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Abstract. In this article, we develop a linear profile decomposition for the
Lp ! Lq adjoint Fourier restriction operator associated to the sphere, valid
for exponent pairs p < q for which this operator is bounded. Such theorems
are new when p 6= 2. We apply these methods to prove new results regarding
the existence of extremizers and the behavior of extremizing sequences for
the spherical extension operator. Namely, assuming boundedness, extremizers
exist if q > max{p, d+2

d p0}, or if q = d+2
d p0 and the operator norm exceeds a

certain constant times the operator norm of the parabolic extension operator.

1. Introduction and statement of results

We consider the Fourier restriction and extension operators associated to the
unit sphere Sd ✓ Rd+1, which are given by

Rg(!) :=

Z

Rd+1

e
�ix!

g(x) dx, ! 2 Sd, Ef(x) =
Z

Sd
e
ix!

f(!) d�(!),

for g in the Schwartz class, S(Rd+1), and f 2 C
1(Sd). Here � denotes d-dimensional

Hausdor↵ measure on Sd. Despite decades of study, the precise conditions on expo-
nents p and q for which (say) E extends as a bounded linear operator from L

p(Sd)
to L

q(R1+d) are not fully resolved for any d � 2. (For an introductory discussion
of these operators and their history, one may see, e.g., [15].)

We do not seek to directly address such questions. Rather, we ask, under the as-
sumption of Lp ! L

q boundedness of E , what is the behavior of bounded sequences
{fn} whose extensions {Efn} do not converge to zero in norm. This will lead us to
develop a qualitative description of such sequences called a profile decomposition.
A particular scenario of interest is when the sequence {fn} is both L

p-normalized
(kfnkLp(Sd;d�) ⌘ 1) and extremizing (kEfnkLq(R1+d) ! kEkLp(Sd;d�)!Lq(R1+d)), in
which case our profile decompositions provide quite a bit of information (at least
when q > p).

In order to state our results, we will need some notation and terminology. Noting
that R and E are dual to one another, we denote their (common) operator norm
by

Sp!q := sup
kfkLp(Sd;d�)=1

kEfkLq(Rd+1) = sup
kgk

Lq0 (Rd+1)
=1

kRgkLp0 (Sd;d�),

where the suprema are taken over (e.g.) smooth, compactly supported functions.
These operator norms are conjectured to be finite whenever q � d+2

d p
0 and q >

2(d+1)
d both hold, and these conditions are known to be necessary.
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We are interested in the questions of whether there exist nonzero functions for
which equality holds in the restriction/extension inequalities

kRgkLp0 (Sd;d�)  Sp!qkgkLq0 (Rd+1), kEfkLq(Rd+1)  Sp!qkfkLp(Sd;d�), (1.1)

in cases where the operator norms are finite, and whether Lp-normalized extremiz-
ing sequences are convergent in some sense. We are further interested in connections
between these operators and the restriction/extension operators associated to the
paraboloid, P := {( 12 |⇠|

2
, ⇠) : ⇠ 2 Rd}:

RPg(⇠) :=
Z

Rd+1

e
�i( 1

2 |⇠|
2,⇠)x

g(x) dx, ⇠ 2 Rd
, EPf(x) :=

Z

Rd

e
ix( 1

2 |⇠|
2,⇠)

f(⇠) d⇠,

whose common operator norms we denote by

Pp!q := sup
kfkLp(Rd)=1

kEPfkLq(Rd+1) = sup
kgk

Lq0 (Rd+1)
=1

kRPgkLp0 (Rd). (1.2)

More generally, we extend the profile decomposition methods of Fanelli–Visciglia–
Vega [16] for the case p = 2, q >

d+2
d p

0 and Frank–Lieb–Sabin in [21] for the case
p = 2, q = d+2

d p
0, to the region p < q  d+2

d p
0, p 6= 1. (A more complete history is

given in the next section.)
Before stating our results, we set some basic terminology. Fix a pair of expo-

nents (p, q). A sequence (fn) in L
p(Sd) is L

p normalized if kfnkp = 1 for all n
and is extremizing if limn!1 kEfnkq/kfnkp = Sp!q. (We note that normalized
extremizing sequences exist for every exponent pair (p, q); whether they converge
and what are their properties are more subtle questions.)

Many of our results are partly conditional on progress toward the (adjoint) re-
striction conjecture for the sphere. We adopt the following convention, which will
make for cleaner statements later on: We say that the extension conjecture holds at
(p, q) 2 [1,1]2 if Sp!q < 1, if q  2(d+1)

d , or if q <
d+2
d p

0. (Of course, in the latter
two cases, the extension operator is known to be unbounded.) In the non-vacuous
range, the conjecture has been verified for all (p, q) when d = 1 [17, 41], and, in

higher dimensions, has been verified on a neighborhood of the region q � 2(d+3)
d+1 ,

q � d+2
d p

0 (see [1, 22, 23, 24, 36, 37, 40] for more precision regarding the current
status).

Our results are cleanest o↵ of the parabolic scaling line, wherein Hölder’s in-
equality rules out the possibility that extremizing sequences might concentrate.

Theorem 1.1. Assume that q > max{p, d+2
d p

0} and that the extension conjecture
holds on a neighborhood of (p, q). Then every L

p-normalized extremizing sequence
for the inequality kEfkq  Sp!qkfkp is precompact in L

p after the application of
an appropriate sequence of spacetime modulations. In particular, extremizers exist
for this inequality.

In the case p = 2, this result is due to Fanelli–Visciglia–Vega [16]. The hypothesis
q > p is likely an artifact of our proof, which uses a convexity argument. Indeed,
in certain special cases, such as when p = 1 and q is an even integer, one can use
other means to prove the existence of extremizers [8].

For inequalities with (p�1
, q

�1) on the parabolic scaling line {q = d+2
d p

0}, we
cannot (yet) rule out the possibility of concentration.

Theorem 1.2. Let 1 < p <
2(d+1)

d and q = d+2
d p

0, and assume that the extension
conjecture for the sphere holds on a neighborhood of (p, q). Let (fn) be an L

p(Sd)
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normalized extremizing sequence of (1.1). After passing to a subsequence, either:
(i) There exists a sequence {xn} ✓ Rd+1 such that eixn!fn(!) converges in L

p(Sd)
to an extremizer f of (1.1),
or
(ii) There exist sequences {xn} ✓ R1+d, orthogonal transformations {Rn} ✓ O(d),
positive numbers �n & 0, and functions �± 2 L

p(Rd) such that

lim
n!1

��eixn!fn(Rn!)� �
�d/p
n

X

±
�
±( !0

�n
)�{±!1> 1

2}
kp = 0. (1.3)

Two remarks are in order. First, this result is known in the case p = 2, [21].
(We note that Theorem 1.5 below is a more precise generalization of the results of
[21].) Second, when p = 1, existence of extremizers and noncompactness modulo
symmetries of normalized extremizing sequences (or even, sequences of normal-
ized extremizers) are both elementary to prove, as any nonnegative L

1 function is
extremal.

We say that (along a subsequence) (fn) converges modulo the modulation sym-
metry in Conclusion (i) and that (fn) concentrates antipodally and converges mod-
ulo translations, dilations (a nonsymmetry), and rotations in Conclusion (ii).

We can improve upon Theorem 1.2 by estimating the operator norm in the case
of concentration, generalizing the main results of [21] and [14] (therein carried out
in the p = 2 case). This will require some further notation.

For 1  p < q = d+2
d p

0, we define

↵p!q := max
t2[0,1]

k1 + te
i✓kLq([0,2⇡],d✓/2⇡)

(1 + tp)1/p
. (1.4)

The parameter t will arise as the ratio between the norms of the extensions of two
antipodally concentrating profiles. Considering such pairs will lead us to a lower
bound for Sp!q.

Proposition 1.3. Let 1  p <
2(d+1)

d and set q := d+2
d p

0. Then

Sp!q � ↵p!qPp!q. (1.5)

The quantity

�p!q := 2
1
r0

 
�( q+1

2 )
p
⇡�( q+2

2 )

! 1
q

, r := max{p, 2},

seems somewhat easier to understand than ↵p!q, and we note the following rela-
tionship between the two.

Proposition 1.4. For p � 2, ↵p!q = �p!q; while for p < 2, ↵p!q < �p!q.

The transition at p = 2 in Proposition 1.4 is connected with a bifurcation of our
results along the parabolic scaling line into the cases 1 < p < 2 and 2 < p <

2(d+1)
d .

We begin with the latter case, in which our results are stronger.

Theorem 1.5. Let 2  p <
2(d+1)

d and q = d+2
d p

0, and assume that the extension
conjecture for the sphere holds on a neighborhood of (p, q). If Sp!q > �p!qPp!q,
then extremizers exist for the extension operator in (1.1) and all normalized ex-
tremizing sequences possess subsequences that converge in L

p, after modulation.
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Otherwise, Sp!q = �p!qPp!q, and concentrating, extremizing sequences (fn) ex-
ist; after passing to a subsequence and normalizing, they must obey (1.3), for some
�
± extremal for EP : Lp(Rd) ! L

q(Rd+1) and obeying

|E�+(x1, x
0)| = |E��(�x1, x

0)|.

When p < 2 the gap between ↵p!q and �p!q seen in Proposition 1.4 leaves
some room for improvement in the following theorem, as discussed at the end of
Section 8. (We note that in subsequent work, [5], a di↵erent approach was taken for
restriction to odd monomial curves, leading to a partial analogue of Theorem 1.5
that holds in the full range of admissible p.)

Theorem 1.6. Let 1 < p < 2 and q = d+2
d p

0, and assume that the extension con-
jecture for the sphere holds on a neighborhood of (p, q). If Sp!q � �p!qPp!q then
extremizers exist for the extension operator in (1.1) and all normalized extremizing
sequences possess subsequences that converge in L

p, modulo spatial translations of
the extension. If Sp!q = ↵p!qPp!q, �± is extremal for (1.2), and

|E�+(x1, x
0)| = t|E��(�x1, x

0)|, x 2 R1+d
,

where t is an argument of the maximum on the right hand side of (1.4), then any
sequence (fn) obeying (1.3) is extremizing.

Inequality (1.5) is known to hold with strict inequality for the case p = 2 in
dimensions d = 1, 2, and is conjectured to be a strict inequality for p = 2 in all
dimensions (see [18], [19], [21], and [25]). Since both sides of (1.5) are continuous
in p along the line q = d+2

d p
0 (for the operator norms, this follows from complex

interpolation), the inequality continues to be strict in a small neighborhood of
p = 2, allowing a modest extension of the range of p for which extremizers were
previously known to exist for the L

p(Sd) ! L
d+2
d p0

(R1+d) extension problem.

Corollary 1.7. In dimensions d = 1, 2, for |p�2| su�ciently small and q = d+2
d p

0,
extremizers exist for the extension operator in (1.1), and extremizing sequences are
precompact modulo symmetries.

If true, the conjecture that the extremizers of the Stein–Tomas inequality for the
paraboloid are Gaussians in all dimensions would imply that Corollary 1.7 holds in
all dimensions [21].

The question of what are these extremizers is, of course, extremely interesting,
but it is beyond the scope of this article. In [13], Christ–Quilodrán proved that
Gaussian functions are not extremal for (1.2) (unless, possibly, p = 2), by proving
that Gaussians do not satisfy the corresponding Euler–Lagrange equation unless
p = 2. In the case of the sphere, however, symmetry makes it elementary to verify
that constants do satisfy the analogous Euler–Lagrange equations for all (p, q), as
was noted in [13], but this is insu�cient to verify that constants are extremizers.

When p = 2, Theorems 1.2 and 1.5, Proposition 1.3, and Corollary 1.7 are due
to Frank–Lieb–Sabin, [21].

As can be seen from the comparison with prior results, the main advantage of
our approach is that it allows us to consider restriction inequalities with p 6= 2, for
which the loss of the Hilbert space structure and Plancherel substantially reduces
our available tools [32]. We achieve our results by adapting the approach laid out
in [35], wherein it was proved that all valid, nonendpoint parabolic extension esti-
mates possess extremizers and have precompact (modulo symmetries) extremizing
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sequences. The major di↵erence between the spherical case and the parabolic one is
the defect in compactness due to the lack of a scaling symmetry. In particular, from
the perspective of a concentrating sequence, the sphere begins to resemble a rotated
paraboloid. In this spirit, we treat scaling as an almost-symmetry, analogously with
prior works such as [21, 26]. Relative to [26], the existence of distinct points on the
sphere with parallel normal vectors presents an additional complication, which we
address by adapting the approach of [21].

1
2

1
p

1
q

1

0 1

Figure 1. The extension operator is conjectured to be bounded
in the green quadrilateral. We consider the subset of the darker
green triangle on which the adjoint restriction conjecture holds,
including the parabolic scaling line on the right, but excluding the
diagonal p = q on the left. We have indicated the p = 2 case,
which featured prominently in prior work, with a dotted line.

