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Differentially private synthetic data provide a powerful mechanism to enable data analysis while protecting
sensitive information about individuals. However, when the data lie in a high-dimensional space, the
accuracy of the synthetic data suffers from the curse of dimensionality. In this paper, we propose
a differentially private algorithm to generate low-dimensional synthetic data efficiently from a high-
dimensional dataset with a utility guarantee with respect to the Wasserstein distance. A key step of our
algorithm is a private principal component analysis (PCA) procedure with a near-optimal accuracy bound
that circumvents the curse of dimensionality. Unlike the standard perturbation analysis, our analysis of
private PCA works without assuming the spectral gap for the covariance matrix.
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1. Introduction

As data sharing is increasingly locking horns with data privacy concerns, privacy-preserving data analysis
is becoming a challenging task with far-reaching impact. Differential privacy (DP) has emerged as
the gold standard for implementing privacy in various applications [20]. For instance, DP has been
adopted by several technology companies [25] and has also been used in connection with the release
of Census 2020 data [2]. The motivation behind the concept of differential privacy is the desire to protect
an individual’s data while publishing aggregate information about the database, as formalized in the
following definition:
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2 Y. HE ET AL.

DeriniTioN 1 (Differential Privacy [20]). A randomized algorithm ./ is e-differentially private if for any
pair of datasets D and D’ that differ on one data (i.e. D = D U {X} and D’ = D, U {X’} for some dataset
D)), and any measurable subset S C range(.#), we have

P{.#D) e S} < P{.#D) € S},

where the probability is with respect to the randomness of .Z.

However, utility guarantees for DP are usually provided only for a fixed, predefined set of queries.
Hence, it has been frequently recommended that differential privacy may be combined with synthetic
data to achieve more flexibility in private data sharing [7, 30, 57]. Synthetic datasets are generated from
existing datasets and maintain the statistical properties of the original dataset. Hence, the datasets can be
shared freely among investigators in academia or industry, without security and privacy concerns.

Yet, computationally efficient construction of accurate differentially private synthetic data is chal-
lenging. Most research on private synthetic data has been concerned with counting queries, range queries
or k-dimensional marginals, see, e.g. [9, 10, 24, 30, 50, 52, 53]. Notable exceptions are [56, 12] and
[19]. Specifically, [12] provide utility guarantees with respect to the 1-Wasserstein distance. Invoking
the Kantorovich-Rubinstein duality theorem, the 1-Wasserstein distance accuracy bound ensures that
all Lipschitz statistics are preserved uniformly. Given that numerous machine learning algorithms are
Lipschitz [13, 39, 46, 55], this provides data analysts with a vastly increased toolbox of machine learning
methods for which one can expect similar outcomes for the original and synthetic data.

For instance, for the special case of datasets living on the d-dimensional Boolean hypercube {0, 1}¢
equipped with the Hamming distance, the results in [12] show that there exists an e-DP algorithm with
an expected utility loss that scales like

5 1/d
(1og(en)f /(z-:n)) , (1.1)

where 7 is the size of the dataset. While [31] succeeded in removing the logarithmic factor in (1.1), it can
be shown that the rate in (1.1) is otherwise tight. Consequently, the utility guarantees in [12] and [31] are
only useful when d, the dimension of the data, is small (or if n is exponentially larger than d). In other
words, we are facing the curse of dimensionality. The curse of dimensionality extends beyond challenges
associated with Wasserstein distance utility guarantees. Even with a weaker accuracy requirement, the
hardness result from Uhlman and Vadhan [52] shows that n = poly(d) is necessary for generating DP-
synthetic data in polynomial time while maintaining approximate covariance.

In [19], the authors succeeded in constructing DP synthetic data with utility bounds where d in (1.1)
is replaced by (d’ + 1), assuming that the dataset lies in a certain d’-dimensional subspace. Their notion
of dimension is similar to the Minkowski dimension, and their method is applicable beyond the linear
subspace setting. However, the optimization step in their algorithm exhibits exponential time complexity
ind, see [19, Section D].

This paper presents a computationally efficient algorithm that does not rely on any assumptions about
the true data. We demonstrate that our approach enhances the utility bound from d to d’ in (1.1) when
the dataset is in a d’-dimensional affine subspace. Specifically, we derive a DP algorithm to generate
low-dimensional synthetic data from a high-dimensional dataset with a utility guarantee with respect to
the 1-Wasserstein distance that captures the intrinsic dimension of the data.

Our approach revolves around a private principal component analysis (PCA) procedure with a
near-optimal accuracy bound that circumvents the curse of dimensionality. Different from classical
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 3

perturbation analysis [15, 23] that utilizes the Davis-Kahan theorem [17] in the literature, our accuracy
analysis of private PCA works without assuming the spectral gap for the covariance matrix.

Notation. In this paper, we work with data in the Euclidean space R¢. For convenience, the data matrix
X=[X},....X,] € R4*" glso indicates the dataset (X;,...,X,). We use A to denote a matrix and v, X

as vectors. || - || denotes the Frobenius norm and || - || is the operator norm of a matrix. Two sequences
a,, b, satisfies a, < b, if a, < Cb,, for an absolute constant C > 0.

Organization of the paper. The rest of the paper is arranged as follows. In the remainder of Section 1,
we present our algorithm with the main theorem for privacy and accuracy guarantees in Section 1.1,
followed by a discussion. A comparison to the state of the art is given in Section 1.2. Definitions and
lemmas used in the paper are provided in Section 2.

Next, we consider the Algorithm 1 step by step. Section 3 discusses private PCA and noisy projection.
In Section 4, we modify synthetic data algorithms from [31] to the specific cases on the lower dimensional
spaces. The precise privacy and accuracy guarantee of Algorithm 1 is summarized in Section 5. We
discuss an adaptive and private choice of d’ in Section 6. Finally, since the case d’ = 1 is not covered in
Theorem 1, we discuss additional results under stronger assumptions in Section 7.

