All experiments (ex-
cept pre-trained model experiments) are conducted with the
same DP setting — ε = 8, δ = 10−5, batch size of 4096,
clipping bound C = 1, and 200 training epochs. We report
the results for 3 independent runs.

4.3. Statistical Framework

We propose a framework to enhance our reproducibility
experiments and ascertain if a proposed DPML method pro-
vides statistically and practically significant improvements.
This framework uses a simplified Cohen’s d [46] to measure
effect size (improvement size) and paired t-tests [47] to
measure statistical significance. These methods are well
regarded and used across diverse scientific research areas,
including psychology [48] and medicine [49].

Statistical tests come with their own sets of draw-
backs and their widespread adoption and (mis)use in some
disciplines have led to deleterious practices such as p-
hacking [50]. Such tests are seldom used in machine learn-
ing practice, although there are numerous methods to use
them [51], [52]. Machine learning research often reports
average performance measures such as accuracy (and some-
times also variation or error bars) and relies on this to es-
tablish whether one method is superior to another. We argue
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that for DPML the use of a framework with statistical testing
such as the one we propose is warranted. First, we expect
larger uncertainty and variability in each measurement (than
for non-private ML). This is in part due to inherently greater
randomness in DPML (as we demonstrate in Section 4.4).
This is especially striking when the privacy budget is small
(e.g., ε = 0.1) or the training dataset is small.2 Second,
obtaining each measurement is often an order of magnitude
more computationally onerous for DPML, so relying on only
a few measurements may be necessary.

Framework Details. Suppose we collect a series of n
paired observations from two distinct training runs (e.g., the
proposed method vs. the baseline). Let a1, a2, . . . an and
b1, b2, . . . bn be the observations for the proposed method
and the baseline. For example, these could be test accuracy
measurements on models trained with two different methods
but paired such that aj and bj are the test accuracies on
dataset j (or on run j of n on some fixed dataset). We
compute the following:

• Raw means: µ1 = n−1
∑

i ai and µ2 = n−1
∑

i bi
• Raw deviations:

σ1 =

√

∑

i(ai − µ1)2

n
and σ2 =

√

∑

i(bi − µ2)2

n

• Paired differences: di = ai − bi for i = 1, 2, . . . , n.
• Means and deviation of paired differences: µd =

∑

i di

and σd =

√∑
i
(di−µd)2

n .

To conduct the paired t-test which uses the t-distribution
[53], the t-statistic is calculated as: t = µd

σd/
√
n

, and from

it a p-value is obtained [54]. If the p-value is below the
set significance level α (e.g., α = 0.05) this leads to the
rejection of the null hypothesis (in our case the two methods
perform the same). If the p-value exceeds this threshold,
the null hypothesis stands, suggesting the observed dif-
ference between the two methods could be the result of
chance. In our experiments, we use the default parameters
of scipy.stats.ttest rel to compute the t-statistic and p-value.3

We also propose to measure practical significance as
improvement size or effect size using Cohen’s d. That is,
we compute:

d =
µ1 − µ2

σp
with σp =

√

σ2
1 + σ2

2

2
.

where µ is the mean of each method’s result and σp is the
pooled standard deviation [28]. Note that the formula for
σp is simplified from the general case since in our case, the
two groups always have the same size.

Test selection and applicability. We chose to base our
framework on the paired t-test and Cohen’s d because they

2. If the training dataset is huge, as is often the case in deep learning
research, statistical measurements are superfluous since any observed differ-
ence is automatically statistically significant. But in such cases, obtaining
tight privacy guarantees with performance similar to non-private models
may not be difficult in the first place.

3. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest
rel.html

are well-known, useful even for small n, and straightforward
to apply to DPML.

Using a hypothesis testing procedure is more princi-
pled than the oft-used rule-of-thumb of looking for an
improvement larger than the standard deviation. The paired
test is more powerful than its unpaired test because it re-
duces variability.4 Further, it allows us to compare methods
across multiple experimental settings since test accuracy
measurements of models trained by each method in a given
experimental setting (same model architecture, same dataset,
same number of training epochs, etc.) can be paired.

Test power versus number of runs. The power of the test
depends not only on the number of runs, n, but also on the
effect size. A statistical rule-of-thumb is that to achieve 80%
or more power for paired t-test at significance level α = 0.05
requires n ≈ 16 1

d2 , where d is the effect size (see [55]).
This means that when the effect size is large, which is the
case experimentally for some of the state-of-the-art DPML
methods, only a few runs are needed. However, for methods
with small effect sizes, the only way to reliably establish an
improvement may be to increase the number of runs until
the test becomes sufficiently powerful.

4.4. Impact of Randomness

Randomness in the initial weights and mini-batch sam-
pling steps during the training process (e.g., with SGD)
plays a significant role in machine learning. However, for
DPML, randomness due to the added noise to achieve differ-
ential privacy also impedes convergence and decreases the
performance of the trained model. Moreover, this additional
randomness can obscure the relationship between alternative
methods’ performance because it tends to increase variabil-
ity across runs.

We study this phenomenon through a set of principled
experiments where we train models with SGD and DP-SGD
while varying the random seeds used by the random number
generator, thereby allowing us to observe the impact of
randomness on model performance. Here it is worth pointing
to related work by Picard [56] who studied the impact of
random seeds on computer vision.

We trained a WRN-16-4 on CIFAR-10 from scratch
using 500 randomly chosen seeds. Similarly, we fine-tuned
a Vit-base-patch16-224 on CIFAR-10 with 500 randomly
chosen seeds. The mean, median, max, min test accuracies,
stddev, and the difference between max and min test accura-
cies from the 500 runs for different ε values and non-private
cases. Results are presented in Table 2.

Observe that both the standard deviation and max-min
difference is often much greater for DP-SGD than SGD
(represented as ε = ∞ in Table 2) e.g. 5.57% vs 3.61%.
In other words, the noise added to the gradient increases
the variability in the quality of found solutions. This is in
some sense expected given the privacy constraint. However,
it suggests that for DPML compared to non-private ML: (1)
a larger performance gap between two competing methods

4. The paired t-test’s statistical power increases with the correlation.
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TABLE 2: Test accuracy on MNIST and CIFAR-10 for 500 runs with different randomly selected seeds. We use WRN-16-4 for training
from scratch on MNIST and CIFAR-10, and Vit base patch16 224 for fine-tuning on CIFAR-10. Here∞ means using SGD (no privacy).

From scratch Fine-tuning

Dataset CIFAR-10 MNIST CIFAR-10

ε ∞ 1 4 8 ∞ 1 4 8 ∞ 0.5 1 4 8

Mean 77.56% 42.45% 60.20% 66.56% 99.17% 96.80% 98.27% 98.51% 98.32% 96.15% 97.83% 98.00% 98.01%
Std. 0.68% 0.81% 0.93% 0.93% 0.15% 0.20% 0.28% 0.28% 0.02% 0.23% 0.09% 0.07% 0.05%

Median 77.50% 42.53% 60.22% 66.68% 99.21% 96.80% 98.37% 98.63% 98.32% 96.14% 97.83% 98.01% 98.02%
Max 79.64% 45.69% 63.47% 68.61% 99.61% 97.25% 98.67% 98.93% 98.33% 96.61% 98.06% 98.12% 98.14%
Min 76.03% 40.20% 57.90% 64.13% 98.68% 95.60% 96.60% 97.09% 98.17% 95.39% 97.45% 97.79% 97.86%

Max-Min 3.61% 5.49% 5.57% 4.49% 0.93% 1.65% 2.07% 1.84% 0.16% 1.22% 0.61% 0.33% 0.28%

is needed to conclude that one outperforms another, and (2)
there is greater potential for “seed hacking,” where unethical
researchers specifically select seeds to unfairly claim an
advantage for their methods. We discuss this in Section 4.5.

