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Differentially private synthetic data provide a powerful mechanism to enable data analysis while protecting 
sensitive information about individuals. However, when the data lie in a high-dimensional space, the 
accuracy of the synthetic data suffers from the curse of dimensionality. In this paper, we propose 
a differentially private algorithm to generate low-dimensional synthetic data efficiently from a high-
dimensional dataset with a utility guarantee with respect to the Wasserstein distance. A key step of our 
algorithm is a private principal component analysis (PCA) procedure with a near-optimal accuracy bound 
that circumvents the curse of dimensionality. Unlike the standard perturbation analysis, our analysis of 
private PCA works without assuming the spectral gap for the covariance matrix. 

Keywords : differential privacy; synthetic data; principal component analysis. 

1. Introduction 

As data sharing is increasingly locking hornswith data privacy concerns, privacy-preserving data analysis 
is becoming a challenging task with far-reaching impact. Differential privacy (DP) has emerged as 
the gold standard for implementing privacy in various applications [20]. For instance, DP has been 
adopted by several technology companies [25] and has also been used in connection with the release 
of Census 2020 data [2]. The motivation behind the concept of differential privacy is the desire to protect 
an individual’s data while publishing aggregate information about the database, as formalized in the 
following definition:

© The Author(s) 2025. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/1/iaae034/7954368 by U
C

 - Irvine user on 21 July 2025



2 Y. HE ET AL.

DEFINITION 1 (Differential Privacy [20]). A randomized algorithm M is ε-differentially private if for any 
pair of datasets D and D′ that differ on one data (i.e. D = D0 ∪ {X} and D′ = D0 ∪ {X′} for some dataset 
D0), and any measurable subset S ⊆ range(M), we have  

P
{
M(D) ∈ S

} ≤ eε 
P
{
M(D′) ∈ S

}
, 

where the probability is with respect to the randomness of M. 

However, utility guarantees for DP are usually provided only for a fixed, predefined set of queries. 
Hence, it has been frequently recommended that differential privacy may be combined with synthetic 
data to achieve more flexibility in private data sharing [7, 30, 57]. Synthetic datasets are generated from 
existing datasets and maintain the statistical properties of the original dataset. Hence, the datasets can be 
shared freely among investigators in academia or industry, without security and privacy concerns. 

Yet, computationally efficient construction of accurate differentially private synthetic data is chal-
lenging. Most research on private synthetic data has been concerned with counting queries, range queries 
or k-dimensional marginals, see, e.g. [9, 10, 24, 30, 50, 52, 53]. Notable exceptions are [56, 12] and 
[19]. Specifically, [12] provide utility guarantees with respect to the 1-Wasserstein distance. Invoking 
the Kantorovich-Rubinstein duality theorem, the 1-Wasserstein distance accuracy bound ensures that 
all Lipschitz statistics are preserved uniformly. Given that numerous machine learning algorithms are 
Lipschitz [13, 39, 46, 55], this provides data analysts with a vastly increased toolbox of machine learning 
methods for which one can expect similar outcomes for the original and synthetic data. 

For instance, for the special case of datasets living on the d-dimensional Boolean hypercube {0, 1}d 
equipped with the Hamming distance, the results in [12] show that there exists an ε-DP algorithm with 
an expected utility loss that scales like (

log(εn) 
3 
2 /(εn)

)1/d 
, (1.1) 

where n is the size of the dataset. While [31] succeeded in removing the logarithmic factor in (1.1), it can 
be shown that the rate in (1.1) is otherwise tight. Consequently, the utility guarantees in [12] and [31] are  
only useful when d, the dimension of the data, is small (or if n is exponentially larger than d). In other 
words, we are facing the curse of dimensionality. The curse of dimensionality extends beyond challenges 
associated with Wasserstein distance utility guarantees. Even with a weaker accuracy requirement, the 
hardness result from Uhlman and Vadhan [52] shows that n = poly(d) is necessary for generating DP-
synthetic data in polynomial time while maintaining approximate covariance. 

In [19], the authors succeeded in constructing DP synthetic data with utility bounds where d in (1.1) 
is replaced by (d′ + 1), assuming that the dataset lies in a certain d′-dimensional subspace. Their notion 
of dimension is similar to the Minkowski dimension, and their method is applicable beyond the linear 
subspace setting. However, the optimization step in their algorithm exhibits exponential time complexity 
in d, see  [19, Section D]. 

This paper presents a computationally efficient algorithm that does not rely on any assumptions about 
the true data. We demonstrate that our approach enhances the utility bound from d to d′ in (1.1) when 
the dataset is in a d′-dimensional affine subspace. Specifically, we derive a DP algorithm to generate 
low-dimensional synthetic data from a high-dimensional dataset with a utility guarantee with respect to 
the 1-Wasserstein distance that captures the intrinsic dimension of the data. 

Our approach revolves around a private principal component analysis (PCA) procedure with a 
near-optimal accuracy bound that circumvents the curse of dimensionality. Different from classical
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 3

perturbation analysis [15, 23] that utilizes the Davis-Kahan theorem [17] in the literature, our accuracy 
analysis of private PCA works without assuming the spectral gap for the covariance matrix. 

Notation. In this paper, we work with data in the Euclidean space Rd. For convenience, the data matrix 
X = [X1, . . . ,Xn] ∈ Rd×n also indicates the dataset (X1, . . . ,Xn). We use  A to denote a matrix and v,X 
as vectors. ‖ · ‖F denotes the Frobenius norm and ‖ · ‖ is the operator norm of a matrix. Two sequences 
an, bn satisfies an � bn if an ≤ Cbn for an absolute constant C > 0. 

Organization of the paper. The rest of the paper is arranged as follows. In the remainder of Section 1, 
we present our algorithm with the main theorem for privacy and accuracy guarantees in Section 1.1, 
followed by a discussion. A comparison to the state of the art is given in Section 1.2. Definitions and 
lemmas used in the paper are provided in Section 2. 

Next, we consider the Algorithm 1 step by step. Section 3 discusses private PCA and noisy projection. 
In Section 4, wemodify synthetic data algorithms from [31] to the specific cases on the lower dimensional 
spaces. The precise privacy and accuracy guarantee of Algorithm 1 is summarized in Section 5. We  
discuss an adaptive and private choice of d′ in Section 6. Finally, since the case d′ = 1 is not covered in 
Theorem 1, we discuss additional results under stronger assumptions in Section 7. 

1.1 Main results 

In this paper, we use Definition 1 on data matrix X ∈ Rd×n. We say two data matrices X,X′ are 
neighboring datasets if X and X′ differ on only one column. We follow the setting and notation in 
[31] as follows: let (Ω , ρ) be a metric space. Consider a dataset X = [X1, . . . ,Xn] ∈ Ωn. We aim to 
construct a computationally efficient differentially private randomized algorithm that outputs synthetic 
data Y = [Y1, . . .  ,Yn] ∈ Ωm such that the two empirical measures 

μX = 
1 
n 

n∑
i=1 

δXi and μY = 
1 
m 

m∑
i=1 

δYi 

are close to each other. Here δXi denotes the Dirac measure centered on Xi. 
We measure the utility of the output by EW1(μX, μY), where the expectation is taken over the 

randomness of the algorithm. We assume that each vector in the original dataset X is inside [0, 1]d; 
our goal is to generate a differentially private synthetic dataset Y in [0, 1]d, where each vector is close to 
a linear subspace of dimension d′, and the empirical measure of Y is close to X under the 1-Wasserstein 
distance. We introduce Algorithm 1 as a computationally efficient algorithm for this task. It can be 
summarized in the following four steps: 

1. Construct a private covariance matrix M̂. The private covariance is constructed by adding a 
Laplacian random matrix to a centered covariance matrix M defined as 

M = 
1 

n− 1 

n∑
i=1 

(Xi − X)(Xi − X)T, where X = 
1 
n 

n∑
i=1 

Xi. (1.2) 

This step is presented in Algorithm 2. 
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4 Y. HE ET AL.