1.1  Main results

In this paper, we use Definition 1 on data matrix X € R?*". We say two data matrices X, X’ are
neighboring datasets if X and X’ differ on only one column. We follow the setting and notation in
[31] as follows: let (£2, p) be a metric space. Consider a dataset X = [X|,...,X,] € £2". We aim to
construct a computationally efficient differentially private randomized algorithm that outputs synthetic
dataY = [Y{,...,Y,] € £2™ such that the two empirical measures

1 — l —
= - dy. and = — Sy.
125°¢ n;:x, My m; Y;

are close to each other. Here y, denotes the Dirac measure centered on X;.

We measure the utility of the output by E W, (ux, y), where the expectation is taken over the
randomness of the algorithm. We assume that each vector in the original dataset X is inside [0, 1]" ;
our goal is to generate a differentially private synthetic dataset Y in [0, 1], where each vector is close to
a linear subspace of dimension d’, and the empirical measure of Y is close to X under the 1-Wasserstein
distance. We introduce Algorithm 1 as a computationally efficient algorithm for this task. It can be
summarized in the following four steps:

1. Construct a private covariance matrix M. The private covariance is constructed by adding a
Laplacian random matrix to a centered covariance matrix M defined as

1 n _ . _ 1 n
M = — Z(Xi ~-X)X, - X)T, where X = - ZX,-. (1.2)
i=1

i=1

This step is presented in Algorithm 2.
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2. Find a d’-dimensional subspace Vd, by taking the top d’ eigenvectors of M. Then, project the data
onto a linear subspace. The new data obtained in this way are inside a d’-dimensional ball. This
step is summarized in Algorithm 3.

3. Generate a private measure in the d’-dimensional ball centered at the origin by adapting methods
in [31], where synthetic data generation algorithms were analyzed for data in the hypercube. This
is summarized in Algorithms 4 and 5.

4. Add a private mean vector to shift the dataset back to a private affine subspace. Given the
transformations in earlier steps, some synthetic data points might lie outside the hypercube. We
then metrically project them back to the domain of the hypercube. Finally, we output the resulting
dataset Y. This is summarized in the last two parts of Algorithm 1.

Our main theorem states the privacy and accuracy guarantees of Algorithm 1.

TuroreM 1. Let 22 = [0, 1] equipped with £°° metric and X = [X;,...,X,] € £2" be a dataset. For any
2 < d < d, Algorithm 1 outputs an e-differentially private synthetic dataset Y = [Y,...,Y,,] € 2™
for some m > 1 in polynomial time such that

E W, (ux, tty) < %%(M)Jr R b OB
>

where 0;(M) is the i-th largest eigenvalue value of M in (1.2).

Note that m, the size of the synthetic dataset Y, is not necessarily equal to n since the low-dimensional
synthetic data subroutine in Algorithm 1 creates noisy counts. See Section 4 for more details.

Algorithm 1 Low-dimensional Synthetic Data

Input: True data matrix X = [X{,...,X, ], X; € [0, l]d, privacy parameter €.

(Private covariance matrix) Apply Algorithm 2 to X with privacy parameter €/3 to obtain a private
covariance matrix M.

(Private linear projection) Let )_(priv denote the private mean of the true dataset. Choose a target
dimension d’. Apply Algorithm 3 with privacy parameter ¢/3 to shift and project X onto a private
d’-dimensional linear subspace.

(Low-dimensional synthetic data) Use subroutine in Section 4 to generate ¢ /3-DP synthetic data X’
of size m dependingond’ =2 ord’ > 3.

(Adding the private mean vector) Shift the data back by X" = X} + Ypriv.
(Metric projection) Define f : R — [0, 1] such that

0 ifx<O;
fx)=1x ifxel0,1];
1 ifx>1.

Then, for v € R?, we define f(v) to be the result of applying f to each coordinate of v.
Output: Synthetic data Y = [f(X7),....f(X;)].
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Optimality. There are three terms on the right-hand side of (5.1). The first term is the error from
the rank-d’ approximation of the covariance matrix M. The second term is the accuracy loss for
private PCA after the perturbation from a random Laplacian matrix. The optimality of this error term
remains an open question. The third term is the accuracy loss when generating synthetic data in a
d’-dimensional subspace. Notably, the factor \/d/d’ is optimal. This can be seen by the fact that a
d’-dimensional section of the cube can be \/d/d’ times larger than the low-dimensional cube [0, 1]‘1/
(e.g. if it is positioned diagonally). Complementarily, [12] showed the optimality of the factor (en) ™!/ d
for generating d’'-dimensional synthetic data in [0, 119" Therefore, the third term in (5.1) is necessary and
optimal.

Improved accuracy. When the original dataset X lies in an affine d’-dimensional subspace, it implies

o;(M) =0fori > d and EW, (g, ny) S/ d,j;'s + \/g(en)*l/d/. This is an improvement from the
accuracy rate 0((en)’1/ ) for unstructured data in [0, 114 in [12, 31] when d < n® and d < min{g, L)

for0 <a, <% Z. For example, we can take «,, to be a constant in (0, 7] or o, This 1mproved

log logn
rate overcomes the curse of high dlmensmnahty

Adaptive and private choices of d'. The target dimension d’ is a hyperparameter in Algorithm 1. One
can choose the value of d’ adaptively and privately based on singular values of the private covariance
matrix M in Algorithm 2 such that

' :=argmin | | U(M)—l—,/ (en) l/d
2<k<d 5 d

Discussion on such choice of d’ is referred to Section 6.

Low-dimensional representation of X. The synthetic dataset Y is close to a d’-dimensional subspace
under the 1-Wasserstein distance, as shown in Proposition 6.

Running time. The private linear projection step in Algorithm 1 has a running time O(d’n) using the
truncated SVD [41]. The low-dimensional synthetic data subroutine has a running time polynomial in
n for d > 3 and linear in n when d’ = 2 [31]. Therefore, the overall running time for Algorithm 1 is
linear in n, polynomial in d when d’ = 2 and is poly(n,d) when d’ > 3. Although sub-optimal in the
dependence on d’ for accuracy bounds, one can also run Algorithm 1 in linear time by choosing PMM
(Algorithm 4) in the subroutine for all ' > 2.

