ON EXTREMIZING SEQUENCES FOR ADJOINT FOURIER
RESTRICTION TO THE SPHERE

TARYN C FLOCK AND BETSY STOVALL

ABSTRACT. In this article, we develop a linear profile decomposition for the
LP — L7 adjoint Fourier restriction operator associated to the sphere, valid
for exponent pairs p < ¢ for which this operator is bounded. Such theorems
are new when p # 2. We apply these methods to prove new results regarding
the existence of extremizers and the behavior of extremizing sequences for

the spherical extension operator. Namely, assuming boundedness, extremizers

exist if ¢ > max{p, %p’ }orifg= %p’ and the operator norm exceeds a

certain constant times the operator norm of the parabolic extension operator.

1. INTRODUCTION AND STATEMENT OF RESULTS

We consider the Fourier restriction and extension operators associated to the
unit sphere S? C R4, which are given by

Rg(w) := /Rd+1 e~ g(x)dr, w e S, Ef(z) = /Sd e f(w) do(w),

for g in the Schwartz class, S(R4*1), and f € C°°(S?). Here o denotes d-dimensional
Hausdorff measure on S¢. Despite decades of study, the precise conditions on expo-
nents p and ¢ for which (say) £ extends as a bounded linear operator from LP(S)
to LI(R'*4) are not fully resolved for any d > 2. (For an introductory discussion
of these operators and their history, one may see, e.g., [15].)

We do not seek to directly address such questions. Rather, we ask, under the as-
sumption of LP — L? boundedness of £, what is the behavior of bounded sequences
{fn} whose extensions {£ f,,} do not converge to zero in norm. This will lead us to
develop a qualitative description of such sequences called a profile decomposition.
A particular scenario of interest is when the sequence {f,} is both LP-normalized
(||fn||LP(Sd;d0—) = 1) and extremizing (||gfn||Lq(R1+d) — ||5HLP(Sd;dg)*>Lq(]Rl+d)), in
which case our profile decompositions provide quite a bit of information (at least
when ¢ > p).

In order to state our results, we will need some notation and terminology. Noting
that R and & are dual to one another, we denote their (common) operator norm
by

Spq 1= sup € (|Laga+r) = sup IRl ' (s:d0)
‘ f”Lp(gd;da)zl QHLq’(]RdJrl):l
where the suprema are taken over (e.g.) smooth, compactly supported functions.
These operator norms are conjectured to be finite whenever ¢ > d%fp’ and ¢ >
2(d+1)

==7— both hold, and these conditions are known to be necessary.
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We are interested in the questions of whether there exist nonzero functions for
which equality holds in the restriction/extension inequalities

IRl Lo (s4:d0) < Spsallgllar sy, NEfILawarry < SpmgllfllLrsaiae), (1.1)
in cases where the operator norms are finite, and whether LP-normalized extremiz-
ing sequences are convergent in some sense. We are further interested in connections

between these operators and the restriction/extension operators associated to the
paraboloid, P := {(3[¢[,€) : £ € R%}:

Reg(€)i= [ e P gy dn, €€ RY  af(a) = [ S HTOf(
Rd+1 Rd
whose common operator norms we denote by

Pysq = sup [€pf | Lara+1) = sup HRPQHLP'(]Rd)' (1.2)
‘fHLp(Rd):l ‘9‘ rd (]Rd+1):1

More generally, we extend the profile decomposition methods of Fanelli—Visciglia—
Vega [16] for the case p =2, ¢ > d+2 / and Frank-Lieb—Sabin in [21] for the case
p=2qg= d+2p’ to the region p < qg< < ‘”2 p', p # 1. (A more complete history is
given in the next section.)

Before stating our results, we set some basic terminology. Fix a pair of expo-
nents (p,q). A sequence (f,) in LP(S?) is LP normalized if ||f,|l, = 1 for all n
and is extremizing if lim, o0 ||€ fullg/|I frllp = Sp—q- (We note that normalized
extremizing sequences exist for every exponent pair (p,q); whether they converge
and what are their properties are more subtle questions.)

Many of our results are partly conditional on progress toward the (adjoint) re-
striction conjecture for the sphere. We adopt the following convention, which will
make for cleaner statements later on: We say that the extension conjecture holds at
(p,q) € [1,00)%if Sp_yq < 00, if ¢ < 2(d;1) or if ¢ < “2p’. (Of course, in the latter
two cases, the extension operator is known to be unbounded.) In the non-vacuous
range, the conjecture has been verified for all (p,q) when d = 1 [17, 41], and, in

higher dimensions, has been verified on a neighborhood of the region ¢ > 221:'13),
q > d”p’ (see |1, 22| 23] [24] 136} [37] 140] for more precision regarding the current

status)
Our results are cleanest off of the parabolic scaling line, wherein Hélder’s in-
equality rules out the possibility that extremizing sequences might concentrate.

Theorem 1.1. Assume that ¢ > max{p, %%Qp'} and that the extension conjecture
holds on a neighborhood of (p,q). Then every LP-normalized extremizing sequence
for the inequality ||E fllq < Sp—qllfllp is precompact in LP after the application of
an appropriate sequence of spacetime modulations. In particular, extremizers exist
for this inequality.

In the case p = 2, this result is due to Fanelli-Visciglia—Vega [16]. The hypothesis
q > p is likely an artifact of our proof, which uses a convexity argument. Indeed,
in certain special cases, such as when p = co and ¢ is an even integer, one can use
other means to prove the existence of extremizers [§].

For inequalities with (p~!,¢~!) on the parabolic scaling line {g = d+2p} we
cannot (yet) rule out the possibility of concentration.

2(d+1) d+2, 7

Theorem 1.2. Let 1 <p < and q = “5=p’, and assume that the extension
conjecture for the sphere holds on a neighborhood of (p,q). Let (f,) be an LP(S?)
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normalized extremizing sequence of (1.1)). After passing to a subsequence, either:
(i) There exists a sequence {x,} C R such that e*»* f, (w) converges in LP(S?)
to an extremizer f of (L.1),

or

(ii) There exist sequences {x,} C R'T4 orthogonal transformations {R,} C O(d),
positive numbers Ay, N\, 0, and functions = € LP(RY) such that

lim ||€m"wf (Rn d/pz(?i ff X{:I:w1>%}HZD =0. (1.3)

n— oo

Two remarks are in order. First, this result is known in the case p = 2, [21].
(We note that Theorem below is a more precise generalization of the results of
[21].) Second, when p = 1, existence of extremizers and noncompactness modulo
symmetries of normalized extremizing sequences (or even, sequences of normal-
ized extremizers) are both elementary to prove, as any nonnegative L! function is
extremal.

We say that (along a subsequence) (f,,) converges modulo the modulation sym-
metry in Conclusion (i) and that (f,,) concentrates antipodally and converges mod-
ulo translations, dilations (a nonsymmetry), and rotations in Conclusion (ii).

We can improve upon Theorem by estimating the operator norm in the case
of concentration, generalizing the main results of [21] and [14] (therein carried out
in the p = 2 case). This will require some further notation.

For 1 <p < q=22p we define

11+ te™]| La((0,2r),a0/2m)

Qp_sq = tren[aa’)i] (1 tr)i/p . (1.4)

The parameter ¢ will arise as the ratio between the norms of the extensions of two
antipodally concentrating profiles. Considering such pairs will lead us to a lower
bound for Sp_,,4.

Proposition 1.3. Let 1 <p < (dH) and set q := d+2p' Then
Sp—q = psqPpsq- (1.5)

The quantity

Q=

g+l
Bp—n] =27 7 (\/I;(F(Qq ) )> 5 ri= max{p, 2}3

seems somewhat easier to understand than «,_,4, and we note the following rela-
tionship between the two.

Proposition 1.4. Forp > 2, a,q = Bpq; while for p < 2, apyq < Bpq-

The transition at p = 2 in Proposition is connected with a bifurcation of our
results along the parabolic scaling line into the cases l <p<2and2<p< (dﬂ)
We begin with the latter case, in which our results are stronger.

Theorem 1.5. Let 2 <p < @ and q = d§2p and assume that the extension
conjecture for the sphere holds on a neighborhood of (p,q). If Sp—q > Bp—qPp—q,
then extremizers exist for the extension operator in and all normalized ex-
tremizing sequences possess subsequences that converge in LP, after modulation.
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Otherwise, Sp—q = Bp—qPp—q, and concentrating, extremizing sequences (f,) ex-
ist; after passing to a subsequence and normalizing, they must obey (1.3)), for some
¢F extremal for Ep : LP(RY) — LI(RIY) and obeying

¢ (1, 2")] = €™ (—a1,27)].

When p < 2 the gap between a,_,, and 5,4, seen in Proposition leaves
some room for improvement in the following theorem, as discussed at the end of
Section |8 (We note that in subsequent work, [5], a different approach was taken for
restriction to odd monomial curves, leading to a partial analogue of Theorem
that holds in the full range of admissible p.)

Theorem 1.6. Let 1 <p <2 and g = d%;gp’, and assume that the extension con-
jecture for the sphere holds on a neighborhood of (p,q). If Sp—q > Bp—sqPp—q then
extremizers exist for the extension operator in and all normalized extremizing
sequences possess subsequences that converge in LP, modulo spatial translations of
the extension. If Sp_q = ap—qPp—q, ¢* is extremal for , and

E¢T (w1, 2")] = t|EP™ (—a1, 1), z e R4,

where t is an argument of the mazimum on the right hand side of (L.4), then any
sequence (fr) obeying (1.3)) is extremizing.

Inequality is known to hold with strict inequality for the case p = 2 in
dimensions d = 1,2, and is conjectured to be a strict inequality for p = 2 in all
dimensions (see [18], [19], [21], and [25]). Since both sides of are continuous
in p along the line ¢ = d%fp’ (for the operator norms, this follows from complex
interpolation), the inequality continues to be strict in a small neighborhood of
p = 2, allowing a modest extension of the range of p for which extremizers were
previously known to exist for the LP(S?) — L7 P’ (R+¢) extension problem.

Corollary 1.7. In dimensions d = 1,2, for |p—2| sufficiently small and g = d%;?p’,

extremizers exist for the extension operator in (1.1), and extremizing sequences are
precompact modulo symmetries.

If true, the conjecture that the extremizers of the Stein-Tomas inequality for the
paraboloid are Gaussians in all dimensions would imply that Corollary [L.7]holds in
all dimensions [21].

The question of what are these extremizers is, of course, extremely interesting,
but it is beyond the scope of this article. In [13], Christ-Quilodrédn proved that
Gaussian functions are not extremal for (unless, possibly, p = 2), by proving
that Gaussians do not satisfy the corresponding Euler-Lagrange equation unless
p = 2. In the case of the sphere, however, symmetry makes it elementary to verify
that constants do satisfy the analogous Euler-Lagrange equations for all (p, q), as
was noted in [13], but this is insufficient to verify that constants are extremizers.