Another relevant observation from Table 2 is that the
standard deviation and max-min difference are much lower
for fine-tuning compared to the train from scratch setting.
This suggests that a promising methodological step to ensure
reproducibility is to evaluate a method both from scratch
and fine-tuning settings. We also included MNIST models
trained from scratch in the experiments to establish that
variability in the fine-tuning setting is in fact lower and
that the observed results are likely not due to this setting
typically yielding higher accuracy models.

Finally, we observe higher variability at lower privacy
budgets, which is expected but underlines the importance of
evaluating methods in a wide range of privacy regimes.

4.5. Seed Hacking?

In this section, we explore the concept of seed hacking,
inspired by the work of Picard [56]. Seed hacking refers
to the process of selectively choosing a small subset of
random seeds that anomalously enhance the performance of
a proposed method over a baseline, giving a false impression
of improvement when, in fact, no genuine enhancement
exists from the proposed technique [57], [58]. Note that we
are not accusing anyone of engaging in seed hacking; rather,
we bring up this possibility as a loose analog to the problem
of p-hacking [50] but also to further drive home the point
that the increased randomness in DPML matters.

We use data from our random seed experiment (Table 2)
to simulate a seed-hacking strategy on the fine-tuning task
using the CIFAR-10 dataset. For each privacy budget value,
we randomly select 10 out of 500 experimental runs, rank
these by performance, and choose the top three outcomes
for the “proposed method” to simulate what an unethical
researcher engaging in seed hacking might do. For the
“baseline method”, by contrast, we randomly select three
outcomes from the same 500 runs.

We conduct two types of statistical tests. The first test
employs a common approach where if the mean perfor-
mance of the proposed method minus its standard deviation
exceeds the baseline’s mean performance plus its standard
deviation, the proposed method is considered superior. The
second test applies our proposed framework to conduct

TABLE 3: Number of times that seeds hacking show proposed
method better than baseline among 1000 independent runs.

ε ∞ 0.5 1 4 8

std test 345 402 397 382 357
t-test 141 191 186 174 153

paired t-tests with significance denoted by a p-value less
than α = 0.05. The experiment simulates seed hacking 1000
times and each case executes both tests.

Results are shown in Table 3, where each entry is the
number of passing instances of the test. Observe that non-
private ML (SGD — ε =∞) has the lowest numbers. The
numbers are greater in the DPML case, especially for low
privacy budgets. More importantly, the std test has a much
higher false discovery rate than the paired t-test. Note that
if seeds were selected randomly instead (no seed hacking)
then we would expect an average 50 passing instances in
each cell, reflecting a false discovery rate of α = 0.05.

The table reports only rates of false discoveries (Type I
errors) because the experiment simulates a scenario where a
researcher cherry-picks seeds. With all results coming from
the same training method, there are no notable improve-
ments (the Null hypothesis is true by definition) and so there
are no Type II errors.

Random seeds and differential privacy. There is another
subtle but critical difference in the role that random seeds
play in DPML versus non-private ML. The reader may
wonder why it is unacceptable to optimize the choice of
random seed — putting aside for a moment the dishonesty
related to seed hacking. After all, if some choices of random
seeds are better than others, why not pick the seed that
yields the best model? Arguably what matters most is the
model that is actually used, not the distribution of possible
models that we could have trained. Further, from a pure
reproducibility standpoint, fixing the seed to a known value
to eliminate its impact is desirable.

This reasoning does not run through for DPML because
the randomness of the seed is required for the differential
privacy guarantee. Since the random seed determines the
added noise to the gradient in DP-SGD, fixing it or selecting
it on any criteria that an adversary knows about (or can
replicate) reduces the uncertainty about the noise distribu-
tion, which thus breaks the privacy guarantee. Therefore the
seed must truly be selected at random.
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TABLE 4: Reproduced test accuracy for Dormann et al. [16]

ε 1.93 4.21 7.42

Claimed 58.6% (0.38%) 66.2% (0.38%) 70.1% (0.20%)
Reproduced 58.64% (1.16%) 66.41% (0.78%) 68.88% (1.62%)

TABLE 5: Sander et al. [15] performance for varying ε.

Order 0 1 2 3

ε = 8 71.68% (±0.50%) 65.74% (±0.40%) 66.85% (±1.60%) 74.07% (±0.40%)
ε = 1 52.75% (±0.22%) 43.10% (±0.51%) 44.71% (±0.65%) 52.96% (±0.32%)
ε = 0.5 47.00% (±0.54%) 40.51% (±0.23%) 42.54% (±0.54%) 47.51% (±0.36%)
ε = 0.1 32.19% (±1.24%) 25.64% (±1.15%) 29.53% (±0.85%) 32.57% (±0.92%)

5. R+R Experiments

In this section, we conduct our R+R (Reproducibil-
ity+Replicability) evaluations on our 11 selected papers. We
not only attempt to reproduce their results and check if
they match their claims in their papers. We also expand
the evaluation settings (e.g., to new datasets, or new model
architectures) to ascertain whether the proposed methods
still deliver improvements over baselines.

Dormann et al. [16] — Hyperparameter selection. Dor-
mann et al. [16] focuses on hyperparameter selection, advo-
cating for the adoption of large batch sizes (high sampling
rate) combined with a higher noise level.

We used their official codebase to reproduce their exper-
iments on CIFAR-10 (Table 4).5 Our results are consistent
with their assertions. Employing larger batch sizes has also
been endorsed and adopted by more recent studies such as
De et al. [17] and Bu et al. [20] which shows replicability.
Consequently, we use this hyperparameter selection strategy
as default in subsequent experiments.

Takeaway 1. Large batch sizes and high noise levels

consistently provide superior performance in experi-

ments across a wide variety of scenarios.

Sander et al. [15] — Changing order. Recall that Sander et
al. [15] proposed changing the order of activation function
and normalization layers to obtain a performance boost of
5% to 10%.6 As a baseline, we train the WRN-16-4 model
(on CIFAR-10) using DP-SGD to achieve an average test
accuracy of 71.68% (Table 6).

We empirically explored four different ordering schemes
as represented in their code.7 Results are shown in Table 6.
The results are consistent with the claims made by Sander et
al. [15] as we observed a 5% to 10% boost in performance.

5. https://github.com/OsvaldFrisk/dp-not-all-noise-is-equal

6. Although Sander et al. [15] proposed other improvements, we are
primarily interested in evaluating their changing order method.

7. Order 0, where the order of layers follows Conv-ReLU-GN, with the
same order in the shortcut (here Conv means convolution layers, ReLU is
the activation function and GN means group normalization layer); Order 1,
where the order of layers follows Conv-GN-ReLU, with the same order in
the shortcut; Order 2, where the order of layers follows Conv-GN-ReLU,
but the shortcut follows Conv-ReLU-GN; and Order 3, where the order of
layers follows Conv-ReLU-GN, but the shortcut follows Conv-GN-ReLU.
Results applied to the WRN-16-4 model

Specifically, using order 3 resulted in the best performance,
with an average test accuracy of 74.07%.

Although Sander et al. [15] only report results for ε = 8,
we perform experiments varying ε from ε = 0.1 to ε = 8
and show results in Table 5. We find that the same pattern
holds across ε values, showing that changing layer order as
specified in their paper does indeed replicate.