Outline of paper. In the next section, we will give an in-depth overview of some
of the recent history of related questions, placing our work in context. Our strongest
result, from which the others all follow, is an L

p-profile decomposition for bounded
sequences on the sphere with nonnegligible extensions. This result is somewhat
complex, and will occupy three theorems in Section 3. The first of these three
results gives a frequency decomposition. Roughly, if {fn} is bounded in L

p(Sd)
and {Efn} does not tend to zero, then (along a subsequence) each fn decomposes
as a finite sum of pieces with good frequency localization properties, plus a small
error; this result is proved in Section 4, with bilinear restriction as a primary tool.
Though the summands arising in the first decomposition are bounded by sequences
that are (after a rotation) either precompact in L

p(Sd) or correspond to sequences
precompact in L

p(Rd) (after scaling), they are not themselves precompact, as their
extensions may not be well-localized in space. The second profile decomposition
establishes good spatial localization for those sequences that are (nearly) pointwise
bounded (i.e., non-concentrating), and is proved in Section 5. The third and fi-
nal profile decomposition establishes good spatial localization (after rescaling) for
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concentrating sequences, and is proved in Section 6. In Section 7, we prove Theo-
rem 1.1, that extremizers exist for exponent pairs p < q lying o↵ of the parabolic
scaling line q = d+2

d p
0. Section 8 provides an analysis of the behavior of antipodally

concentrating profiles, which is then applied in Section 9 to deduce properties of
concentrating extremizing sequences (supposing that they exist).

Notation. We will use throughout the standard notation A . B to mean A  CB

for C an admissible constant that will be allowed to change from line to line. Ad-
missible constants may depend on the dimension d, the exponents p, q, and (in cases
where our results are conditional) on bounds for the spherical restriction/extension
operators for exponents in a small neighborhood of p, q. Occasionally we will dec-
orate the ‘.’ symbol with subscripts to indicate additional dependencies.

Though we will use Lebesgue norms on three di↵erent spaces (the sphere, Rd+1,
and Rd); when the meaning is clear and space is limited, we will abbreviate these
norms by using only the exponent as a subscript.

Acknowledgements. The authors are grateful to Arthur DressenWall for sharing
some of his findings regarding the quantity ↵p!q. The second author was supported
in part by NSF DMS-1653264 and DMS-2246906, and the Wisconsin Alumni Re-
search Foundation while working on this project.

2. Prior results

An excellent survey on sharp Fourier restriction results is given in [20]. As this
is an active area, we highlight a few more recent results as well as the prior results
most relevant to our analysis. For the sake of completeness, we will also state and
prove an elementary result that we have not been able to find written elsewhere.

Existence results for extremizers of Lp-Lq inequalities for the sphere have largely1

involved one or both of the hypotheses that p = 2 or q is an even integer. These
cases are special because of the Hilbert space structure available in p = 2, on
the one hand, and an explicit formula for the L

2k norm of spherical extensions as
the L

2 norm of a k-fold convolution, on the other. In addition to the previously
discussed results of [21] when p = 2 and q = d+2

d p
0, existence of extremizers has

been established in the cases that p = 2, q = 4, d = 2 [14]; p = 2, q >
d+2
d p

0, d � 1
[16]; p = 2, q = 6, d = 1 [33]; p � 2, q = 4, d 2 {2, 3, 4, 5, 6}; p � 4, q = 4, d � 7;
p � q, q = 2k, q � 6, d � 1 (the last three results are all in [8]). We note that
the p � q condition in [8] includes p = 1 and is precisely the reverse of our q > p

condition.
In some of these cases extremizers are known to be modulations of constants.

Namely, when p = 2, q = 4, and d = 2, this result is due to [19]; for p � 2, q = 4,
and d 2 {2, 3, 4, 5, 6}, p � 4, q = 4, and d � 7, p � q, q = 2k, q � 6, and d � 1,
[8]; and for p = 2, q = 2k, when d 2 {2, 3, 4, 5, 6} [31]. Stability of these results is
investigated in [9] where they show that in d 2 {2, 3, 4, 5, 6}, for p = 2, when L

4(Rd)
is replaced by a weighted L

4 with a radial weight which is a small perturbation of
the unweighted case, the only extremizers are constants.

Our results build on the profile decomposition approach of [16] (and, implicitly,
[21]), extending these methods to address the absence of Hilbert space structure

1A partial exception is [10] in which p = 2 and Lq(Rd+1) is replaced by the mixed norm space
Lq
radL

2
ang(Rd+1), and the analysis is based upon a careful study of Bessel functions.
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when p 6= 2. The methods for this adaptation originate in the study of sharp re-
striction for non-compact manifolds, specifically [35], which proves that all valid,
nonendpoint parabolic extension estimates possess extremizers and have precom-
pact (modulo symmetries) extremizing sequences. The ideas are further developed
in [4], [38], and [39] which consider the precompactness of extremizing sequences
for adjoint Fourier restriction to other non-compact manifolds. Recently, L2 based
concentration compactness methods have also been used to investigate convergence
of extremizing sequences on the hyperbola in [11] and [12].

Finally, for completeness, we prove an elementary result, which is surely known
to experts, but which we haven’t found in the literature.

Proposition 2.1. For all 1  p  1, nonzero modulated constants, e
ix0!� are

maximizers of the L
p ! L

1 extension inequality. When p > 1, such functions
are the unique maximizers. When 1 < p < 1, after possible modulation and
multiplication by unimodular constants, every normalized extremizing sequence in

L
p converges in L

p to the constant function �p := �(Sd)�
1
p .

Proof. Su�ciency follows from Hölder’s inequality,

kEfkL1(Rd+1)  kfkL1(Sd)  �(Sd)
1
p0 kfkLp(Sd), (2.1)

and for all p, equality holds for the modulated constants. For necessity of the
constants, we observe that for all p the first inequality in (2.1) is equality if and
only if ei✓eix0!f is nonnegative for some ✓, x0, while for p > 1, the second inequality
is equality if and only if |f | is constant.

Finally, let 1 < p < 1 and let {fn} be a normalized extremizing sequence in
L
p(Sd). By modulating and multiplying the fn by unimodular constants, we may

assume that Efn(0) = kEfnkL1(Rd+1) for all n. It su�ces to prove that every
subsequence of {fn} has a further subsequence convergent to �p. Therefore, since
{fn} was arbitrary, it su�ces, by Banach–Alaoglu, to prove that fn ! �p in L

p(Sd),
under the additional hypothesis that fn converges weakly to some f 2 L

p(Sd).
By construction and our above computation of the operator norm,

Ef(0) = lim Efn(0) = lim kEfnkL1(Rd+1) = kEkLp(Sd)!L1(Rd+1) = �(Sd)
1
p0 .

Since kfkLp(Sd)  1, while kEfkL1(Rd+1) � kEkLp!L1 , the uniqueness portion
of the proposition (already proved) implies that f ⌘ �p. Since fn * �p and
kfnkLp(Sd) ⌘ 1 = k�pkLp(Sd), Theorem 2.11 of [29] implies that fn ! �p in L

p(Sd).
⇤

Thus our setting introduces some key di↵erences relative to what has come be-
fore. Namely, as opposed to the vast majority of published results, we impose very
few conditions on (p, q), requiring only that q > p, Sp!q < 1, and that the exten-
sion conjecture is valid on a neighborhood of (p, q). Further, due to compactness
of the sphere, we are able to consider an even wider range of exponent pairs than
[35] (which was limited to the scaling line). Additionally, as already observed in
[21], the sphere lacks some simplifications available for other surfaces (e.g. the pa-
raboloid or hyperboloid), since it lacks a scaling symmetry and possesses antipodal
points; consideration of these features without the condition p = 2 presents some
new complications. Finally, our results go further than those of [4, 35, 38, 39] by
establishing a full profile decomposition for bounded L

p sequences, rather than ex-
clusively focusing on the extremal case. In particular, one may apply the profile
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decomposition to (e.g.) a norm-one sequence of functions whose extensions attain
at least half the operator norm to deduce that, after passing to a subsequence, the
terms can be decomposed into a structured part, composed of a few precompact
(modulo symmetries), asymptotically orthogonal pieces responsible for most of the
extension, and a random part, whose extension is small.

3. A weak L
p
profile decomposition

In this section, we will introduce our main tool, a weak L
p profile decomposi-

tion. A profile decomposition associated to an operator T : X ! Y is a means of
decomposing bounded sequences in X as the sum of a structured part, which has
good compactness properties modulo symmetries, and a “random” part, which is
small after an application of T . The method was introduced by Lions [30] and has
found extensive application in PDE. For Fourier extension operators, the L

2-based
theory of profile decompositions is comparatively well-developed, both because of
the role that L

2-based inequalities play in the study of dispersive equations and
also because more tools, namely, Plancherel and the Hilbert space structure, are
available. In particular, all of the essential ingredients for the L

2 profile decompo-
sition are given in [21], though the full profile decomposition was never explicitly
stated in that article.

In [35], a profile decomposition of extremizing, frequency localized L
p sequences

was used to prove that the extension operator associated to the paraboloid possesses
extremizers. Here, we give a more quantitative result, providing a decomposition of
more general sequences. Our profile decomposition is weak in the sense that it gives
poor control over the remainder terms, which, despite having small extension, may
blow up in L

p. This blowup of the Lp norm results from our use of weak limits, and
does not a↵ect the L

2 theory because of elementary Hilbert space manipulations.
(When we are not in a Hilbert space, subtracting a weak limit from a sequence
does not necessarily decrease the limit of the norms [32].) An alternative, stronger
profile decomposition for Lp sequences and operators satisfying certain conditions
is developed in [34]; it is based on �-limits, rather than weak limits. A significant
advantage of using �-limits, rather than weak limits, is that the remainder terms
in the � profile decomposition are bounded in L

p, in addition to having small
extensions. A disadvantage is that �-limits do not seem to yield su�ciently sharp
inequalities to control the number of profiles of an extremizing sequence and thereby
prove the existence of extremizers. (I.e., we will rely on inequalities involving the
relation ‘,’ rather than ‘..’)

Our results include the possible case of concentration at antipodal points. For
this reason, it is convenient to use the real projective space RPd = Sd/{! ⇠ �!},
whose elements we denote by [!] := {!,�!}, ! 2 Sd. We observe that

dist([!], [!0]) = min{|! � !
0|, |! + !

0|}.
To produce statements that are somewhat easier to parse, we have broken our

profile decomposition into three parts. We begin with a decomposition of the
frequency space Sd, distinguishing between the critical and subcritical regime.

Theorem 3.1 (Frequency decomposition). Let 1 < p < q = d+2
d p

0, and assume
that the restriction conjecture for E holds on a neighborhood of (p, q). Let {fn} be a
bounded sequence in L

p(Sd). After passing to a subsequence, there exist {�jn}j,n2N ✓
(0, 1], {[!j

n]}j,n2N ✓ RPd, and a sequence of decompositions fn =
PJ

j=1 F
j
n + R

J
n,
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J 2 N, such that:
(i) For each j, either �jn ! 0, or �jn ⌘ 1.

(ii) For j 6= j
0, either | log �j

n

�j0
n

| ! 1 or �jn ⌘ �
j0
n , and, in the latter case, if �jn ! 0,

then (�jn)
�1 dist([!j

n], [!
j0
n ]) ! 1.

(iii) For each n, J 2 N, kfnkpLp(Sd) =
PJ

j=1 kF j
nk

p
Lp(Sd) + kRJ

nk
p
Lp(Sd),

(iv) For all J 2 N, limn!1 kEfnkqq �
PJ

j=1 kEF j
nkqq � kERJ

nkqq = 0,

(v) The remainders have small extension: limJ!1 lim supn!1 kERJ
nkLq(Rd+1) = 0

(vi) The F
j
n are adapted to antipodal caps of radius �jn with centers on [!j

n] in the
sense that

lim
M!1

lim sup
n!1

sup
E✓Ej,M

n

kEF j
n�EkLq(Rd+1) = 0, where

E
j,M
n := {|F j

n| > M(�jn)
�d/p} [ {dist(!, [!j

n]) > M�
j
n}.

We observe that without (vi), the result follows trivially by taking F
1
n ⌘ fn.

In the subcritical regime q >
d+2
d p

0, the frequency “decomposition” is much
simpler (and an elementary consequence of Hölder’s inequality, as we will see).

Proposition 3.2. Let q > max{d+2
d p

0
,
2(d+1)

d }, and assume that the restriction
conjecture for E holds on a neighborhood of (p, q). Let {fn} be a bounded sequence
in L

p(Sd). Then if EM
n := {|fn| > M}, then

lim
M!1

sup
n

sup
E✓EM

n

kEfn�EkLq(Rd+1) = 0.

Our next two results provide a spatial decomposition of functions obeying the
frequency localization property described in part (vi) of Theorem 3.1 (and the
conclusion of Proposition 3.2), in the cases of nonconcentration and antipodal con-
centration, respectively. In both, we will use the notation

p̃ := max{p, p0}.

Theorem 3.3 (Scale 1 spatial decomposition). Let 1 < p < q < 1 with q �
d+2
d p

0 and q >
2(d+1)

d , and assume that the restriction conjecture for E holds on
a neighborhood of (p, q). Let {fn} be a bounded sequence in L

p(Sd) satisfying the
condition

lim
M!1

lim sup
n!1

kEfn�{|fn|>M}kLq(Rd+1) = 0.