When p = 2, Theorems and Proposition and Corollary are due
to Frank-Lieb—Sabin, [21].

As can be seen from the comparison with prior results, the main advantage of
our approach is that it allows us to consider restriction inequalities with p # 2, for
which the loss of the Hilbert space structure and Plancherel substantially reduces
our available tools [32]. We achieve our results by adapting the approach laid out
in [35)], wherein it was proved that all valid, nonendpoint parabolic extension esti-
mates possess extremizers and have precompact (modulo symmetries) extremizing
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sequences. The major difference between the spherical case and the parabolic one is
the defect in compactness due to the lack of a scaling symmetry. In particular, from
the perspective of a concentrating sequence, the sphere begins to resemble a rotated
paraboloid. In this spirit, we treat scaling as an almost-symmetry, analogously with
prior works such as [211, [26]. Relative to [26], the existence of distinct points on the
sphere with parallel normal vectors presents an additional complication, which we
address by adapting the approach of [21].

Q=

—_
=

1
2

FIGURE 1. The extension operator is conjectured to be bounded
in the green quadrilateral. We consider the subset of the darker
green triangle on which the adjoint restriction conjecture holds,
including the parabolic scaling line on the right, but excluding the
diagonal p = ¢ on the left. We have indicated the p = 2 case,
which featured prominently in prior work, with a dotted line.

Outline of paper. In the next section, we will give an in-depth overview of some
of the recent history of related questions, placing our work in context. Our strongest
result, from which the others all follow, is an LP-profile decomposition for bounded
sequences on the sphere with nonnegligible extensions. This result is somewhat
complex, and will occupy three theorems in Section The first of these three
results gives a frequency decomposition. Roughly, if {f,} is bounded in LP(S%)
and {€f,} does not tend to zero, then (along a subsequence) each f,, decomposes
as a finite sum of pieces with good frequency localization properties, plus a small
error; this result is proved in Section [4) with bilinear restriction as a primary tool.
Though the summands arising in the first decomposition are bounded by sequences
that are (after a rotation) either precompact in LP(S?) or correspond to sequences
precompact in LP(R?) (after scaling), they are not themselves precompact, as their
extensions may not be well-localized in space. The second profile decomposition
establishes good spatial localization for those sequences that are (nearly) pointwise
bounded (i.e., non-concentrating), and is proved in Section The third and fi-
nal profile decomposition establishes good spatial localization (after rescaling) for
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concentrating sequences, and is proved in Section [6] In Section [7] we prove Theo-
rem that extremizers exist for exponent pairs p < ¢ lying off of the parabolic
scaling line ¢ = ‘%Qp’ . Sectionprovides an analysis of the behavior of antipodally
concentrating profiles, which is then applied in Section [9] to deduce properties of

concentrating extremizing sequences (supposing that they exist).

Notation. We will use throughout the standard notation A < B to mean A < CB
for C' an admissible constant that will be allowed to change from line to line. Ad-
missible constants may depend on the dimension d, the exponents p, ¢, and (in cases
where our results are conditional) on bounds for the spherical restriction/extension
operators for exponents in a small neighborhood of p, q. Occasionally we will dec-
orate the ‘<’ symbol with subscripts to indicate additional dependencies.

Though we will use Lebesgue norms on three different spaces (the sphere, R4+,
and R9); when the meaning is clear and space is limited, we will abbreviate these
norms by using only the exponent as a subscript.

Acknowledgements. The authors are grateful to Arthur DressenWall for sharing
some of his findings regarding the quantity a,_,4. The second author was supported
in part by NSF DMS-1653264 and DMS-2246906, and the Wisconsin Alumni Re-
search Foundation while working on this project.

2. PRIOR RESULTS

An excellent survey on sharp Fourier restriction results is given in [20]. As this
is an active area, we highlight a few more recent results as well as the prior results
most relevant to our analysis. For the sake of completeness, we will also state and
prove an elementary result that we have not been able to find written elsewhere.

Existence results for extremizers of LP-L? inequalities for the sphere have largel
involved one or both of the hypotheses that p = 2 or ¢ is an even integer. These
cases are special because of the Hilbert space structure available in p = 2, on
the one hand, and an explicit formula for the L?* norm of spherical extensions as
the L? norm of a k-fold convolution, on the other. In addition to the previously
discussed results of [21] when p = 2 and ¢ = “2p/, existence of extremizers has
been established in the cases that p=2,¢=4,d=2 [14]; p=2, ¢ > d%‘lzp’, d>1
[16); p=2,¢g=6,d=1B3;p>2,q=4,d€ {2,3,4,56}; p>4,¢q=4,d>T;
p>4q,q=2k q>6,d>1 (the last three results are all in [§]). We note that
the p > ¢ condition in [8] includes p = oo and is precisely the reverse of our ¢ > p
condition.

In some of these cases extremizers are known to be modulations of constants.
Namely, when p = 2, ¢ = 4, and d = 2, this result is due to [19]; for p > 2, ¢ = 4,
and d € {2,3,4,5,6}, p>4,g=4,andd >7,p>q,q= 2k, ¢ >6,and d > 1,
[8]; and for p = 2, ¢ = 2k, when d € {2,3,4,5,6} [31]. Stability of these results is
investigated in [9] where they show that in d € {2,3,4,5,6}, for p = 2, when L*(R%)
is replaced by a weighted L* with a radial weight which is a small perturbation of
the unweighted case, the only extremizers are constants.

Our results build on the profile decomposition approach of [16] (and, implicitly,
[21]), extending these methods to address the absence of Hilbert space structure

LA partial exception is [10] in which p = 2 and L7(R%+1) is replaced by the mixed norm space
LgadLgng (R4+1), and the analysis is based upon a careful study of Bessel functions.
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when p # 2. The methods for this adaptation originate in the study of sharp re-
striction for non-compact manifolds, specifically [35], which proves that all valid,
nonendpoint parabolic extension estimates possess extremizers and have precom-
pact (modulo symmetries) extremizing sequences. The ideas are further developed
in [], [38], and [39] which consider the precompactness of extremizing sequences
for adjoint Fourier restriction to other non-compact manifolds. Recently, L? based
concentration compactness methods have also been used to investigate convergence
of extremizing sequences on the hyperbola in [11] and [12].

Finally, for completeness, we prove an elementary result, which is surely known
to experts, but which we haven’t found in the literature.

Proposition 2.1. For all 1 < p < oo, nonzero modulated constants, eiTow )\ gre
mazimizers of the LP — L extension inequality. When p > 1, such functions
are the unique maximizers. When 1 < p < oo, after possible modulation and
multiplication by unimodular constants, every normalized extremizing sequence in
L? converges in LP to the constant function A, := U(Sd)fi.

Proof. Sufficiency follows from Hélder’s inequality,

1
€ fl oo ra+1y < N fllLisey < o(SHDP N fllLe(sas (2.1)
and for all p, equality holds for the modulated constants. For necessity of the
constants, we observe that for all p the first inequality in is equality if and
only if e??e**0¢ f is nonnegative for some @, , while for p > 1, the second inequality
is equality if and only if | f| is constant.

Finally, let 1 < p < oo and let {f,} be a normalized extremizing sequence in
LP(S?). By modulating and multiplying the f,, by unimodular constants, we may
assume that Ef,(0) = ||€fnllLega+1y for all n. It suffices to prove that every
subsequence of {f,} has a further subsequence convergent to A,. Therefore, since
{fn} was arbitrary, it suffices, by Banach—Alaoglu, to prove that f,, — A, in LP(S%),
under the additional hypothesis that f, converges weakly to some f € LP(S%).

By construction and our above computation of the operator norm,

EF(0) = m & f(0) = lim [[€ fu| Lo a1y = €]l Lo (54) > Low (Rat1) = 0 (ST 7.

Since [|f||rsey < 1, while [|Ef| poe(ga+1y > [|E]|Lrre~, the uniqueness portion
of the proposition (already proved) implies that f = A,. Since f, — A, and
[ fullLrsay = 1 = || Apll£o(se), Theorem 2.11 of [29] implies that f, — A, in LP(S%).

(I

Thus our setting introduces some key differences relative to what has come be-
fore. Namely, as opposed to the vast majority of published results, we impose very
few conditions on (p, ¢), requiring only that ¢ > p, S,—,, < 00, and that the exten-
sion conjecture is valid on a neighborhood of (p,q). Further, due to compactness
of the sphere, we are able to consider an even wider range of exponent pairs than
[35] (which was limited to the scaling line). Additionally, as already observed in
[21], the sphere lacks some simplifications available for other surfaces (e.g. the pa-
raboloid or hyperboloid), since it lacks a scaling symmetry and possesses antipodal
points; consideration of these features without the condition p = 2 presents some
new complications. Finally, our results go further than those of [4] 35 [38] 9] by
establishing a full profile decomposition for bounded LP sequences, rather than ex-
clusively focusing on the extremal case. In particular, one may apply the profile
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decomposition to (e.g.) a norm-one sequence of functions whose extensions attain
at least half the operator norm to deduce that, after passing to a subsequence, the
terms can be decomposed into a structured part, composed of a few precompact
(modulo symmetries), asymptotically orthogonal pieces responsible for most of the
extension, and a random part, whose extension is small.

3. A WEAK LP PROFILE DECOMPOSITION

In this section, we will introduce our main tool, a weak LP profile decomposi-
tion. A profile decomposition associated to an operator T': X — Y is a means of
decomposing bounded sequences in X as the sum of a structured part, which has
good compactness properties modulo symmetries, and a “random” part, which is
small after an application of T. The method was introduced by Lions [30] and has
found extensive application in PDE. For Fourier extension operators, the L?-based
theory of profile decompositions is comparatively well-developed, both because of
the role that L2-based inequalities play in the study of dispersive equations and
also because more tools, namely, Plancherel and the Hilbert space structure, are
available. In particular, all of the essential ingredients for the L? profile decompo-
sition are given in [21], though the full profile decomposition was never explicitly
stated in that article.

In [35], a profile decomposition of extremizing, frequency localized LP sequences
was used to prove that the extension operator associated to the paraboloid possesses
extremizers. Here, we give a more quantitative result, providing a decomposition of
more general sequences. Our profile decomposition is weak in the sense that it gives
poor control over the remainder terms, which, despite having small extension, may
blow up in LP. This blowup of the L? norm results from our use of weak limits, and
does not affect the L? theory because of elementary Hilbert space manipulations.
(When we are not in a Hilbert space, subtracting a weak limit from a sequence
does not necessarily decrease the limit of the norms [32].) An alternative, stronger
profile decomposition for LP sequences and operators satisfying certain conditions
is developed in [34]; it is based on A-limits, rather than weak limits. A significant
advantage of using A-limits, rather than weak limits, is that the remainder terms
in the A profile decomposition are bounded in LP, in addition to having small
extensions. A disadvantage is that A-limits do not seem to yield sufficiently sharp
inequalities to control the number of profiles of an extremizing sequence and thereby
prove the existence of extremizers. (IL.e., we will rely on inequalities involving the
relation ‘<, rather than ‘<.’)