De et al. [17] — Self-augmentation. De et al. [17] achieved
a new SoTA performance on CIFAR-10 through hyperpa-
rameter tuning and a combination of techniques such as
self-augmentation (aka augmentation multiplicity), weight
standardization, and parameter averaging (ema). They use a
codebase based on JAX, whereas we use a PyTorch version
of it from Sander et al. [15].8

For reproducibility, the results we obtain are shown
in Table 6. The method significantly improves the model’s
performance (from 71.68% to 77.79%), which is consistent
with De et al.’s claims. Although they reported slightly
higher performance, we believe that our results are com-
parable, considering the randomness in training and the fact
that we use a different codebase.

To evaluate replicability, we extend their proposed
method by testing it on a wider range of ε from 0.1 to 8 on
CIFAR-10 and present the results in Table 8. We observe that
their proposed improvements decrease as the privacy budget
is decreased. When ε = 0.1, the improvement is marginal.
This is in stark contrast to the result obtained varying ε for
order switching (Sander et al. [15]).

Bao et al. [18] — DP-Mix. Bao et al. [18] proposed
two new techniques DP-MIXSELF and DP-MIXDIFF which
achieve SoTA results on multiple datasets. We reproduce
their results using their official codebase.9 The reproducible
results of DP-MIXSELF we obtain are shown in Table 6.
The method significantly improves the model’s performance
(from 71.68% to 79.83% for baseline and from 78.10% to
79.83% for De et al. [17]), which is consistent with Bao et
al.’s claims. We also reproduce DP-MIXDIFF using the same
settings as the authors presented and show results in Table 7.
We observe that DP-MIXSELF and DP-MIXDIFF improve the
test accuracy in all cases, especially for Caltech256 and
Oxford Pet datasets.

We also extended their method to a wider range of
privacy budgets (i.e., ε ranging from 0.1 to 8) on CIFAR-10
and show the results in Table 8. We can observe that the
performance boost from their proposed method decreases
significantly as the privacy budget decreases, similar to the
method proposed by De et al.[17].

Takeaway 2. Augmentation multiplicity delivers re-

markable performance improvements in practice. It

also appears to be a promising direction for future

research, albeit its applicability beyond computer vi-

sion remains unclear.

8. https://github.com/facebookresearch/tan

9. https://github.com/wenxuan-Bao/DP-Mix
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TABLE 6: Average test accuracy (± standard deviation) for reproducing SoTA methods. The privacy budget for training is 8 and δ = 10−5.
We use the same DP setting for all experiments, i.e., batch size is 4096, C = 1, 200 training epochs.

Order 0 1 2 3

Baseline (WRN-16-4) 71.68% (±0.50%) 65.74% (±0.40%) 66.85% (±1.60%) 74.07% (±0.40%)
Baseline + ScaleNorm 72.71% (±1.20%) 63.87% (±1.40%) 64.18% (±2.90%) 72.95% (±0.60%)

Baseline + Mixed Ghost Clipping 72.96% (±0.30%) 66.91% (±1.50%) 67.26% (±2.30%) 72.79% (±0.60%)
Baseline + Self-augmentation [17] 77.79% (±0.50%) 68.87% (±0.80%) 69.68% (±0.90%) 78.10% (±0.50%)

Baseline + DP-MIXSELF [18] 78.49% (±0.21%) 69.17% (±0.45%) 69.89% (±0.42%) 79.83% (±0.32%)
Baseline + Self-augmentation [17] + ScaleNorm 77.43% (±0.30%) 66.40% (±0.9%) 67.37% (±0.40%) 78.19% (±0.20%)

TABLE 7: We fine-tune Clip-Vit-B-16 models on Caltech256,
SUN397 and Oxford Pet datasets using different ε with δ = 10−5,
and report the test accuracy (%). We can observe that DP-MIXSELF

and DP-MIXDIFF, outperform the baselines in all cases.

Dataset Method ε = 1 ε = 2 ε = 4 ε = 8

Caltech256

Self-Aug [17] 80.36(±.11) 89.67(±.16) 92.01(±.08) 93.17(±.15)
DP-MIXSELF 81.21(±.15) 90.12(±.17) 92.17(±.21) 93.39(±.08)
DP-MIXDIFF 89.69(±.23) 91.82(±.15) 92.86(±.14) 93.87(±.10)

SUN397

Self-Aug [17] 72.65(±.09) 76.02(±.14) 78.05(±.11) 79.54(±.15)
DP-MIXSELF 73.19(±.13) 76.45(±.17) 78.67(±.16) 79.57(±.14)
DP-MIXDIFF 75.12(±.17) 77.78(±.12) 79.47(±.18) 80.57(±.09)

Oxford Pet

Self-Aug [17] 72.21(±.21) 82.11(±.19) 85.84(±.25) 88.23(±.11)
DP-MIXSELF 72.45(±.24) 82.51(±.21) 86.75(±.17) 88.70(±.15)
DP-MIXDIFF 83.24(±.26) 86.28(±.19) 88.25(±.24) 89.41(±.21)

TABLE 8: De et al. [17] and Bao et al. [18] proposed method
performance on CIFAR-10 under different ε. Results show that the
impact of the improvements decreases as ε decreases.

ε 0.1 0.5 1 8

Baseline 32.19%(±1.24%) 47.00%(±0.54%) 52.75%(±0.52%) 71.68%(±0.55%)
De et al. [17] 32.42%(±1.03%) 48.98%(±0.42%) 56.06%(±0.45%) 77.79%(±0.50%)
Bao et al. [18] 32.57%(±1.23%) 49.14%(±0.49%) 57.24%(±0.42%) 78.49% (±0.21%)

Klause et al. [14] — ScaleNorm. Recall that Klause et
al. [14] proposed to add a normalization layer (ScaleNorm)
after the residual block to achieve better performance.

We added Scale Normalization layers to the model
and evaluated the performance of the modified model on
CIFAR-10 (Table 6). We find that this improves the model’s
performance by about 1%, which is consistent with the
results reported in the paper. However, when we applied
Sander et al.’s method of changing the order of the activation
function and normalization layer, the performance of the
model decreased. This result suggests that the benefits of
ScaleNorm may not be widely applicable and (or) may not
be combined with other techniques.

Bu et al. [20] — Mixed ghost clipping. Recall that Bu
et al. [20] propose a gradient clipping method using pre-
trained Transformer models. However, without experiments
on models trained from scratch or ablation studies, it is not
clear whether the observed improvements are due to the
clipping technique, the pre-trained models, or both.

We apply Mixed Ghost Clipping to the WRN-16-4
model and train it from scratch using an implementation
based on the code provided by the authors.10 We find that
the method only slightly improved performance (Table 6).

We also tested the performance using pre-trained Trans-

10. https://github.com/woodyx218/private vision

TABLE 9: Results of pre-trained transformers for independent 3
runs. The privacy budget ε = 1 and δ = 10−5. We set the training
epochs to 2 and batch size of 5000 as Bu et al.[20] suggested.