After passing to a subsequence, there exist {xj
n}j,n2N ✓ Rd+1 obeying

lim
n!1

|xj
n � x

j0

n | = 1, for j 6= j
0
, (3.1)

and weak limits, �j = wk-lim e
�ixj

n!fn, such that for J 2 N,
�X

j

k�jkp̃Lp(Sd)
� 1

p̃  lim inf kfnkLp(Sd),

lim sup k
JX

j=1

e
ixj

n!�
jkLp(Sd) 

� JX

j=1

k�jkp̃
0

Lp(Sd)
� 1

p̃0 ,

(3.2)
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and the remainders r
J
n := fn �

PJ
j=1 e

ixj
n!�j satisfy

lim
n!1

kEfnkqLq(Rd+1) �
JX

j=1

kE�jkqLq(Rd+1) � kErJnk
q
Lq(Rd+1) = 0, J 2 N, (3.3)

lim
J!1

lim sup
n!1

kErJnkLq(Rd+1) = 0. (3.4)

In what follows, we write ! = (!1,!
0).

Theorem 3.4 (Large scale spatial decomposition). Let 1 < p <
2(d+1)

d and q =
d+2
d p

0. Assume that the restriction conjecture for E holds on a neighborhood of
(p, q). Let {fn} ⇢ L

p(Sd) be a bounded sequence and let �n & 0. Assume that

lim
M!1

lim sup
n!1

sup
E✓EM

n

kEfn�EkLq(Rd+1) = 0, where

E
M
n := {|fn| > M(�n)

�d/p} [ {dist(!, [e1]) > M�n}
(3.5)

After passing to a subsequence, there exist {xj
n}j,n2N ⇢ Rd+1 with

lim
n!1

�
�
2
n|(xj

n � x
j0

n )1|+ �n|(xj
n � x

j0

n )
0|
�
= 1, for j 6= j

0
,

and weak limits �j,• 2 L
p(Rd), • = +,�, given by

�
j,± = wk-lim�

d/p
n e

�ixj
n(±

p
1�|�n⇠|2,�n⇠)fn(±

p
1� |�n⇠|2,�n⇠)�{|⇠|< 1

2�
�1
n }, (3.6)

such that the following conclusions hold. Setting

g
j,±
n (!) := �

�d/p
n �

j,±(��1
n !

0)�{±!1>0}�{|!0|< 1
2}
, g

j
n :=

X

±
g
j,±
n , (3.7)

and

r
J
n := fn �

JX

j=1

e
ixj

n!g
j
n,

then,

(i) limn!1 kEgjn �
P

± �
d+2
q

n e
±ix1EP�j,±(⌥�2nx1,�nx

0)kLq(Rd+1) = 0.

(ii)
⇥P

±(
P

j k�j,±k
p̃
Lp(Rd)

�p/p̃⇤1/p̃  lim inf kfnkLp(Sd),

(iii) lim supn!1 k
PJ

j=1 e
ixj

n!gjnkLp(Sd) 
⇥P

±
�P

j k�j,±k
p̃0

Lp(Rd)

�p/p̃0⇤1/p̃0

, J 2 N,
(iv) limn!1 kEfnkqLq(Rd+1) �

PJ
j=1 kEgjnk

q
Lq(Rd+1) � kErJnk

q
Lq(Rd+1) = 0, J 2 N

(v) limJ!1 lim supn!1 kErJnkLq(Rd+1) = 0.

4. Proof of the frequency decomposition

In this section, we will prove Theorem 3.1 and Proposition 3.2, which decompose
the functions from bounded sequences into pieces with good frequency localization.

We begin with the essentially elementary proof of Proposition 3.2, in which (p, q)
lies o↵ of the parabolic scaling line.

Proof of Proposition 3.2. By assumption, E extends as a bounded operator from
L
r(Sd) to L

s(Rd+1) for (r, s) in a neighborhood of (p, q). In particular, E maps
L
r(Sd) into L

q(Rd+1) for some r < p. For f 2 L
p(Sd), M > 0, and E ✓ E

M =
{|f | > M} which is a measurable set,

kE(f�E)kLq(Rd+1) . kf�EkLr(Sd)  M
�( p

r�1)kfk
p
r

Lp(Sd).
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Hence for a bounded sequence {fn}, the stated conclusion holds. ⇤

The frequency localization is more involved for exponents on the scaling line.
The heart of the argument is the bilinear extension theorem of Tao [36] and the
bilinear-to-linear argument of Tao–Vargas–Vega [37], with inspiration from [3, 6, 7].

Lemma 4.1 ([36]). Let 1 < p <
2(d+1)

d and q = d+2
d p

0, and assume that the
spherical extension conjecture holds on a neighborhood of (p, q). Then there exists
s < p such that for all (s̄, q̄) in a neighborhood of (s, q), all 0 < r ⌧ 1, and f 2 L

s̄,
we have the bilinear inequality

kE(f�⌧ )E(f�⌧ 0)k q̄
2
. r

�2d(
d+2
dq̄ � 1

s̄0 )kf�⌧kLs̄(Sd)kf�⌧ 0kLs̄(Sd), (4.1)

whenever ⌧, ⌧ 0 are defined by

⌧ := {⌫ 2 Sd : dist([⌫], [!]) ⌧ r}, ⌧
0 := {⌫ 2 Sd : dist([⌫], [!0]) ⌧ r},

for some !,!0 2 Sd with dist([!], [!0]) ⇠ r. The implicit constant is independent of
f, ⌧, ⌧

0
, r.

We give the details of the deduction from the remarks in Section 9 of [36].

Proof. Since exponents q̄ lying su�ciently close to q have similar properties (namely,
finiteness of Sp̄!q̄ when p̄ = ( 2q

d+2 )
0), it su�ces prove that such an estimate holds

at (s, q), for s lying in some open subinterval of (1, p).
After a rotation, we may assume that ! = e1. We decompose ⌧ = ⌧0 [ (�⌧0),

⌧
0 = ⌧

0
0 [ (�⌧ 00), where diam(⌧0) ⇠ diam(⌧ 00) ⌧ r ⇠ dist(⌧0, ⌧ 00). Using the triangle

inequality and taking conjugates, it su�ces to bound

kE(f�⌧0) E(f�⌧ 0
0
)k

L
q
2 (Rd+1)

.

By assumption, for q̄ su�ciently near q and p̄ := ( dq̄
d+2 )

0, we have the linear
estimate Sp̄!q̄ < 1. Hence by Cauchy–Schwarz, for any f1, f2:

kEf1Ef2k
L

q̄
2
 kEf1kLq̄kEf2kLq̄  S

2
p̄!q̄kf1kLp̄(Sd)kf2kLp̄(Sd). (4.2)

Further Tao’s bilinear estimate [36] gives that for any t >
2(d+3)
d+1 and any pair of

test functions f1, f2 supported on spherical caps whose width and separation are
comparable to some su�ciently small dimensional constant,

kEf1Ef2kL t
2 (Rd+1)

 Ckf1kL2(Sd)kf2kL2(Sd). (4.3)

Hence by interpolating (4.3) for some 2(d+3)
d+1 < t <

2(d+2)
d with (4.2), we see that

(4.1) holds in the case r ⇠ 1. Inequality (4.1) in the case r ⌧ 1 follows by parabolic
rescaling; we omit the details. ⇤

For technical reasons, we will use a slightly non-typical definition of caps. By a
(square) cap in Sd, we mean the intersection of Sd with with two axis-parallel cubes
having diameter at most 1

4 , with centers given by two antipodal points contained in
Sd. By the sidelength of a cap, we mean the sidelength of the corresponding cube.
For each j 2 {1, 2 . . . , d} and each k 2 N satisfying k � C for some su�ciently large
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C, we fix a non-overlapping covering Dk
j of the nonequatorial region Wj := {! 2

Sd : |!j | � 1
2
p
d
} by caps of sidelength 2�k. We denote various unions of the Dk

j by

Dk :=
d[

j=1

Dk
j , Dj :=

[

k�C

Dk
j , D :=

d[

j=1

Dj .

We say that two caps ⌧, ⌧ 0 2 Dk
j are related, ⌧ ⇠ ⌧

0, if 2�k+C  dist(⌧, ⌧ 0) 
2�k+2C . It is well-known (see [37, 3]) that when C is su�ciently large, all of
the possible sumsets ⌧ + ⌧

0 for related ⌧, ⌧ 0 2 Dk
, k � C are contained in finitely

overlapping parallelepipeds. (These parallelepipeds have much smaller volume than
the cubes whose intersection with Sd equals ⌧, ⌧ 0.) We use f⌧ to denote the product
f · �⌧ .

Lemma 4.2. Let q >
2(d+1)

d and p = ( qd
d+2 )

0, and assume that the spherical exten-
sion conjecture holds on a neighborhood of (p, q). There exists s < p such that for
su�ciently small 0 < ⌫ < 1,

kEfkq . (sup
⌧2D

|⌧ |�
1
p0 kEf⌧k1)⌫

�X

⌧2D
|⌧ |�2t(1�⌫)( 1

s�
1
p )kf⌧k2t(1�⌫)

Ls(Sd)
� 1

2t
. (4.4)

Here t := min{ q
2 , (

q
2 )

0}.

Proof. By Lemma 4.1, there exists s < p such that for su�ciently small 0 < ⌫ < 1
and q̄ := (1� ⌫)q, (4.1) holds with exponent q̄

2 on the left side and exponent s on
the right.

By the triangle inequality, there exists j such that kEfkq . kE(f�Wj )kq, and
after a rotation, we may assume that j = 1. Employing a Whitney decomposition
of W1 ⇥ W1 \ {(!,!) : ! 2 Sd}, followed by almost orthogonality (Lemma 6.1 of
[37]), Hölder’s inequality, and finally our bilinear extension estimate, the arithmetic-
geometric mean inequality, and some reindexing,

kE(f�W1)k2q = k
X

⌧⇠⌧ 02D1

c⌧,⌧ 0Ef⌧Ef⌧ 0k q
2
.
� X

⌧⇠⌧ 02D
kEf⌧Ef⌧ 0ktq

2

� 1
t


� X

⌧⇠⌧ 02D
(|⌧ |�

2
p0 kEf⌧Ef⌧ 0k1)t⌫(|⌧ |

2⌫
(1�⌫)p0 kEf⌧Ef⌧ 0k q̄

2
)t(1�⌫)

� 1
t

. (sup
⌧2D

|⌧ |�
1
p0 kEf⌧k1)2⌫

�X

⌧2D
(|⌧ |�( 1

s�
1
p )kf⌧kLs(Sd))

2t(1�⌫)
� 1

t
.

Here the c⌧,⌧ 0 are constants with |c⌧,⌧ 0 | . 1. ⇤
Lemma 4.3. Let q = d+2

d p
0
> p > 1, and assume that the spherical extension

conjecture holds on a neighborhood of (p, q). Then there exist c0 > 0 and 0 < ✓ < 1
such that

kEfkq . (sup
⌧2D

|⌧ |�
1
p0 kEf⌧k1)✓kfk1�✓

p . sup
⌧2D

sup
n�0

2�c0nkf⌧,nk✓pkfk1�✓
p , (4.5)

where f⌧,n equals f multiplied by the characteristic function of ⌧\{|f |  2nkfkp|⌧ |�
1
p }.

Proof. We will prove the superficially stronger bound wherein f⌧,n is replaced by
f
n
⌧ on the right hand side, where f

0
⌧ := f⌧,0 and f

n
⌧ := f⌧,n � f⌧,n�1 for n � 1. We

observe that for n � 1,

|fn
⌧ | ⇠ 2n|⌧ |�

1
p kfkLp(Sd)�{fn

⌧ 6=0}. (4.6)
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We begin by showing the second inequality in (4.5). We apply Hölder’s inequality
and decompose into the f

n
⌧ to see that

|⌧ |�
1
p0 kEf⌧k1 

1X

n=0

|⌧ |�
1
p0

Z

Sd
|fn

⌧ | d�. (4.7)

By Hölder’s inequality, |⌧ |�
1
p kf0

⌧ kL1 . kf0
⌧ kLp , and by basic arithmetic and (4.6),

|⌧ |�
1
p0

Z

Sd
|fn

⌧ | d� . 2�n(p�1)kfk�(p�1)
p kfn

⌧ kpp  2�n(p�1)kfn
⌧ kp.

Inserting these estimates into (4.7), using Hölder’s inequality, and summing a geo-
metric series,

|⌧ |�
1
p0 kEf⌧k1 . sup

n�0
2�c0nkfn

⌧ kp,

whenever c0 < p� 1.
Now we turn to the first inequality in (4.5). By (4.4), it su�ces to prove that

X

⌧2D
|⌧ |�2t(1�⌫)( 1

s�
1
p )kf⌧k2t(1�⌫)

s . kfk2t(1�⌫)
p .

Since 2t > p, for ⌫ su�ciently small, 2t(1 � ⌫) > p > s. Hence by the triangle
inequality and Hölder’s inequality,
X

⌧2D
|⌧ |�2t(1�⌫)( 1

s�
1
p )kf⌧k2t(1�⌫)

s .
X

⌧2D
|⌧ |�2t(1�⌫)( 1

2t(1�⌫)�
1
p )kf0

⌧ k
2t(1�⌫)
2t(1�⌫) (4.8)

+ (
X

⌧2D
|⌧ |�2t(1�⌫)( 1

s�
1
p )kf⌧ � f

0
⌧ kss)

2t(1�⌫)
s .