Our results include the possible case of concentration at antipodal points. For
this reason, it is convenient to use the real projective space RP? = S¢/{w ~ —w},
whose elements we denote by [w] := {w, —w}, w € S*. We observe that

dist([w], [w']) = min{|w — '], |w + &'|}.

To produce statements that are somewhat easier to parse, we have broken our
profile decomposition into three parts. We begin with a decomposition of the
frequency space S?, distinguishing between the critical and subcritical regime.

Theorem 3.1 (Frequency decomposition). Let 1 < p < g = d—fp’, and assume

that the restriction conjecture for € holds on a neighborhood of (p,q). Let {f,} be a
bounded sequence in LP(S?). After passing to a subsequence, there exist {)\%}j,neN -

(0,1], {[w]}jmen € RPY, and a sequence of decompositions f, = ijl Fi+ R/,
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J € N, such that:
(i) For each j, either N, — 0 or M, =1.
(it) For j # j', either | log M| 5 00 or N o= )\7 , and, in the latter case, if X, — 0,
then (M)t dist([wi], [w ]) —> 0.
7 ,
(2“2 For each n,J € N, ||fn||Lp(§d = Zj:l HFrJLHZE,p(Sd) + HRiHip(gdy
7 ;
(i) For all J €N, limy oo 1€ fallg — S0, I1EFS 2 — IERL 2 = 0,
(v) The remainders have small extension: lim ;o limsup,, , o [|ER;] || paga+1)y =0

(vi) The Fi are adapted to antipodal caps of radius N, with centers on [wi] in the
sense that

lim limsup sup [|EF]XE|pema+) =0, where
M—0o pnosoo ECELM

EM = {|F]] > M(M,) P} U {dist(w, [w}]) > M}
We observe that without (vi), the result follows trivially by taking F} = f,,.
In the subcritical regime g > d+2p the frequency “decompomtlon is much

simpler (and an elementary consequence of Holder’s inequality, as we will see).
Proposition 3.2. Let ¢ > max{d%;zp’, %}, and assume that the restriction
conjecture for € holds on a neighborhood of (p,q). Let {f.} be a bounded sequence
in LP(SY). Then if EM := {|f,| > M}, then

lim sup sup |[|€fuxellpewerr) = 0.
M—oco p ECEM

Our next two results provide a spatial decomposition of functions obeying the
frequency localization property described in part (vi) of Theorem (and the
conclusion of Proposition 3.2)), in the cases of nonconcentration and antipodal con-
centration, respectively. In both, we will use the notation

p = max{p,p'}.

Theorem 3.3 (Scale 1 spatial decomposition). Let 1 < p < ¢ < oo with ¢ >

d“ P and q > 2(d3'1), and assume that the restriction conjecture for € holds on

a nezghborhood of (p,q). Let {f,} be a bounded sequence in LP(S?) satisfying the
condition

Jim 1171118;1)1[) 1€ fX (i fu1> 2y | Laratry = 0.
After passing to a subsequence, there exist {x]};nen C R obeying
lim_|a7, — 2| = oo, forj # j', (3.1)
n— oo

and weak limits, ¢’ = wk-lim e’”i“’fm such that for J € N,

Z ||¢ HLp sd) p < hminf”fn”LP(Sd)a

lim sup | Z emZLw(ZSJHLP(Sd Z H(ZSJHLP(Sd )7
=1
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. J - . .
and the remainders v} := f, — Zj:1 e'n @I satisfy

hm ||€fn||Lq Rd+1) Z Hg¢j”%q(Rd+1) - ngr{H%q(Rdﬂ) =0, JEN, (3.3)
j=1
lim limsup [|E7;) || po(ra+1y = 0. (3.4)
J—=0 pnooo

In what follows, we write w = (wy,w’).

2(d+1)

Theorem 3.4 (Large scale spatial decomposition). Let 1 < p < and q =
d+2,v

=p'. Assume that the restriction conjecture for £ holds on a nezghborhood of
(p,q). Let {f,} C LP(S?) be a bounded sequence and let A, 0. Assume that

lim limsup sup. ||(c:anE||Lq(]Rd+1) = 0, where

={lfnl > M( n) VP U {dist(w, [er]) > MAL}
After passing to a subsequence, there exist {x{l}j’neN C R with
Lim (A2](@), = 23] + Aal(ad, — @}, )']) = oo, forj # 7',
and weak limits ¢»* € LP(R?), @ = 4+, —, given by
o E = whklim AYPe i (EVI-AEP A0 £ (4 /TN € 2 Mé)X(jel<1aztys (3:6)
such that the following conclusions hold. Setting

) = A PO N0 Xy =2 T (BT
+

and

-3,
then,
Q lim, o || g2, — Z:I: An? ei’xlgp(ﬁj’i(?)\%ml, )\n$/)||Lq(Rd+1) =0.
p/P11/P -
(%) [Zi(Z I i||Lp(1Rd)) |7 < liminf || fol o (sa),
izt w ] /4 1/~/
(iii) limsup,, o | Y27_; €03 || posey < [Yu (X, ||¢]i||Lp gey) 1T TEN,
. . J .
@Z lim,, 0 ”‘-cf‘an%q(RdJrl) - Zj:l ||5g%||Lq(Rd+1) ||57"i||Lq(Rd+1) =0,J€N
(v) lim j_ o0 limsup,, _, o ||57‘;{||Lq(Rd+1) =0.
4. PROOF OF THE FREQUENCY DECOMPOSITION

In this section, we will prove Theorem and Proposition which decompose
the functions from bounded sequences into pieces with good frequency localization.

We begin with the essentially elementary proof of Proposition in which (p, q)
lies off of the parabolic scaling line.

Proof of Proposition[3.2. By assumption, £ extends as a bounded operator from
L"(S%) to L¥(R4*1) for (r,s) in a neighborhood of (p,q). In particular, & maps
L"(S%) into LY(R*1!) for some r < p. For f € LP(S%), M > 0, and E C EM =
{If| > M} which is a measurable set,

1€ Xl La@ary S I xElLr (1) < M™ 1)Hf||Lp(Sd)
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Hence for a bounded sequence {f,}, the stated conclusion holds. O

The frequency localization is more involved for exponents on the scaling line.
The heart of the argument is the bilinear extension theorem of Tao [36] and the
bilinear-to-linear argument of Tao—Vargas—Vega [37], with inspiration from [3} 6] [7].

Lemma 4.1 ([36]). Let 1 < p < @ and ¢ = *2p'. and assume that the
spherical extension conjecture holds on a neighborhood of (p,q). Then there exists
s < p such that for all (3,q) in a neighborhood of (s,q), all0 <r < 1, and f € L?,
we have the bilinear inequality

1
S

lExnES g S Nfxellpeenllfxr e, (@41)

whenever 7,7 are defined by
7= {v e s dist([v],|w]) < r}, = {v e St dist([v], [W']) < 7},

for some w,w’ € ST with dist([w], [w']) ~ r. The implicit constant is independent of
f7 7—7 7—,7 r.

We give the details of the deduction from the remarks in Section 9 of [36].

Proof. Since exponents ¢ lying sufficiently close to ¢ have similar properties (namely,
finiteness of Sp_,5 when p = (dz—fQ)’), it suffices prove that such an estimate holds
at (s,q), for s lying in some open subinterval of (1, p).

After a rotation, we may assume that w = e;. We decompose 7 = 79 U (—79),
7' = 76U (=7), where diam(ry) ~ diam(7)) < r ~ dist(70,75). Using the triangle
inequality and taking conjugates, it suffices to bound

HE(fXTQ) g(fXT('})”L%(R(H—l)'

By assumption, for ¢ sufficiently near ¢ and p := (dd—f;)’ , we have the linear
estimate S;_,5 < co. Hence by Cauchy—Schwarz, for any fi, fa:

IEfE Ll g < NEAllLallEf2llze < Spogllfill el f2ll ogsa)- (4.2)
Further Tao’s bilinear estimate [36] gives that for any ¢ > (dj ) and any pair of
test functions f;, fo supported on spherical caps whose width and separation are
comparable to some sufficiently small dimensional constant,

||gflgf2 ||L%(Rd+1) < C”fl ||L2(Sd) ||f2||L2(Sd)' (43)

Hence by interpolating (4.3 for some (d+3) <t < 2(d+2) with (4.2]), we see that
4.1) holds in the case r ~ 1. Inequahty in the case r < 1 follows by parabolic
rescaling; we omit the details. O

For technical reasons, we will use a slightly non-typical definition of caps. By a
(square) cap in S%, we mean the intersection of S? with with two axis-parallel cubes
having diameter at most i, with centers given by two antipodal points contained in
S¢. By the sidelength of a cap, we mean the sidelength of the corresponding cube.
For each j € {1,2...,d} and each k € N satisfying k > C for some sufficiently large
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C, we fix a non-overlapping covering D;? of the nonequatorial region W, := {w €
S jwj| > ﬁ} by caps of sidelength 27%. We denote various unions of the D;? by

d d
=Jn;, oy=UD, D:=JD

J=1 k>C j=1
We say that two caps 7,7’ € D;-“ are related, 7 ~ 7/, if 27FtC < dist(r,7’) <
27k+2C¢ Tt is well-known (see [37, [3]) that when C is sufficiently large, all of
the possible sumsets 7 4+ 7/ for related 7,7 € D, k > C are contained in finitely
overlapping parallelepipeds. (These parallelepipeds have much smaller volume than
the cubes whose intersection with S¢ equals 7,7".) We use f, to denote the product
f c X1

Lemma 4.2. Let g > 2(d+1) and p = (dq—fz)’, and assume that the spherical exten-

sion congecture holds on a neighborhood of (p,q). There exists s < p such that for
sufficiently small 0 < v < 1,

-4 v —2t(1—v)(L-1)
1€ S (sup [7177 [1€ £ loc) O G 1,

T€D

1
21~ ”)) 2 (4.4)

Here t := min{Z, (1)'}.

Proof. By Lemma there exists s < p such that for sufficiently small 0 < v < 1
and g := (1 — v)g, holds with exponent g on the left side and exponent s on
the right.