2. Find a d′-dimensional subspace V̂d′ by taking the top d′ eigenvectors of M̂. Then, project the data 
onto a linear subspace. The new data obtained in this way are inside a d′-dimensional ball. This 
step is summarized in Algorithm 3. 

3. Generate a private measure in the d′-dimensional ball centered at the origin by adapting methods 
in [31], where synthetic data generation algorithms were analyzed for data in the hypercube. This 
is summarized in Algorithms 4 and 5. 

4. Add a private mean vector to shift the dataset back to a private affine subspace. Given the 
transformations in earlier steps, some synthetic data points might lie outside the hypercube. We 
then metrically project them back to the domain of the hypercube. Finally, we output the resulting 
dataset Y. This is summarized in the last two parts of Algorithm 1. 

Our main theorem states the privacy and accuracy guarantees of Algorithm 1. 

THEOREM 1. Let Ω = [0, 1]d equipped with �∞ metric and X = [X1, . . .  ,Xn] ∈ Ωn be a dataset. For any 
2 ≤ d′ ≤ d, Algorithm 1 outputs an ε-differentially private synthetic dataset Y = [Y1, . . . ,Ym] ∈ Ωm 

for some m ≥ 1 in polynomial time such that 

E W1(μX, μY) �
√∑
i>d′

σi(M) +
√
d′d2.5 

εn 
+

√
d 
d′ (εn)

−1/d′
, 

where σi(M) is the i-th largest eigenvalue value of M in ( 1.2). 

Note thatm, the size of the synthetic datasetY, is not necessarily equal to n since the low-dimensional 
synthetic data subroutine in Algorithm 1 creates noisy counts. See Section 4 for more details. 

Algorithm 1 Low-dimensional Synthetic Data 

Input: True data matrix X = [X1, . . . ,Xn], Xi ∈ [0, 1]d, privacy parameter ε. 
(Private covariance matrix) Apply Algorithm 2 to X with privacy parameter ε/3 to obtain a private 
covariance matrix M̂. 
(Private linear projection) Let Xpriv denote the private mean of the true dataset. Choose a target 
dimension d′. Apply Algorithm 3 with privacy parameter ε/3 to shift and project X onto a private 
d′-dimensional linear subspace. 
(Low-dimensional synthetic data) Use subroutine in Section 4 to generate ε/3-DP synthetic data X′
of size m depending on d′ = 2 or  d′ ≥ 3. 
(Adding the private mean vector) Shift the data back by X′′

i = X′
i + Xpriv. 

(Metric projection) Define f : R → [0, 1] such that 

f (x) = 

⎧⎪⎪⎨⎪⎪⎩ 

0 if  x < 0; 

x if x ∈ [0, 1]; 

1 if  x > 1. 

Then, for v ∈ Rd, we define f (v) to be the result of applying f to each coordinate of v. 
Output: Synthetic data Y = [f (X′′

1 ), . . . , f (X
′′
m)].
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 5

Optimality. There are three terms on the right-hand side of (5.1). The first term is the error from 
the rank-d′ approximation of the covariance matrix M. The second term is the accuracy loss for 
private PCA after the perturbation from a random Laplacian matrix. The optimality of this error term 
remains an open question. The third term is the accuracy loss when generating synthetic data in a 
d′-dimensional subspace. Notably, the factor

√
d/d′ is optimal. This can be seen by the fact that a 

d′-dimensional section of the cube can be
√
d/d′ times larger than the low-dimensional cube [0, 1]d′

(e.g. if it is positioned diagonally). Complementarily, [12] showed the optimality of the factor (εn)−1/d′

for generating d′-dimensional synthetic data in [0, 1]d′
. Therefore, the third term in (5.1) is necessary and 

optimal. 

Improved accuracy. When the original dataset X lies in an affine d′-dimensional subspace, it implies 
σi(M) = 0 for  i > d′ and E W1(μX,μY) �

√
d′d2.5 

εn +
√

d 
d′ (εn)−1/d′

. This is an improvement from the 
accuracy rate O((εn)−1/d) for unstructured data in [0, 1]d in [12, 31] when d ≤ nαn and d′ ≤ min{ d 2 , 1 

αn
} 

for 0 < αn ≤ 2 
7 . For example, we can take αn to be a constant in (0, 2 

7 ] or  αn = 1 
log log n . This improved 

rate overcomes the curse of high dimensionality. 

Adaptive and private choices of d′. The target dimension d′ is a hyperparameter in Algorithm 1. One 
can choose the value of d′ adaptively and privately based on singular values of the private covariance 
matrix M̂ in Algorithm 2 such that 

d′ := argmin 
2≤k≤d 

⎛⎝√∑
i>d′

σi(M̂) +
√
d 
d′ (εn)

−1/d′
⎞⎠ . 

Discussion on such choice of d′ is referred to Section 6. 

Low-dimensional representation of X. The synthetic dataset Y is close to a d′-dimensional subspace 
under the 1-Wasserstein distance, as shown in Proposition 6. 
Running time. The private linear projection step in Algorithm 1 has a running time O(d2n) using the 
truncated SVD [41]. The low-dimensional synthetic data subroutine has a running time polynomial in 
n for d′ ≥ 3 and linear in n when d′ = 2 [31]. Therefore, the overall running time for Algorithm 1 is 
linear in n, polynomial in d when d′ = 2 and is poly(n, d) when d′ ≥ 3. Although sub-optimal in the 
dependence on d′ for accuracy bounds, one can also run Algorithm 1 in linear time by choosing PMM 
(Algorithm 4) in the subroutine for all d′ ≥ 2. 

1.2 Comparison to previous results 

Private synthetic data.Most existing work considered generating DP-synthetic datasets while minimiz-
ing the utility loss for specific queries, including counting queries [9, 22, 30], k-way marginal queries 
[24, 52], histogram release [1]. For a finite collection of predefined linear queries Q, [30] provided 
an algorithm with running time linear in |Q| and utility loss grows logarithmically in |Q|. The sample  
complexity can be reduced if the queries are sparse [9, 19, 24]. Beyond finite collections of queries, [56] 
considered utility bound for differentiable queries, and recent works [12, 31] studied Lipschitz queries 
with utility bound in Wasserstein distance. [19] considered sparse Lipschitz queries with an improved 
accuracy rate. [6, 27, 40, 58] measure the utility of DP synthetic data by the maximum mean discrepancy 
(MMD) between empirical distributions of the original and synthetic datasets. This metric is different
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6 Y. HE ET AL.

from our chosen utility bound in Wasserstein distance. Crucially, MMD does not provide any guarantees 
for Lipschitz downstream tasks. 

Our work provides an improved accuracy rate for low-dimensional synthetic data generation. 
Compared to [19], our algorithm is computationally efficient and has a better accuracy rate. Besides 
[19], we are unaware of any work on low-dimensional synthetic data generation from high-dimensional 
datasets. While methods from [12, 31] can be directly applied if the low-dimensional subspace is known, 
the subspace would be non-private and could reveal sensitive information about the original data. The 
crux of our paper is that we do not assume the low-dimensional subspace is known, and our DP synthetic 
data algorithm protects its privacy. This setting is closely related to the problem of privately learning the 
subspace of the dataset considered in [23, 49,51]. 

Private PCA. Private PCA is a commonly used technique for differentially private dimension reduction 
of the original dataset. This is achieved by introducing noise to the covariance matrix [15, 23, 32, 35, 
36, 45, 60]. Instead of independent noise, the method of exponential mechanism is also extensively 
explored [15, 35, 38]. Another approach, known as streaming PCA [34, 47], can also be performed 
privately [28, 43]. 