We recall that D =
S

k�0 Dk and that each Dk is a finitely overlapping cover of Sd
by caps ⌧ of measure 2�kd. Again using the fact that s < 2t(1� ⌫), we may bound
the right hand side of (4.8) by a constant multiple of

X

k

2�2kdt(1�⌫)( 1
p�

1
2t(1�⌫) )

Z

{|f |.2
kd
p kfkp}

|f |2t(1�⌫)
d�

+ (
X

k

2kds(
1
s�

1
p )
Z

{|f |&2
kd
p kfkp}

|f |sd�)
2t(1�⌫)

s .

By Fubini, the preceding sum equals
Z

|f |2t(1�⌫)
� X

k:|f |.2
kd
p kfkp

2�2kdt(1�⌫)( 1
p�

1
2t(1�⌫) )

�
d�

+

0

B@
Z

|f |s
� X

k:|f |&2
kd
p kfkp

2kds(
1
s�

1
p )
�
d�

1

CA

2t(1�⌫)
s

,

and we conclude by summing the geometric series. ⇤

Proof of Theorem 3.1 for q = d+2
d p

0. Multiplying by a constant and passing to a
subsequence, we may assume that kfnkp ! 1 and that kfnkp  2 for all n. We
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begin by decomposing the fn into chips with good frequency/Lp orthogonality (but
whose extensions are not orthogonal in space/Lq). Namely, we set r0n := fn and

fn =
JX

j=1

h
j
n + r

J
n , 0  J < 1,

with h
j
n = r

j�1
n �⌧j

n
�
{|fn|2j |⌧j

n|
� 1

p }
. Here ⌧ jn is a dyadic spherical cap, with center

⌫
j
n and diameter ⇢jn, that is chosen to maximize khj

nkp. An application of the
dominated convergence theorem shows that there is indeed such a maximal cap for
each j, n and that for each n,

P
j h

j
n converges to fn in L

p(Sd).
The next lemma is the key step to establish conclusion (vi) of the theorem.

Lemma 4.4. Under the hypotheses of Theorem 3.1, remainders in the decomposi-
tion above satisfy

lim
J!1

sup
n2N

sup
|RJ

n|=|rJn|�E

kERJ
nkq = 0,

where the supremum is taken over measurable functions R
J
n whose absolute value

equals a characteristic function times |rJn |.

Proof of Lemma 4.4. Let J � 1, n 2 N, and |RJ
n| = |rJn |�E . We claim that for any

dyadic spherical cap ⌧ and j < J ,

kRJ
n�⌧�{|RJ

n|2jkRJ
nkp|⌧ |

� 1
p }
kLp(Sd)  2

(J�j)
1
p
. (4.9)

Indeed, if (4.9) holds, then taking j ⇠ J
2 and applying Lemma 4.3 completes the

proof of the lemma.
Now we turn to (4.9). By the construction of each r

i
n from r

i�1
n , there exist

measurable sets E0
n ◆ · · · ◆ . . . ◆ E

J
n = E, such that |RJ

n| = |rin|�Ei
n
, i = 0, . . . , J .

We also recall that r0n = fn. We then have

|RJ
n|�⌧�{|RJ

n|2jkRJ
nkp|⌧ |

� 1
p }

 |ri�1
n |�⌧�{|fn|2ikfnkp|⌧ |

� 1
p }
, i = j, . . . , J + 1.

Since each ⌧
i
n is chosen to maximize khi

nkp, if (4.9) were to fail, we would also

have khi
nkp >

2

(J�j)
1
p

for i = j, . . . , J + 1, whence kfnkpp �
PJ+1

i=j khi
nkpp > 2, a

contradiction. This completes the proof of (4.9), and hence the lemma. ⇤

Our next step is to organize the chips into clumps, which also possess good
spatial orthogonality. After passing to a successively passing to a subsequence for
each j and then choosing a diagonal subsequence, we may assume the existence of
all of the limits arising below. We form a partition N =

S1
i=1 J i (the J i may be

empty for large i) so that j and j
0 lie in the same J i if and only if the conditions

limn!1
⇢j
n

⇢j0
n

2 (0,1) and {(⇢jn)�1 dist([⌫jn], [⌫
j0
n ])}n2N is bounded, both hold. Thus

for i 6= i
0, j 2 J i

, j
0 2 J i0 implies

lim
n!1

⇢j
n

⇢j0
n

2 {0,1}; or lim
n!1

⇢j
n

⇢j0
n

2 (0,1), and lim
n!1

(⇢jn)
�1 dist([⌫jn], [⌫

j
n]) = 1.

Let F i
n :=

P
j2J i h

j
n and R

I
n := fn �

PI
i=1 F

i
n; for each n, these sums converge

in L
p by the dominated convergence theorem. Passing to a further subsequence, we

may associate to each J i sequences {�in}, {[!i
n]} satisfying, for each i: �in ! 0 or
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�
i
n ⌘ 1, and [!i

n] ⌘ [e1] if �in ⌘ 1; and lim ⇢j
n

�i
n
2 (0,1), and (�in)

�1 dist([!i
n], [⌫

j
n])

is bounded, for j 2 J i.
Conditions (i-iii) of Theorem 3.1 are automatic, while (v-vi) are simple conse-

quences of the construction and Lemma 4.4. It remains to prove (iv), which asserts
that the extensions of the F

i
n have good L

q orthogonality.
We define

f
J
n := fn � r

J
n , F

i,J
n :=

X

j2J i,jJ

h
j
n, R

I,J
n := f

J
n �

IX

i=1

F
i,J
n .

By Lemma 4.4, for each I,

lim
n!1

kEfnkqq�
IX

i=1

kEF i
nkqq�kERI

nkqq = lim
J!1

lim
n!1

kEfJ
n kqq�

IX

i=1

kEF i,J
n kqq�kERI,J

n kqq,

so to prove (iv), it su�ces to prove that for all I and J ,

lim
n!1

kEfJ
n kqq �

IX

i=1

kEF i,J
n kqq � kERI,J

n kqq = 0.

The elementary inequality
�����|

IX

i=1

xi|q �
IX

i=1

|xi|q
�����  Cq,I

 
sup
i 6=j

|xi||xj |q�1

!
, q � 2,

Hölder’s inequality, boundedness of the kfnkp, and the triangle inequality imply
that�����kEf

J
n kqq �

IX

i=1

kEF i,J
n kqq � kERI,J

n kqq

�����  CI,J,q sup
i 6=i0,j2J i,j02J i0

kEhj
nEhj0

n k q
2
.

Thus it remains to prove that for i 6= i
0, j 2 J i, and j

0 2 J i0 ,

lim
n!1

kEhj
nEhj0

n k q
2
= 0. (4.10)

Suppose first that ⇢j
n

⇢j0
n

! 1. By assumption, there exist q0 < q < q1, p0 > p > p1

with
1
q = 1

2q0
+ 1

2q1
, qi =

d+2
d p

0
i,

such that E extends as a bounded linear operator from L
pi to L

qi , i = 0, 1. By
Hölder’s inequality, boundedness of E , and the support conditions and pointwise
boundedness of hj

n, h
j0
n ,

kEhj
nEhj0

n k q
2
 kEhj

nkq0kEhj0

n kq1 . khj
nkp0khj0

n kp1

. 2j+j0(⇢jn)
d
p0

� d
p (⇢j

0

n )
d
p1

� d
p = 2j+j0

�⇢j0
n

⇢j
n

� d
p1

� d
p ! 0.

By symmetry in j, j
0, it remains to consider the case when lim ⇢j

n

⇢j0
n

2 (0,1) and

limn!1(⇢jn)
�1 dist([⌫jn], [⌫

j0
n ]) = 1. Of course, this implies that ⇢jn, ⇢

j0
n ! 0. Set

rn = 1
100 dist([⌫

j
n], [⌫

j0
n ]). Then ⇢j

n
rn

! 0, and hence, for large n, ⌧ jn ✓ B([⌫jn], rn),

⌧
j0
n ✓ B([⌫j

0

n ], rn). By Lemma 4.1, for some s < p,

kEhj
nEhj0

n k q
2
. r

�( 2d
s � 2d

p )
n khj

nkskhj0

n ks 
�⇢j

n
rn

�d( 1
s�

1
p )
�⇢j0

n
rn

�d( 1
s�

1
p ) ! 0.
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We have thus established (4.10), completing the proof of (iv) in Theorem 3.1. ⇤

5. Scale one spatial decomposition: Proof of Theorem 3.3

In this section, we establish a finer decomposition for sequences that are (almost)
pointwise bounded, in the sense that

lim
M!1

lim sup
n!1

kEfn�{|fn|>M}kq = 0.

Lemma 5.1. If, under the hypotheses of Theorem 3.3, we have in addition that

lim sup
n!1

kfnkp  A < 1 and lim inf
n!1

kEfnkq � B > 0,

then there exists {xn} ✓ Rd+1 such that after passing to a subsequence,

e
�ixn!fn * �, weakly in L

p
, with kE�kq & B(BA )C . (5.1)

Furthermore, along this subsequence,

lim
n!1

kEfnkqq � kE(fn � e
ixn!�)kqq � kE�kqq = 0. (5.2)

The proof is simplest if we divide into two cases.

Proof when q >
d+2
d p

0. It follows from our hypotheses that the Efn are bounded,
continuous functions. After a modulation and multiplication by unimodular con-
stants, we may assume that Efn(0) = kEfnk1. Under this normalization, we will
prove (5.1) with xn ⌘ 0. After passing to a subsequence, there exists � 2 L

p such
that fn * �, weakly in L

p. Therefore

kE�k1 � |E�(0)| = lim |Efn(0)| = lim kEfnk1.

By hypothesis, there exists s < q such that E extends as a bounded linear operator
from L

p to L
s. By Hölder’s inequality and our hypotheses,

B  lim sup kEfnkq  lim sup kEfnk
1� s

q
s kEfnk

s
q
1 . A

1� s
q lim kEfnk

s
q
1.

Therefore kE�k1 & B(BA )
q
s�1. On the other hand, E� = (E�) ⇤ h whenever bh ⌘ 1

on Sd, so by Young’s inequality, kEfnk1 . kEfnkq, and (5.1) follows.
The final conclusion, (5.2), follows from the Brezis–Lieb lemma, since Ee�ixn!fn !

E� pointwise, by virtue of the weak convergence. ⇤
Proof when q = d+2

d p
0. In this argument, we will use the fact that a cap is the

intersection of a union of antipodal cubes with Sd. For ⌧ 2 D, we denote by Q⌧ a
union of two rather smaller (relative to the cubes) antipodal parallelepipeds whose
intersection with Sd also gives ⌧ , but whose volume is comparable to that of the

convex hull of ⌧ . More precisely, due to the curvature of the sphere, |Q⌧ | ⇠ |⌧ |
q
p0 .

Now let 0 < " <
B
2 be su�ciently small for later purposes. By hypothesis, there

exists M > 0 (over which we have no control) such that

lim sup
n!1

kE(fn�{|fn|>M})kq < ".

By (4.5) and our hypotheses,

B(BA )
1�✓
✓ . lim inf

n!1
sup
⌧n2D

|⌧n|�
1
p0 kE(fn�{|fn|M})⌧nk1.

By Hölder’s inequality, for each n, the above supremum may be taken over caps
whose volumes are bounded below by a constant depending on M . As there are
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only a finite number of such caps, after passing to a subsequence, there is a single
⌧M that realizes the supremum for all su�ciently large n. In other words,

B(BA )
1�✓
✓ . lim inf

n!1
|⌧M |�

1
p0 kE(fn�{|fn|<M})⌧M k1. (5.3)

We may assume, after modulation, that E(fn�{|fn|<M})⌧M (0) = kE(fn�{|fn|<M})⌧M k1.
Passing to a subsequence, the weak limits

�
g := wk-lim fn�{|fn|M}, �

b := wk-lim fn�{|fn|>M}

exist in L
p. In particular,

lim E(fn�{|fn|M})⌧M (x) = E(�g)⌧M (x), lim E(fn�{|fn|>M})(x) = E�b(x),

for all x 2 R1+d. By Fatou,

kE�bkq  lim inf
n!1

kE(fn�{|fn|>M})kq < ".

On the other hand, by Young’s inequality and q
0
> 1,

|⌧M |�
1
p0 kE�b⌧M k1  |⌧M |�

1
p0 k\�Q⌧M

kq0kE�bkq . kE�bkq.

Hence by the triangle inequality, (5.3), Young’s inequality, and q
0
> 1,

B(BA )
1�✓
✓ . |⌧M |�

1
p0 kE�g⌧M k1  |⌧M |�

1
p0 k\�Q⌧M

kq0kE�gkq . kE�gkq.

Setting � := �
g + �

b = wk-lim fn, the lower bound on the extension of �g and
upper bound on the extension of �b give

B(BA )
1�✓
✓ . kE�kq,

provided "⌧ B(BA )
1�✓
✓ .

The final inequality, (5.2), follows as above from the Brezis–Lieb lemma and
pointwise convergence Ee�ixn!fn ! E�. ⇤

In the special case p = 2, iteratively applying Lemma 5.1 and using elementary
Hilbert space identities yields the following L

2 profile decomposition.