By the triangle inequality, there exists j such that ||Ef|lq < |E(fxw,)llq, and
after a rotation, we may assume that j = 1. Employing a Whitney decomposition
of Wi x Wi\ {(w,w) : w € S}, followed by almost orthogonality (Lemma 6.1 of
[37]), Holder’s inequality, and finally our bilinear extension estimate, the arithmetic-
geometric mean inequality, and some reindexing,

lEExw)Z=11 S ermEfifills SO IELELNY)

T~T! EDY T~T €D
_2 1
< (N Url VNS E Lo loo) ™ (71T € £2E frr ] )107)
T~T' €D
_1 (i1 N
< (sup 7|77 1€ £ lloo)™ (D (717720 £ )2
TED T€D
Here the ¢, ,+ are constants with |c, | < 1. O
Lemma 4.3. Let q = d+2p’ > p > 1, and assume that the spherical extension

conjecture holds on a neighborhood of (p,q). Then there exist co >0 and 0 < § < 1
such that

_ L _ _ _
IEf g S (sup 7|7 1€ frlloo)ILf N0 S sup sup 2= | frallp 1,70 (4:5)
T7€D T€DN>0

where fr, equals f multiplied by the characteristic function of TN{|f] < 2"||f|\p|7'|_%}.

Proof. We will prove the superficially stronger bound wherein f; , is replaced by
f7 on the right hand side, where f0:= f, o and f" := fr, — frn_1 forn > 1. We
observe that for n > 1,

_1
|f7 ]~ 2" 7| > ||f||Lp(sd)X{f:;eo}~ (4.6)
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We begin by showing the second inequality in (4.5). We apply Holder’s inequality
and decompose into the fI* to see that

a1 SN N
PR < Yt [ 1821 (@)
n=0 54
By Holder’s inequality, |’T|_% 12 S 12| e, and by basic arithmetic and (4.6)),

/ |7 do < 27D F D) o < 2D pr)

Inserting these estimates into (4.7, using Holder’s inequality, and summing a geo-
metric series,

_ L
|77 ||5fr||ooﬁsup2 R (VAP

whenever ¢y < p — 1.
Now we turn to the first inequality in (4.5). By (4.4] , it suffices to prove that

37 HOIGE D £ 2007 S 200 )
T€D

Since 2t > p, for v sufficiently small, 2¢(1 — v) > p > s. Hence by the triangle
inequality and Holder’s inequality,

- v)(=—= v —2 v 2t(1—v
M | THOIGETD | £, 2070 < N [ O G | 2207 (48)
T€D T€ED

_ v)(i-1 2t0=v)
+ O I PHOIED f — £219)

T7€D

We recall that D = k>0 Dk and that each Dy, is a finitely overlapping cover of S4

by caps 7 of measure 2759, Again using the fact that s < 2¢(1 —v), we may bound
the right hand side of (4.8)) by a constant multiple of

ZQ—det(l—u)(%—m)/ » |f|2t(1—y) do
X {If1s2 7 1£le}

2t(1—v)
H e | 1) 57,
2 01225 1£1,}

k

By Fubini, the preceding sum equals

/|f‘2t(1—u)( Z 2—2kdt(1_u)(%_m)) do

kd
R f1S2 P (1 flls

2t(1—v)

/ 15 gkds(1=1)Y 4o ,
k: |f|>2 v 1 f1lp

and we conclude by summing the geometric series. O

Proof of Theorem@for q= d+2 /. Multiplying by a constant and passing to a
subsequence, we may assume that an||p — 1 and that || fn], < 2 for all n. We
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begin by decomposing the f,, into chips with good frequency/LP orthogonality (but
whose extensions are not orthogonal in space/L?). Namely, we set r0 := f,, and

J
fo=Y_hi 47l  0<J<oo,
j=1

with bl = 7! X7 X Here 77 is a dyadic spherical cap, with center
(Ifnl<29 |7 "7}

v} and diameter pJ, that is chosen to maximize ||h%||,. An application of the
dominated convergence theorem shows that there is indeed such a maximal cap for
each j,n and that for each n, }°; hJ, converges to f, in LP(S%).

The next lemma is the key step to establish conclusion (vi) of the theorem.

Lemma 4.4. Under the hypotheses of Theorem|[3.1, remainders in the decomposi-
tion above satisfy

lim sup sup ||ERJ|, =0,

J=o0 neN |R]|=r]|xe

where the supremum is taken over measurable functions R; whose absolute value
equals a characteristic function times |r;|.

Proof of Lemmal[f-4. Let J >1,n €N, and |R/| = |r]|xg. We claim that for any
dyadic spherical cap 7 and j < J,

| Ry x-X | r(sey < (4.9)

(RZI<2 IR Iplr| "7} J-i)p
Indeed, if (| . ) holds, then taking j ~ & and applying Lemma completes the
proof of the lemma.

Now we turn to . By the construction of each rf from r’~!, there exist
measurable sets E D --- D ... D E/ = E, such that |RJ| = |rn\xEl i=0,...,J.
We also recall that 70 = f,,. We then have

Hxex . 1 i=j,. .. J+1.

|RJ|XTX . 1 < ‘T
" {IR]I<27 IR lIpl7| 7} " {Ufnl<2 fullplrl " P}

Since each 7! is chosen to maximize || ||,, if (£.9) were to fail, we would also
have |||, > .,J + 1, whence |f, |5 > 2’“ IRE (12 > 2, a

contradiction. This completes the proof of -, and hence the lemma. O

Our next step is to organize the chips into clumps, which also possess good
spatial orthogonality. After passing to a successively passing to a subsequence for
each j and then choosing a diagonal subsequence, we may assume the existence of
all of the limits arising below. We form a partition N = Ufil J* (the J* may be
empty for large i) so that j and j’ lie in the same J* if and only if the conditions

lim, 00 p—]?‘, € (0,00) and {(p%,) " dist([7], [¥7']) }nen is bounded, both hold. Thus
fori#£4d',je€ Jtj € T implies
lim 2 ¢ {0,00}; or hm % € (0,00), and lim (p?)~* dist([¢], []]) = oo.
n— oo

n—oo P o0 P
Let F) := ¢ 7 hj, and R] := . — S2F_ | Fi; for each n, these sums converge
in L? by the dominated convergence theorem Passmg to a further subsequence, we
may associate to each J! sequences {\}}, {[w!]} satisfying, for each i: A, — 0 or
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Ao =1, and [w))] = [eq] if N, =
is bounded, for j € J°.

Conditions (i-iii) of Theorem are automatic, while (v-vi) are simple conse-
quences of the construction and Lemma It remains to prove (iv), which asserts
that the extensions of the F have good L? orthogonality.

€ (0,00), and (A7)~ dist([wp], [+]])

We define
I
=l EpSTe= Y0 b, RS = fE SN RS
JET j<J i=1
By Lemma [4.4] for each I,
I I
i q_ i1 _ g — i ; <J||q_ i,<J||q_ 1,<J||q
Jim 1€ fnllg Z;HEFan IERlg = Jim lim (€] Z;HSFTL lG=NER =[G,

so to prove (iv), it suffices to prove that for all I and J,

: <J i, <J I,<J|\q —
lim (€5 ||3—§4 =g~ Ry = o
=
The elementary inequality

IZ%IQ > o

i=1

<Cyi <sup|xz||xj|q ) ¢>2,

Holder’s inequahty, boundedness of the ||fy |, and the triangle inequality imply
that

I
€18 =D NEFT=TN1g — IERL=T|S

=1

< Cruq sup IERERS || 3.
i#il jeJi, i egi

Thus it remains to prove that for i # 4/, j € Ji and j' € TV,
Jim |ERTERT lg = (4.10)

Suppose first that pT]?L, — 00. By assumption, there exist g9 < ¢ < q1, po > p > p1
Ph

with

1_ 1 1 d+2, 1

a - % qua qi = d —a Pi>
such that £ extends as a bounded linear operator from LP* to L%, ¢ = 0,1. By
Holder’s inequality, boundedness of £, and the support conditions and pointwise

boundedness of ki, hi,
ERRER Il < NER o €N Nlas S 11l 1, 1

< 9 (i )P H (p I TE = 2 ()T
By symmetry in j,j’, it remains to consider the case when limpT% € (0,00) and
Pn
lim,, o0 (p3 )~V dist([v], [1]) = oo. Of course, this implies that pf, pJ — 0. Set
s dlst([zﬂ] [v7']). Then ‘T’" — 0, and hence, for large n, 74 C B([vl],rs),

n = 100
77" C B([v'],r). By Lemma [4.1] for some s < p,

) (24 _2d . 1_1 i d(l_1
e P A N P € R S R )
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We have thus established (4.10), completing the proof of (iv) in Theorem 3.1 [

5. SCALE ONE SPATIAL DECOMPOSITION: PROOF OF THEOREM [3.3

In this section, we establish a finer decomposition for sequences that are (almost)
pointwise bounded, in the sense that

im limsup ||€ fnXx{) £, >3 llg = O

|
M—00 nosoo
Lemma 5.1. If, under the hypotheses of Theorem|3.3, we have in addition that
limsup || fnll, < A < 0o and liminf ||E f, ||, > B > 0,
n—00 n—00

then there exists {x,} C R4 such that after passing to a subsequence,

e~ e £, — ¢, weakly in LP, with || E¢|, = B(5)C. (5.1)
Furthermore, along this subsequence,
Tim (1€ £ull§ = €0 — €= “6) | — [€6]12 = 0. (52)

The proof is simplest if we divide into two cases.

Proof when q > d—fp’ . It follows from our hypotheses that the £ f,, are bounded,
continuous functions. After a modulation and multiplication by unimodular con-
stants, we may assume that £f,,(0) = ||€ fnllco. Under this normalization, we will
prove with z, = 0. After passing to a subsequence, there exists ¢ € LP such
that f, — ¢, weakly in LP. Therefore

[€0lloc = [E¢(0)] = Tim [€ £, (0)] = lim [[€ fn|oo-

By hypothesis, there exists s < ¢ such that £ extends as a bounded linear operator
from LP to L®. By Holder’s inequality and our hypotheses,

B < limsup € fuly < limsup € fulls 7 € fall% S A7 lim [|Ef, ]| %.

Therefore [|Edlco 2 B(%)%_l. On the other hand, £¢ = (£¢) x h whenever h=1
on S¢, so by Young’s inequality, [|€ fulloo < |I€ fnllg, and follows.