The private PCA typically yields a private d′-dimensional subspace V̂d′ that approximates the top 
d′-dimensional subspace Vd′ produced by the standard PCA. The accuracy of private PCA is usually 
measured by the distance between V̂d′ andVd′ [23, 29, 43, 45, 49]. To prove a utility guarantee, a common 
tool is the Davis-Kahan Theorem [8, 59], which assumes that the covariance matrix has a spectral gap 
[15, 23, 28, 35, 43]. Alternatively, using the projection error to evaluate accuracy is independent of 
the spectral gap [5, 38, 44]. In our implementation of private PCA, we don’t treat V̂d′ as our terminal 
output. Instead, we project X onto V̂d′ . Our approach directly bound the Wasserstein distance between 
the projected dataset and X. This method circumvents the subspace perturbation analysis, resulting in an 
accuracy bound independent of the spectral gap, as outlined in Lemma 3. [49] considered a related task 
that takes a true dataset close to a low-dimensional linear subspace and outputs a private linear subspace. 
To the best of our knowledge, none of the previous work on private PCA considered low-dimensional 
DP synthetic data generation. 

Centered covariance matrix. A common choice of the covariance matrix for PCA is 1 
nXX

T [14, 23, 
49], which is different from the centered one defined in (1.2). The rank of X is the dimension of the 
linear subspace that the data lie in rather than that of the affine subspace. If X lies in a d′-dimensional 
affine space (not necessarily passing through the origin), centering the data shifts the affine hyperplane 
spanned X to pass through the origin. Consequently, the centered covariance matrix will have rank 
d′, whereas the rank of X is d′ + 1. By reducing the dimension of the linear subspace by 1, the 
centering step enhances the accuracy rate from (εn)−1/(d′+1) to (εn)−1/d′

. Yet, this process introduces 
the challenge of protecting the privacy of mean vectors, as detailed in the third step in Algorithms 
1 and 3. 

Private covariance estimation. Private covariance estimation [18, 45] is closely linked to the private 
covariance matrix and the private linear projection components of our Algorithm 1. Instead of adding 
i.i.d. noise, [4, 38] improved the dependence on d in the estimation error by sampling top eigenvectors 
with the exponential mechanism. However, it requires d′ as an input parameter (in our approach, it can 
be chosen privately) and a lower bound on σd′(M). The dependence on d is a critical aspect in private 
mean estimation [37, 42], and it is an open question to determine the optimal dependence on d for low-
dimensional synthetic data generation.
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 7

2. Preliminaries 

2.1 Differential Privacy 

Weuse the following definition of ε-differential privacy from [20]. Note that in particular, if the algorithm 
is A : Ωn → Ωm, then its output is also a dataset of size m, which is generated by A from the input real 
dataset. We say the synthetic dataset provides ε-differential privacy if the synthetic data algorithm A is 
differentially private. 

DEFINITION 2 (Differential privacy). A randomized algorithm A : Ωn → R provides ε-differential 
privacy if for any input data D,D′ that differs on only one element (or D and D′ are adjacent datasets) 
and for any measurable set S ⊆ range(A), there is 

P{A(D) ∈ S} ≤  eε · P{A(D′) ∈ S}. 

Here the probability is taken from the probability space of the randomness of A. 

For multiple differentially private algorithms, differential privacy has a useful property that their 
sequential composition is also differentially private [20, Theorem 3.16]. 

LEMMA 1 (Theorem 3.16 in [20]). Suppose Ai is εi-differentially private for i = 1, . . .  ,m, then the 
sequential composition x �→ (A1(x), . . . ,Am(x)) is

∑m 
i=1 εi-differentially private. 

Moreover, the following result about adaptive composition indicates that algorithms in a sequential 
composition can use the outputs in the previous steps: 

LEMMA 2 (Theorem 1 in [21]). Suppose a randomized algorithm A1(x) : Ωn → R1 is ε1-differentially 
private, and A2(x, y) : Ωn × R1 → R2 is ε2-differentially private with respect to the first component 
for any fixed y. Then the sequential composition 

x �→ (A1(x),A2(x,A1(x))) 

is (ε1 + ε2)-differentially private. 

Since our method involves private counts of data points, we will use integer Laplacian noise to ensure 
they are integers. 

DEFINITION 3 (Integer Laplacian distribution, [33]). An integer (or discrete) Laplacian distribution with 
parameter σ is a discrete distribution on Z with probability density function 

f (z) = 
1 − pσ 
1 + pσ 

exp (−|z|/σ) , z ∈ Z, 

where pσ = exp(−1/σ). A random variable Z ∼ Lap
Z
(σ ) is mean-zero and sub-exponential with 

variance Var(Z) ≤ 2σ 2. 

2.2 Wasserstein distance 

The formal definition of p-Wasserstein distance is given as follows:
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8 Y. HE ET AL.

DEFINITION 4 (p-Wasserstein distance). Consider a metric space (Ω , ρ). The  p-Wasserstein distance (see 
e.g. [54] for more details) between two probability measures μ, ν is defined as 

Wp(μ, ν) :=
(

inf 
γ∈Γ (μ,ν)

∫
Ω×Ω 

ρ(x, y)pdγ (x, y)

)1/p 
, 

where Γ (μ, ν) is the set of all couplings of μ and ν. 

In particular, when p = 1, the W1 distance is also known as the earth mover’s distance because it is 
equivalent to the optimal transportation problem if the probability measures are discrete. Furthermore, 
W1 has the following Kantorovich-Rubinstein duality (see, e.g. [54]), which gives an equivalent 
representation with the Lipschitz functions: 

W1(μ, ν) = sup 
Lip(f )≤1

(∫
fdμ −

∫
fdν

)
. 

Here the supremum is taken over the set of all 1-Lipschitz functions on Ω . 

3. Private linear projection 

3.1 Private centered covariance matrix 

Algorithm 2 Private Covariance Matrix 

Input: Matrix X = [X1, . . . ,Xn], privacy parameter ε, and variance parameter σ = 3d2 

εn . 
(Computing the covariance matrix) Compute the mean X = 1 

n

∑n 
i=1 Xi and the centered covariance 

matrix M. 
(Generating a Laplacian random matrix) Generate i.i.d. independent random variables λij ∼ 
Lap(σ ), i ≤ j. Define a symmetric matrix A such that 

Aij = Aji =
{

λij if i < j; 

2λii if i = j, 

Output: The noisy covariance matrix M̂ = M + A. 

We start with the first step: finding a d′-dimensional private linear affine subspace and projecting 
X onto it. Consider the d × n data matrix X = [X1, . . . ,Xn], where X1, . . . ,Xn ∈ Rd. The rank of the 
covariance matrix 1 

nXX
T measures the dimension of the linear subspace spanned by X1, . . . ,Xn. If we  

subtract the mean vector and consider the centered covariance matrix M in (1.2), then the rank of M 
indicates the dimension of the affine linear subspace that X lives in. 

To guarantee the privacy of M, we add a symmetric Laplacian random matrix A to M to create a 
private Hermitian matrix M̂ from Algorithm 2. The variance of entries in A is chosen such that the 
following privacy guarantee holds:
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 9

PROPOSITION 2. Algorithm 2 is ε-differentially private. 

Proof. Before applying the definition of differential privacy, we compute the entries ofM explicitly. One 
can easily check that 

M = 
1 
n 

n∑
k=1 

XkX
T 
k −

1 
n(n− 1)

∑
k �=�

XkX
T
� . (3.1) 

Now, if there are neighboring datasets X and X′, suppose Xk = (X(1) 
k , . . . ,X(d) 

k )T is a column vector 
in X and X′

k = (X′
k 
(1) , . . . ,X′

k 
(d) 

)T is a column vector in X′, and all other column vectors are the same. 
Let M and M′ be the covariance matrix of X and X′, respectively. Then we consider the density function 
ratio for the output of Algorithm 2 with input X and X′: 

denA(M̂ − M) 
denA(M̂ − M′) 

=
∏
i<j 

denλij ((M̂ − M)ij) 

denλij ((M̂ − M′)ij)
∏
i=j 

den2λij ((M̂ − M)ij) 

den2λij ((M̂ − M′)ij) 

=
∏
i<j 

exp
(

− |(M̂−M)ij| 
σ

)
exp

(
− |(M̂−M′)ij| 

σ

) ∏
i 

exp
(

− |(M̂−M)ii| 
2σ

)
exp

(
− |(M̂−M′)ii| 

2σ

)
≤ exp 

⎛⎝∑
i<j 

|M|ij − M′
ij/σ +

∑
i 

|Mii − M′
ii|/(2σ)  

⎞⎠ = exp 

⎛⎝ 1 
2σ

∑
i,j 

|M|ij − M′
ij 

⎞⎠ . 