Lemma 5.2. If q � 2(d+2)
d and {fn} is a bounded sequence in L

2(Sd) satisfying

lim
M!1

lim sup
n!1

kEfn�{|fn|>M}kq = 0, (5.4)

then, after passing to a subsequence, there exist {xj
n}j,n2N ✓ Rd+1 obeying

lim
n!1

|xj
n � x

j0

n | = 1, for j 6= j
0
, (5.5)

and weak limits �j = wk-limn!1 e
�ixj

n!fn 2 L
2, such that for every J 2 N,

lim
n!1

kfnk22 �
JX

j=1

k�jk22 � krJnk22 = 0 (5.6)

lim
n!1

kEfnkqq �
JX

j=1

kE�jkqq � kErJnkqq = 0, (5.7)

and, moreover,

lim
J!1

lim
n!1

kErJnkqq = 0. (5.8)
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We briefly sketch the proof of the lemma, which follows a well-known outline
(see, for instance, [27]). Only minor modifications to the familiar argument are
needed to use the condition (5.4).

Sketch proof of Lemma 5.2. We set r0n := fn. Given some r
J
n , we are done (setting

�
J 0

= 0 for J
0
> J) if limn!1 kErJnkq = 0. Otherwise, we apply Lemma 5.1,

which produces a nonzero weak limit �J+1 and sequence {xJ+1
n } ✓ Rd+1; we then

set r
J+1
n := r

J
n � e

ixJ+1
n !

�
J+1. If (5.5) failed for some j < j

0 but held with j
0

replaced by any j < i < j
0, then x

j
n � x

j0
n would converge along a subsequence,

and, after a bit of algebraic manipulation, we can deduce that �j
0
= 0. Thus (5.5)

holds. The hypothesis (5.4) continues to hold with r
J+1
n in place of fn, as a finite

number of Lp functions have been subtracted from the fn. Equation (5.6) follows
from basic Hilbert space manipulations, and (5.7) may be proved inductively using
Brézis–Lieb. Finally, (5.8) holds because (5.1) and (5.6) give a lower bound for
krJnk22 � krJ+1

n k22 whenever limn!1 kErJnkqq 6! 0. ⇤

For p 6= 2, Lp is not a Hilbert space, and the direct analogue of (5.6) may fail.
Instead, we will prove the L

p almost orthogonality estimates (3.2) by defining and
bounding a family of vector-valued operators. Fix a nonnegative, smooth, radial
function  on Rd+1 with compact support in the unit ball and

R
Rd  (⇠0, 0) d⇠0 = 1.

(Since  is radial, it thus has integral 1 on every hyperplane through the origin.)
For 0 < r  1, define  r(⇣) := r

�d
 (r�1

⇣). We define

(⇡r)
j
nf(!) :=

Z
 r(! � ⌫)e�ixj

n⌫f(⌫) d�(⌫), (⇧r)
J
nf := ((⇡r)

j
nf)

J
j=1.

We recall p̃ := max{p, p0}.

Lemma 5.3. Let 1 < p  1. Assume that the sequences {xj
n}j,n2N obey limn!1 |xj

n�
x
j0
n | = 1 for all j 6= j

0. Then the (⇧r)Jn map L
p boundedly into `p̃(Lp), with oper-

ator norms bounded uniformly in r, n. Moreover,

lim
r!1

lim
n!1

k(⇧r)
J
nkLp!`p̃(Lp) = 1. (5.9)

Finally, given sequences of functions fn =
PJ

j=1 e
ixj

n!�j + r
J
n , with {fn} bounded

in L
p, satisfying �j = wk-lim e

�ixj
n!fn, for each j 2 N, we have

lim
r!0

lim
n!1

k(⇡r)jnfn � �
jkLp = 0 (5.10)

lim
r!0

lim
n!1

k[(⇡r)jn]⇤�j � e
ixj

n!�
jkLp = 0. (5.11)

Proof of Lemma 5.3. We will be brief. Verification that the  r approximate the
identity is routine; boundedness of the (⇧r)Jn and the limit (5.11) immediately
follow. By our weak limit hypothesis on the �j and the dominated convergence
theorem (with constant dominating function), for each r,

(⇡r)
j
nfn(!) !

Z
 r(! � ⌫)�j(⌫) d�(⌫), in L

p, as n ! 1.

Equation (5.10) follows immediately.
We will verify the dual form of (5.9), namely, that

lim
r!0

lim
n!1

k[(⇧r)
J
n]

⇤k`p̃0 (Lp)!Lp ! 1, 1  p  1.
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For the convenience of the reader, we record

[(⇧r)
J
n]

⇤(�j)(⌫) =
JX

j=1

e
ixj

n⌫

Z
 r(⌫ � !)�j(!) d�(!).

That the limit of the operator norms is bounded below by 1 is elementary, as can be
seen by applying the [(⇧r)Jn]

⇤ to the vector-valued constant function (1, 0, . . . , 0).
In the cases p = 1,1, the upper bound is a direct consequence of the triangle
inequality, Hölder’s inequality, and

Z
 r(! � ⌫) d�(⌫) =

Z
 r(e1 � ⌫) d�(⌫) ! 1, for any ! 2 Sd.

By interpolation, it remains to verify the p = 2 case, for which it su�ces to prove
that k(⇧r)Jn[(⇧r)Jn]

⇤k`2(L2)!`2(L2) ! 1. We expand

k(⇧r)
J
n[(⇧r)

J
n]

⇤(�j)jJk2`2(L2) =
X

j

k
JX

k=1

Z
�
k(#)(Kr)

jk
n (#,!) d�(#)k2L2

!
,

where

(Kr)
jk
n (#,!) =

Z
 r(! � ⌫) r(⌫ � #)ei(�xj

n+xk
n)⌫d�(⌫).

Let

(Ar)
jk
n := k(Kr)

jk
n kL1

# L1
!
k(Kr)

jk
n kL1

! L1
#
.

When j 6= k and r > 0, (Kr)jkn ! 0 uniformly as n ! 1 by stationary phase
and |xj

n � x
k
n| ! 1, so the o↵-diagonal terms satisfy (Ar)jkn ! 0 as n ! 1. By

construction of  r, (Ar)jjn (which is independent of n) tends to 1 as r ! 0. By the
elementary inequality

|
JX

j=1

xj |2  (1 + ")x2
1 + C",J

JX

j=2

x
2
j

and Schur’s test,

k
JX

k=1

Z
�
k(#)(Kr)

jk
n (#,!) d�(#)k2L2

!
 (1 + ")(Ar)

jj
n k�jk22 + C",J

X

k 6=j

(Ar)
jk
n k�kk22,

and (5.9) follows. ⇤

Lemma 5.4. Under the hypotheses of Theorem 3.3, suppose that we are given
sequences {xj

n}j,n2N with |xj
n � x

j0
n | ! 1 for j 6= j

0 and {fn} such that the weak
limits

�
j := wk-lim e

�ixj
n!fn

exist. Define

r
J
n := fn �

JX

j=1

e
ixj

n!fn.

Then (3.2) and (3.3) both hold.
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Proof of Lemma 5.4. The inequalities in (3.2) follow directly from Lemma 5.3 and
the definition of the r

J
n . We will use the Brezis–Lieb lemma to prove (3.3). Set

r
0
n := fn. By hypothesis, for j 6= j

0, wk-lim e
i(xj

n�xj0
n )
�
j = 0. Therefore �j =

wk-lim e
�ixj

nr
j�1
n , for j � 1. Applying the extension, E(e�ixj

n!rj�1
n � �

j) ! 0,
pointwise, and so by the Brezis–Lieb lemma,

lim
n!1

kE(e�ixj
n!r

j�1
n )kqq � kE�jkqq � kE(e�ixj

n!r
j�1
n � �

j)kqq = 0.

Summing the preceding identity over j = 1, . . . , J and using r
j
n = r

j�1
n � e

ixj
n!�j

establishes (3.3). ⇤

With the above lemmas in place, we are now ready to complete the proof of
Theorem 3.3.

Proof of Theorem 3.3. We may assume that lim sup kfnkp = 1. When p = 2, the
conclusions of Lemma 5.2 are stronger than we need, so it su�ces to consider
pairs (p, q) meeting the hypotheses of our theorem in the case p 6= 2. In light of
Lemma 5.4, it su�ces to prove that there exist {xj

n}j,n2N obeying (3.1) such that
the resulting remainder terms rJn have small extension, i.e., that (3.4) holds.

Given M 2 N, we set f
M
n := fn�{|fn|M}. Let " > 0 and take M" su�ciently

large that

lim sup
n!1

kE(fn � f
M
n )kq < ",

when M � M".
The advantage of working with the truncation {fM

n } is that it forms a bounded
sequence in every Lebesgue space (albeit with a bad, M -dependent, bound), putting

us in a position to apply Lemma 5.2. To this end, set q1 := 2(d+2)
d and choose an

exponent pair (p0, q0) meeting the hypotheses on (p, q) from Theorem 3.3, as well
as the condition

( 1p ,
1
q ) = (1� ✓)( 1

p0
,

1
q0
) + ✓( 12 ,

1
q1
),

for some 0 < ✓ < 1.
By Lemma 5.2, after passage to subsequence (independent of M by standard

diagonalization arguments), there exist points {xM,j
n }j,n2N and weak limits �M,j

such that (5.6), (5.7), and (5.8) all hold, with the superscript M inserted where

appropriate. Since e�ixM,j
n !

f
M
n * �

M,j weakly in both L
p and in L

p0 , we may also
apply Lemma 5.4 with exponents (p, q) and (p0, q0). By (3.3),

lim sup
n!1

kErM,J
n kq0  lim sup

n!1
kEfM

n kq0 . lim sup
n!1

kfM
n kp0 .M 1,

for all M,J . Therefore, by Hölder’s inequality and (5.8),

lim
J!1

lim sup
n!1

kErM,J
n kq = 0, for all M . (5.12)

To conclude, we need to remove the dependence on M in (5.12). We begin by

showing that non-negligible profiles Eeixj,M
n !

�
j,M cannot wander around too much

as M varies.
After passing to a subsequence, we may assume that for any M, j and M

0
, j

0,
either limn!1 |xM,j

n � x
M 0,j0
n | = 1 or xM,j

n � x
M 0,j0
n converges in Rd+1, as n ! 1.

In fact, in the latter case, we may assume that xM,j
n ⌘ x

M 0,j0
n , simply by modulating

our �M,j as needed.
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Now, let C be a su�ciently large constant, and suppose that (after reordering
the �j,M and perhaps inserting some zero profiles) we had distinct sequences {xj

n},
1  j  J" := C"

�q such that xM,j
n ⌘ x

j
n for some M � M" with kE�M,jkq > 2".

By construction, |xj
n � x

j0
n | ! 1 whenever j 6= j

0. Passing to a subsequence, we

have weak limits e�ixj
n!fn * �

j , weakly in L
p, for each 1  j  J". By Fatou,

kE�j � E�M,jkq  lim sup
n!1

kEfn � EfM
n kq < ".

Therefore kE�jkq > ", 1  j  J". By Lemma 5.4 (namely, inequality (3.3)),

J""
q
<

J"X

j=1

kE�jkqq  lim
n!1

kEfnkqq . 1,

a contradiction. Thus, after reordering, xM,j
n ⌘ x

j
n whenever M � M", j  J" and

kE�M,jkq < ", whenever M � M" and j > J". (5.13)

Inequality (5.13) will give us uniform control on the extensions of the r
M,J"
n .

Recalling that p̃ = max{p, p0} < q, choose, for each M � M", some J",M su�ciently

large that kErM,J",M
n kq < "

q�p̃. We will show that kE(rM,J"
n � r

M,J",M
n )kq . "

q�p̃.
Noting that

r
M,J"
n � r

M,J",M
n =

X

J"<j<J",M

e
ixM,j

n !
�
M,j

,

we apply Lemma 5.4 and Hölder’s inequality to obtain

lim sup
n!1

��
X

J"<j<J",M

Eeix
M,j
n !

�
M,j
��
q


X

J"<j<J",M

kE�M,jkqq

 "
q�p̃

X

J"<j<J",M

kE�M,jkp̃q  "
q�p̃

A
p̃
p!q

X

J"<j<J",M

k�M,jkp̃p

 "
q�p̃

A
p̃
p!q lim sup kfnkp̃p . "q�p̃

.

It remains to transfer the bound kErM,J"
n kq . "q�p̃ to ErJ"

n . Let 1  j  J". By
Fatou and our assumption,

lim
M!1

kE(�j � �
M,j)kq  lim

M!1
lim sup
n!1

kE(fn � f
M
n )kq = 0.

Hence by the triangle inequality,

lim
M!1

kE(rJ"
n � r

M,J"
n )kq = 0,

and so we have the desired inequality kErJ"
n kq < ", completing the proof of Theo-

rem 3.3. ⇤

6. Large scale spatial decomposition: Proof of Theorem 3.4

We begin by recording the connection between the spherical and parabolic ex-
tension operators at small frequency scales.

Lemma 6.1. Let 1 < p <
2(d+1)

d and q = d+2
d p

0. Assume that the restriction
conjecture for E holds on a neighborhood of (p, q). Let �n & 0 and � 2 L

p(Rd).
Define

gn(!) := �
�d/p
n �(��1

n !
0)�{!1>0}�{|!0|< 1

2}
. (6.1)
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Then

lim
n!1

kEgn � �

d+2
q

n e
ix1EP�(��2nx1,�nx

0)kLq = 0. (6.2)

Lemma 6.1 is proved in the case p = 2 in [21]; we make the simple adaptation here
to the case of general p (for which we make no a priori assumption of boundedness
of EP) for the convenience of the reader.