Model Clip method Test accuracy t p-value Effect size

Basic clipping 94.71%(±0.14%)
CrossViT base 224

Mixed Ghost clipping 94.77%(±0.13%)
0.78 0.52 0.44

Basic clipping 97.34%(±0.20%)
Vit base patch16 224

Mixed Ghost clipping 95.05%(±0.13%)
-16.61 0.004 -13.57

formers, following the same setting as the paper. We used
the CrossVit-base-224 and Vit-base-patch16-224 models,
pre-trained on ImageNet and provided by timm11, and fine-
tuned the models on CIFAR-10. We compared Mixed Ghost
clipping and basic gradient clipping, with ε = 1 and two
training epochs, as suggested in the paper (Table 9). Mixed
Ghost Clipping did not outperform basic gradient clipping in
a statistically significant way (Section 4.3). When the model
architecture is Vit-base-patch16-224, basic gradient clipping
achieves better performance (in this case the effect size is
massive and the result is statistically significant). Moreover,
we did not observe the out-of-memory problem reported in
the original paper when using basic gradient clipping.

While running these experiments we inadvertently
achieved a new SoTA performance of 97.34% for fine-
tuning pre-trained models on CIFAR-10 with a privacy
budget of ε = 1. In this case, the SoTA result was achieved
(accidentally) by using a powerful model architecture and
tuning some hyperparameters and we argue it does not
constitute a meaningful improvement.

Takeaway 3. Differences between claimed SoTA re-

sults and baselines are sometimes so small that one

may accidentally achieve new SoTA results. Such

small differences may also not be statistically sig-

nificant. This highlights the risk with chasing SoTA

performance as a strategy for DPML research. Ar-

guably, researchers should focus on designing novel

techniques that have a meaningful rationale or are

otherwise expected to be reliable and generalizable.

Bu et al. [21] — Auto clipping. Recall that Bu et al.
[21] introduced an alternative gradient clipping technique
termed “Auto Clipping.” As recommended in their paper,
we modified the Opacus library to incorporate this new
clipping method and conducted experiments on MNIST and
Fashion MNIST. Table 10 shows our results, which are

11. https://github.com/huggingface/pytorch-image-models
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TABLE 10: Reproduced results for Bu et al. [21]. According to the
framework of Section 4.3, both clipping methods achieve similar
performance, with neither being statistically superior.

Dataset Abadi’s clipping Auto clipping t p-value Effect size

MNIST 98.15% (±0.14%) 98.14% (±0.12%) -0.43 0.71 -0.22
Fashion MNIST 86.65% (±0.35%) 86.72% (±0.32%) 0.37 0.75 0.21

consistent with the performance reported in Bu et al. [21].
In their paper, a stated goal is to improve the hyperparam-
eters search time of DP-SGD by reducing the number of
hyperparameters that need to be tuned, which they achieve.
However, their method does not outperform the original
clipping proposed by Abadi et al. [13]. According to our
framework, neither method can be claimed to provide supe-
rior performance with statistical significance.

Takeaway 4. Claimed improvements of methods may

not always achieve statistical significance. Our pro-

posed framework or other statistically valid methods

should be used to conclusively determine whether a

method truly outperforms its baseline.

Cattan et al. [22] — First & last fine-tuning. Cattan
et al. [22] argue that fine-tuning the first and last layers
yields superior results to only fine-tuning the last layer or
the entire model. However, in our experiments, we observed
the opposite in Table 14: fine-tuning the first and last layers
yields similar or worse performance compared to just fine-
tuning the last layer or even the whole model in some cases.

A plausible explanation for this discrepancy is that the
claims by Cattan et al. are limited to their settings, such
as using ResNet on CIFAR-10 and CIFAR-100. For our
experiments, we use Vit base patch16 224 pre-trained on
ImageNet and test their method using multiple different
datasets including CIFAR-10, EuroSAT, ISIC 2018, Cal-
tech256, SUN397, and Oxford Pet.

Luo et al. [23] — Sparse fine-tuning. Luo et al. [23]
propose fine-tuning the classification layer, normalization
layer, and a minor subset (i.e., 1%) of the convolution
layer parameters. Our replication corroborates that this fine-
tuning approach outperforms fine-tuning the entire model
(baseline), across all three datasets they used in their paper.
However, we find that the proposed 1% parameter selection
is not universally optimal. For instance, selecting 10% of
parameters provides comparatively superior performance.
We also find that their proposed method does not achieve
better performance compared to only fine-tuning the last
layer for datasets such as Caltech-256, SUN 397 and Oxford
Pet which are not tested by the authors.

Tramèr and Boneh [19] — Hand-crafted features. We
reproduced Tramèr and Boneh [19] using their official code
and their best method (ScatterNet+CNN) to train a model
from scratch on CIFAR-10.12 We then compare the results
to De et al. [17] under varying privacy budgets (Table 11).
Tramèr and Boneh [19] outperform De et al. [17] when the

12. https://github.com/ftramer/Handcrafted-DP

TABLE 11: Our reproduced results for Tramèr and Boneh [19] and
compare it to De et al. [17] for ε from 1 to 8. We find that Tramèr
and Boneh [19] excel in performance with a limited privacy budget
(ε = 1 and ε = 2). However, when the privacy budget exceeds 4,
their performance plateaus. (For statistical tests, we take Tramèr
and Boneh [19] as proposed method and De et al. [17] as baseline.)

Paper ε=1 ε=2 ε=4 ε=8

[17] 56.80%(±0.49%) 62.90%(±0.32%) 69.45%(±0.41%) 78.74%(±0.45%)
[19] 60.88%(±0.33%) 66.96%(±0.56%) 69.74%(±0.24%) 72.40%(±0.11%)

t-statistic 21.25 13.35 1.67 -60.93
p-value 0.002 0.006 0.238 0.003
Effect size 9.77 8.90 0.86 -19.36

TABLE 12: Our reproduced results on CIFAR-10 and PathMNIST
for Tang et al. [24] using different datasets for Phase 1 with ε = 1.

Method CIFAR-10 PathMNIST

Phase1 w/ Random processes 72.48% (±0.21%) 90.65% (±0.18%)
Phase1 w/ EuroSAT 70.81% (±0.32%) 90.58% (±0.25%)

TABLE 13: FID values between pre-training data (random process
data and fine-tuning set — CIFAR-10 and PathMNIST)

Dataset Random processes EuroSAT

CIFAR-10 Train 107.78 123.33
CIFAR-10 Test 158.69 160.48

PathMNIST Train 196.61 201.71
PathMNIST Test 196.75 202.64

privacy budget is limited. However, for ε = 8 (or larger),
De et al. [17] provide substantially better performance.
Further experiments with an increasing privacy budget show
performance plateauing for Tramèr and Boneh whereas the
test accuracy for De et al. keeps increasing.

Takeaway 5. It is not uncommon for one method to

outperform another in one privacy regime but have

the reverse occur in a different privacy regime. This

underlines the importance of reporting results with

a wide range of ε values to ensure comprehensive

comparisons between methods.

Tang et al. [24] — Random-process pretraining. Tang et
al. [24] advocate for initially pre-training a model on data
produced from random processes, and then fine-tuning it
using the private dataset. We replicated their method using
their official codebase and validated their performance as
shown in Table 12.13

Their method essentially initializes the model using ran-
dom process data instead of public pre-training data. Model
performance typically improves with the similarity between
pre-training and fine-tuning datasets. In practice, dissimilar
datasets to the fine-tuning data are more likely to be publicly
available. So this approach raises the question of whether
random process data is always beneficial. We evaluate this
using the Fréchet Inception Distance (FID) [59] as a measure
of the domain gap.