The final conclusion, , follows from the Brezis-Lieb lemma, since e~ "¢ f,, —
E¢ pointwise, by virtue of the weak convergence. ([

Proof when q = dffp’ . In this argument, we will use the fact that a cap is the

intersection of a union of antipodal cubes with S¢. For 7 € D, we denote by Q, a
union of two rather smaller (relative to the cubes) antipodal parallelepipeds whose
intersection with S? also gives 7, but whose volume is comparable to that of the
convex hull of 7. More precisely, due to the curvature of the sphere, |Q,| ~ |T\§

Now let 0 < ¢ < g be sufficiently small for later purposes. By hypothesis, there
exists M > 0 (over which we have no control) such that

lim sup [|E(faX 115003 llg < e
n—oo
By (4.5) and our hypotheses,

By1=¢ .. -5
B Stiminf sup |ral 2 IE(faxqisai<an ) llo

By Holder’s inequality, for each n, the above supremum may be taken over caps
whose volumes are bounded below by a constant depending on M. As there are
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only a finite number of such caps, after passing to a subsequence, there is a single
Tpr that realizes the supremum for all sufficiently large n. In other words,

e _a
B(£)7 S Hinf |7ar| "2 E x| ful<ny)rarlloo- (5.3)

We may assume, after modulation, that £(frxg|f,|<ay)rar (0) = 1EfuX{| ful<m})rar oo
Passing to a subsequence, the weak limits

9 := wk-lim an{‘fn|§M}7 (bb := wk-lim an{‘fn|>M}
exist in LP. In particular,
Em E(fuxqifalcmy)ra (2) = @)y (@), W E(fuXqira>my) (@) = E6°(2),
for all z € R'*<. By Fatou,
1€6°(lq < liminf [[E(faxqis,1>a0)llg <&
On the other hand, by Young’s inequality and ¢’ > 1,
_1 T T

"7 N1E67,, lloo < It ™ 7 Xy, o 1€6° g S 1€6° g
Hence by the triangle inequality, (5.3), Young’s inequality, and ¢’ > 1,

10 Y L

B(F) 7 Sl 7€, lloo < Imal ™7 IXary, o 1€6% g S 1€6]lo-

Setting ¢ := ¢9 + ¢* = wk-lim f,,, the lower bound on the extension of ¢J and
upper bound on the extension of ¢° give

1—6
B(3)7 <€l

provided £ < B(%)%.
The final inequality, 1 , follows as above from the Brezis-Lieb lemma and
pointwise convergence Ee™ " f, — Eo. O

In the special case p = 2, iteratively applying Lemma [5.1] and using elementary
Hilbert space identities yields the following L? profile decomposition.

Lemma 5.2. If q > % and {fn} is a bounded sequence in L*(S?%) satisfying

il sup € foxqs, > anlle =0, (5.4)

then, after passing to a subsequence, there exist {x%}j,neN C R obeying

lim |27 — 27 | = oo, forj # j, (5.5)

n—oo

and weak limits ¢7 = wk-lim,_, o0 efizi/wfn € L?, such that for every J € N,

J
Tim [|£all3 =I5 — IrllI3 =0 (5.6)

j=1

J .

Jim |IEfallg =D €12 — llEr;Il =0, (5.7)

j=1

and, moreover,

lim lim [|Er][|2 = 0. (5.8)

J—00 n—o00
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We briefly sketch the proof of the lemma, which follows a well-known outline
(see, for instance, [27]). Only minor modifications to the familiar argument are
needed to use the condition (5.4).

Sketch proof of Lemmal[5.2. We set rQ := f,,. Given some r;/, we are done (setting
¢ =0 for J' > J) if limy_s ||Er7|l; = 0. Otherwise, we apply Lemma
which produces a nonzero weak limit ¢”** and sequence {x; "'} C R¥*!; we then

set rJtl =t — eiwn WL If failed for some j < j' but held with j
replaced by any j < i < j, then 7 — 27 would converge along a subsequence,
and, after a bit of algebraic manipulation, we can deduce that ¢’ "= 0. Thus
holds. The hypothesis continues to hold with 7/*! in place of f,, as a finite
number of LP functions have been subtracted from the f,. Equation follows
from basic Hilbert space manipulations, and (5.7)) may be proved inductively using
Brézis—Lieb. Finally, holds because and give a lower bound for
7213 — [[r2+1[13 whenever lim, . €724 5 0. O

For p # 2, LP is not a Hilbert space, and the direct analogue of may fail.
Instead, we will prove the L? almost orthogonality estimates by defining and
bounding a family of vector-valued operators. Fix a nonnegative, smooth, radial
function 1 on R with compact support in the unit ball and [, 1(£',0) d¢’ = 1.
(Since ® is radial, it thus has integral 1 on every hyperplane through the origin.)
For 0 < r < 1, define v,.(¢) := r~%(r~1¢). We define

(1 f(@) = [l =) = F0) do), )L = (m
We recall p := max{p,p'}.

Lemma 5.3. Let 1 < p < co. Assume that the sequences {x,}; nen obey lim,, oo |24, —
mﬁl/| = oo for all j # j'. Then the (1)) map LP boundedly into (P(LP), with oper-

n
ator norms bounded uniformly in r,n. Moreover,

Jim  lim 1)l Lo—er(zry = 1. (5.9)

Finally, given sequences of functions f,, = Z;’Zl eixi“’(bj + 7, with {f.} bounded

in LP, satisfying ¢’ = wk-lim e_“”zl”fn, for each j € N, we have

. . j Y _
lim Tim {|(7)5fn — ¢l = 0 (5.10)

: . J1* 470 zm{,w ¥l —

lim T [[(7)7]"¢" — ¢ |[r = 0. (5.11)

Proof of Lemma[5.3. We will be brief. Verification that the 1), approximate the
identity is routine; boundedness of the (IL.); and the limit immediately
follow. By our weak limit hypothesis on the ¢/ and the dominated convergence
theorem (with constant dominating function), for each r,

()], f(w) — /d}r(w — )¢’ (v) do(v), in LP, as n — oo.

Equation ([5.10) follows immediately.
We will verify the dual form of (5.9)), namely, that

im i P <p<oo.
ll_rf(l) nh_)néo [T ) ] Mo (Lr)y—rr = L I<p<oo
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For the convenience of the reader, we record

J

(L)) (@) () = 3 v / (v — ) (@) do(w).

That the limit of the operator norms is bounded below by 1 is elementary, as can be
seen by applying the [(II,.)/]* to the vector-valued constant function (1,0, ...,0).
In the cases p = 1,00, the upper bound is a direct consequence of the triangle
inequality, Holder’s inequality, and

/1/)rw—1/ )do (v /wrel—l/)da()%lforanyweSd

By interpolation, it remains to verify the p = 2 case, for which it suffices to prove
that ||(Hr)i[(nr),{]*||22(L2)ﬁ22([‘2) — 1. We expand

LI (&) iy = ZHZ [ @0, o)

where
(K ) (9, w) = / V(0 — V) (v — D) TR o (1),
Let
(A3 = 1K) e o (B3 oo 13 -

When j # k and 7 > 0, (K,)?* — 0 uniformly as n — oo by stationary phase
and |2), — x| — oo, so the off-diagonal terms satisfy (4,)7* — 0 as n — co. By
construction of 1., (A,)J7 (which is independent of n) tends to 1 as r — 0. By the

n
elementary inequality

|Zacj|2 1+€)x1+CEJZx

j=2

and Schur’s test,

IIZ/fb’“ D) do ()72 < (1+) (AT 15 + Cerr D (A 16813,

oy
and (5.9) follows. O
Lemma 5.4. Under the hypotheses of Theorem |3.5, suppose that we are given

sequences {x) }j nen with |vl — x3 | — oo for j # j/ and {f.} such that the weak
limits

¢ = wh-lim e~ £,

exist. Define
J .
_ Z eilewfn.
j=1
Then (3.2) and (3.3) both hold.
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Proof of Lemma[5.4. The inequalities in (3.2)) follow directly from Lemma/5.3and
the definition of the r. We will use the Brezis-Lieb lemma to prove (3.3)). Set

= fn- By hypothesis, for j # j', wk-lime’ UCAA ) = 0. Therefore (;SJ =
wk-lime~*apJ =1 for j > 1. Applying the extension, £(e~"n®ri~1 — ¢7) —
pointwise, and so by the Brezis—Lieb lemma,

. izl i— i i P 1
Tim [[E(e™ e r] [ = I€S7IF — (€ (e e r) ™ = ¢T)]|§ = 0.

Summing the preceding identity over j = 1,...,.J and using rJ = ri=1 — ei@hw g

establishes (3.3]).

With the above lemmas in place, we are now ready to complete the proof of
Theorem [3.3]

Proof of Theorem[3.3. We may assume that limsup || f,|, = 1. When p = 2, the
conclusions of Lemma are stronger than we need, so it suffices to consider
pairs (p, q) meeting the hypotheses of our theorem in the case p # 2. In light of
Lemma [5.4] it suffices to prove that there exist {z7};.en obeying such that
the resulting remainder terms r; have small extension, i.e., that holds.

Given M € N, we set fM = faX{|fal<my- Let € > 0 and take M. sufficiently
large that

limsup |E(fn = fa)llq <&,
n—oo

when M > M..

The advantage of working with the truncation {fM} is that it forms a bounded
sequence in every Lebesgue space (albeit with a bad, M-dependent, bound), putting
us in a position to apply Lemma To this end, set ¢q; := @ and choose an
exponent pair (pg, ¢p) meeting the hypotheses on (p,¢) from Theorem as well
as the condition

(GO =0- 0 2ok L)
for some 0 < 6 < 1.

By Lemma after passage to subsequence (independent of M by standard
diagonalization arguments), there exist points {z}7}, ey and weak limits ¢
such that ( -7 ., and all hold, with the superscript M inserted where
appropriate. Since e —iwyw f M — @M weakly in both LP and in LP°, we may also
apply Lemmaw1th exponents (p, q) and (po, o). By .7

limsup €7, [lg, < limsup [|€f37 g, < lim sup 12 lpo Sar 1,
n—o0 n—oo

for all M, J. Therefore, by Holder’s inequality and (5.8§] @,
hm limsup [|Er257||, = 0, for all M. (5.12)

n—oo

To conclude, we need to remove the dependence on M in (5.12). We begin by
showing that non-negligible profiles £ emjn'M“’qu’M cannot wander around too much
as M varies.

After passing to a subsequence, we may assume that for any M,j and M’,j’,

. . . ’ ¥ ’ o K

either lim,, o |27 — 2M7'| = 00 or £MJ — 223" converges in Rt as n — oo.
v . .

In fact, in the latter case, we may assume that xM J = gM3" | simply by modulating

our ¢M J as needed.
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Now, let C' be a sufficiently large constant, and suppose that (after reordering
the ¢/*™ and perhaps inserting some zero profiles) we had distinct sequences {z7 },
1 <j < J.:= Ce 9 such that zJ = 2J for some M > M. with ||E¢MI|, > 2e.
By construction, |z — xﬁ” — 0o whenever j # j'. Passing to a subsequence, we
have weak limits e*imi“’fn — ¢/, weakly in LP, for each 1 < j < J.. By Fatou,

€67 — E6M 7|y < Timsup € f, — Y [lq <&
n—oo

Therefore ||E¢7 ||, > ¢, 1 <j < J.. By Lemma (namely, inequality (3.3)),
JE
Jee? < Z I€67 13 < lim || all3 < 1,
Jj=
a contradiction. Thus, after reordering, 27 = xJ whenever M > M., j < J. and

|EpM|, < e, whenever M > M, and j > J.. (5.13)

Inequality will give us uniform control on the extensions of the r:/e.
Recalling that p = max{p,p’} < ¢, choose, for each M > M., some J. s sufficiently
large that ||5r7jy"]5‘M||q < &97P. We will show that |&(rM:Je — T,JY’JE’M)HQ < el p,
Noting that

T,JZV[’JE . T%,JE,M _ Z eiwﬁl’quSM,j’
Je<j<Je,m
we apply Lemma [5.4] and Holder’s inequality to obtain

M,j

lim sup || Z Eeltn w(bM’qu < Z ||5¢M’j||2

o Je<j<Je,m Je<j<Je,m
<Py EMIE<ePAD YT eMp
Jo<j<Je nr Je<j<Je
< Eq_ﬁAgﬁq lim sup an||g~ < gl7p,

It remains to transfer the bound [|Er}s||, < e97P to Erfe. Let 1 < j < J.. By
Fatou and our assumption,

li I — M|, < lim L — My =0.
i€ = 6", < lim limsup [€(f = £21)], =0
Hence by the triangle inequality,
N Js_ M7JE e
legnong(rn rn )Hq 07
J

and so we have the desired inequality [|Er;¢||; < €, completing the proof of Theo-

rem [3.3] O

6. LARGE SCALE SPATIAL DECOMPOSITION: PROOF OF THEOREM 3.4

We begin by recording the connection between the spherical and parabolic ex-
tension operators at small frequency scales.