1.2 Comparison to previous results

Private synthetic data. Most existing work considered generating DP-synthetic datasets while minimiz-
ing the utility loss for specific queries, including counting queries [9, 22, 30], k-way marginal queries
[24, 52], histogram release [1]. For a finite collection of predefined linear queries Q, [30] provided
an algorithm with running time linear in |Q| and utility loss grows logarithmically in |Q|. The sample
complexity can be reduced if the queries are sparse [9, 19, 24]. Beyond finite collections of queries, [56]
considered utility bound for differentiable queries, and recent works [12, 31] studied Lipschitz queries
with utility bound in Wasserstein distance. [19] considered sparse Lipschitz queries with an improved
accuracy rate. [6, 27, 40, 58] measure the utility of DP synthetic data by the maximum mean discrepancy
(MMD) between empirical distributions of the original and synthetic datasets. This metric is different
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from our chosen utility bound in Wasserstein distance. Crucially, MMD does not provide any guarantees
for Lipschitz downstream tasks.

Our work provides an improved accuracy rate for low-dimensional synthetic data generation.
Compared to [19], our algorithm is computationally efficient and has a better accuracy rate. Besides
[19], we are unaware of any work on low-dimensional synthetic data generation from high-dimensional
datasets. While methods from [12, 31] can be directly applied if the low-dimensional subspace is known,
the subspace would be non-private and could reveal sensitive information about the original data. The
crux of our paper is that we do not assume the low-dimensional subspace is known, and our DP synthetic
data algorithm protects its privacy. This setting is closely related to the problem of privately learning the
subspace of the dataset considered in [23, 49,51].

Private PCA. Private PCA is a commonly used technique for differentially private dimension reduction
of the original dataset. This is achieved by introducing noise to the covariance matrix [15, 23, 32, 35,
36, 45, 60]. Instead of independent noise, the method of exponential mechanism is also extensively
explored [15, 35, 38]. Another approach, known as streaming PCA [34, 47], can also be performed
privately [28, 43].

The private PCA typically yields a private d’-dimensional subspace Vd, that approximates the top
d'-dimensional subspace V, produced by the standard PCA. The accuracy of private PCA is usually
measured by the distance between \Y o and'V ; [23,29,43,45,49]. To prove a utility guarantee, a common
tool is the Davis-Kahan Theorem [8, 59], which assumes that the covariance matrix has a spectral gap
[15, 23, 28, 35, 43]. Alternatively, using the projection error to evaluate accuracy is independent of
the spectral gap [5, 38, 44]. In our implementation of private PCA, we don’t treat Vd, as our terminal
output. Instead, we project X onto V\d,. Our approach directly bound the Wasserstein distance between
the projected dataset and X. This method circumvents the subspace perturbation analysis, resulting in an
accuracy bound independent of the spectral gap, as outlined in Lemma 3. [49] considered a related task
that takes a true dataset close to a low-dimensional linear subspace and outputs a private linear subspace.
To the best of our knowledge, none of the previous work on private PCA considered low-dimensional
DP synthetic data generation.

Centered covariance matrix. A common choice of the covariance matrix for PCA is %XXT [14, 23,
49], which is different from the centered one defined in (1.2). The rank of X is the dimension of the
linear subspace that the data lie in rather than that of the affine subspace. If X lies in a d’-dimensional
affine space (not necessarily passing through the origin), centering the data shifts the affine hyperplane
spanned X to pass through the origin. Consequently, the centered covariance matrix will have rank
d’, whereas the rank of X is d + 1. By reducing the dimension of the linear subspace by 1, the
centering step enhances the accuracy rate from (en)~!/ @+ to (en)~ 1. Yet, this process introduces
the challenge of protecting the privacy of mean vectors, as detailed in the third step in Algorithms

1 and 3.

Private covariance estimation. Private covariance estimation [18, 45] is closely linked to the private
covariance matrix and the private linear projection components of our Algorithm 1. Instead of adding
ii.d. noise, [4, 38] improved the dependence on d in the estimation error by sampling top eigenvectors
with the exponential mechanism. However, it requires d’ as an input parameter (in our approach, it can
be chosen privately) and a lower bound on o, (M). The dependence on d is a critical aspect in private
mean estimation [37, 42], and it is an open question to determine the optimal dependence on d for low-
dimensional synthetic data generation.
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 7

2. Preliminaries
2.1 Differential Privacy

We use the following definition of e-differential privacy from [20]. Note that in particular, if the algorithm
is.of: 2" — 2™, then its output is also a dataset of size m, which is generated by .<7from the input real
dataset. We say the synthetic dataset provides e-differential privacy if the synthetic data algorithm <is
differentially private.

DeriniTion 2 (Differential privacy). A randomized algorithm &7 : 2" — % provides e-differential
privacy if for any input data D, D’ that differs on only one element (or D and D’ are adjacent datasets)
and for any measurable set S C range (), there is

P{AD) € S} < ¢ -P{AD') € S}.

Here the probability is taken from the probability space of the randomness of .o

For multiple differentially private algorithms, differential privacy has a useful property that their
sequential composition is also differentially private [20, Theorem 3.16].

Lemma 1 (Theorem 3.16 in [20]). Suppose 47 is ¢;-differentially private for i = 1,...,m, then the
sequential composition x — (&) (x), ..., &, (x)) is sz=1 g;-differentially private.

Moreover, the following result about adaptive composition indicates that algorithms in a sequential
composition can use the outputs in the previous steps:

LemMA 2 (Theorem 1 in [21]). Suppose a randomized algorithm &7 (x) : 2" — %, is ¢,-differentially
private, and o7 (x,y) : 2" X Z; — %, is &,-differentially private with respect to the first component
for any fixed y. Then the sequential composition

x > () (), G (x, ) (X))

is (&; + &,)-differentially private.