As the datasets differs on only one data Xk, consider all entry containing Xk in ( 3.1), we have 

|Mij − M′
ij| 

≤ 
1 
n

∣∣∣X(i) 
k X

(j) 
k − X′

k 
(i) X′

k 
(j)

∣∣∣ + 1 
n(n − 1)

∑
��=k

∣∣∣X(i) 
k − X′

k 
(i)

∣∣∣X�
(j) + 

1 
n(n− 1)

∑
��=k 

X�
(i)

∣∣∣X(j) 
k − X′

k 
(j)

∣∣∣
≤ 

2 
n 

+ 2 
n(n− 1) 

· 2(n − 1) = 
6 
n 
. 

Therefore, substituting the result in the probability ratio implies 

denA(M̂ − M) 
denA(M̂ − M′) 

≤ exp
(

1 
2σ 

· d2 · 6 
n

)
= exp

(
3d2 

σn

)
, 

and when σ = 3d2 

εn , Algorithm 2 is ε-differentially private. �

3.2 Noisy projection 

The private covariance matrix M̂ induces private subspaces spanned by eigenvectors of M̂. We then 
perform a truncated SVD on M̂ to find a private d′-dimensional subspace V̂d′ and project original data
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10 Y. HE ET AL.

onto V̂d′ . Here, the matrix V̂d′ also indicates the subspace generated by its orthonormal columns. The 
full steps are summarized in Algorithm 3. 

Algorithm 3 Noisy Projection 

Input: True data matrix X = [X1, . . . ,Xn], Xi ∈ [0, 1]d, privacy parameters ε, the private covariance 
matrix M̂ from Algorithm 2, and a target dimension d′. 
(Singular value decomposition) Compute the top d′ orthonormal eigenvectors v̂1, . . . , v̂d′ of M̂ and 
denote V̂d′ = [̂v1, . . .  , v̂d′ ]. 
(Private centering) Compute X = 1 

n

∑n 
i=1 Xi. Let  λ ∈ Rd be a random vector with i.i.d. components 

of Lap(d/(εn)). Shift each Xi to Xi − (X + λ) for i ∈ [n]. 
(Projection) Project {Xi − (X+ λ)}n i=1 onto the linear subspace spanned by v̂1, . . . , v̂d′ . The projected 
data X̂i is given by X̂i =

∑d′
j=1

〈
Xi − (X + λ), v̂j

〉
v̂j. 

Output: The data matrix after projection X̂ = [X̂1 . . . X̂n]. 

Algorithm 3 only guarantees private basis v̂1, . . . , v̂d′ for each X̂i, but the coordinates of X̂i in terms of
v̂1, . . . , v̂d′ are not private. Algorithms 4 and 5 in the next stage will output synthetic data on the private 
subspace V̂d′ based on X̂. The privacy analysis combines the two stages based on Lemma 2, and we state 
the results in Section 4. 

3.3 Accuracy guarantee for noisy projection 

The data matrix X̂ corresponds to an empirical measure μX̂ supported on the subspace V̂d. In this  
subsection, we characterize the 1-Wasserstein distance between the empirical measure μX̂ and the 
empirical measure of the centered dataset X − X1T, where 1 ∈ Rn is the all-1 vector. This problem 
can be formulated as the stability of a low-rank projection based on a covariance matrix with additive 
noise. We first provide the following useful deterministic lemma. 

LEMMA 3 (Stability of noisy projection). Let X be a d × n matrix and A be a d × d Hermitian matrix. 
Let M = 1 

nXX
T with eigenvalues σ1 ≥ σ2 ≥  · · ·  ≥  σd. Let M̂ = 1 

nXX
T + A, V̂d′ be a d × d′ matrix 

whose columns are the first d′ orthonormal eigenvectors of M̂, and Y = V̂d′V̂T 
d′X. Let  μX and μY be the 

empirical measures of column vectors of X and Y, respectively. Then 

W2 
2 (μX, μY) ≤ 

1 
n
‖X − Y‖2 

F ≤
∑
i>d′

σi + 2d′‖A‖. (3.2) 

Proof. Let v̂1, . . . , v̂d be a set of orthonormal eigenvectors for M̂ with the corresponding eigenvalues
σ̂1, . . . , σ̂d. Define four matrices whose column vectors are eigenvectors: 

V = [v1, . . . , vd], V̂ = [̂v1, . . . , v̂d], 

Vd′ = [v1, . . . , vd′ ], V̂d′ = [̂v1, . . . , v̂d′ ]. 

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/1/iaae034/7954368 by U
C

 - Irvine user on 21 July 2025



PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 11

By orthogonality, the following identities hold: 

d∑
i=1

‖vT 
i X‖2 

2 = 
d∑
i=1

‖̂vT 
i X‖2 

2 = ‖X‖2 
F ,

∑
i>d′

‖vT 
i X‖2 

2 = ‖X − Vd′VT 
d′X‖2 

F ,

∑
i>d′

‖̂vT 
i X‖2 

2 = ‖X − V̂d′V̂T 
d′X‖2 

F . 

Separating the top d′ eigenvectors from the rest, we obtain∑
i≤d′

‖vT 
i X‖2 

2 + ‖X − Vd′VT 
d′X‖2 

F =
∑
i≤d′

‖̂vT 
i X‖2 

2 + ‖X − V̂d′V̂T 
d′X‖2 

F . 

Therefore

‖X − V̂d′V̂T 
d′X‖2 

F =
∑
i≤d′

‖vT 
i X‖2 

2 −
∑
i≤d′

‖̂vT 
i X‖2 

2 + ‖X − Vd′VT 
d′X‖2 

F 

= n
∑
i≤d′

σi − n
∑
i≤d′

v̂T 
i M̂vi + n

∑
i>d′

σi 

= n
∑
i≤d′

σi − n
∑
i≤d′

v̂T 
i (M̂ − A)̂vi + n

∑
i>d′

σi 

= n
∑
i≤d′

(σi − σ̂i) + n tr(AV̂d′V̂T 
d′) + n

∑
i>d′

σi. (3.3) 

By Weyl’s inequality, for i ≤ d′, 

|σi − σ̂i| ≤ ‖A‖. (3.4) 

By von Neumann’s trace inequality, 

tr(AV̂d′V̂T 
d′) ≤ 

d′∑
i=1 

σi(A). (3.5) 

From ( 3.3), (3.4) and (3.5), 

1 
n
‖X − V̂d′V̂T 

d′X‖2 
F ≤

∑
i>d′

σi + d′‖A‖ +  
d′∑
i=1 

σi(A) ≤
∑
i>d′

σi + 2d′‖A‖. 
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12 Y. HE ET AL.

Let Yi be the i-th column of Y. We have  

W2 
2 (μX, μY) ≤ 

1 
n 

n∑
i=1

‖Xi − Yi‖2 
2 = 

1 
n
‖X − Y‖2 

F . 

Therefore, ( 3.2) holds. �
Note that inequality (3.2) holds without any spectral gap assumption on M. Applying Davis-Kahan 

inequality would require σd′ − σd′+1 to be large while Lemma 3 is applicable even when σd′ = σd′+1. 
In the context of sample covariance matrices for random datasets, a related bound without a spectral gap 
condition is derived in [48, Proposition 2.2]. Furthermore, Lemma 3 bears a conceptual resemblance to 
[3, Theorem 5], which deals with low-rank matrix approximation under perturbation. With Lemma 3, 
we derive the following Wasserstein distance bounds between the centered dataset X − X1T and the 
dataset X̂. 