As shown in Table 12, the performance obtained when
pre-training on EuroSAT is analogous to that achieved

13. https://github.com/inspire-group/DP-RandP
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with random process data. The FID values between pri-
vate datasets (e.g., CIFAR-10 and PathMNIST) and pub-
lic datasets (e.g., random process data and EuroSAT), are
shown in appendix Table 13. Note that we selected these
datasets specifically to have large FID values. Interestingly,
despite EuroSAT exhibiting a larger domain gap compared
to random process data, models pre-trained on EuroSAT still
deliver performance metrics that closely align with those
trained using random process data.

6. Evaluations Beyond R+R

In this section, we answer research questions RQ3 to
RQ6 beyond R+R experiments and investigate the compu-
tational cost of different methods. Additional experiments
such as empirical privacy measurements are in Appendix A.

6.1. RQ3: Which Part of the Model to Fine-tune?

We explore several fine-tuning strategies, drawing from
Luo et al. [23] and Cattan et al. [22]. We apply these
strategies to six distinct datasets: CIFAR-10, EuroSAT,
ISIC 2018, Caltech 256, SUN397, and Oxford Pet. These
datasets present a range of domain gaps with respect
to the pre-training dataset. For this study, we use the
Vit base patch16 224 model, pre-trained on ImageNet, and
fine-tuned it with 5 epochs. We present the results in Ta-
ble 14. To ensure a fair comparison, we use fine-tuning
the whole model as a baseline. In addition to applying
methods from the DPML literature, we experimented with
alternatives. Instead of magnitude-based parameter selec-
tion, we test random parameter selection for 1%, 2%, and
10% of the parameters (“Random Subset”). Also, rather than
selecting parameters dispersed across different blocks of the
ViT model, we tested randomly selecting 2, 3, or 6 blocks
for fine-tuning, a strategy we call “partial training.”

Results (Table 14) show that both alternative approaches
sometimes match or surpass the performance of Luo et
al. [23] for the first three datasets. Considering all 6 datasets,
only fine-tuning the last layer achieves stable good per-
formance. This suggests that fine-tuning only a subset of
the model is the important variable, not the specific subset,
or that the fine-tuning strategy is dataset-specific such as
domain gap and data size per class.

Takeaway 6. Although several papers propose so-

phisticated strategies for DP fine-tuning models, we

find that none of them consistently outperform alter-

natives across all datasets. It appears that only fine-

tuning the last layer performs well across datasets.

6.2. RQ4: Can Different Methods be Combined?

Can two or more methods from the selected papers be
combined to provide further improvements? Given that the
techniques are different in nature they are compatible and
can in many cases be applied in combination (e.g., self-
augmentation + changing order + ScaleNorm).

Since large batch sizes and high noise levels can be
combined with all other improvements, we use this as
the default setting for all experiments. We find that order
switching (Sander et al. [15]) and the techniques proposed
by De et al. [17] can be combined and achieve 78.10%
test accuracy on CIFAR-10. By contrast, combining Mixed
Ghost Clipping with order switching slightly decreased per-
formance for order 3.

Combining ScaleNorm (Klause et al. [14]) with De
et al.’s techniques or order switching did not significantly
increase performance. Specifically, combining ScaleNorm
with De et al.’s techniques achieved an average test accuracy
of 77.43%, which is lower than only applying De et al.’s
techniques (77.79%) and less than the 1% performance
boost claimed in the paper [14]. Similarly, when combining
ScaleNorm with De et al.’s techniques and order switching
the average test accuracy increased by only 0.09% (smaller
than the standard deviation across different runs).

Takeaway 7. Combining DPML methods, even or-

thogonal ones, often does not provide cumulative

improvements. Some combinations of methods actu-

ally decrease performance. Notable exceptions in-

clude large batch sizes and augmentation multiplicity.

6.3. RQ5: What are the Most Promising Methods?

Our experiments show that while we could reproduce all
selected papers, only seven out of eleven papers including
Dormann et al. [16], Sander et al. [15], De et al. [17],
Bao et al. [18], Luo et al. [23], Tramèr and Boneh [19]
and Tang et al. [24] reliably and consistently achieved
their claimed performance improvements. The other four
papers did not for various reasons, including not delivering
consistent improvements outside of the narrow experimental
setting in their paper.

As a further demonstration of our proposed framework,
we summarize its application to some of the evaluated
techniques in Table 16. We observe that (in this case) feature
selection and augmentation multiplicity techniques achieve
substantial improvements (i.e., large effect sizes) that are
also statistical significance. By contrast, the clipping and
fine-tuning techniques in this case do not achieve statistical
significance (or large effect size).

Further discussion of statistical power and number of
runs using Table 16 for illustration is warranted. Reporting
results for a few runs (sometimes a single run) is common
practice in DPML research [20], [14], [23], [18], [15].
Accordingly, we used n = 3 for the experiments in the table.
Ideally, research should involve more extensive testing (e.g.,
n = 20), but the high computational cost of DPML training
makes this challenging for many researchers. We discuss the
computational overhead of DPML in the next subsection.

Reporting too few runs may result in an under-powered
test, and being unable to establish whether the method
provides notable improvements. However, as discussed
in Section 4.3, a large enough effect size can overcome
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TABLE 14: Test accuracy using Vit base patch16 224 on CIFAR-10, EuroSAT, and ISIC 2018 using different fine-tuning methods.

Luo et al. [23] Random Subset Partial Training

Dataset Whole model First and last [22] Last only Non-private 1% 2% 10% 1% 2% 10% 2 3 6

CIFAR-10 97.82%(0.08%) 95.41%(0.14%) 95.68%(0.12%) 98.34%(0.04%) 97.85%(0.06%) 97.86%(0.09%) 97.93%(0.11%) 97.89%(0.06%) 97.92%(0.08%) 97.91%(0.08%) 97.91%(0.12%) 97.90%(0.10%) 97.85%(0.08%)
EuroSAT 95.75%(0.44%) 93.74%(0.17%) 94.13%(0.15%) 98.69%(0.07%) 95.78%(0.21%) 95.23%(0.75%) 95.87%(0.22%) 95.67%(0.72%) 95.94%(0.26%) 96.15%(0.30%) 95.74%(0. 13%) 95.78%(0.13%) 95.29%(0.56%)

ISIC 2018 72.34%(0.16%) 67.78%(0.27%) 67.76%(0.31%) 90.58%(0.49%) 71.78%(0.58%) 71.79%(0.83%) 72.51%(0.46%) 72.15%(0.41%) 71.73%(0.59%) 72.41%(0.35%) 72.31%(0.57%) 70.82%(0.84%) 71.44%(0.38%)
Caltech 256 30.55%(0.19%) 80.58%(0.14%) 80.74%(0.15%) 95.61%(0.14%) 42.56%(0.25%) 31.05%(0.29%) 30.37%(0.28%) 31.63%(0.23%) 29.56%(0.31%) 29.53%(0.26%) 31.61%(0.36%) 29.46%(0.34%) 30.65%(0.39%)

SUN 397 43.53%(0.24%) 67.78%(0.29%) 67.90%(0.24%) 84.49%(0.34%) 42.93%(0.35%) 43.51%(0.37%) 43.96%(0.32%) 43.42%(0.36%) 44.12%(0.43%) 43.56%(0.37%) 43.47%(0.39%) 42.38%(0.44%) 42.74%(0.31%)
Oxford Pet 34.81%(0.34%) 73.80%(0.21%) 73.92%(0.35%) 92.89%(0.19%) 42.30%(0.39%) 39.62%(0.41%) 36.48%(0.37%) 35.79%(0.34%) 41.26%(0.45%) 38.81%(0.33%) 37.01%(0.27%) 38.76%(0.39%) 34.83%(0.44%)

TABLE 15: Detail of 11 selected papers about their Generalizability and Reliability. Note that effect size is computed using our reproduced
results of the baseline they used in their papers and their proposed methods. We measured the running time using one A100 GPU, running
each method for 3 epochs on CIFAR-10. The average running time per epoch and its standard deviation are reported. For the baseline
of time comparison, DP-SGD from scratch took 90.61 seconds, while SGD from scratch took 10.62 seconds. For fine-tuning, DP-SGD
took 571.16 seconds, compared to 388.76 seconds for SGD.