Since our method involves private counts of data points, we will use integer Laplacian noise to ensure
they are integers.

DeriniTiON 3 (Integer Laplacian distribution, [33]). An integer (or discrete) Laplacian distribution with
parameter o is a discrete distribution on Z with probability density function

1—
@) = T exp (<lil/0), ze€ L.
+Ps
where p, = exp(—1/0). A random variable Z ~ Lapy(0) is mean-zero and sub-exponential with

variance Var(Z) < 202.

2.2 Wasserstein distance

The formal definition of p-Wasserstein distance is given as follows:
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8 Y. HE ET AL.

DEerINITION 4 (p-Wasserstein distance). Consider a metric space (£2, p). The p-Wasserstein distance (see
e.g. [54] for more details) between two probability measures u, v is defined as

1/p
W, (. v) ::( inf / p(x,y)de(x,y>) ,
2x82

yel ()

where " (i, v) is the set of all couplings of u and v.

In particular, when p = 1, the W, distance is also known as the earth mover’s distance because it is
equivalent to the optimal transportation problem if the probability measures are discrete. Furthermore,
W, has the following Kantorovich-Rubinstein duality (see, e.g. [54]), which gives an equivalent
representation with the Lipschitz functions:

W (u,v) = sup (/fdu - /fdv) .
Lip(f)=<1

Here the supremum is taken over the set of all 1-Lipschitz functions on 2.

3. Private linear projection

3.1 Private centered covariance matrix

Algorithm 2 Private Covariance Matrix

. . . 2
Input: Matrix X = [X,,...,X, ], privacy parameter €, and variance parameter o = %.

(Computing the covariance matrix) Compute the mean X = % > "1 X, and the centered covariance
matrix M.

(Generating a Laplacian random matrix) Generate i.i.d. independent random variables hij ™~
Lap(o),i < j. Define a symmetric matrix A such that

[AU if i <j;

2% ifi=],

Output: The noisy covariance matrix M=M-+A.

We start with the first step: finding a d’-dimensional private linear affine subspace and projecting
X onto it. Consider the d x n data matrix X = [X|,...,X,], where X|,...,X, € R? The rank of the
covariance matrix %XXT measures the dimension of the linear subspace spanned by X;,...,X,. If we
subtract the mean vector and consider the centered covariance matrix M in (1.2), then the rank of M
indicates the dimension of the affine linear subspace that X lives in.

To guarantee the privacy of M, we add a symmetric Laplacian random matrix A to M to create a
private Hermitian matrix M from Algorithm 2. The variance of entries in A is chosen such that the
following privacy guarantee holds:
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 9

ProrposiTioN 2. Algorithm 2 is e-differentially private.

Proof. Before applying the definition of differential privacy, we compute the entries of M explicitly. One
can easily check that

1 w -
M=->» XX XX, 3.1
. D XX — 1) > X CRY
k=1 k¢
Now, if there are neighboring datasets X and X', suppose X; = (X,El), X (d))T is a column vector
in X and X; = (X,’{(l), ... ,X,’{(d))T is a column vector in X', and all other column vectors are the same.

Let M and M’ be the covariance matrix of X and X', respectively. Then we consider the density function
ratio for the output of Algorithm 2 with input X and X':

denA(M M) 1_[ den; . (M—M),.) H deny; . ((M—M)‘.)
denA(M—M/ denk” (M M’)U) il denm ((M M/)U)

exp(_w) exp ( — 1)

MM, MM
i<j exp(——l( = )’l) i eXP(——‘( o : l)

1
= exp | DMl —Mj/o+ > IM; = M;|/Q20) | =exp ( 5> IMI; = M;
i tJ

i<j

As the datasets differs on only one data X, consider all entry containing X, in (3.1), we have

IM;; — M|
Ly () _ 31 (5 6) 1 @ _ O]y G 1 )y O) _ 3 )
= —x"x) - x."x; > " - %%, + oy X X |
0#k
2 2 6
-4+ —2(n—1)=-.
n + nn—1) (n ) n
Therefore, substituting the result in the probability ratio implies
den,(M — M 1 6 3d?
L _exp(_.dZ. _) :exp(_)’
den, (M M) 20 n on
and when o = %, Algorithm 2 is e-differentially private. O

3.2 Noisy projection

The private covariance matrix_ M induces private subspaces spanned by eigenvectors of M. We then
perform a truncated SVD on M to find a private d’-dimensional subspace Vd, and project original data
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onto {74,. Here, the matrix Vd, also indicates the subspace generated by its orthonormal columns. The
full steps are summarized in Algorithm 3.

Algorithm 3 Noisy Projection

Input: True data matrix X = [X,..., X, ], X; € [0, 11¢, privacy parameters &, the private covariance
matrix M from Algorithm 2, and a target dlmensmn d. R
(Singular value decomposmon) Compute the top d’ orthonormal eigenvectors v, ..., v, of M and

denote Vy, = [v,..., V1.

(Private centering) Compute X = % > X;. Let A € RY be a random vector with i.i.d. components
of Lap(d/(en)). Shift each X; to X; — (X + 1) fori € [n].

(Projection) Project {X; — (X + A)}" , onto the linear subspace spanned by vy, .. .,v,. The projected
data X; is given by X; = ZJ | < — (X + 1), >

Output: The data matrix after projection X = X 1---X,1

Algorithm 3 only guarantees private basis vy, . ..,V for each X ;» but the coordinates of X ; in terms of
Vi ,?d,/\are not private. Algorithms 4 and 5 in the next stage will output synthetic data on the private
subspace V ; based on X. The privacy analysis combines the two stages based on Lemma 2, and we state
the results in Section 4.

3.3 Accuracy guarantee for noisy projection

The data matrix X corresponds to an empirical measure pg supported on the subspace Vd. In this
subsection, we characterize the 1-Wasserstein distance between the empirical measure ug and the
empirical measure of the centered dataset X — X17, where 1 € R” is the all-1 vector. This problem
can be formulated as the stability of a low-rank projection based on a covariance matrix with additive
noise. We first provide the following useful deterministic lemma.