PROPOSITION 3. For input dataX and output data X̂ in Algorithm 3, letM be the covariance matrix defined 
in (1.2). Assume n ≥ 1/ε. Then for an absolute constant C > 0, 

EW1(μX−X1T , μX̂) ≤
(
EW2 

2 (μX−X1T , μX̂)
)1/2 ≤

√
2
∑
i>d′

σi(M) +
√
Cd′d2.5 

εn 
. 

Proof. For the true covariance matrix M, consider its SVD 

M = 
1 

n − 1 

n∑
i=1 

(Xi − X)(Xi − X)T = 
d∑
j=1 

σjvjv
T 
j , (3.6) 

where σ1 ≥ σ2 ≥  · · ·  ≥  σd are the singular values and v1 . . . vd are corresponding orthonormal 
eigenvectors. Moreover, define two d × d′ matrices 

Vd′ = [v1, . . . , vd′ ], V̂d′ = [̂v1, . . . , v̂d′ ]. 

Then thematrix V̂d′V̂T 
d′ is a projection onto the subspace spanned by the principal components v̂1, . . . , v̂d′ . 

In Algorithm 3, for any data Xi we first shift it to Xi−X−λ and then project it to V̂d′V̂T 
d′(Xi−X−λ). 

Therefore,

‖Xi − X − V̂d′V̂T 
d′(Xi − X − λ)‖∞ ≤ ‖Xi − X − V̂d′V̂T 

d′(Xi − X)‖∞ + ‖V̂d′V̂T 
d′λ‖∞ 

≤ ‖Xi − X − V̂d′V̂T 
d′(Xi − X)‖2+ = ‖λ‖2. 

Let Zi denote Xi − X and Z = [Z1, . . . ,Zn]. Then 

1 
n 
ZZT = 

n− 1 
n 

M. 
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 13

With Lemma 3, by definition of the Wasserstein distance, we have 

W2 
2 (μX−X1T , μX̂) ≤ 

1 
n 

n∑
i=1

‖Xi − X − V̂d′V̂T 
d′(Xi − X − λ)‖2 

∞ 

≤ 
2 
n 

n∑
i=1

‖Xi − X − V̂d′V̂T 
d′(Xi − X)‖2 

2 + 2‖λ‖2 
2 

= 
2 
n
‖Z − V̂d′V̂T 

d′Z‖2 
F + 2‖λ‖2 

2 

≤ 2 
n∑

i=d′
σi(M) + 4d′‖A‖ +  2‖λ‖2 

2. (3.7) 

Since λ = (λ1, . . . , λd) is a Laplacian random vector with i.i.d. Lap(1/(εn)) entries, 

E ‖λ‖2 
2 = 

d∑
j=1 

E |λj|2 = 
2d 

ε2n2
. (3.8) 

Furthermore, in Algorithm 2, A is a symmetric random matrix with independent Laplacian random 
variables on and above its diagonal. Thus, we have the tail bound for its norm [ 16, Theorem 1.1] 

P

{
‖A‖ ≥  σ(C

√
d + t)

}
≤ C0 exp(−C1 min(t2/4, t/2)). (3.9) 

And we can further compute the expectation bound for ‖A‖ from ( 3.9) with the choice of σ = 3d2 

εn , 

E ‖A‖ ≤  Cσ
√
d +

∫ ∞ 

0 
C0 exp

(
− C1 min

(
t2 

4σ 2 , 
t 
2σ

))
dt � d2.5 

εn 
. 

Combining the two bounds above and ( 3.7), as the 1-Wasserstein distance is bounded by the 2-
Wasserstein distance and inequality 

√
x+ y ≤ √

x + √
y holds for all x, y ≥ 0, 

EW1(μX−X1T , μX̂) ≤
(
E W2 

2 (μX−X1T ,μX̂)
)1/2 

≤
√
2
∑
i>d′

σi(M) + √
4d′ E ‖A‖ +

√
2 E ‖λ‖2 

2 

≤
√
2
∑
i>d′

σi(M) +
√
Cd′d2.5 

εn 
, 

where the last inequality holds under the assumption εn ≥ 1. �
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14 Y. HE ET AL.

4. Synthetic data subroutines 

In the next stage of Algorithm 1, we construct synthetic data on the private subspace V̂d′ . Since the 
original data Xi is in [0, 1]d, after Algorithm 3, we have

‖X̂i‖2 = ‖Xi − X − λ‖2 ≤
√
d + ‖X + λ‖2 =: R 

for any fixed λ ∈ Rd. Therefore, the data after projection would lie in a d′-dimensional ball embedded 
in Rd with radius R, and the domain for the subroutine is 

Ω ′ = {a1̂v1 + · · · + ad′̂vd′ | a2 
1 + · · · + a2 

d′ ≤ R2}, 

where v̂1, . . . , v̂d′ are the first d′ private principal components in Algorithm 3. Depending on whether 
d′ = 2 or  d′ ≥ 3, we apply two different algorithms from [31]: private measure mechanism (PMM) and 
private signed measure mechanism (PSMM). 

A major difference between the two methods is the partition step. PMM uses a hierarchical binary 
partition of the entire space into r layers, while PSMM partitions the entire space into disjoint regions. 
When d′ = 2, PMM has a better accuracy rate while when d′ ≥ 3, PSMM has a better dependence on d′
in the accuracy bound; See Remark 1 for more details. 

4.1 d′ = 2: PMM  

The synthetic data subroutine Algorithm 4 is adapted from the PMM in [31, Algorithm 4]. The PMM 
algorithm generates synthetic data in a hypercube by first partition the cube and then perturb the count 
in each sub-regions. It involves a certain partition structure, binary hierarchical partition. 

DEFINITION 5 (Binary hierarchical partition, [31]). A binary hierarchical partition of a set Ω of depth r 
is a family of subsets Ωθ indexed by θ ∈ {0, 1}≤r, where 

{0, 1}≤k = {0, 1}0 � {0, 1}1 � · · · � {0, 1}k, k = 0, 1, 2 . . . , 

and such that Ωθ is partitioned into Ωθ0 and Ωθ1 for every θ ∈ {0, 1}≤r−1. By convention, the cube 
{0, 1}0 corresponds to ∅ and we write Ω∅ = Ω . 

The detailed description of Algorithm 4 is as follows. The privacy and accuracy guarantees of 
Algorithm 4 are proved in the next proposition after stating the algorithm. 

For the new region Ω ′ where projected data located, we first enlarge this �2-ball of radius R into a 
hypercube ΩPMM of edge length 2R defined in Algorithm 4. Both the �2-ballΩ

′ and the larger hypercube 
ΩPMM are inside the subspace V̂d′ . 

Next, for the hypercube ΩPMM, we are going to run PMM in [31]. We obtain a binary hierarchical 
partition {Ωθ }θ∈{0,1}≤r for r = �log2(εn)� by doing equal divisions of the hypercube recursively for 
r rounds. Each round after the division, we count the data points in every new subregion Ωθ and add 
integer Laplacian noise to it. 

Finally, a consistency step ensures the output is a well-defined probability measure. Here, the counts 
are considered to be consistent if they are non-negative and the counts of two smaller subregions 
Ωθ0, Ωθ1 can add up to the counts of the larger regions Ωθ containing them. We refer the readers to 
[31] for more detailed procedures of this step.
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 15

Algorithm 4 PMM Subroutine 

Input: dataset X̂ = (X̂1, . . .  , X̂n) in the region 

Ω ′ = {a1̂v1 + · · · +  ad′̂vd′ | a2 
1 + · · · +  a2 

d′ ≤ R}. 