Paper Method(s) Generalizability Reliability Effect size Time Overhead
Multi-Settings Datasets Multi-ε Open source Param. Search Account Multi-runs Statistically significant Ablation vs SGD vs DP-SGD

Bu et al. [20] Clipping techniques × × × N/A14 × 0.44 1.76 1.20 15

Bu et al. [21] Clipping techniques × × -0.22 2.17 1.48

Klause et al. [14] Model architecture × × × × × N/A 1.12 9.57 1.12

Sander et al. [15] Model architecture × × × 5.28 8.89 1.04

Dormann et al. [16] Hyperparameter tuning × × × 1.91 8.53 1.00 16

De et al. [17] Augmentation multiplicity 12.22 93.90 11.01

Bao et al. [18] Augmentation multiplicity 13.62 99.93 11.71

Tramèr and Boneh [19] Feature selection × × 9.77 1.05 0.12 17

Cattan et al. [22] Fine-tuning technique N/A × × × × N/A × -21.14 0.43 0.29

Luo et al. [23] Fine-tuning technique N/A × × × N/A 0.42 11.84 8.06 18

Tang et al. [24] Fine-tuning technique N/A 46.76 93.16 10.92

TABLE 16: Summary of statistical framework results. We use
CIFAR-10 for all, except for Bu et al. [21] where we used MNIST.
We set run times n = 3. We use Vit-base-patch16-224 for Bu et
al. [21] and Luo et al. [23], WideResNet-16-4 for De et al. [17]
and ScatterNet+CNN for Tramèr and Boneh [19].

Method Paper t p-value Effect size

Clipping technique Bu et al. [21] -0.43 0.71 -0.22
Feature selection Tramèr and Boneh [19] 21.25 0.002 9.77

Augmentation multiplicity De et al. [17] 22.01 0.002 12.22
Fine-tuning technique Luo et al. [23] 0.49 0.67 0.42

a small number of runs. Power analysis on the results
of Table 16 show that for [19], [17] the test has plenty of
power due to the large effect sizes. By contrast, for the other
two methods in the table, the effect size is too small.

We reiterate that the goal of our R+R experiment is not
to assign blame or cast any specific work in a negative light.
Rather we seek to identify what methods and techniques
work best and how to perform the evaluation of DPML to
achieve high degrees of reproducibility (Section 7).

In the rest of this section, we discuss insights from inves-
tigations and highlight promising future research directions.

Model architecture, feature, and hyperparameter selection.
Whenever possible comprehensive searches over model ar-
chitecture [25], [60], features [19], and hyperparame-
ters [17], [15] should be performed as all of these factors
play a pivotal role in DPML performance. Ideally, the pri-
vacy cost of hyperparameter searches should be accounted

14. Because the authors do not report standard deviation, we cannot
determine whether the improvement is larger than the standard deviation.

15. We use the latest version of Opacus so the time comparison may be
different from reported in their paper.

16. We use this method as the DP-SGD baseline as it is well-known.

17. Because feature pre-processing of this method is not counted, the
running time for this method is lower.

18. We implement this technique ourself so it is not be optimized for
minimizing running time.

for, which will likely reduce the obtained performance.
There is promising recent work in this direction such as[61],
[62], [63], but more research is necessary.

Large batch sizes. Larger batch sizes and higher noise
levels provide consistently higher performance according to
numerous studies [16], [17], [15] and our own empirical
findings. However, large batch size brings a problem of high
computational cost for hyperparameter tuning. To address
this, techniques like Sander et al. [15] can be applied.

Clipping strategies. Although there is a plethora of papers
exploring the use of clipping techniques to improve DPML,
we find that such methods provide little improvement. No-
tably, several recent works [64], [65], [66] investigate the
effect of clipping and how it may bias the learning process.

Augmentation multiplicity. The augmentation multiplicity
(self-augmentation) approaches of De et al. [17] and Bao
et al. [18] appear to deliver consistent and significant im-
provements in model performance. However, both De et
al. and Bao et al. only explore a small subset of possible
augmentations, so a promising avenue for future research is
to comprehensively study the potential benefits of various
data augmentation techniques.

Architecture-specific methods. Some methods such as
changing the order of layers [15] seem to provide im-
provements while others such as ScaleNorm [14] did not
in our reproduction. Practitioners should be caution before
adopting methods specifically tailored to an architecture as
improvements may not be consistently obtained.

Fine-tuning methods. Fine-tuning a subset of a model’s
parameters with DP appears to be a viable strategy. How-
ever, no single method except only fine-tuning the last layer
performs best across datasets and architecture in our experi-
ments. Practitioners should attempt only fine-tuning the last
layer and apply whatever method gives the best performance
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TABLE 17: Proposed checklist for DPML.

Checklist item

Generalizability

Evaluation in different settings �

Evaluation with different datasets �

Evaluation with different model architectures �

Evaluation for different privacy requirements �

Evaluation of combination with other techniques �

Reliability

Code open source �

Results of multiple runs are reported �

Improvement is statistically significant �

Accounts for hyperparameter search �

Includes ablation study �

for their particular use cases rather than adopting whole
cloth any of the methods that claim to provide SoTA results.

Pre-training and public data. Fine-tuning a pre-trained
model with DP is a consistent way to achieve performance
closer to the non-private setting than training from scratch.
That said, the more similar the pre-training data and fine-
tuning datasets are, the better the performance. When no
suitable public dataset is available for pre-training, tech-
niques such as Tramèr and Boneh [19] or Tang et al. [24]
provide a viable alternative. However, our results suggest
that using an unrelated public dataset for pre-training pro-
vides comparable results.

6.4. Computational Cost

We evaluate computational cost by measuring the av-
erage GPU time per epoch for different methods over 3
epochs, all run on a single A100 GPU. Our benchmarks
included training WRN-16-4 from scratch and fine-tuning
the ViT model on CIFAR-10 using both SGD and DP-
SGD. Results showed: Training from scratch with DP-SGD
required 90.61 sec/epoch, whereas training with SGD took
only 10.62 sec/epoch. For fine-tuning, DP-SGD took 571.16
sec/epoch, while SGD took 388.76 sec/epoch. We calculate
the time overhead as a ratio of time per epoch to both SGD
and DP-SGD. Results are shown in Table 15.

We observe that more complex training strategies, such
as those proposed by De et al. [17], Bao et al. [18], Luo
et al. [23], and Tang et al. [24], require significantly longer
training times per epoch. On the other hand, techniques like
feature selection [19] or fine-tuning fewer layers [22] can
substantially reduce computational time.

7. Towards Reproducibility & Replicability

We distill our insights from our R+R experiment into
a set of proposed guidelines and a checklist. We hope
researchers who seek to evaluate new methods can follow
these guidelines to maximize the chance of reproducibility.

Criteria. We propose to think of reproducibility and
replicability along two separate axes: generalizability, and
reliability.