Lemma 3 (Stability of noisy projection). Let X be a d x n matrix and A be a d x d Hermitian matrix.
LetM = 1XX with eigenvalues oy > 0, > --- > 0. Let M = 1XXT +A, Vd/ be a d x d’ matrix

whose columns are the first d’ orthonormal eigenvectors of M, and Y = Vd,V +X- Let ux and py be the
empirical measures of column vectors of X and Y, respectively. Then

1
2 2
W3 G, iy) < ~IX = YIi7 < 30y + 2 Al (32)
i>d
Proof Letv,,..., v, be a set of orthonormal eigenvectors for M with the corresponding eigenvalues
Ols...,0. Deﬁne four matrices whose column vectors are eigenvectors:

VZ[VI"--’Vd]’ VZ[‘{;]""’,‘;d]’
Vd/ = [Vl" . .,Vd/], Vd/ = Wl"' .,’V\d/].
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 11

By orthogonality, the following identities hold:

d d

> IVIXI3 =D X3 = I1X17

i=1 i=1

S IWTXI3 = IX =V, VIXI2,

i>d

T 112 v url 2
Z I X3 = IX — V, V) X| 7.
i>d

Separating the top d’ eigenvectors from the rest, we obtain

DUIVIXIB + IX = Vg VIXIE = D 07 XI5 + 11X = V, Vi X7

i<d i<d

Therefore

IX =V, VIX[Z =" v X3 = D" 5] X13 + X - V, Vi X[}

i<d i<d'
= nZGi —nz/v\?—l\/fv\i +n20i
i<d i<d i>d
= nZol- —nZ'ﬁ;r(lVI — Ay, +”Z‘7i
i<d i<d i>d
=n Z(Oi —0)+n tr(Avdﬁ}) +n Z 0;. (3.3)
i<d i>d
By Weyl’s inequality, for i < d’,
o, —o;l < [A]. (3.4)

By von Neumann’s trace inequality,

d/
AV, V) < D o,(A). (3.5)
i=1

From (3.3), (3.4) and (3.5),
d/

1 ~ o~
SIX =V ViXIE < > o+ d AL+ 3 0i(A) < >0y +2d Al

i>d i=1 i>d
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12 Y. HE ET AL.
Let Y; be the i-th column of Y. We have

1

1 n
W3 Gxo pey) < — > 11X = Yill3 = ~IX = Yl
i=1

Therefore, (3.2) holds. O

Note that inequality (3.2) holds without any spectral gap assumption on M. Applying Davis-Kahan
inequality would require o, — 0, to be large while Lemma 3 is applicable even when oy = o, .
In the context of sample covariance matrices for random datasets, a related bound without a spectral gap
condition is derived in [48, Proposition 2.2]. Furthermore, Lemma 3 bears a conceptual resemblance to
[3, Theorem 5], which deals with low-rank matrix approximation under perturbation. With Lemma 3,
we derive the following Wasserstein distance bounds between the centered dataset X — X17 and the
dataset X.

ProposrTion 3. For input data X and output data Xin Algorithm 3, let M be the covariance matrix defined
in (1.2). Assume n > 1/¢. Then for an absolute constant C > O,

1/2 Cd'd*>
EW, (ux i i%) = (EWR g gimoi®) = [2D oM+ =——.
i>d

Proof. For the true covariance matrix M, consider its SVD

d
1 < - -
M=-— DX -0 -X" =D o], (3.6)
i=1 j=1
where 0y > o0, > .- > oy, are the singular values and v, ...v; are corresponding orthonormal

eigenvectors. Moreover, define two d x d’ matrices
Vd/ = [Vl,...,Vd/], Vd/ = [’\;1,...,/\)\[1/].

Then the matrix Vd/ V'd-, is a projection onto the subspace spanned by the principal components vy, ..., V.
In Algorithm 3, for any data X; we first shift it to X; — X — 2 and then project it to ﬁd’ V\Z, X;— X—2).
Therefore,

1X; =X = Vo V(X =X =Ml < 11X — X =V VG =X + IV, VAl

< IX; = X =V, VLX; = X)ll,+ = [IAll,.

Let Z; denote X; — X and Z = [Z,, .. .,Z,]. Then

1 ~1
“22" =" m.
n

n
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 13

With Lemma 3, by definition of the Wasserstein distance, we have

A

1 < — o~ o~ — 2
W3l o 1) < — 21X = X =V Vi O = X = Ml

i=1

2 < 2
= 21X = X =V Vi (X = Xl + 2113

<
i=1
2 T T 72 2
= ZIIZ = Vo VuZlE + 2|23
n
<23 0,(M) + 4d | All + 201213 3.7
i=d'
Since A = (A, ..., A ) is a Laplacian random vector with i.i.d. Lap(1/(en)) entries,
d
2d
E}\,ZZ EA‘.ZZ—_ 38
IM3 =2 Bl = 5 (3.8)

J=1

Furthermore, in Algorithm 2, A is a symmetric random matrix with independent Laplacian random
variables on and above its diagonal. Thus, we have the tail bound for its norm [16, Theorem 1.1]

1@{ Al > o(Cvd + t)} < Cyexp(—C, min(/4,1/2)). (3.9)

And we can further compute the expectation bound for ||A|| from (3.9) with the choice of 0 = %2’

2

*© £t d*?
EJA| < CU«/E—i—/ Coexp|—Cimin{ —, — ) Jdr S —.
0 402’ 20 en

Combining the two bounds above and (3.7), as the 1-Wasserstein distance is bounded by the 2-
Wasserstein distance and inequality /x +y < /x + /¥ holds for all x,y > 0,

172
EW,(ux_xim 1) < (EWhux_xim i)

< 23" 6,0 + VA ENA] + 2E 113
i>d

Cd'd*s
< 22 oM+ =,

i>d

where the last inequality holds under the assumption en > 1. O
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14 Y. HE ET AL.