(Binary partition) Let r = �log2(εn)� and σj = ε−1 · 2 
1 
2

(
1− 1 

d′
)
(r−j) . Enlarge the region Ω ′ into 

ΩPMM = {a1̂v1 + · · · +  ad′̂vd′ | ai ∈ [−R,R],∀i ∈ [d′]}. 

Build a binary partition {Ωθ }θ∈{0,1}≤r on ΩPMM. 
(Noisy count) For any θ , count the number of data in the region Ωθ denoted by nθ =

∣∣X̂ ∩ Ωθ

∣∣, and let 
n′
θ = (nθ +λθ )+, where λθ are independent integer Laplacian random variables with λ ∼ Lap

Z
(σ|θ |), 

and |θ | is the length of the vector θ . 
(Consistency) Enforce consistency of {n′

θ }θ∈{0,1}≤r . 
Output: Synthetic data X′ generated by selecting n′

θ many data points arbitrarily (independently of
X̂) from Ωθ for every θ ∈ {0, 1}r. 

PROPOSITION 4. The subroutine Algorithm 4 is ε-differentially private. Assume n ≥ 1/ε. For any d′ ≥ 2, 
with the input as the projected data X̂ and the range Ω ′ with radius R, Algorithm 4 has an accuracy bound 

EW1(μX̂, μX′) ≤ CR(εn)−1/d′
, 

where the expectation is taken with respect to the randomness of the synthetic data subroutine, 
conditioned on R. 

Proof. The privacy guarantee follows from [31, Theorem 1.1]. For accuracy, note that the region Ω ′ is a 
subregion of a d′-dimensional ball. Algorithm 4 enlarges the region to a d′-dimensional hypercube with 
side length 2R. By re-scaling the size of the hypercube and applying [31, Corollary 4.4], we obtain the 
accuracy bound. �

4.2 d′ ≥ 3: PSMM  

The PSMM introduced in [31] generates a synthetic dataset Y in a compact domain Ω whose empirical 
measure μY is close to the empirical measure μX of the original dataset X under the 1-Wasserstein 
distance. 

PSMM runs in polynomial time, and the main steps are as follows. We first partition the domain Ω 
into m disjoint subregions Ω1, . . . ,Ωm and count the number of data points in each subregion. Then, 
we perturb the counts in each subregion with i.i.d. integer Laplacian noise. Based on the noisy counts, 
one can approximate μX with a signed measure ν supported on m points. Then, we find the closest 
probability measure ν̂ to the signed measure ν under the bounded Lipschitz distance by solving a linear 
programming problem. 

We provide the main steps of PSMM in Algorithm 5. Details about the linear programming in the 
synthetic probability measure step can be found in [31]. We apply PSMM from [31] when the metric 
space is an �2-ball of radius R inside V̂d′ and the following privacy and accuracy guarantees hold:
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16 Y. HE ET AL.

Algorithm 5 PSMM Subroutine 

Input: dataset X̂ = (X̂1, . . . , X̂n) in the region 

Ω ′ = {a1̂v1 + · · · +  ad′̂vd′ | a2 
1 + · · · +  a2 

d′ ≤ R2}. 

(Integer lattice) Let δ = √
d/d′(εn)−1/d′

. Find the lattice over the region: 

L = {a1̂v1 + · · · +  ad′̂vd′ | a2 
1 + . . .  7 + a2 

d′ ≤ R2, a1, . . . , ad′ ∈ δZ}. 

(Counting) For any v = a1̂v1 + · · · + ad′̂vd′ ∈ L, count the number 

nv =
∣∣X̂ ∩ {b1̂v1 + · · · +  bd′̂vd′ | bi ∈ [ai, ai + δ)}∣∣ . 

(Adding noise) Define a synthetic signed measure ν such that for any v ∈ L, 

ν({v}) = (nv + λv)/n, 

where λv ∼ Lap
Z
(1/ε), v ∈ L are i.i.d. random variables. 

(Synthetic probability measure) Use linear programming and find the closest probability measure ν̂ 
to ν under the bounded Lipschitz distance. 
Output: Synthetic data X′ containing copies of elements in L so that μX′ and ν̂ are arbitrarily close 
(such X′ exist when the size of X′ is large enough; see (31, Section 3)). 

PROPOSITION 5. The subroutine Algorithm 5 is ε-differentially private. Assume n ≥ 1/ε. When d′ ≥ 3, 
with the input as the projected data X̂ and the range Ω ′ with radius R, the algorithm has an accuracy 
bound 

EW1(μX̂, μX′) �
R√
d′ (εn)

−1/d′
, (4.1) 

where the expectation is conditioned on R. 

Proof. The proposition is a direct corollary to the result in [31]. The size of the scaled integer lattice 
δZ in the unit d-dimensional ball of radius R is bounded by ( C 

δR )d for an absolute constant C > 0 
(see, e.g. [26, Claim 2.9] and [11, Proposition 3.7]). Then, the number of subregions in Algorithm 5 is 
bounded by 

|L| ≤
(

R√
d′ · C 

δ

)d′

. 

By [ 31, Theorem 3.6], we have 

E W1(μX̂, μX′) ≤ δ + 
2 
εn

(
R√
d′ · C 

δ

)d′

· 1 
d′

((
R√
d′ · C 

δ

)d′ )− 1 
d′
. 

Taking δ = CR√
d′ (εn)

− 1 
d′ concludes the proof. �
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 17

REMARK 1 (PMM vs PSMM for d′ ≥ 2). For general d′ ≥ 2, PMM can still be applied, and the accuracy 
bound becomes EW1(μX̂, μX′) ≤ CR(εn)−1/d′

. Compared to (4.1), a the accuracy bound from PMM 
is weaker by a factor of 

√
d′. However, as shown in [31], PMM has a running time linear in n and d, 

which is more computationally efficient than PSMM given in Algorithm 5 with running time polynomial 
in n, d. 

4.3 Adding a private mean vector and metric projection 

After generating the private synthetic data, since we shift the data by its private mean before projection, 
we need to add another private mean vector back, which shifts the dataset X̂ to a new private affine 
subspace close to the original dataset X. The output data vectors in X′′ (defined in Algorithm 1) are 
not necessarily inside [0, 1]d. The subsequent metric projection enforces all synthetic data inside [0, 1]d. 
Importantly, this post-processing step does not have privacy costs. 

After metric projection, dataset Y from the output of Algorithm 1 is close to an affine subspace, as 
shown in the next proposition. Notably, (4.2) shows that the metric projection step does not cause the 
largest accuracy loss among all subroutines. 

PROPOSITION 6 (Y is close to an affine subspace). The function f : Rd → [0, 1]d in Algorithm 1 is the 
metric projection to [0, 1]d with respect to ‖ · ‖∞, and the accuracy error for the metric projection step 
in Algorithm 1 is dominated by the error of the previous steps: 

W1(μY, μX′′) ≤ W1(μX, μX′′), (4.2) 

where the dataset X′′ defined in Algorithm 1 is in a d′-dimensional affine subspace. 

Proof. For the function f defined in Algorithm 1, we know f (x) is the closest real number to x in the 
region [0, 1] for any x ∈ R. Furthermore, if v ∈ Rd is a vector, then f (v) is the closest vector to v in 
[0, 1]d with respect to ‖ · ‖∞. Thus f : Rd → [0, 1]d is indeed a metric projection to [0, 1]d. 

We first assume that the synthetic data X′′ also has size n. Then for any column vector X′′
i , we know 

that Yi = f (X′′
i ) is its closest vector in [0, 1]d under the �∞ metric. For the data X1,X2, . . .  ,Xn, suppose 

that the solution to the optimal transportation problem for W1(μX, μX′′) is to match Xτ(i) with X′′
i , where 

τ is a permutation on [n]. Then 

W1(μY, μX′′) ≤ 
1 
n 

n∑
i=1

‖Yi − X′′
i ‖∞ ≤ 

1 
n 

n∑
i=1

‖Xτ(i) − X′′
i ‖∞ = W1(μX, μX′′). 