Lemma 6.1. Let 1 < p < and q = %Qp'. Assume that the restriction

conjecture for € holds on a neighborhood of (p,q). Let A, \, 0 and ¢ € LP(R%).
Define

2(d+1)
d

gn(w) = )\;d/P¢()\;1w’)X{w1>O}X{|w,|<%}. (61)
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Then

d+2

lim_[€gn — A e Epp(=N2xy, Ap')||La = 0. (6.2)

Lemmais proved in the case p = 2 in [21]; we make the simple adaptation here
to the case of general p (for which we make no a priori assumption of boundedness
of &p) for the convenience of the reader.

Proof of Lemma[6.1. It suffices to prove that
d+2

Jim (A e E g (<A, Ay ) — Epdle = 0,

and we assume initially that ¢ € Cg7.;; therefore, the L? norms in the above limit
are finite for each n by stationary phase. Set
_ddz
Gn(m) =X elAnleggn(_/\;Q'rlv)‘77137/)'
After a change of variables, we see that for sufficiently large n,

() = /ez‘(—zl,zw;?[\/l—maz—1Ls>¢(§) de.

Examining the phase function, G,, — &p¢, pointwise. Moreover, by stationary

phase, |G ()| <g (z)~%. Therefore by dominated convergence, G,, — £¢ in L.
From our assumption, having proved the lemma in the case of C7)., functions

implies, in addition, that [|Ep¢[l; < (|9, for ¢ € CZ5,,. Therefore &p extends as a

~

bounded linear operator from LP to L9, and we may conclude that the lemma also
holds for general LP functions by standard approximation arguments. ([l

Next, we isolate a nonzero weak limit in bounded, concentrating sequences with
nonnegligible extensions.

Lemma 6.2. Let 1 < p < Q(d%;rl) and q = d%gzp’. Assume that the restriction
conjecture for € holds on a neighborhood of (p,q). Let A, \( 0 and assume that

im limsup ||€ fnx

|
M—00 n—soo

for some sequence {f,} C LP(S?), with limsup ||f,.|, < A and liminf |Ef,|, >
B > 0. After passing to a subsequence, there exists {x,} C R¥*T! such that

)\z/pe_ij)n( 1—|A7L£|2,An£)fn(1 /1 — |)\n§|2a)‘n§)X{|§|<%)\;1} — ¢,
weakly in LP(RY), with ||Ep¢|lq = B(%)C.
Proof of Lemma[6.2. Given M € N, we set

{‘fn|>MA,_Ld/p}U{|w—€1|>Mkn}||q = 0? (63)

>M . M, _ >M
R SIS e P U R U

Let € > 0 sufficiently small for later purposes. By hypothesis, there exists M :=
M. € N such that, after passing to a subsequence,

IEL7M |, < &, for all n. (6.4)
Aslong as € < %, after passing to a further subsequence,
1£M), < A, and ||EfM]], > 5 for all n.
By (4.5)), there exists a sequence {7,} C D such that for all n,

1-0 _
B(B) ™ Sl €SN ) malloo-
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We will show that after rescaling by A,, the 7,, have a convergent subsequence.
1—-6

On the one hand, by (6.4), for e < B(£)7 , each 7, must intersect {|{ —e;1| <
MM, }. On the other hand, by Holder’s inequality,

_a _a
‘Tn| p/Hg(frsz[)TnHoo < |Tn‘ v’ ||f7]LV[HOO|3uppféVI‘

Sar mind| [N [ ALY

where |supp fM| denotes the measure of the support of fM. Therefore 1 <a p.m
min{|r,|~VP AYP |7, VP A, PY which implies |7,| ~a.5.a AL. Therefore, after
passing to a subsequence, X, (1/1 — [A&[2, A\n€) — X+ (€), for some cube 7 C RY,
pointwise, a.e.

We may assume, after modulation and multiplication by a constant that

E(fN)r (0) = [IEC£2")r, lloo-

Passing to a subsequence, the weak limits
¢7(6) = whelim /P £ (V/1 = [Aag[2, An)
$(€) = whlim AP fru (V1 = P2 AnX (g1 1an 1

exist; we set ¢* := ¢ — ¢9. By the dominated convergence theorem and the obser-
vation of the previous paragraph,

(67(€))7 = wh-lm AYP(FM) (V1 = [Aa€J2, Ma).

Standard convergence arguments give,
d+2

Spp(z) = lim Ay © e M TE(L)r (A2, A ta!),
n—roo

for all x, and analogous relations hold for ¢9 and the f (and hence for ¢* and the
M) Therefore

- g > By 1=¢
17177 [|Ep(87)+ |00 = B(B) 7.
By Young’s convolution inequality and the observation that the measure of the
convex hull of 7 satisfies |ch 7| ~ |T|(l%527

1€(6%)-1lq 2 B(Z)
On the other hand, by Fatou,

1—6
0

||5P(¢b)7'||q <¢g,
so by the triangle inequality,

1—

e (@)-lls 2 BR) T
Hence by L? boundedness of Fourier multiplication by xz,
lEzolla 2 BE)T.
O
With Lemmal@ in place, we are ready for the L?-based profile decomposition.

Lemma 6.3. Theorem holds when p = 2. Moreover, with assumptions and
notation as in the statement of that result,

(i -id") Ny [|fa13 = 252, (67113 + 97~ 13) = [Ir;]1I3 = 0, for all J € N.
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Essentially all of the key ingredients needed for this lemma were already estab-
lished in [21]; we provide details both for the convenience of the reader and because
a key step, an improved Brézis—Lieb Lemma, will be used in later arguments as
well.

Proof. We initially treat the two hemispheres separately, setting f := FaX{+w,>0}-
To decompose f;F, we set 9T := fF and apply the following iterative process.
Given a bounded sequence of remainders {r;"*} C L?(S%) obeying (6.3), we stop

if lim ||Er |4, = 0. If this limit is nonzero, we apply Lemma [6.2] obtaining a
subsequence of {f,}, points {z/*1*} C R¥T! and a weak limit ¢’/ *1+ € L2(R?).

We set
J+1+ . I+ iz thtw J41,+
Tn =T gn 9

ST —e
with /71" defined as in (6.1).
That the {227} move apart after parabolic rescaling follows from familiar ar-
guments. Namely, we suppose that there is some minimal superscript 7 for which
there exists some (minimal) superscript j/ > j with ¢+, ¢/ + 2 0 and

Al =2l P+ Ml (@t = 1) A oo
Passing to a subsequence,
ARt = e M (@t = 1)) =y
Passing to a further subsequence,
@ =l TR Ay i07 iy (—31e6)
locally uniformly, for some 677" € [0,2x). On the other hand,

ook i’ — >
el(l‘n z? ) (/1= €] ’AHE)X{‘&‘SR} _\ 0’

weakly in L? for all R. Noting that 77 ~1+ = ¢J -1+ — Z{C:—Jl iz e gkt

. . AN L — 5
(;SJ = wk-lim )\ﬁe iz, (\/ 1=[Ang] 7)\n€)gfb’+
L il J = .
= i e CHERO gt S wiclim G En T =l D) /TR An€) ot
k=j

:O7

a contradiction.
Taking the complex conjugate and applying the preceding argument (along our
new subsequence), we obtain decompositions for the lower hemisphere as well,

J .
- _ ixd T w j,- J7_
fn - E e gn +Tn :
j=1

Passing to a subsequence, for all j, j’,
o (@™ =2l ) A ™ — 7))

either converges or tends to oo in norm. In the former case, changing the ¢J~ if
needed, we may assume that for all j, j/, either 25+ = 2~ or

. -/ . -/
M@ =2l Dl + Aal(@f T = 2d7)' = oo



EXTREMIZING ADJOINT FOURIER RESTRICTION TO THE SPHERE 25

Reordering and inserting 0’s in place of ¢7'* or ¢/»~ where needed, we may assume
that z,* = x4~ for all j.
We thus obtain decompositions

Ze” “gh+rl,  JeN,

follows on each hemisphere separately by the weak limit condition; we put the
pieces together via. | fo/I2 = 1/ 113 + I/ I3

The Li-orthogonality, conclusion (v), follows by iterating the generalized Brézis—
Lieb lemma, Lemma 3.1 of [21] (cf. [2]); because the lemma was developed to
address precisely this situation, we will be brief in showing how that lemma applies
here. In the notation of that lemma, given J and M, we set

da+2

aM(z) =My T E(ener) Xgwriann ) Ay 22, AL )

M (z) = Zeii’\; “1Ep (" EX e <y ) (Fn, )
+
M —T2 il J -2 -1,/
P (2) :=EAn " e X <mn, ) (A1, A )
_dt2
o) (@) = An @ E(gIX(wr1<arrny) (A 2, A N !) — ) (@),
and let o, 7, pn, 0, denote the Corresponding functions with no truncation in the

frequency variables. Then oM = 7M + pM + oM We immediately see that |7 ] is
bounded by a fixed L? function. Observmg that

M () :Zeim?xl/ei(xl,az/)o;?(i 1=[An&2F1),6) g —izn (AL (/1= [An&2F1),6)
+

Ty 2 d
Tr{(i 1 —A€2, /\ng)X{\QSM} \/ﬁ)
we see that p; — 0 pointwise. Finally,

M _ +ix; 2ay i(z1,2" )Y, 2 (/1= An€[2F1),6) 1 i(wi,w/)(ﬂF%\EP,E)
o Ze /(e = © )

x ¢7E(€) X1e1<nry dé-

If o7 %(¢) X{|¢|]<m} are assumed to be smooth, oM — (0 in L7 by stationary phase
and the dominated convergence theorem; for general ¢7>*, convergence to 0 follows
from boundedness of £ and & from LP to L? and density arguments.