4. Synthetic data subroutines

In the next stage of Algorithm 1, we construct synthetic data on the private subspace Vd,. Since the
original data X; is in [0, 1]¢, after Algorithm 3, we have

IX;ll, = IX; =X — Al < Vd+ IX+All, = R

for any fixed A € R?. Therefore, the data after projection would lie in a d’-dimensional ball embedded
in R with radius R, and the domain for the subroutine is

.Q/={al’\71+-~-+ad/’\7d/ |a%++a§/ §R2},

where V|,. ..,V are the first d’ private principal components in Algorithm 3. Depending on whether
d =2ord > 3, we apply two different algorithms from [31]: private measure mechanism (PMM) and
private signed measure mechanism (PSMM).

A major difference between the two methods is the partition step. PMM uses a hierarchical binary
partition of the entire space into r layers, while PSMM partitions the entire space into disjoint regions.
When d’ = 2, PMM has a better accuracy rate while when d’ > 3, PSMM has a better dependence on d’
in the accuracy bound; See Remark 1 for more details.

41 d =2: PMM

The synthetic data subroutine Algorithm 4 is adapted from the PMM in [31, Algorithm 4]. The PMM
algorithm generates synthetic data in a hypercube by first partition the cube and then perturb the count
in each sub-regions. It involves a certain partition structure, binary hierarchical partition.

DeriNiTION 5 (Binary hierarchical partition, [31]). A binary hierarchical partition of a set §2 of depth r
is a family of subsets §2, indexed by 6 € {0, 1}=", where

o0 =10,1u{o, 1} u---u{o, 1}, k=0,1,2...,

and such that £2, is partitioned into §2,, and £2,, for every 6 € {0,1}="~!. By convention, the cube
{0, 1}° corresponds to ¥ and we write 245 = S2.

The detailed description of Algorithm 4 is as follows. The privacy and accuracy guarantees of
Algorithm 4 are proved in the next proposition after stating the algorithm.

For the new region 2" where projected data located, we first enlarge this ¢,-ball of radius R into a
hypercube $2pypy; of edge length 2R defined in Algorithm 4. Both the £,-ball §2’ and the larger hypercube
$2ppm are inside the subspace V.

Next, for the hypercube §2py, We are going to run PMM in [31]. We obtain a binary hierarchical
partition {§2y}g¢0 1)< for r = [log,(en)] by doing equal divisions of the hypercube recursively for
r rounds. Each round after the division, we count the data points in every new subregion £2, and add
integer Laplacian noise to it.

Finally, a consistency step ensures the output is a well-defined probability measure. Here, the counts
are considered to be consistent if they are non-negative and the counts of two smaller subregions
£240» §2¢1 can add up to the counts of the larger regions 2, containing them. We refer the readers to
[31] for more detailed procedures of this step.
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PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 15

Algorithm 4 PMM Subroutine
Input: dataset X = (Y 1o ,’)?n) in the region

.Q/Z{al,ﬁl‘i‘""i‘ad//\'}\d/ |a%++a‘21/SR}

1 1 -
(Binary partition) Let r = [log,(en)] and 0; = g=1.22 (17?)07]). Enlarge the region £2’ into

SZPMM = {al,{/\l + -4+ ad/,\'/\d/ | a; (S] [_R,R], Vi e [d/]}

Build a binary partition {§2,}¢o,1}<r 00 £2pppp-

(Noisy count) For any 6, count the number of data in the region §2, denoted by ny, = |X N £2,|, and let
n, = (ng+ig)_ ., where 1, are independent integer Laplacian random variables with A ~ Lapy, (o19))s
and |0 is the length of the vector 6.

(Consistency) Enforce consistency of {ny}ycq 1}=r-

Output: Synthetic data X’ generated by selecting n;, many data points arbitrarily (independently of
X) from §2, for every 6 € {0, 1}

Prorosition 4. The subroutine Algorithm 4 is ¢-differentially private. Assume n > 1/¢. For any d >2,
with the input as the projected data X and the range £2’ with radius R, Algorithm 4 has an accuracy bound

E W, (ug. ix) < CRen) ™7,

where the expectation is taken with respect to the randomness of the synthetic data subroutine,
conditioned on R.

Proof. The privacy guarantee follows from [31, Theorem 1.1]. For accuracy, note that the region £2” is a
subregion of a d’-dimensional ball. Algorithm 4 enlarges the region to a d’-dimensional hypercube with
side length 2R. By re-scaling the size of the hypercube and applying [31, Corollary 4.4], we obtain the
accuracy bound. (]

42 d >3: PSMM

The PSMM introduced in [31] generates a synthetic dataset Y in a compact domain £2 whose empirical
measure [ty is close to the empirical measure wy of the original dataset X under the 1-Wasserstein
distance.

PSMM runs in polynomial time, and the main steps are as follows. We first partition the domain §2
into m disjoint subregions §2,...,£2,, and count the number of data points in each subregion. Then,
we perturb the counts in each subregion with i.i.d. integer Laplacian noise. Based on the noisy counts,
one can approximate py with a signed measure v supported on m points. Then, we find the closest
probability measure ¥ to the signed measure v under the bounded Lipschitz distance by solving a linear
programming problem.

We provide the main steps of PSMM in Algorithm 5. Details about the linear programming in the
synthetic probability measure step can be found in [31]. We apply PSMM from [31] when the metric
space is an £,-ball of radius R inside Vd, and the following privacy and accuracy guarantees hold:
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16 Y. HE ET AL.

Algorithm 5 PSMM Subroutine

Input: dataset X = (5(\1, . ,Yn) in the region

Q' ={a +-tagvy @+ +a <R
(Integer lattice) Let § = \/W (en)~V ' Find the lattice over the region:

L={av,+- - +ayv, | a%+...7+aézi, §R2,a],...,ad/ € 87}.