Proof of Lemma 6.1. It su�ces to prove that

lim
n!1

k��
d+2
q

n e
i��2

n x1Egn(���2
n x1,�

�1
n x

0)� EP�kLq = 0,

and we assume initially that � 2 C
1
cpct; therefore, the L

q norms in the above limit
are finite for each n by stationary phase. Set

Gn(x) := �
� d+2

q
n e

i��2
n x1Egn(���2

n x1,�
�1
n x

0).

After a change of variables, we see that for su�ciently large n,

Gn(x) =

Z
e
i(�x1,x

0)(��2
n [

p
1�|�n⇠|2�1],⇠)

�(⇠) d⇠.

Examining the phase function, Gn ! EP�, pointwise. Moreover, by stationary
phase, |Gn(x)| .� hxi� d

2 . Therefore by dominated convergence, Gn ! E� in L
q.

From our assumption, having proved the lemma in the case of C1
cpct functions

implies, in addition, that kEP�kq . k�kp for � 2 C
1
cpct. Therefore EP extends as a

bounded linear operator from L
p to L

q, and we may conclude that the lemma also
holds for general Lp functions by standard approximation arguments. ⇤

Next, we isolate a nonzero weak limit in bounded, concentrating sequences with
nonnegligible extensions.

Lemma 6.2. Let 1 < p <
2(d+1)

d and q = d+2
d p

0. Assume that the restriction
conjecture for E holds on a neighborhood of (p, q). Let �n & 0 and assume that

lim
M!1

lim sup
n!1

kEfn�{|fn|>M��d/p
n }[{|!�e1|>M�n}

kq = 0, (6.3)

for some sequence {fn} ✓ L
p(Sd), with lim sup kfnkp  A and lim inf kEfnkq �

B > 0. After passing to a subsequence, there exists {xn} ✓ Rd+1 such that

�
d/p
n e

�ixn(
p

1�|�n⇠|2,�n⇠)fn(
p

1� |�n⇠|2,�n⇠)�{|⇠|< 1
2�

�1
n } * �,

weakly in L
p(Rd), with kEP�kq & B(BA )C .

Proof of Lemma 6.2. Given M 2 N, we set

f
>M
n := fn�{|fn|>M��d/p

n }[{|!�e1|>M�n}
, and f

M
n := fn � f

>M
n .

Let " > 0 su�ciently small for later purposes. By hypothesis, there exists M :=
M" 2 N such that, after passing to a subsequence,

kEf>M
n kq < ", for all n. (6.4)

As long as " < B
2 , after passing to a further subsequence,

kfM
n kp  A, and kEfM

n kq � B
2 , for all n.

By (4.5), there exists a sequence {⌧n} ✓ D such that for all n,

B(BA )
1�✓
✓ . |⌧n|�

1
p0 kE(fM

n )⌧nk1.
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We will show that after rescaling by �n, the ⌧n have a convergent subsequence.
On the one hand, by (6.4), for " ⌧ B(BA )

1�✓
✓ , each ⌧n must intersect {|⇠ � e1| <

M�n}. On the other hand, by Hölder’s inequality,

|⌧n|�
1
p0 kE(fM

n )⌧nk1  |⌧n|�
1
p0 kfM

n k1| supp fM
n |

.M min{|⌧n|�1/p0
�
d/p0

n , |⌧n|1/p��d/p
n }

where | supp fM
n | denotes the measure of the support of fM

n . Therefore 1 .A,B,M

min{|⌧n|�1/p0
�
d/p0

n , |⌧n|1/p��d/p
n }, which implies |⌧n| ⇠A,B,M �

d
n. Therefore, after

passing to a subsequence, �⌧n(
p
1� |�n⇠|2,�n⇠) ! �⌧ (⇠), for some cube ⌧ ✓ Rd,

pointwise, a.e.
We may assume, after modulation and multiplication by a constant that

E(fM
n )⌧n(0) = kE(fM

n )⌧nk1.

Passing to a subsequence, the weak limits

�
g(⇠) := wk-lim�

d/p
n f

M
n (
p
1� |�n⇠|2,�n⇠)

�(⇠) := wk-lim�
d/p
n fn(

p
1� |�n⇠|2,�n⇠)�{|⇠|< 1

2�
�1
n }

exist; we set �b := �� �
g. By the dominated convergence theorem and the obser-

vation of the previous paragraph,

(�g(⇠))⌧ = wk-lim�
d/p
n (fM

n )⌧n(
p
1� |�n⇠|2,�n⇠).

Standard convergence arguments give,

EP�(x) = lim
n!1

�
� d+2

q
n e

�i��2
n x1E(fn)⌧n(��2

n x1,�
�1
n x

0),

for all x, and analogous relations hold for �g and the fM
n (and hence for �b and the

f
>M
n ). Therefore

|⌧ |�
1
p0 kEP(�g)⌧k1 & B(BA )

1�✓
✓ .

By Young’s convolution inequality and the observation that the measure of the
convex hull of ⌧ satisfies | ch ⌧ | ⇠ |⌧ | d+2

d ,

kEP(�g)⌧kq & B(BA )
1�✓
✓ .

On the other hand, by Fatou,

kEP(�b)⌧kq < ",

so by the triangle inequality,

kEP(�)⌧kq & B(BA )
1�✓
✓ .

Hence by L
q boundedness of Fourier multiplication by �⌧̃ ,

kEP�kq & B(BA )
1�✓
✓ .

⇤

With Lemma 6.2 in place, we are ready for the L
2-based profile decomposition.

Lemma 6.3. Theorem 3.4 holds when p = 2. Moreover, with assumptions and
notation as in the statement of that result,
(ii’-iii’) limn!1 kfnk22 �

PJ
j=1(k�j,+k22 + k�j,�k22)� krJnk22 = 0, for all J 2 N.
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Essentially all of the key ingredients needed for this lemma were already estab-
lished in [21]; we provide details both for the convenience of the reader and because
a key step, an improved Brézis–Lieb Lemma, will be used in later arguments as
well.

Proof. We initially treat the two hemispheres separately, setting f±
n := fn�{±!1>0}.

To decompose f
+
n , we set r

0,+
n := f

+
n , and apply the following iterative process.

Given a bounded sequence of remainders {rJ,+n } ✓ L
2(Sd) obeying (6.3), we stop

if lim kErJ,+n kq2 = 0. If this limit is nonzero, we apply Lemma 6.2, obtaining a
subsequence of {fn}, points {xJ+1,+

n } ✓ Rd+1, and a weak limit �J+1,+ 2 L
2(Rd).

We set
r
J+1,+
n := r

J,+
n � e

ixJ+1,+
n !

g
J+1,+
n ,

with g
J+1,+
n defined as in (6.1).

That the {xj,+
n } move apart after parabolic rescaling follows from familiar ar-

guments. Namely, we suppose that there is some minimal superscript j for which
there exists some (minimal) superscript j0 > j with �j,+,�j

0,+ 6⌘ 0 and

�
2
n|(xj,+

n � x
j0,+
n )1|+ �n|(xj,+

n � x
j0,+
n )0| 6! 1.

Passing to a subsequence,

(�2n(x
j,+
n � x

j0,+
n )1,�n(x

j,+
n � x

j0,+
n )0) ! y

jj0
.

Passing to a further subsequence,

e
i(xj,+

n �xj0,+
n )(

p
1�|�n⇠|2,�n⇠) ! e

i✓jj0

e
iyjj0 (� 1

2 |⇠|
2,⇠)

,

locally uniformly, for some ✓jj
0 2 [0, 2⇡). On the other hand,

e
i(xk

n�xj0
n )(

p
1�|�n⇠|2,�n⇠)�{|⇠|R} * 0,

weakly in L
p for all R. Noting that rj

0�1,+
n = r

j�1,+
n �

Pj0�1
k=j e

ixk,+
n !

g
k,+
n ,

�
j0,+ = wk-lim�

d
p
n e

�ixj0,+
n (

p
1�|�n⇠|2,�n⇠)g

k,+
n

= e
i✓jj0

e
iyjj0 (� 1

2 |⇠|
2,⇠)

�
j,+ �

j0�1X

k=j

wk-lim e
i(xk,+

n �xj0,+
n )(

p
1�|�n⇠|2,�n⇠)�

k,+

= 0,

a contradiction.
Taking the complex conjugate and applying the preceding argument (along our

new subsequence), we obtain decompositions for the lower hemisphere as well,

f
�
n =

JX

j=1

e
ixj,�

n !
g
j,�
n + r

J,�
n .

Passing to a subsequence, for all j, j0,

(�2n(x
j,+
n � x

j0,�
n )1,�n(x

j,+
n � x

j0,�
n )0)

either converges or tends to 1 in norm. In the former case, changing the �j,� if
needed, we may assume that for all j, j0, either xj,+

n ⌘ x
j0,�
n or

�
2
n|(xj,+

n � x
j0,�
n )1|+ �n|(xj,+

n � x
j0,�
n )0| ! 1.
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Reordering and inserting 0’s in place of �j,+ or �j,� where needed, we may assume
that xj,+

n ⌘ x
j,�
n for all j.

We thus obtain decompositions

fn =
JX

j=1

e
ixj

n!g
j
n + r

J
n , J 2 N,

as in the statement of Theorem 3.4. It remains to verify (i), (ii-iii’), (iv) and (v).
The approximation (i) of Egjn by a rescaling and modulation of EP�j follows

from (6.2) and the triangle inequality. The L
2 orthogonality, conclusion (ii-iii’),

follows on each hemisphere separately by the weak limit condition; we put the
pieces together via kfnk22 = kf+

n k22 + kf�
n k22.

The Lq-orthogonality, conclusion (v), follows by iterating the generalized Brézis–
Lieb lemma, Lemma 3.1 of [21] (cf. [2]); because the lemma was developed to
address precisely this situation, we will be brief in showing how that lemma applies
here. In the notation of that lemma, given J and M , we set

↵
M
n (x) := �

� d+2
q

n E(e�ixJ
n!r

J�1
n �{|!0|M�n})(�

�2
n x1,�

�1
n x

0)

⇡
M
n (x) :=

X

±
e
±i��1

n x1EP(�j,±�|⇠|M})(⌥x1, x
0)

⇢
M
n (x) := E(��

d+2
q

n e
�ixJ

n!r
J
n�{|!0|M�n})(�

�2
n x1,�

�1
n x

0)

�
M
n (x) := �

� d+2
q

n E(gJn�{|!0|M�n})(�
�2
n x1,�

�1
n x

0)� ⇡
M
n (x),

and let ↵n,⇡n, ⇢n,�n denote the corresponding functions with no truncation in the
frequency variables. Then ↵M

n = ⇡
M
n + ⇢

M
n + �

M
n . We immediately see that |⇡M

n | is
bounded by a fixed L

q function. Observing that

⇢
M
n (x) =

X

±
e
±i��2

n x1

Z
e
i(x1,x

0)(��2
n (±

p
1�|�n⇠|2⌥1),⇠)

e
�ixJ

n(�
�2
n (±

p
1�|�n⇠|2⌥1),⇠)

⇥ r
J
n(±

p
1� |�n⇠|2,�n⇠)�{|⇠|M}

d⇠p
1�|�n⇠|2

,

we see that ⇢Jn ! 0 pointwise. Finally,

�
M
n =

X

±
e
±i��2

n x1

Z
(ei(x1,x

0)(��2
n (±

p
1�|�n⇠|2⌥1),⇠) 1p

1�|�n⇠|2
� e

i(x1,x
0)(⌥ 1

2 |⇠|
2,⇠))

⇥ �
J,±(⇠)�{|⇠|M} d⇠.

If �J,±(⇠)�{|⇠|M} are assumed to be smooth, �M
n ! 0 in L

q by stationary phase
and the dominated convergence theorem; for general �J,±, convergence to 0 follows
from boundedness of E and EP from L

p to L
q and density arguments.

By the generalized Brézis–Lieb lemma,

lim
n!1

k↵M
n kqq � k⇡M

n + �
M
n kqq � k⇢Mn kqq = 0.

By hypothesis (3.5) and L
p ! L

q boundedness of E and EP,

lim
M!1

lim sup
n!1

k↵M
n � ↵nkq + k⇡M

n � ⇡nkq + k⇢Mn � ⇢nkq + k�M
n � �nkq = 0.

Therefore
lim
n!1

k↵nkqq � k⇡n + �nkqq � k⇢nkqq = 0,
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i.e.,

lim
n!1

kErJ�1
n kqq � kEgJnkqq � kErJnkqq = 0.

The L
q orthogonality, (iv) follows by induction.

Finally, smallness of the errors follows from (ii-iii’) and Lemma 6.2: a non-
negligible remainder term yields a weak limit with L

2 norm bounded below, and
that reduces the L

2 norm of the subsequent remainder by a nonnegligible amount.
⇤

Now we turn to the analogue of Lemma 5.3 for the case of antipodal frequency
concentration. Let  , ⇢ 2 C

1
c (Rd; [0, 1]) with  (0) = 1 and

R
⇢ = 1. For r > 0,

we define  r(⇠) :=  (r⇠) and ⇢r(⇠) = r
�d
⇢( ⇠r ). Given a doubly indexed sequence

{xj
n}j,n2N, and �n & 0, we define operators on integrable functions f on Sd by

(⇡r)
j,±
n f(⇠) := ⇢

r ⇤⌘ ( r(⌘)e
�ixj

n(±
p

1�|�n⌘|2,�n⌘)�
d/p
n f(±

p
1� |�n⌘|2,�n⌘).