By the generalized Brézis—Lieb lemma,

JLH;O 12 — w2 + o2 — 12 = 0.
By hypothesis (3.5) and L? — L7 boundedness of £ and &p,

hrn lim sup HO‘ O‘an + Hﬂ'vjy - 7Tn||q + ”ng - Pn”q + HU% - Uan =0.
M—00 nosoco

Therefore
Tim e [§ = Il + ollg = loally = 0
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ie.,
. J—1 J Jg —
Jim ([ €770 G = [1€9511G = 1€ 117 = 0.

The L? orthogonality, (iv) follows by induction.

negligible remainder term yields a weak limit with L? norm bounded below, and
that reduces the L? norm of the subsequent remainder by a nonnegligible amount.
|

Now we turn to the analogue of Lemma for the case of antipodal frequency
concentration. Let 1, p € C(R%[0,1]) with 4(0) = 1 and [p = 1. For r > 0,
we define ¢,.(¢) := ¢¥(rf) and p"(§) = r_dp(g). Given a doubly indexed sequence
{x1}; nen, and A, \, 0, we define operators on integrable functions f on S by

(TR F(E) 1= p" sy (r (e VI RAE AL (/T — A2, ).
We also define vector-valued operators

(I)nf = ()3 N)j—)eezy,  JEN
We recall the notation p := max{p,p’}. Thus p > p.

Lemma 6.4. Let 1 < p < co. Assume that the sequences {y)} obey lim,,_, |yl —
yl'| = oo for all j # j', where yJ = (A2(22)1, \n(22)). Then the (IL.)7 map

LP(S?) boundedly into ff(f?(Lp(Rd))), with operator norms bounded uniformly in
r,n. Moreover,

. . 3 J B o
}E}% hTan:o‘ip ||(Hr)n||Lpﬁzf(e§(Lp(Rd))) =1 (6.5)

Finally, let {fo} be a bounded sequence in LP(S?), supported in {w € S : |w'| < 1},
for which the weak limits ¢'* in (3.6) exist, and define g’ as in (3.7). Then

. . Y= PN == _
lim lim [|(m)5% fn = ¢" ]|, = 0 (6.6)
lim lim |[(m,)5%]" 7% — e gl |, = 0. (6.7)

r—0n—oo
Proof. Since f = (fX{wi>0}>fX{w1<0}) maps LP(S?) boundedly into ¢7(LP(S%) x
LP(S%)), with operator norm 1, ([6.5) would follow from
. . J7. ~ _ _
hn%hmsup ([ (IL)5; HLp_m;?(Lp(Rd)) =1, o=+ -, (6.8)

r—=0 nooo

and using reflection across the hyperplane {0} x R? we may choose the positive
sign in , , and . To keep equations within lines, we will omit the
superscript + from the operators from the remainder of the proof.
It is elementary to show that ||(m,.)?, f|l, < || fllp, with implicit constant indepen-
dent of f,r,n,j. Moreover, for any 7,
lim limsup ||(7,)7, || Lo 10 = 1.
r—=0 5300
Indeed, the upper bound uses the compact support of 1, and the lower bound is
obtained by considering a shrinking profile e’*»“g/:*. In particular, holds
when p =1, c0.
The upper bound in will thus follow from that in the case p = 2 by complex
interpolation.
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We turn now to the proof that
linm_folip Il ez 2y = 1, (6.9)
for all . We bound
I (TL ) (L, )J]*(Qsj)}']*l”lgz (L2)

(1+¢) ZII (M) ] @172 + Cae D (o )d ()] 08| 7.
J#k

(6.10)

We expand (for £ € R?)

0O = [ SOEG O e
where
(K¢, €) = / ()2 pr (€ = Moy (¢ = m)e! nmn) VAPt ) ST 2 iy,
A straightforward computation (using our hypotheses on p, 1) gives
|‘(KT)ng||Lg°Léa H(KT)szHLgoLé <L

For j # k, stationary phase gives ||(K,)7¥|r~ < (yF —yl)
have supports contained in a fixed compact set (for fixed r),

G e 12 I s — 0,
as n — co. Hence by (6.10]),
lim sup ||(HT)‘17';,[(HT)1]'CL]*||£2(L2)~>£2(L2) <l+4e¢
n—»00

4
2

. Since the (K,.)i*

for all € > 0. Sending € — 0, we obtain (6.9).

It remains to prove and (6.7). By boundedness of the (r,)* on L?, we may
assume the ¢* are compactly supported. Modulating f,, ~» e~ %% f, if needed, it
suffices to consider the case xJ, = 0, for all n.

Since is essentially elementary, we turn to . Noting that |y*| — oo
when k # j,

A (VIR A0 gt (/TR M) = /R b VTGP Ok ) — 0,

weakly when k # j. Hence, by construction,

N FOVT— PP Ané) — &

weakly, as n — oco. Therefore (m,)J f,,(&) — [ pr(€& — n)¢r(n)@? (n) dn pointwise
in £, as n — oo. In fact, the convergence is in LP by the dominated convergence
theorem, and follows. O

We are finally ready to conclude the proof of the LP profile decomposition in the
case of antipodal concentration, Theorem

Proof of Theorem[3.4. By Lemma [6.3] we may assume that p; := p # 2. We fix an
exponent pg < z(dTH such that p; lies between pg and 2 =: py and the extension
conjecture holds at (pg, qo), with go : d+2 S0,
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It suffices to prove the theorem under the additional assumptions that || f ||, < 1,
lim || fn|l, = 1, and f, is supported in {|w’| < 3}, for all n. (Indeed, we may simply
add fnx{|w,|>%} to the error terms 7; and then multiply by a constant.) We define

f7IzVI = f’nX{lfn‘SM}\;d/P}Xdist(w,[e1])<M)\n}'

Setting «; := % — g for i € {0,1,2}, {\%2f,} obeys the hypotheses of Theorem
with p = 2. Therefore, by Lemma after passing to a subsequence (which does
not depend on M € N), for all M, there exist {zM} C R*! with

Tim (2| — M)+ Al (@3 — 2B MY ) =00, j# S
and weak limits

LA(RY) 5 ¢9ME = wielim AY/Pemion ™ EVIZAEEA M (4 /TN €2, N6,
such that, with

giM ZA WP GIME (AW ) X o 01 X | <
J ey )
P = A D e g,
j=1
we have
J .
i 1352720 = 32 N6 - e =0,
j=1 +
J
. M j, M J,M _
lim DRI -SRI e g =0 e
-
lim lim [|A22&r) M|, =0, (6.12)

J—o00 n—00
for all J. In fact, the generalized Brézis-Lieb lemma applied in the proof of
Lemma implies that holds with «ay, ¢q; in place of ag,ge, when i = 0,1
as well. In particular, {\2&r;*™} is bounded in L4 uniformly in J, as n — oo,
and hence by Holder’s inequality, also holds with aq, ¢; in place of as, ¢o, i.e.
(since a1 = 0),
hm limsup || Er27 ||, = 0, for all M. (6.13)

n—oo
After passing to a subsequence (and modulating the ¢+ and multiplying by

unimodular constants if needed), we may assume that for any M,; and M’ j’,
Mj — M5

either z, x, 7, or
. . /ayi . s
Jim AT (" = 2]+ Al — )| = oo,

for all j,5, M, M’ € N. By reordering the profiles and inserting zero profiles as
needed (using yet another diagonal argument), we may write z3;" = zJ | for all M.
Passing to a further subsequence, the weak limits ¢/* defined in all exist.

By Lemma for every € > 0, and any choice of e € {£}, [|¢?*||, > ¢ for at
most € values of j. Indeed,

J
]'7. ﬁ _ . .
S0 = Tim T ([(T0)7 ol Zp gy < (6.14)

Jj=1
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In particular, we may reorder the profiles so that ||¢7T||5 + [|¢7~||% is decreasing.
In the notation of Theorem it remains to prove (ii), (iii), (iv), and (v).

Inequality (ii), which was one of the LP almost orthogonality conditions, follows
from Lemma Indeed,

J
ST IR = tim Tim ()] fullgerrey < 1.
+ j=1

Inequality (iii), the other L? almost orthogonality estimate, follows from Lemma
as well, since
J
lim sup | Yo emegilly = tim dim [[()7](07)]o ez lp < 16 Dec e lon e (o)

r—00 N—00
Jj=1

The LY-orthogonality condition (iv) follows from the generalized Brézis-Lieb
argument given in the proof of Lemma (indeed, the condition p = 2 played no
role in that part of the argument).

We are left to establish (v), smallness of the extensions of the remainder terms.
We wish to remove the dependence on M in , and, as in the previous section,
we begin by showing that the rate of convergence to 0 in as J — oo is
independent of M. _

Given M € N and (j,) € N x {}, we define ¢} := ¢ x{j¢|<rr} and

e . \—d j,® —1
(gM)gn (W) E >‘n /qu] <>‘n w/)X{0w1>O}X{|w,‘<%}'
Lemma 6.5. For every M,j € N and o € {£},
Jim [1E((ga)* = 92" 7*)lg < limsup sup Hc‘?anEllq, (6.15)

n—oo ECE

where EM was defined in (3.5).

Proof of Lemma[6.5. We give the proof when e = +; the other case follows by
taking conjugates. To simplify notation, we omit the j and + from our superscripts.
By Lemma [6.1]

Tin [€((ga)n — 920 llg = IEe(drr — &™),

Since
¢u(§) = wh-lim AYP £ (VT = A€l A€ X1 <M}

we have
Ep(dn — M) (—1,2)
= lim [ eCHEPONP £ (/T TNER, N8 X6l <MYX 7, 1> nray /g 9

n—o0
~ lim e—ixgle/ei(x AT )-SR O \=d/v (TR, €)
n—o0

X X{|£|<Mkn}X{‘fn|>]\/[>\;d/r'} dg (616)
By Holder’s inequality,

1A 27 (/1 = |f\2,€)X{\5\<M,\n}HL§ < MY
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For [¢] < M A,

L= VI-[ERI S M2, (1= 35lef) — V1 - 6] < MG

Thus by Hélder’s inequality, (6.16]), and pi, = %,
((bM ¢ )( L1, T ,)

lim A7 (@+2)/9,i0.” ng(

— -2 -1,
T aEN FaX (| <0 A a5 M0 0y 50)) P T A ),

for all z. Finally, by Fatou and a change of variables,

|Ep(Pnr — ¢M)||q < ||5(an{\w/|<M>\n,|fn\>M)\;’i/P,w1>o})HfI'
O

Let ¢ > 0. By (6.14), lim;_,o ||¢7*||, = 0, so by boundedness of £, lim;_, o limy, o0 |E¢L [l =
0. Hence, by and (6.15), there exist M, J. such that lim, o [|EgM ||, < €
for all M > M, and j > J.. Let M > M.. By , there exists Jas, such that
limy, o0 [|[EPMT ||, < e, for all J > Jiy ..