(Counting) For any v = a|V, + - -- + a,V, € L, count the number

n, = XN {b9) + - +byvy | b; € [aza; + )} .
(Adding noise) Define a synthetic signed measure v such that for any v € L,

v({v) = (n, +4,)/n,

where A, ~ Lapy(1/¢), v € L are i.i.d. random variables.
(Synthetic probability measure) Use linear programming and find the closest probability measure v
to v under the bounded Lipschitz distance.

Output: Synthetic data X’ containing copies of elements in L so that uy, and v are arbitrarily close
(such X' exist when the size of X’ is large enough; see (31, Section 3)).

Proposition 5. The subroutine Algorithm 5 is ¢-differentially private. Assume n > 1/¢. When d >3,
with the input as the projected data X and the range 2’ with radius R, the algorithm has an accuracy
bound

R /
EW,(ug. 1x) S —=(en)~ "/, 4.1
1WHX X \/E
where the expectation is conditioned on R.
Proof. The proposition is a direct corollary to the result in [31]. The size of the scaled integer lattice
87 in the unit d-dimensional ball of radius R is bounded by (%)d for an absolute constant C > 0

(see, e.g. [26, Claim 2.9] and [11, Proposition 3.7]). Then, the number of subregions in Algorithm 5 is
bounded by

R C\¢
L <(—= =) .
N

By [31, Theorem 3.6], we have

EW (1 )<5+2 R C\¥ 1 R C\¥\ 7
eix) =0T \va 's) a\\Jz '

o R,
Taking § = \/j(sn) & concludes the proof. O

G20z AN Lz uo Jasn sulAl| - DN AG 89EYSE./PE0OEEY/ L/ L/oIoIE/IEIEW/WO0"dNO"IWSPEDE//:SARY WOl papeojumod



PRIVATE LOW-DIMENSIONAL SYNTHETIC DATA 17

ReMARK 1 (PMM vs PSMM for d’ > 2). For general d’ > 2, PMM can still be applied, and the accuracy
bound becomes E W (ug, x) < CR(gn)~1/ d, Compared to (4.1), a the accuracy bound from PMM
is weaker by a factor of Vd'. However, as shown in [31], PMM has a running time linear in n and d,
which is more computationally efficient than PSMM given in Algorithm 5 with running time polynomial
inn,d.

4.3 Adding a private mean vector and metric projection

After generating the private synthetic data, since we shift the data by its private mean before projection,
we need to add another private mean vector back, which shifts the dataset X to a new private affine
subspace close to the original dataset X. The output data vectors in X" (defined in Algorithm 1) are
not necessarily inside [0, 1]1¢. The subsequent metric projection enforces all synthetic data inside [0, 11¢.
Importantly, this post-processing step does not have privacy costs.

After metric projection, dataset Y from the output of Algorithm 1 is close to an affine subspace, as
shown in the next proposition. Notably, (4.2) shows that the metric projection step does not cause the
largest accuracy loss among all subroutines.

ProrosiTioN 6 (Y is close to an affine subspace). The function f : R — [0, 1]¢ in Algorithm 1 is the
metric projection to [0, 1]¢ with respect to || - |loo» and the accuracy error for the metric projection step
in Algorithm 1 is dominated by the error of the previous steps:

Wi (wy, uxr) = Wix, o), (4.2)
where the dataset X” defined in Algorithm 1 is in a d’-dimensional affine subspace.

Proof. For the function f defined in Algorithm 1, we know f(x) is the closest real number to x in the
region [0, 1] for any x € R. Furthermore, if v € R is a vector, then f(v) is the closest vector to v in
[0, 1]¢ with respect to || - || . Thus f : RY — [0, 1]¢ is indeed a metric projection to [0, 1]¢.

We first assume that the synthetic data X also has size n. Then for any column vector X', we know
that Y; =f(le/) is its closest vector in [0, 1]d under the £°° metric. For the data X, X,, ..., X, suppose
that the solution to the optimal transportation problem for W, (1x., ix») is to match X, ;) with X', where
T is a permutation on [n]. Then

1 n l n
Wiy, iix) < = 201 = X llg = = 27 WXey = X7l = Wi G i)

i=1 i=1

In general, if the synthetic dataset has m data points and m #* n, we can split the points and regard
both the true dataset and synthetic dataset as of size mn, then it’s easy to check that the inequality still
holds. H

5. Privacy and accuracy of Algorithm 1

In this section, we summarize the privacy and accuracy guarantees of Algorithm 1. The privacy guarantee
is proved by analyzing three parts of our algorithms: private mean, private linear subspace and private
data on an affine subspace.

ProposiTioN 7 (Privacy). Algorithm 1 is e-differentially private.
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18 Y. HE ET AL.

Proof. We can decompose Algorithm 1 into the following steps:

1. (X)) = M is to compute the private covariance matrix with Algorithm 2.
2. o (X) = X + X is to compute the private sample mean.

3. #(X,y, X) for fixed y and ¥, is to project the shifted data {X; — y}’__, to the first &’ principal
components of X and apply a certain differentially private subroutine (we choose y and X as the
output of <7, and <7}, respectively). This step outputs synthetic data X’ = (X}, ..., X),) on alinear
subspace.

4. ,(X,X’) is to shift the dataset to {X] + X .} |, where X

priv}ie1 is the private mean vector of the
true data step computed by .27,.

priv

5. Metric projection.

It suffices to show that the data before metric projection has already been differentially private. We
will need to apply Lemma 2 several times.

With respect to the input X while fixing other input variables, we know that <7}, %, <75, 7, are all
¢/4-differentially private. Therefore, by using Lemma 2 iteratively, the composition algorithm

Ay (X, A3(X, 4, (X), (X))

satisfies e-differential privacy. Hence Algorithm 1 is e-differentially private. O

The next theorem combines errors from linear projection, synthetic data subroutine using PMM or
PSMM, and the post-processing error from mean shift and metric projection.

ProposITION 8 (Accuracy). For any given2 < d’ < d and n > 1/¢, the output data Y from Algorithm 1
with the input data X satisfies

< d'd*s d g
E W, (ux, tty) S Zd,a,»(M)Jr e (5.1)
1>

where M denotes the covariance matrix in (1.2).