We also define vector-valued operators

(⇧r)
J
nf := (((⇡r)

j,•
n f)Jj=1)•2{±}, J 2 N.

We recall the notation p̃ := max{p, p0}. Thus p̃ � p.

Lemma 6.4. Let 1 < p < 1. Assume that the sequences {yjn} obey limn!1 |yjn �
y
j0
n | = 1 for all j 6= j

0, where y
j
n := (�2n(x

j
n)1,�n(x

j
n)

0). Then the (⇧r)Jn map
L
p(Sd) boundedly into `p•(`

p̃
j (L

p(Rd))), with operator norms bounded uniformly in
r, n. Moreover,

lim
r!0

lim sup
n!1

k(⇧r)
J
nkLp!`p•(`

p̃
j (L

p(Rd))) = 1. (6.5)

Finally, let {fn} be a bounded sequence in L
p(Sd), supported in {! 2 Sd : |!0| < 1

2},
for which the weak limits �j,± in (3.6) exist, and define g

j
n as in (3.7). Then

lim
r!0

lim
n!1

k(⇡r)j,±n fn � �
j,±kp = 0 (6.6)

lim
r!0

lim
n!1

k[(⇡r)j,±n ]⇤�j,± � e
ixj

n!g
j,±
n kp = 0. (6.7)

Proof. Since f 7! (f�{!1>0}, f�{!1<0}) maps L
p(Sd) boundedly into `p(Lp(Sd) ⇥

L
p(Sd)), with operator norm 1, (6.5) would follow from

lim
r!0

lim sup
n!1

k(⇧r)
J,•
n kLp!`p̃j (L

p(Rd)) = 1, • = +,�, (6.8)

and using reflection across the hyperplane {0} ⇥ Rd, we may choose the positive
sign in (6.8), (6.6), and (6.7). To keep equations within lines, we will omit the
superscript + from the operators from the remainder of the proof.

It is elementary to show that k(⇡r)jnfkp . kfkp, with implicit constant indepen-
dent of f, r, n, j. Moreover, for any j,

lim
r!0

lim sup
n!1

k(⇡r)jnkLp!Lp = 1.

Indeed, the upper bound uses the compact support of  , and the lower bound is
obtained by considering a shrinking profile e

ixj
n!gj,+n . In particular, (6.8) holds

when p = 1,1.
The upper bound in (6.5) will thus follow from that in the case p = 2 by complex

interpolation.
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We turn now to the proof that

lim sup
n!1

k(⇧r)
J
nkL2!`2(`2(L2)) = 1, (6.9)

for all r. We bound

k(⇧r)
J
n[(⇧r)

J
n]

⇤(�j)Jj=1k2`2(L2)

 (1 + ")
JX

j=1

k(⇡r)jn[(⇡r)jn]⇤�jk2L2 + CJ,"

X

j 6=k

k(⇡r)jn[(⇡r)kn]⇤�kk2L2 .
(6.10)

We expand (for ⇠ 2 Rd)

(⇡r)
j
n[(⇡r)

k
n]

⇤
�(⇠) =

Z
�(⇣)(Kr)

jk
n (⇣, ⇠) d⇠,

where

(Kr)
jk
n (⇣, ⇠) :=

Z
 r(⌘)

2
⇢r(⇠ � ⌘)⇢r(⇣ � ⌘)ei(x

k
n�xj

n)(
p

1�|�n⌘|2,�n⌘)
p
1� |�n⌘|2 d⌘.

A straightforward computation (using our hypotheses on ⇢, ) gives

k(Kr)
jk
n kL1

⇣ L1
⇠
, k(Kr)

jk
n kL1

⇠ L1
⇣
 1.

For j 6= k, stationary phase gives k(Kr)jkn kL1 . hykn � y
j
ni�

d
2 . Since the (Kr)jkn

have supports contained in a fixed compact set (for fixed r),

k(Kr)
jk
n kL1

⇣ L1
⇠
, k(Kr)

jk
n kL1

⇠ L1
⇣
! 0,

as n ! 1. Hence by (6.10),

lim sup
n!1

k(⇧r)
j
n[(⇧r)

k
n]

⇤k`2(L2)!`2(L2)  1 + ",

for all " > 0. Sending "! 0, we obtain (6.9).
It remains to prove (6.6) and (6.7). By boundedness of the (⇡r)kn on L

p, we may

assume the �k are compactly supported. Modulating fn  e
�xj

n!fn if needed, it
su�ces to consider the case x

j
n = 0, for all n.

Since (6.7) is essentially elementary, we turn to (6.6). Noting that |ykn| ! 1
when k 6= j,

�

d
p
n e

ixk
n(
p

1�|�n⇠|2,�n⇠)g
k,+
n (

p
1� |�n⇠|2,�n⇠) = e

i(xk
n)1e

iyk
n(�

�2
n

p
1�|�n⇠|2,⇠)�k(⇠)* 0,

weakly when k 6= j. Hence, by construction,

�

d
p
n f(

p
1� |�n⇠|2,�n⇠)* �

j
,

weakly, as n ! 1. Therefore (⇡r)jnfn(⇠) !
R
⇢r(⇠ � ⌘) r(⌘)�j(⌘) d⌘ pointwise

in ⇠, as n ! 1. In fact, the convergence is in L
p by the dominated convergence

theorem, and (6.6) follows. ⇤

We are finally ready to conclude the proof of the Lp profile decomposition in the
case of antipodal concentration, Theorem 3.4.

Proof of Theorem 3.4. By Lemma 6.3, we may assume that p1 := p 6= 2. We fix an
exponent p0 <

2(d+1)
d such that p1 lies between p0 and 2 =: p2 and the extension

conjecture holds at (p0, q0), with q0 := d+2
d p

0
0.
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It su�ces to prove the theorem under the additional assumptions that kfnkp  1,
lim kfnkp = 1, and fn is supported in {|!0| < 1

2}, for all n. (Indeed, we may simply
add fn�{|!0|> 1

2}
to the error terms rJn and then multiply by a constant.) We define

f
M
n := fn�{|fn|M��d/p

n }�dist(!,[e1])<M�n}.

Setting ↵i :=
d
p �

d
pi

for i 2 {0, 1, 2}, {�↵2
n fn} obeys the hypotheses of Theorem 3.4

with p = 2. Therefore, by Lemma 6.3, after passing to a subsequence (which does
not depend on M 2 N), for all M , there exist {xj,M

n } ✓ Rd+1 with

lim
n!1

(�2n|(xj,M
n � x

j,M
n )1|+ �n|(xj,M

n � x
j,M
n )0|) = 1, j 6= j

0
,

and weak limits

L
2(Rd) 3 �

j,M,± := wk-lim�
d/p
n e

�ixj,M
n (±

p
1�|�n⇠|2,�n⇠)f

M
n (±

p
1� |�n⇠|2,�n⇠),

such that, with

g
j,M
n (!) :=

X

±
�
�d/p
n �

j,M,±(��1
n !

0)�{±!1>0}�{|!0|< 1
2}
,

r
J,M
n := f

M
n �

JX

j=1

e
ixj,M

n !
g
j,M
n ,

we have

lim
n!1

k�↵2
n f

M
n k2 �

JX

j=1

X

±
k�j,M,±k22 � k�↵2

n r
J,M
n k22 = 0,

lim
n!1

k�↵2
n EfM

n kq2q2 �
JX

j=1

k�↵2
n Egj,Mn kq2q2 � k�↵2

n ErJ,Mn kq2q2 = 0, (6.11)

lim
J!1

lim
n!1

k�↵2
n ErJ,Mn kq2 = 0, (6.12)

for all J . In fact, the generalized Brézis–Lieb lemma applied in the proof of
Lemma 6.3 implies that (6.11) holds with ↵i, qi in place of ↵2, q2, when i = 0, 1
as well. In particular, {�↵0

n ErJ,Mn } is bounded in L
q0 , uniformly in J , as n ! 1,

and hence by Hölder’s inequality, (6.12) also holds with ↵1, q1 in place of ↵2, q2, i.e.
(since ↵1 = 0),

lim
J!1

lim sup
n!1

kErM,J
n kq1 = 0, for all M . (6.13)

After passing to a subsequence (and modulating the �j,M,± and multiplying by
unimodular constants if needed), we may assume that for any M, j and M

0
, j

0,
either xM,j

n ⌘ x
M 0,j0
n , or

lim
n!1

�
2
n|(xM,j

n � x
M 0,j0

n )1|+ �n|(xM,j
n � x

M 0,j0

n )0| = 1,

for all j, j0,M,M
0 2 N. By reordering the profiles and inserting zero profiles as

needed (using yet another diagonal argument), we may write xj,M
n = x

j
n, for all M .

Passing to a further subsequence, the weak limits �j,± defined in (3.6) all exist.
By Lemma 6.4, for every " > 0, and any choice of • 2 {±}, k�j,•kp � " for at

most "�p̃ values of j. Indeed,
JX

j=1

k�j,•kp̃p = lim
r!0

lim
n!1

k(⇧r)
J
nfnk

p̃
`p̃(Lp)  1. (6.14)
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In particular, we may reorder the profiles so that k�j,+kpp + k�j,�kpp is decreasing.
In the notation of Theorem 3.4, it remains to prove (ii), (iii), (iv), and (v).

Inequality (ii), which was one of the L
p almost orthogonality conditions, follows

from Lemma 6.4. Indeed,

X

±

� JX

j=1

k�j,±kp̃p
�p/p̃

= lim
r!1

lim
n!1

k(⇧r)
J
nfnk`p(`p̃(Lp)  1.

Inequality (iii), the other Lp almost orthogonality estimate, follows from Lemma 6.4
as well, since

lim sup
n!1

k
JX

j=1

e
ixj

n!g
j
nkp = lim

r!1
lim

n!1
k[(⇧r)

J
n]

⇤((�j,•)Jj=1)•2{±}kp  k((�j,•)Jj=1)•2{±}k`p(`p̃0 (Lp).

The L
q-orthogonality condition (iv) follows from the generalized Brézis–Lieb

argument given in the proof of Lemma 6.3 (indeed, the condition p = 2 played no
role in that part of the argument).

We are left to establish (v), smallness of the extensions of the remainder terms.
We wish to remove the dependence on M in (6.13), and, as in the previous section,
we begin by showing that the rate of convergence to 0 in (6.13) as J ! 1 is
independent of M .

Given M 2 N and (j, •) 2 N⇥ {±}, we define �j,•M := �
j,•
�{|⇠|<M} and

(gM )j,•n (!) := �
�d/p
n �

j,•(��1
n !

0)�{•!1>0}�{|!0|< 1
2}
.

Lemma 6.5. For every M, j 2 N and • 2 {±},

lim
n!1

kE((gM )j,•n � g
M,j,•
n )kq  lim sup

n!1
sup

E✓EM
n

kEfn�Ekq, (6.15)

where E
M
n was defined in (3.5).

Proof of Lemma 6.5. We give the proof when • = +; the other case follows by
taking conjugates. To simplify notation, we omit the j and + from our superscripts.

By Lemma 6.1,

lim
n!1

kE((gM )n � g
M
n )kq = kEP(�M � �

M )kq.

Since

�M (⇠) = wk-lim
n!1

�
d/p
n fn(

p
1� |�n⇠|2,�n⇠)�{|⇠|<M},

we have

EP(�M � �
M )(�x1, x

0)

= lim
n!1

Z
e
ix(� 1

2 |⇠|
2,⇠)

�
d/p
n fn(

p
1� |�n⇠|2,�n⇠)�{|⇠|<M}�{|fn|>M��d/p

n } d⇠

= lim
n!1

e
�i��2

n x1

Z
e
i(��2

n x1,�
�1
n x0)(1� 1

2 |⇠|
2,⇠)

�
�d/p0

n fn(
p

1� |⇠|2, ⇠)

⇥ �{|⇠|<M�n}�{|fn|>M��d/p
n } d⇠. (6.16)

By Hölder’s inequality,

k��d/p0

n fn(
p

1� |⇠|2, ⇠)�{|⇠|<M�n}kL1
⇠
 M

�d/p0
.
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For |⇠| < M�n,

|1�
p
1� |⇠|2| .M

2
�
2
n, |(1� 1

2 |⇠|
2)�

p
1� |⇠|2| .M

4
�
4
n.

Thus by Hölder’s inequality, (6.16), and d
p0 =

d+2
q ,

EP(�M � �
M )(�x1, x

0)

= lim
n!1

�
�(d+2)/q
n e

i��2
n x1E(fn�{|!0|<M�n,|fn|>M��d/p

n ,!1>0})(�
�2
n x1,�

�1
n x

0),

for all x. Finally, by Fatou and a change of variables,

kEP(�M � �
M )kq  kE(fn�{|!0|<M�n,|fn|>M��d/p

n ,!1>0})kq.