• Generalizability assess whether the proposed method’s
benefits are likely to generalize outside of the narrow
experimental setting demonstrated. For example, if a

method was shown to provide improvements in multiple
settings, varied datasets, and multiple privacy regimes, it
is more likely to provide similar improvements in other
contexts than a method only evaluated on a single task,
dataset, and privacy budget.

• Reliability assess the extent to which evaluation method-
ology suggests results reported are reliable, stable, and
likely to reproduce. For instance, results from a single run
are less reliable than those averaged over five indepen-
dent runs. Additionally, reliability involves determining
whether performance improvements are truly due to the
proposed method, especially when combined techniques
or unique settings might skew results. In such cases, the
apparent enhancements in performance may stem from
these ancillary factors rather than from the intrinsic merits
of the proposed method.

The checklist is shown in Table 17.

Selected papers. We grade our 11 selected papers accord-
ing to our checklist. Results are shown in Table 15. We
found that Dormann et al. [16], De et al.[17], Bao et al. [18],
Tramèr and Boneh [19], Luo et al. [23], Sander et al.[15]
and Tang et al. [24] performed well overall according to
our two criteria. This is not the case for Klause et al. [14],
Bu et al. [20], and other works. For example, Klause et
al. [14] lack reliability (no open source and report results
for only one run), Bu et al. [20] lack generalizability (only
pre-trained tasks) and reliability (no ablation experiments),
Bu et al. [21] lacks reliability (report improvement without
statistical difference) while Cattan et al. [22] also lack
reliability (no open source code, report results with one run).

Checklist details. We describe the items of the checklist,
and their rationale, and illustrate their utility through exam-
ples in Appendix D.

8. Conclusion and Future work

We conducted a R+R investigation on 11 recent SoTA
DPML techniques, which revealed significant variations in
their reproducibility. We identified the inherent randomness
of DPML as a challenge and proposed a statistical frame-
work to deal with it. We distilled our insights into a set
of comprehensive guidelines and a checklist to standardize
future DPML research. Our investigation also uncovered
open questions for future research, such as determining the
optimal fine-tuning strategy with DP. The training conver-
gence behavior of different DP methods is another possible
direction for future work, and so is reproducibility of DPML
methods for types of data other than images.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under CNS-205512 and CNS-1933208.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

���

Authorized licensed use limited to: University of Florida. Downloaded on July 21,2025 at 17:59:06 UTC from IEEE Xplore.  Restrictions apply. 



References

[1] S. Kapoor and A. Narayanan, “Leakage and the reproducibility crisis
in machine-learning-based science,” Patterns, vol. 4, no. 9, 2023.

[2] J. Pineau, P. Vincent-Lamarre, K. Sinha, V. Larivière, A. Beygelzimer,
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Appendix

Appendix A.

Additional Background

A.1. Transfer Learning

Transfer learning is the process of adapting learned
knowledge on one task or domain to another task or domain.
We refer the reader to Weiss et al. [67] for a comprehensive
discussion of the topic. For us, it suffices to note that the
typical workflow for transfer learning is to use a model (e.g.,
a neural network) that is pre-trained on some dataset, change
its last few layers (e.g., add some classification layers), and
then run the training process on the new task to fine-tune the
existing pre-trained layers alongside with the new layers.

A.2. Differential Privacy and Variants

Rényi DP (RDP). There are several variants (both gener-
alization and relaxations) of differential privacy [68], [69],
[70] such as approximate DP [10], Rényi DP (RDP) [71].
Among those DP variants, Rényi DP is the most widely
used. It is based on Rényi divergence [72] and is defined as
follows (Mironov [71]).

Definition 2. A randomized algorithm F is said to be (α, ε)-
RDP with order α ≥ 1 and ε ≥ 0 if for any neighboring

datasets D0, D1, it has Divα(F (D0)||F (D1)) ≤ ε where

Divα(F (D0)||F (D1)) :=

1

α− 1
· log E

Y←F (D0)

[

(

Pr(F (D0) = Y )

Pr(F (D1) = Y )

)α−1]

RDP has several properties that make it useful in the
context of machine learning such as its relationship with the
Gaussian mechanism [73], [74] and its composition proper-
ties. We refer the reader to Mironov [71] for comprehensive
coverage. However, an important property we highlight here
is that we can convert an RDP guarantee to a (classical) DP
guarantee.

Lemma 1. If a randomized algorithm F is said to be (α, ε)-
RDP, then it also satisfy (ε + log(1/δ)/(α − 1), δ)-DP for

all δ ∈ (0, 1).

A.3. Learning Algorithms

For completeness, we provide a description of SGD
(Algorithm 1) and DP-SGD (Algorithm 2).

Algorithm 1 SGD

Input: Training dataset D, loss function L(θ). Parameters: learn-
ing rate ηt, mini-batch size L. N = |D| is the number of training
data points.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random mini-batch Lt with probability L/N .
Compute gradient:

gt ← ∇θL(θt, Lt)
Descent step:

θt+1 ← θt − ηtgt

end for
Output: θT

Algorithm 2 DP-SGD (Abadi et al. [13])

Input: Training data x1, ..., xN , loss function L(θ) =
1
N

∑
i
L(θ, xi). Parameters: learning rate ηt, noise scale

σ, mini-batch/lot size L, gradient norm bound C.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Lt with probability L/N
Compute gradient:

For each i ∈ Lt, compute gt(xi)← ∇θL(θt, xi)
Clip gradient:

ḡt(xi)← gt(xi)/max(1, ||gt(xi)||2
C

)
Add noise:

g̃t ←
1
L

∑
i
(ḡt(xi) +N (0, σ2C2I))

Descent step:

θt+1 ← θt − ηtg̃t

end for
Output: θT and and compute the overall privacy cost (ε, δ) using

a privacy accounting method
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Appendix B.

Datasets

CIFAR-10. We use the CIFAR-10 dataset [75], which
contains 60,000 images with 10 classes. We use 50,000 as
the training set and 10,000 as the test set as following most
papers do. Each image in CIFAR-10 has 3 RGB channels
and its size is 32× 32 pixels.

MNIST. It [76] contains 70,000 28× 28 gray scale hand-
written digit images. We use 60,000 for training and 10,000
for testing.

Fashion-MNIST. It [77] contains 70,000 28×28 grayscale
images of clothing. We use 60,000 for training and 10,000
for testing.

EuroSAT. This dataset [78] contains Sentinel-2 satellite
images with 10 classes. It has 27,000 64× 64 labeled color
images. We use 21600 as the training set and 5400 as a test
set.

ISIC 2018. We use task 3 of this 2018 year’s dataset 19

published by the International Skin Imaging Collaboration
(ISIC) for lesion classification challenges. It contains 10,015
images which we use 9,015 images for training and 1,000
for testing.

PathMNIST. This dataset is part of MedMNIST[79]. It
contains 107,180 RGB images with 9 classes. The image
size is 28 × 28. We use 89,996 images as the training set
and 7180 as the test set.

Caltech 256. [80]. The Caltech 256 dataset is frequently
utilized for image classification tasks, consisting of 30,607
RGB images across 257 diverse object categories. In our
experiments, we allocated 80

SUN397. The Scene UNderstanding (SUN) [81], [82]
dataset comprises 108,754 RGB images spanning 397 dis-
tinct classes. For our experimental framework, 80

Oxford Pet. [83] features 37 categories of cats and dogs,
totaling 7,349 images. We used 3,680 images for the training
set and 3,669 for the test set.

Appendix C.