In general, if the synthetic dataset has m data points and m �= n, we can split the points and regard 
both the true dataset and synthetic dataset as of size mn, then it’s easy to check that the inequality still 
holds. �

5. Privacy and accuracy of Algorithm 1 

In this section, we summarize the privacy and accuracy guarantees of Algorithm 1. The privacy guarantee 
is proved by analyzing three parts of our algorithms: private mean, private linear subspace and private 
data on an affine subspace. 

PROPOSITION 7 (Privacy). Algorithm 1 is ε-differentially private.
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18 Y. HE ET AL.

Proof. We can decompose Algorithm 1 into the following steps: 
1. A1(X) = M̂ is to compute the private covariance matrix with Algorithm 2. 

2. A2(X) = X + λ is to compute the private sample mean. 

3. A3(X, y,Σ)  for fixed y and Σ , is to project the shifted data {Xi − y}n i=1 to the first d′ principal 
components of Σ and apply a certain differentially private subroutine (we choose y and Σ as the 
output of A2 and A1, respectively). This step outputs synthetic dataX′ = (X′

1, . . . ,X
′
m) on a linear 

subspace. 

4. A4(X,X
′) is to shift the dataset to {X′

i + Xpriv}m 
i=1, where Xpriv is the private mean vector of the 

true data step computed by A2. 

5. Metric projection. 
It suffices to show that the data before metric projection has already been differentially private. We 

will need to apply Lemma 2 several times. 
With respect to the input X while fixing other input variables, we know that A1,A2,A3,A4 are all 

ε/4-differentially private. Therefore, by using Lemma 2 iteratively, the composition algorithm 

A4(X,A3(X,A2(X),A1(X))) 

satisfies ε-differential privacy. Hence Algorithm 1 is ε-differentially private. �
The next theorem combines errors from linear projection, synthetic data subroutine using PMM or 

PSMM, and the post-processing error from mean shift and metric projection. 

PROPOSITION 8 (Accuracy). For any given 2 ≤ d′ ≤ d and n ≥ 1/ε, the output data Y from Algorithm 1 
with the input data X satisfies 

E W1(μX, μY) �
√∑
i>d′

σi(M) +
√
d′d2.5 

εn 
+

√
d 
d′ (εn)

−1/d′
, (5.1) 

where M denotes the covariance matrix in ( 1.2). 

Proof. In the case of n < 1/ε, we have  W1(μX, μY) ≤ 1 ≤ (εn)−1/d′
. The result is trivial. We assume 

n ≥ 1/ε in the rest of the proof. 
Similar to privacy analysis, we will decompose the algorithm into several steps. Suppose that 
1. X − (X + λ)1T denotes the shifted data {Xi − X − λ}n i=1; 

2. X̂ is the data after projection to the private linear subspace; 

3. X′ is the output of the synthetic data subroutine in Section 4; 

4. X′′ = X′ + (X + λ′)1T denotes the data shifted back; 

5. A(X) is the data after metric projection, which is the output of the whole algorithm. 
For the metric projection step, by Proposition 6, we have that 

W1(μX, μA(X)) ≤ W1(μX, μX′′) + W1(μX′′ , μA(X)) ≤ 2W1(μX, μX′′). (5.2)
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 19

Moreover, applying the triangle inequality of Wasserstein distance to the other steps of the algorithm, 
we have 

W1(μX, μX′′) = W1(μX−X1T , μX′+λ′1T) 

≤ W1(μX−X1T , μX̂) + W1(μX̂, μX′) + W1(μX′ , μX′+λ′) 

≤ W1(μX−X1T , μX̂) + W1(μX̂, μX′) + ‖λ′‖∞. (5.3) 

Note thatW1(μX−X1T , μX̂) is the projection error we bound in Theorem 3with n ≥ 1/ε, andW1(μX̂, μX′) 
is treated in the accuracy analysis of subroutines in Section 4. Moreover, we have 

EW1(μX̂, μX′) = ER EX′ W1(μX̂, μX′) 

≤ ER 
CR√
d′ (εn)

−1/d′

≤ 
C(2

√
d + E ‖λ‖2)√

d′ (εn)−1/d′

�
√
d 
d′ (εn)

−1/d′
. 

Here in the last step we use E ‖λ‖2 ≤ C
√
d 

εn in ( 3.8). Since λ′ is a sub-exponential random vector, the 
following bound also holds for some absolute constant C > 0: 

E ‖λ′‖∞ ≤ 
C log d 

εn 
. (5.4) 

Hence 

EW1(μX, μA(X)) ≤ 2 EW1(μX, μX′+(X+λ′)1T) 

≤ 2 EW1(μX−X1T ,μX̂) + 2EW1(μX̂, μX′) + 2E ‖λ′‖∞ 

≤ 2
√
2
∑
i>d′

σi(M) + 2

√
Cd′d2.5 

εn 
+ 2C

√
d 
d′ (εn)

−1/d′ + 
2C log d 

εn

�
√∑
i>d′

σi(M) +
√
d 
d′ (εn)

−1/d′ +
√
d′d2.5 

εn 
, 

where the first inequality is from ( 5.2), the second inequality is from (5.3) and the third inequality is due 
to Theorem 3, Proposition 4 and Proposition 5. �
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6. Adaptive and private choice of d′

In our main Algorithm 1, d′ is regarded as a fixed input hyper-parameter. In this section, we will show 
that it is possible to choose d′ privately without sacrificing accuracy. 

LEMMA 4. For M and M̂ defined in Algorithm 2, with probability at least 1 − C exp(−c√d), there is
∣∣∣∣∣∑
i>d′

σi(M̂) −
∑
i>d′

σi(M)

∣∣∣∣∣ � (d − d′)d2.5 

εn 
. 

Proof. By Weyl’s inequality, |σi(M̂) − σi(M)| ≤ ‖A‖. Applying the (3.9) of the noise A implies the 
inequality in the lemma. �

Therefore, from Proposition 8, with probability at least 1 − C exp(−c√d), we have the following 
accuracy bound: 

W1(μX, μY) �
√∑
i>d′

σi(M) +
√
d′d2.5 

εn 
+

√
d 
d′ (εn)

−1/d′

�

√√√√∑
i>d′

σi(M̂) + 
(d − d′)d2.5 

εn 
+

√
d′d2.5 

εn 
+

√
d 
d′ (εn)

−1/d′

�
√∑
i>d′

σi(M̂) +
√
d 
d′ (εn)

−1/d′ +
√
d3.5 

εn 
. 

Since the last term above is not related to d′, we can choose 

d′ := argmin2≤k≤d 

⎛⎝√∑
i>k 

σi(M̂) +
√
d 
k 
(εn)−1/k 

⎞⎠ . 

The privacy of the choice of d′ is guaranteed as we only use the private covariance matrix. 

7. Near-optimal accuracy bound with additional assumptions when d′ = 1 

Our Proposition 8 is not applicable to the case d′ = 1 because the projection error in Theorem 3 only 
has bound O((εn)− 1 

2 ), which does not match with the optimal synthetic data accuracy bound in [12] and 
[31]. We are able to improve the accuracy bound with an additional dependence on σ1(M) as follows: 

THEOREM 9. When d′ = 1, consider Algorithm 1 with input data X, output data Y and the subroutine 
PMM in Algorithm 4. Let M be the covariance matrix defines as (1.2). Assume σ1(M) >  0 and n ≥ 1/ε,
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 21

then 

EW1(μX, μY) �
√∑

i>1 
σi(M) + d3√

σ1(M)εn 
+ 

√
d log2(εn) 

εn 
. 

We start with the following lemma based on the Davis–Kahan theorem [59]. 