⇤
Let " > 0. By (6.14), limj!1 k�j,•kp = 0, so by boundedness of E , limj!1 limn!1 kEgjnkq =

0. Hence, by (3.5) and (6.15), there exist M", J" such that limn!1 kEgM,j
n kq < "

for all M � M" and j > J". Let M � M". By (6.13), there exists JM," such that
limn!1 kErM,J

n kq < ", for all J � JM,".
By the definition of the remainder terms, the generalized Brézis–Lieb lemma,

boundedness of E , and the L
p-almost orthogonality condition (ii),

lim
n!1

kE(rM,J"
n � r

M,JM,"
n )kqq = lim

n!1
kE(

JM,"X

j=J"+1

e
ixj

n!g
M,j
n )kqq

=

JM,"X

j=J"+1

lim
n!1

kEgM,j
n kqq  S

q�p̃
p!q"

q�p̃

JM,"X

j=J"+1

(
X

•2{±}

k�M,j,•kpp)p̃/p . "q�p̃
.

Since q > p̃, after changing the value of ", we may assume that

kErM,J
n kq < ", (6.17)

for all M > M" and J > J".
Finally, we transfer (6.17) to the ErJn . The L

q-orthogonality (iv) applied with
some r

J0
n in place of fn implies that limn!1 kErJnkq is non-increasing in J . Thus

it su�ces to bound limn!1 kErJ"
n kq.

By the triangle inequality, the definition of the remainder terms, and (6.17); then
(3.5), �j,•M ! �

j,• in L
p, and (6.15),

lim
n!1

kErJ"
n kq  O(") + lim

M!1
lim
n!1

kE(fn � f
M
n )kq + lim

M!1

J"X

j=1

kE(gjn � g
j,M
n )kq = O(").

As we have confirmed conclusion (v), the proof of Theorem 3.4 is complete.
⇤

7. Proof of Theorem 1.1

Proof of Theorem 1.1. Under the hypotheses of Theorem 1.1, let {fn} be an L
p-

normalized extremizing sequence. By Proposition 3.2, the conditions of Theo-
rem 3.3 apply after passing to a subsequence. Letting {�j} denote the profiles
in the conclusion of that theorem,

Sp!q = lim
n!1

kEfnkq =
� 1X

j=1

kE�jkqq
� 1

q  Sp!q

� 1X

j=1

k�jkqp
� 1

q
.
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By Theorem 3.3 the profiles satisfy (3.2), which for an L
p-normalized sequence givesP

j k�jkp̃p  1. Further, we have assumed that q > max{p, d+2
d p

0} � p̃. Therefore,

Sp!q  Sp!q sup
j

k�jk1�
p̃
q

p
� 1X

j=1

k�jkp̃p
� 1

q  Sp!q sup
j

k�jk1�
p̃
q

p  Sp!q.

Equality must hold at each step, and thus, after reordering the profiles, k�1kp = 1,

kE�1kq = Sp!q, and �j ⌘ 0 for j 6= 1. Hence by Theorem 2.11 of [29], e�ix1
nfn !

�
1, an extremizer, (strongly) in L

p. ⇤

8. Antipodally concentrating profiles

In the next section, we will prove Theorems 1.2, 1.5, and 1.6, which we recall
concern extremizing sequences along the parabolic scaling line q = d+2

d p
0. In this

section, we prove a preliminary lemma that addresses the interactions between the
extensions of pairs of sequences of functions that concentrate antipodally, building
on the connection between spherical and parabolic extension previously discussed
in Lemma 6.1. This will lead naturally into the proofs of Propositions 1.3 and 1.4,
which are also contained in this section.

We recall that

�p!q := 2
1
r0
� �( q+1

2 )
p
⇡�( q+2

2 )

� 1
q
,

where r := max{p, 2}.

Lemma 8.1. Let �n & 0, let �+,�� be L
p functions on Rd, and define gn as in

(3.7). Then

lim
n!1

kgnkp =
�
k�+kpp + k��kpp

� 1
p
, (8.1)

lim
n!1

kEgnkq  �p!qPp!q

�
k�+kpp + k��kpp

� 1
p
, (8.2)

and equality in (8.2) occurs if and only if either �
+ ⌘ �

� ⌘ 0, or p � 2,
|E�+(�x1, x

0)| ⌘ |E��(x1, x
0)|, and the �± are both extremizers for EP.

Proof. The identity (8.1) follows by parametrizing the upper and lower hemispheres,
rescaling, and applying the dominated convergence theorem.

Now we turn to inequality (8.2). Identity (3.7), our Lemma 6.1, and Lemma 6.1
of [21] imply that

lim
n!1

kEgnkq = lim
↵!1

�
kei↵x1EP�+(�x1, x

0)� EP��(x1, x
0)kqq

� 1
q

=
�

1
2⇡

Z 2⇡

0
kei✓EP�+(�x1, x

0)� EP��(x1, x
0)kqq d✓

� 1
q

 2
1
2
� �( q+1

2 )
p
⇡�( q+2

2 )

� 1
q
Pp!q

�
k�+k2p + k��k2p

� 1
2
,

with equality if and only if either |EP�+(�x1, x
0)| = |EP��(x1, x

0)| a.e. and �± are
both extremizers for (1.2), or �± ⌘ 0.

If p � 2,
�
k�+k2p + k��k2p

� 1
2  2

1
2�

1
p
�
k�+kpp + k��kpp

� 1
p
,

with equality if and only if k�+kp = k��kp. If p < 2,
�
k�+k2p + k��k2p

� 1
2 

�
k�+kpp + k��kpp

� 1
p
,
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with equality if and only if �+ ⌘ 0 or �� ⌘ 0. This proves (8.2), and the remark
following on cases of equality. ⇤

Adapting the construction of the gn, yields the lower bound on the extension
operator norm from Proposition 1.3.

Proof of Proposition 1.3. If Pp!q is infinite, then Sp!q is as well, so in this case

there is nothing to prove. Let 1  p <
2(d+1)

d and set q := d+2
d p

0 and suppose
Pp!q < 1. Further take t 2 [0, 1], and suppose that �± are chosen such that each
is an extremizer for EP, k�+kp = tk��kp and |EP�+(�x1, x

0)| ⌘ t|EP��(x1, x
0)|.

We may always construct such a pair. Indeed, an extremizer for the parabolic
extension problem, �+, exists by [35], and after setting ��(x) = t�+(�x) a direct
computation shows that these conditions are satisfied. Let �n ! 0. Analogously
to (3.7) set

g
±
n (!) := �

�d/p
n �

±(��1
n !

0)�{±!1>0}�{|!0|< 1
2}
, gn := g

+
n + g

�
n . (8.3)

An argument similar to (8.1), shows that, as k�+kp = tk��kp and �+ is extremizing,

lim
n!1

kgnkp =k�+kp
�
1 + t

p
� 1

p

=P
�1
p!qkEP�+kq

�
1 + t

p
� 1

p
.

Next we compute

lim
n!1

kEgnkq = lim
↵!1

�
kEP�+(�x1, x

0)� t e
i↵x1EP��(x1, x

0)kqq
� 1

q

=
�

1
2⇡

Z 2⇡

0
kEP�+(�x1, x

0)� t e
i✓EP��(x1, x

0)kqq d✓
� 1

q

= kEP�+kq
�

1
2⇡

Z 2⇡

0
|1 + t e

i✓|q d✓
� 1

q
,

using that |E�+(�x1, x
0)| ⌘ t|E��(x1, x

0)|.
Thus,

lim
n!1

kEgnkq
kgnkp

= Pp!q

�
1
2⇡

R 2⇡
0 |1 + t e

i✓|q d✓
� 1

q

�
1 + tp

� 1
p

.

Whence the maximum of this quantity for t 2 [0, 1] is a lower bound for Sp!q, the
operator norm of E . Note that [0, 1] is the natural domain for t as it represents the
ratio of the smaller Lp-norm to the larger, for two concentrating profiles. ⇤

Proposition 1.4 is an immediate corollary of Proposition 1.3 and Lemma 8.1,
which characterizes concentrating extremizing sequences when p � 2.

An aside on ↵’s and �’s. Let S̄p!q denote the supremum over all antipodally
concentrating sequences gn (of the form (3.7)) of the quantity

lim
n!1

kEgnkq/kgnkp.

In this section, we have shown that ↵p!qPp!q  S̄p!q  �p!qPp!q, for p and q

along the scaling line, that both inequalities are equalities when p � 2, and that the
second inequality is strict when 1 < p < 2. In the latter range, however, a bit more
information might lead to a sharper version of Theorem 1.6. Namely, two questions
that seem interesting are whether S̄p!q might equal ↵p!qPp!q, and which value of
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t maximizes the right hand side of (1.4). These questions may be modified slightly
into a more general framework, and we ask what is the value of the quantity

sup
0 6⌘F,G2Lq

�
1
2⇡

R 2⇡
0 kei✓F +Gkqq d✓

�1/q
�
kFkpq + kGkpq

�1/p ,

do maximizers exist, and, if so, what are their properties, in the case 1 < p < 2 < q?
Numerical computations (unpublished) due to Arthur DressenWall, an under-

graduate student at Macalester, lead us to ask whether the right hand side of (1.4)
might be attained when t is either 0 or 1, in which case we would have

↵p!q = max

(
2

1
p0
� �( q+1

2 )
p
⇡�( q+2

2 )

� 1
q
, 1

)
,

but we are not quite bold enough to formulate this as a conjecture.

9. Proof of Theorem 1.2

The proof of Theorem 1.2 follows a similar outline to the proof of Theorem 1.1,
with the added complication of handling the profiles from the case of concentration.

Proof of Theorem 1.2. Under the hypotheses of Theorem 1.2, we let {fn} be an
L
p-normalized extremizing sequence of (1.1). Applying one stage of the frequency

decomposition in Theorem 3.1 (à la [28]),

(Sp!q)
q = lim

n!1
kEfnkqq = lim

n!1
kEF 1

nkqq + kER1
nkqq

 lim
n!1

max
�
kEF 1

nkq�p
q , kER1

nkq�p
q }(kEF 1

nkpq + kER1
nkpq)

 lim
n!1

(Sp!q)
q(kF 1

nkpp + kR1
nkpp) = (Sp!q)

q
.

(9.1)

Passing to a subsequence, we may assume that all of the norms in (9.1) converge.
By reordering, we may assume that limn!1 kEF 1

nkq 6= 0. As all inequalities in
(9.1) must be equalities, ER1

n ! 0 in L
q (first inequality), and F

1
n is extremizing

and R
1
n ! 0 in L

p (second inequality). In other words, fn obeys the hypotheses of
either Theorem 3.3 or, after applying a sequence of rotations, of Theorem 3.4.

If we are in the case of nonconcentration, described in the hypotheses of The-
orem 3.3, we may follow the proof of Theorem 1.1 from Section 7 to see that fn

converges in L
p to an extremizer.

Thus, it remains to consider the case of antipodal concentration, in which, by
neglecting the role of rotations, we may apply Theorem 3.4. In the notation of that
theorem, we have

(Sp!q)
q =

1X

j=1

lim sup
n!1

kEgjnkqq  (Sp!q)
q

1X

j=1

lim sup
n!1

kgjnkqp

= (Sp!q)
q

1X

j=1

(k�j,+kpp + k�j,�kpp)q/p

 (Sp!q)
q sup

j
(k�j,+kpp + k�j,�kpp)

q�p̃
p lim

n!1
kfnkp̃p

= (Sp!q)
q sup

j
(k�j,+kpp + k�j,�kpp)

q�p̃
p  (Sp!q)

q · 1,

(9.2)
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and equality holds at each step in the above argument. In particular, after reorder-
ing,

k�1,+kpp + k�1,�kpp = 1,

and �j,± ⌘ 0, for j 6= 1.
Since

�
j,± = wk-lim�

d/p
n e

�ixj
n(±

p
1�|�n⇠|2,�n⇠)fn(±

p
1� |�n⇠|2,�n⇠)�{|⇠|< 1

2�
�1
n },

weak lower semi-continuity of Lp norms gives

lim inf
n!1

kfn�{±⇠1>0}kp � k�1,±kp.

As the sets {±⇠1 > 0} are disjoint,

1 = lim inf
n!1

X

•=+,�
kfn�{•⇠1>0}kpp � k�1,+1 kpp + k�1,�1 kpp � 1.

Therefore,
k�1,±kp = lim

n!1
kfn�{±⇠1>0}kp.

Weak convergence plus convergence of norms implies strong convergence, i.e.,

�
d/p
n e

�ix1
n(±

p
1�|�n⇠|2,�n⇠)fn(±

p
1� |�n⇠|2,�n⇠)�{|⇠|< 1

2�
�1
n } ! �

k,±
j , in L

p,

which completes the proof of Theorem 1.2. ⇤
We also have a bit more information. After inserting the equation lim kg1nkqp = 1,

equality in (9.2) becomes

lim
n!1

kEg1nkq = Sp!qkg1nkp = Sp!q

�
k�+kpp + k��kpp

� 1
p (9.3)

Depending on the values of p, Sp!q, and Pp!q, this equality has di↵erent impli-
cations.

Proof of Theorems 1.5 and 1.6. If Sp!q > �p!qPp!q, then (9.3) and (8.2) create a
contradiction, ruling out the possibility of concentration. In this case, extremizers
exist, and extremizing sequences possess convergent (modulo symmetries) subse-
quences.

If p � 2 and Sp!q = ↵p!qPp!q = �p!qPp!q, then (9.3) implies that the equality
case of Lemma 8.1 holds, which prescribes the manner of concentration.

If p < 2 and Sp!q = ↵p!qPp!q, then the construction from the proof of Propo-
sition 1.3 gives a possible case of equality. ⇤
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