Additional Experiments

C.1. Empirical Privacy Measurements

Since DP is a worst-case notion, different methods
providing the same DP guarantee could provide differ-
ent empirical privacy, as measured by membership infer-
ence attacks [84], [85], [86]. We use the popular Privacy
Meter tool20 to run four different attacks. The attacks
are P-Attack (Population), R-Attack (Reference), S-Attack
(Shadow Models) based on [85], and C-Attack (Carlini et
al. [86]). We report the Area Under the Curve (AUC) as a
measure of the attack success rate.

19. https://challenge.isic-archive.com

20. https://github.com/privacytrustlab/ml privacy meter

TABLE 18: Membership Inference Attacks AUC for different
methods for varying privacy budgets from ε = 0.1 to ε = 8.

ε P-Attack S-Attack R-Attack C-Attack

Basline

0.1 0.50 0.50 0.49 0.50
0.5 0.50 0.50 0.48 0.50
1 0.49 0.50 0.48 0.50
8 0.50 0.50 0.48 0.50

De et al. [17]

0.1 0.50 0.50 0.50 0.50
0.5 0.49 0.49 0.48 0.49
1 0.50 0.50 0.48 0.50
8 0.50 0.50 0.49 0.50

Bao et al. [18]

0.1 0.50 0.50 0.50 0.50
0.5 0.50 0.50 0.49 0.50
1 0.50 0.50 0.48 0.50
8 0.50 0.51 0.49 0.50

We consider three methodologies: a baseline approach
which involves training a WRN-16-4 network with vanilla-
DP-SGD on CIFAR-10 from scratch21, utilizing technique
from De et al. [17], and another leveraging method based
on Bao et al. [18]. The privacy budgets tested range from
ε = 0.1 to ε = 8. Results are shown in Table 18.

Despite the diversity in techniques, all methods maintain
analogous levels of empirical privacy, achieving AUC close
to 50%—comparable to random guessing, even when using
a relatively high privacy budget (i.e., ε = 8).

Empirical privacy and accuracy trade-off. Results
from Tables 8 and 18 suggest that even loose privacy guar-
antees (e.g., ε = 8) may offer meaningful protection. How-
ever, we caution that the attacks we perform are all based
on the black-box setting, and that the conclusions may not
hold with stronger attacks or in the white-box setting. We
refer readers to the (growing) literature on privacy auditing
(e.g.,[87], [88]) for a more nuanced discussion.

Appendix D.

Checklist

In this section, we describe the rationale behind the items
in our proposed checklist alongside examples.

D.1. Generalizability

Evaluation in different settings. If the proposed method
can be used in multiple settings (e.g., train from scratch and
pre-trained), it should be evaluated in different settings.

• Rationale: A method could provide a substantial im-
provement in one setting but no improvement in another
setting.

• Examples: De et al. [17] advocate for self-augmentations,
showcasing notable performance in both from-scratch
training and fine-tuning, a finding corroborated by our
reproduction experiments.

Evaluation with different datasets. Methods should be
evaluated with multiple different domain datasets to uncover
whether improvements persists.

21. Membership inference attacks require held-out data points from the
training set, thus we limit the training dataset to 30,000 samples.
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• Rationale: Some methods may only provide improve-
ments for some datasets because different datasets in-
volve tasks of varying difficulty. For example, a method
may work only on specific datasets, or datasets with
few classes or few input features. Moreover, when con-
sidering pre-trained models, a method may appear to
work particularly well because the pre-trained model was
trained on data similar to the target dataset.

• Examples: Some papers only report results for few
datasets like CIFAR-10 and CIFAR-100. When applying
their methods to datasets from a different domain such
as EuroSAT, we did not observe their claimed improve-
ments.

Evaluation with different architectures. Methods should be
evaluated with different model architectures, if applicable.

• Rationale: Some methods may only provide improve-
ments with specific model architectures because of the
nature of the method or task. Moreover, performance on
a task can greatly differ from one architecture to another.
For example, a method may perform well using a model
architecture with relatively few parameters because that
architecture may be well-suited for the considered tasks.
For different tasks, however, the method may falter if
such tasks require models with much larger parameter
counts.

• Examples: Some papers only evaluate their methods on
a particular model such as WRN-28-10 model. When
applying their method to VIT model, we are not able to
reproduce their claimed performance.

Evaluation for different privacy requirements. Methods
should be evaluated in different privacy regimes, that is with
different range of values for ε (and δ if applicable). The
privacy parameters range considered should be appropriate
for the given setting. For example, pre-trained models fine-
tuned with large datasets may tolerate much lower ε values
than models trained from scratch on small datasets.

• Rationale: Improvements provided from a method may
not be uniform across all privacy regimes. Typically the
less stringent the privacy requirement the less improve-
ment there is, in part because DPML performance is
closer to the non-private setting than for more stringent
requirements.

• Examples: Tramèr and Boneh [19] present their method’s
results for low privacy budgets, specifically values
smaller than 3. In our reproduction of their experiments
with a larger privacy budget, such as 8, we observed that
the performance of their proposed method plateaued as
the privacy budget increased.

Evaluation of combination with other techniques. Authors
should evaluate or discuss whether their proposed methods
can be combined with other methods.

• Rationale: Some combinations of seemingly orthogonal
methods actually decrease performance.

• Examples: Combining the methods of De et al. [17]
with Sander et al. [15] yields improved performance.

However, merging Klause et al. [14] with Sander et al.
[15] leads to a decrease in performance.

D.2. Reliability

Code open sourcing Authors should open-source their code
to facilitate reproducibility.

• Rationale: Differences in the implementation of the same
technique or the use of different codebases can yield
significant differences. Open-sourcing code is a straight-
forward way to mitigate such concerns.

Results of multiple runs are reported. Our experiments
on the randomness of DPML show that the variability of
DPML is significant (Section 4.4). Reporting the result of
multiple runs is a way to mitigate this problem.

• Rationale: Providing both an aggregate measure and a
measure of variability across runs (e.g., mean and std)
facilitates scientifically valid comparisons. The number
of runs performed should be appropriate for the setting
and privacy budget.

• Examples: Some papers do not present results from mul-
tiple runs, making it challenging to discern if the perfor-
mance improvement is due to their proposed method or
due to randomness.

Improvement is statistically significant The proposed tech-
niques should show statistically significant improvement
beyond baselines using our proposed framework.

• Rationale: If the performance of two methods being
compared falls without statistically significant then we
cannot conclusively determine which method (if any) is
superior.

• Examples: The performance boost from some papers is
not statistically significant.

Account for hyperparameter search. The cost and benefit
of hyperparameter search need to be taken into account.

• Rationale: To avoid unfair comparisons any hyperpa-
rameter search must be accounted for. Ideally, separate
validation and test sets should be used and the privacy
cost of the search should be reported.

• Examples: None of our selected papers pay the privacy
budget to hyperparameter search. However, we also find
that only De et al.[17] and Tang et al. [24] have validation
set for hyperparameter tuning.

Evaluation includes ablation experiments. Authors should
ensure that improvements observed can be attributed to the
proposed methods, e.g., through the use of an ablation study
or experimental methodology to exclude other factors.

• Rationale: Some papers combine multiple methods with-
out independent evaluation, or otherwise evaluate their
approach in a way that measured improvements cannot
be conclusively tied back to the proposed technique.

• Examples: Some papers do not provide a comprehensive
ablation study. For example, when using a more complex
pre-trained model than prior work to achieve new SoTA
results, observed improvements could be due to a pre-
trained model, the proposed method, or both.
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