LEMMA 5. Let X be a d× n matrix and A be an d× d Hermitian matrix. Let M = 1 
nXX

T, with the SVD 

M = 
d∑
j=1 

σjvjv
T 
j , 

where σ1 ≥ σ2 ≥  · · ·  ≥  σd are the singular values of M and v1, . . . , vd are corresponding orthonormal 
eigenvectors. Let M̂ = 1 

nXX
T + A with orthonormal eigenvectors v̂1, . . . , v̂d, where v̂1 corresponds to 

the top singular value of M̂. When there exists a spectral gap σ1 − σ2 = δ >  0, we have 

1 
n
‖X − v̂1̂v

T 
1X‖2 

F ≤ 2
∑
i>1 

σi + 
8d′2 

nδ2
‖A‖2‖X‖2 

F . 

Proof. We have that 

1 
n
‖X − v̂1̂v

T 
1X‖2 

F = 
1 
n
‖X − v1v

T 
1X + v1v

T 
1X − v̂1̂v

T 
1X‖2 

F 

≤ 
2 
n

(
‖X − v1v

T 
1X‖2 

F + ‖v1vT 
1X − v̂1̂v

T 
1X‖2 

F

)
= 2

∑
i>1 

σi + 
2 
n
‖
(
v1v

T 
1 − v̂1̂v

T 
1

)
X‖2 

F 

≤ 2
∑
i>1 

σi + 
2 
n
‖v1vT 

1 − v̂1̂v
T 
1‖2‖X‖2 

F . (7.1) 

To bound the operator norm distance between the two projections, we will need the Davis-Kahan 
Theorem in the perturbation theory. For the angle Θ(v1, v̂1) between the vectors v1 and v̂1, applying [ 59, 
Corollary 1], we have

‖v1vT 
1 − v̂1̂v

T 
1‖ =  sin Θ(v1, v̂1) ≤ 

2‖M − M̂‖
σ1 − σ2 

≤ 
2‖A‖

δ 
. 

Therefore, when the spectral gap exists (δ >  0), 

1 
n
‖X − v̂1̂v

T 
1X‖2 

F ≤ 2
∑
i>1 

σi + 
8 
nδ2

‖A‖2‖X‖2 
F . 

This finishes the proof. �
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Compared to Lemma 3, with the extra spectral gap assumption, the dependence on A in the upper 
bound changes from ‖A‖ to ‖A‖2. A similar phenomenon, called global and local bounds, was observed 
in [48, Proposition 2.2]. With Lemma 5, we are able to improve the accuracy rate for the noisy projection 
step as follows: 

PROPOSITION 10. Let σ1 ≥  · · ·  ≥  σd ≥ 0 be the singular values of M defined in (3.6). When d′ = 1, 
assume that σ1 > 0 and n ≥ 1/ε. For the output X̂ in Algorithm 3, we have 

EW1(μX−X1T ,μX̂) ≤
(
EW2 

2 (μX−X1T , μX̂)
)1/2

�
√∑

i>1 
σi + 

d3 
√

σ1εn 
, 

Proof. Similar to the proof of Theorem 3, we can define Zi = Xi − X and deduce that 

1 
n 
ZZT = 

n− 1 
n 

M, 

1 
n
‖Z‖2 

F = 
n− 1 
n 

tr(M), 

and 

W2 
2 (μX−X1T , μX̂) = 

2 
n
‖Z − v̂1̂v

T 
1Z‖2 

F + 2‖λ‖2 
2. 

By the inequality
√
x+ y ≤ √

x + √
y for x, y ≥ 0, 

EW1(μX−X1T , μX̂) ≤ E
[
2 
n
‖Z − v̂1̂v

T 
1Z‖2 

F

]1/2 
+ √

2 E ‖λ‖2. 

Let δ = σ1 − σ2. Next, we will discuss two cases for the value of δ. 
Case 1: When δ = σ1 − σ2 ≤ 1 

2σ1, we have  σ1 ≤ 2σ2 and 

tr(M) = σ1 + · · · +  σd ≤ 3
∑
i>1 

σi. 

As any projection map has spectral norm 1, we have ‖v1vT 
1 − v̂1̂v

T 
1‖ ≤  2. Applying ( 7.1), we have 

1 
n
‖Z − v̂1̂v

T 
1Z‖2 

F ≤ 2
∑
i>1 

σi + 
2 
n
‖v1vT 

1 − v̂1̂v
T 
1‖2‖Z‖2 

F 

≤ 2
∑
i>1 

σi + 
8 
n
‖Z‖2 

F 

≤ 2
∑
i>1 

σi + 8 tr(M) ≤ 26
∑
i>1 

σi. 

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/14/1/iaae034/7954368 by U
C

 - Irvine user on 21 July 2025



PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 23

Hence 

EW1(μX−X1T , μX̂) �
√∑

i>1 
σi + E ‖λ‖2 �

√∑
i>1 

σi + 
√
d 

εn 
. (7.2) 

Case 2: When δ ≥ 1 
2σ1, we have  

tr(M) ≤ dσ1 ≤ 
4dδ2 

σ1 
. 

For any fixed δ, by Lemma 5, 

1 
n
‖Z − v̂1̂v

T 
1Z‖2 

F ≤ 2
∑
i>1 

σi + 
8 
nδ2

‖A‖2‖Z‖2 
F 

≤ 2
∑
i>1 

σi + 
8 
δ2

‖A‖2 tr(M) 

≤ 2
∑
i>1 

σi + 
32d 
σ1

‖A‖2. 

So we have the Wasserstein distance bound 

EW1(μX−X1T ,μX̂) ≤
√
2
∑
i>1 

σi +
√
32d 
σ1 

E ‖A‖ + √
2 E ‖λ‖2 

≤
√
2
∑
i>1 

σi +
√
32d 
σ1 

d2.5 

εn 
+ 

√
2d 

εn 

≤
√
2
∑
i>1 

σi + 
Cd3 

√
σ1εn 

. (7.3) 

From ( 3.6), 

σ1 = ‖M‖ ≤ ‖M‖F ≤ 
n 

n − 1 
d ≤ 2d. 

Combining the two cases ( 7.2) and (7.3), we deduce the result. �
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Proof of Theorem 9 Following the steps in the proof of Theorem 3, we obtain 

EW1(μX, μA(X)) ≤ 2 EW1(μX, μX′+(X+λ′)1T) 

≤ 2 EW1(μX−X1T , μX̂) + 2E W1(μX̂, μX′) + 2E ‖λ′‖∞

�
√∑

i>1 
σi + 

d′d3 
√

σ1εn 
+ 

√
d log2(εn) 

εn
+ 

2C log d 
εn

�
√∑

i>1 
σi + 

d′d3 
√

σ1εn 
+ 

√
d log2(εn) 

εn 
, 

where for the second inequality, we apply the bound from [ 31, Theorem 1.1] for the second term, and 
we use (5.4) for the third term. �

8. Conclusion 

In this paper, we provide a DP algorithm to generate synthetic data, which closely approximates the 
true data in the hypercube [0, 1]d under 1-Wasserstein distance. Moreover, when the true data lies in a 
d′-dimensional affine subspace, we improve the accuracy guarantees in [31] and circumvents the curse 
of dimensionality by generating a synthetic dataset close to the affine subspace. 

It remains open to determine the optimal dependence on d in the accuracy bound in Proposition 8 
and whether the third term in (5.1) is needed. Our analysis of private PCA works without using the 
classical Davis-Kahan inequality that requires a spectral gap on the dataset. However, to approximate a 
dataset close to a line (d′ = 1), additional assumptions are needed in our analysis to achieve the near-
optimal accuracy rate, see Section 7. It is an interesting problem to achieve an optimal rate without the 
dependence on σ1(M) when d′ = 1. 

Our Algorithm 1 only outputs synthetic data with a low-dimensional linear structure, and its analysis 
heavily relies on linear algebra tools. For original datasets from a d′-dimensional linear subspace, we 
improve the accuracy rate from (εn)−1/(d′+1) in [19] to  (εn)−1/d′

. It is also interesting to provide 
algorithms with optimal accuracy rates for datasets from general low-dimensional manifolds beyond 
the linear setting. 
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