By the definition of the remainder terms, the generalized Brézis—Lieb lemma,
boundedness of £, and the LP-almost orthogonality condition (ii),

JM,E
M,J, M, Jar,e Y i M,
Tim [|E(rMTe — M) |2 < tim [l€( Y etmeghtd) e
Jj=Je+1
']1\4,5 ']1\4,5
i M —p M,j p -5
= > Jim €02 g < SpRetTP DT (30 Mty s et
J=Je+1 J=Je+1 ee{£}

Since q > p, after changing the value of ¢, we may assume that
lEratllq <, (6.17)

for all M > M. and J > J..

Finally, we transfer to the £r). The Li-orthogonality (iv) applied with
some 7;° in place of f,, implies that lim,_, ||E7; ||, is non-increasing in J. Thus
it suffices to bound limy, e [|E7% |4

By the triangle inequality, the definition of the remainder terms, and ; then

B3), ¢37 — ¢* in L, and (6.15),

']E
. JE . . o M . J o ],M o
e < O+ fim_tim (= £+ Jim 316Gk - )la = O

M — 00 n—00

As we have confirmed conclusion (v), the proof of Theorem is complete.

7. PROOF OF THEOREM [I.1

Proof of Theorem[1.1. Under the hypotheses of Theorem let {f.} be an LP-
normalized extremizing sequence. By Proposition the conditions of Theo-
rem apply after passing to a subsequence. Letting {¢?} denote the profiles
in the conclusion of that theorem,

1 1

Spg = lim [|Efullg = ZH&WII )" < Spog ZIIWII )e.
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By Theorem [3.3]the profiles satisfy (3.2), which for an LP-normalized sequence gives
32, 197 1|5 < 1. Further, we have assumed that g > max{p, 2p'} > p. Therefore,

1

Spsg < Spsgsup [l le(i)]llp 1< Spgsup ¢y
J J

Q \’Un

< Sp%q-

Equality must hold at each step, and thus, after reordering the profiles, ||¢!||, = 1,

€ |4 = Spsq, and ¢7 = 0 for j # 1. Hence by Theorem 2.11 of [29], e~in f,, —
, an extremizer, (stron m LP.

1 i gly) in LP O

8. ANTIPODALLY CONCENTRATING PROFILES

In the next section, we will prove Theorems and which we recall
concern extremizing sequences along the parabolic scaling line ¢ = d+2 p’. In this
section, we prove a preliminary lemma that addresses the interactions between the
extensions of pairs of sequences of functions that concentrate antipodally, building
on the connection between spherical and parabolic extension previously discussed
in Lemma [6.1} This will lead naturally into the proofs of Propositions [L.3] and [1.4]
which are also contained in this section.

We recall that s )

6p—>q =27 (f(l“(‘”)?) ) 4,
where r := max{p, 2}.

Lemma 8.1. Let A\, \, 0, let ¢, ¢~ be LP functions on R, and define g, as in
(3.7). Then

im lgall, = (16¥12 +116712) (8.1)
i (1€gully < ByosaPoosa (167115 + 107112) 7, (8.2)

and equality in occurs if and only if either o7 = ¢~ = 0, or p > 2,
|ET(—z1,2")| = |5¢7(9:1,x’)|, and the ¢F are both extremizers for Ep.

Proof. The identity follows by parametrizing the upper and lower hemispheres,
rescaling, and applying the dominated convergence theorem.

Now we turn to inequality . Identity , our Lennna and Lemma 6.1
of [21] imply that

Tim [[Egally = lim (€% &t (—ar,a) — Epd™ (1,24

Q=

27 L
=(%/0 le?Eppt (—a1,2") — Epd (a1,2”)]|2dO)

1, (et 1 1
< 2} (o) " Pooa (167 124+ 167112)

with equality if and only if either |Ep¢T (—x1,2')| = |Epd™ (21,2')| a.e. and ¢T are
both extremizers for (1.2)), or ¢* = 0.
Iftp>2,

— i-1 i
(I8 12 + o™ 12)* < 2875 (6™ 1 + o~ ) *,
with equality if and only if ||¢F], = ¢~ |l,. If p < 2,

(6712 + 167 12)% < (615 + 167 [,
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with equality if and only if ¢ = 0 or ¢~ = 0. This proves (8.2), and the remark
following on cases of equality. ([

Adapting the construction of the g,, yields the lower bound on the extension
operator norm from Proposition

Proof of Proposition[I.3. If P,_,, is infinite, then S,_,, is as well, so in this case

there is nothing to prove. Let 1 < p < Q(d%jl) and set ¢ := %Qp' and suppose
Py_,4 < co. Further take ¢ € [0,1], and suppose that ¢* are chosen such that each
is an extremizer for &, ||¢T |, = t]|¢7 ||, and |Epdpt (—21,2")| = t|Epd~ (21, 27)|.

We may always construct such a pair. Indeed, an extremizer for the parabolic

extension problem, ¢, exists by |35], and after setting ¢~ (x) = t¢t(—z) a direct
computation shows that these conditions are satisfied. Let A, — 0. Analogously

to set
9 (@) 1= A PGE O N >0 X 2y =G0 g (83)
An argument similar to (8.I]), shows that, as ||¢* ||, = t||¢ ||, and ¢ is extremizing,
T llgally =6t (1 + )
=P €t (14 #7) 7.
Next we compute

. 1
lim [|Egally = lim ([|€pp™ (a1, ') -t Ep™ (21,2")])

27 ) 1
= (% / |Epgp™t (—2q,2") — tewé'qu*(a:l, x’)Hg d@) a
0
2 ) 1
— o lu( [ I+ eeras),
0
using that |E¢T (—z1,2)| = t|Ed™ (w1, 2.
Thus,
27 i -
I€galle _ »  (x o [L+te?|?d)e
= Ip—=gq 1 :
(1 0)’
Whence the maximum of this quantity for ¢ € [0,1] is a lower bound for S,_,,, the

operator norm of £. Note that [0, 1] is the natural domain for ¢ as it represents the
ratio of the smaller LP-norm to the larger, for two concentrating profiles. ]

Proposition is an immediate corollary of Proposition and Lemma [8.1]
which characterizes concentrating extremizing sequences when p > 2.

lim

=0 [|gnllp

An aside on a’s and f’s. Let S’Z,Hq denote the supremum over all antipodally
concentrating sequences g, (of the form (3.7))) of the quantity

Jim ([ €gnllo/llgnllp-

In this section, we have shown that o, Ppq < Spsq < BpsqPpq, for p and ¢
along the scaling line, that both inequalities are equalities when p > 2, and that the
second inequality is strict when 1 < p < 2. In the latter range, however, a bit more
information might lead to a sharper version of Theorem Namely, two questions
that seem interesting are whether S'p_>q might equal ap_,qFp—q, and which value of
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t maximizes the right hand side of (1.4). These questions may be modified slightly
into a more general framework, and we ask what is the value of the quantity

21 1/
(& J e F +Gl2do) "

1/
ogrGeLs  (|F|5+GIE) "

do maximizers exist, and, if so, what are their properties, in the case 1 < p < 2 < ¢7

Numerical computations (unpublished) due to Arthur DressenWall, an under-
graduate student at Macalester, lead us to ask whether the right hand side of
might be attained when ¢ is either 0 or 1, in which case we would have

- 2})—1,( F(q;il) )% 1
Qpq = Max ﬁI‘(%) ) )

but we are not quite bold enough to formulate this as a conjecture.

9. PROOF OF THEOREM [L.2

The proof of Theorem [1.2] follows a similar outline to the proof of Theorem [1.1]
with the added complication of handling the profiles from the case of concentration.

Proof of Theorem[1.2. Under the hypotheses of Theorem we let {f,} be an
LP-normalized extremizing sequence of (1.1)). Applying one stage of the frequency
decomposition in Theorem [3.1] (¢ la [28]),

(Spg)? = Timn €113 = lim [EFLS+ [ERL|S
< lim max{|EFLIS, IERLISTIIERNE + IERLE)  (9.1)
< T (S (IFLE + [ RY) = (Spo)".

Passing to a subsequence, we may assume that all of the norms in converge.
By reordering, we may assume that lim, . [|[EF}||, # 0. As all inequalities in
must be equalities, ER. — 0 in LY (first inequality), and F! is extremizing
and RL — 0 in LP (second inequality). In other words, f,, obeys the hypotheses of
either Theorem [3.3| or, after applying a sequence of rotations, of Theorem 3.4

If we are in the case of nonconcentration, described in the hypotheses of The-
orem we may follow the proof of Theorem from Section [7] to see that f,
converges in LP to an extremizer.

Thus, it remains to consider the case of antipodal concentration, in which, by
neglecting the role of rotations, we may apply Theorem[3.4] In the notation of that
theorem, we have

(Spsq)? =D _limsup €3 [ < (Sp-q)? D limsup||gs 2
j=1 n— 00 =1 n—00

= (Spsa) D (17115 + 117 I[5) 47

j=1 (9.2)

. . =5 . ~
< (Spg) sup(l67H 5+ 677 127 tim | £l
J

= (Spog) sup([ " FIIp + 1677 15) 7 < (Spsg)?- 1,
J
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and equality holds at each step in the above argument. In particular, after reorder-
ing,
l" 1B + o™ 11 = 1,
and ¢ =0, for j # 1.
Since

¢ = whelim AQ/Pem o CEVIZAEE A £ (b /T TNGER, M) X g 102y

weak lower semi-continuity of LP norms gives
- S+
lim inf || £ X 26,503 [ > 16" lp-
As the sets {+&; > 0} are disjoint,

P 1,+ 1,—
L=tliminf > [l faxgee,sop [ > 6115+ 6175 > 1.
o=, —

Therefore,
16" 1lp = lim || faxgze>oyllp-

Weak convergence plus convergence of norms implies strong convergence, i.e.,

)‘lriz/pe_m}‘(i 1_|)\n€|27)\n£)fn(:t 1— |)\n£|2’)\n§)x{‘§‘<%>\;1} N ¢§,i7 in LP,
which completes the proof of Theorem [1.2 O

We also have a bit more information. After inserting the equation lim ||g},[|% = 1,
equality in (9.2) becomes

1
Jim ([Egully = Spsqllgnlly = Sp—a (16715 + lo7115) (9:3)

Depending on the values of p, S, 4, and P,_,4, this equality has different impli-
cations.

Proof of Theorems|[L.5 and[1.6. If Sp_.q > Bp—gPp—sq, then and create a
contradiction, ruling out the possibility of concentration. In this case, extremizers
exist, and extremizing sequences possess convergent (modulo symmetries) subse-
quences.

Ifp >2and Sp—g = apsgPpoq = BposgPpoq, then implies that the equality
case of Lemma holds, which prescribes the manner of concentration.

If p < 2and Sy = ap—qPpq, then the construction from the proof of Propo-
sition gives a possible case of equality. O
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