Proof. In the case of n < 1/¢, we have Wy (ux, y) <1 < (en)_l/d/. The result is trivial. We assume
n > 1/e in the rest of the proof.
Similar to privacy analysis, we will decompose the algorithm into several steps. Suppose that

1. X — (X + )17 denotes the shifted data {X; — X — A}"_;

2. X is the data after projection to the private linear subspace;
3. X' is the output of the synthetic data subroutine in Section 4;
4. X" =X’ + (X + )17 denotes the data shifted back;

5. @/X) is the data after metric projection, which is the output of the whole algorithm.
For the metric projection step, by Proposition 6, we have that

Wi (ux, tgrxy) = Wil ixr) + Wi, lgrxy) < 2W) (i, oxrn)- (5.2)
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Moreover, applying the triangle inequality of Wasserstein distance to the other steps of the algorithm,
we have

Wi (uxs uxr) = Wi g 517> M)
< Wiux_x17> ug) + Wilug, mxr) + Wi (i, texrg0)
< Wiy 517 4%) + Wi (g, ix) + 13 oo (5.3)

Note that W (ix_57, i) 18 the projection error we bound in Theorem 3 withn > 1/¢, and W, (g, ux:)
is treated in the accuracy analysis of subroutines in Section 4. Moreover, we have

EW,(ug, ux) = Ep Ex W (g, xr)

CR i
<ER ﬁ(é‘f’l) /

_ CQVAd+E|A))
- v

d R
Sy gtem Y,

(gn)—l/d/

Here in the last step we use E [|A]|, < Cg—‘f in (3.8). Since 1’ is a sub-exponential random vector, the
following bound also holds for some absolute constant C > 0:

Clogd
EV ]y < —22 (5.4)
En

Hence

E W, (ux, HMX)) <2E W (uy, Mx/+(§+y)1T)
<2EW;(ux_xi7m> 4%) + 2E W, (g, ix) + 2E [V ] o

| cd' s d . 2Clogd
=2 23 o +2,/=——+2cC Z(en)—l/dJrg—ng

i>d

d 1 d' d*5
S [0+ e 4 [
i>d

where the first inequality is from (5.2), the second inequality is from (5.3) and the third inequality is due
to Theorem 3, Proposition 4 and Proposition 5. (]
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6. Adaptive and private choice of d’

In our main Algorithm 1, d’ is regarded as a fixed input hyper-parameter. In this section, we will show
that it is possible to choose d’ privately without sacrificing accuracy.

Lemma 4. For M and M defined in Algorithm 2, with probability at least 1 — C exp(—c~/d), there is

S o - S o,om| g LoD d/)dzs

i>d i>d

Proof. By Weyl’s inequality, |ai(1\7[) —0;(M)| < ||A]l. Applying the (3.9) of the noise A implies the
inequality in the lemma. 0

Therefore, from Proposition 8, with probability at least 1 — Cexp(—c+/d), we have the following
accuracy bound:

d'd?>s d
Wi tty) S [ 0iM) 3| —— [ (em)
i>d

~ d —d')d*> d'd*> d ,
> o+ =D +\/ +) = (em) 71/
en en d

i>d

o~ d —l/d’ d3‘5
S [ 220+ em T 4 [
i>d

Since the last term above is not related to d’, we can choose

. N A d -
d = argminy Zai(M) +\/j(sn) 1/k
i>k k

The privacy of the choice of d’ is guaranteed as we only use the private covariance matrix.

7. Near-optimal accuracy bound with additional assumptions when d' =

Our Proposition 8 is not applicable to the case d’ = 1 because the projection error in Theorem 3 only

has bound O((en)’%), which does not match with the optimal synthetic data accuracy bound in [12] and
[31]. We are able to improve the accuracy bound with an additional dependence on o (M) as follows:

TueOREM 9. When d' = 1, consider Algorithm 1 with input data X, output data Y and the subroutine
PMM in Algorithm 4. Let M be the covariance matrix defines as (1.2). Assume o;(M) > Oandn > 1/e¢,
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> Vdlog?(en)
E W, (ux, ty) < (M )
1(xs my) S /;%( ) + o MDen + .

We start with the following lemma based on the Davis—Kahan theorem [59].
LemMA 5. Let X be ad x n matrix and A be an d x d Hermitian matrix. Let M = %XXT, with the SVD

then

d
_ T
M=) oy,
j=1

where 0y > 0, > --- > 0, are the singular values of M and vy, ..., v, are corresponding orthonormal
eigenvectors. Let M = %XXT + A with orthonormal eigenvectors '\71, o ,'\Td, where '\71 corresponds to

the top singular value of M. When there exists a spectral gap o — 0, = 6 > 0, we have

2

1 P 8d
~IX - PIXIE<2D 0+

— IAIZIXI.

i>1
Proof. We have that
1 S T2 L T Ty =Ty 2
SIX =V X = X = v X v X=Xl

=<

2 T_ =T
=23 0+ ;Il(vlvl ) x|

2 e
= (||x — v IX )2 + [T X — vlvlTX||§)

i>1
2 T2
< ZZol-—i-;Hvlv-lr—vlv-er IX]2. (7.1)
i>1

To bound the operator norm distance between the two projections, we will need the Davis-Kahan
Theorem in the perturbation theory. For the angle © (v;,V,) between the vectors v, and V;, applying [59,
Corollary 1], we have

2IM — M| _ 2|A|

T ~~T . o~
lvivy =Vvill =sin® (v, vy) < <
o — 0y 8

Therefore, when the spectral gap exists (§ > 0),

1 - 8
SIX =P PIXIE <23 0+ — IAIPIXIE

i>1

This finishes the proof. (]
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Compared to Lemma 3, with the extra spectral gap assumption, the dependence on A in the upper
bound changes from ||A|| to IIA|I2. A similar phenomenon, called global and local bounds, was observed
in [48, Proposition 2.2]. With Lemma 5, we are able to improve the accuracy rate for the noisy projection
step as follows:

ProposiTioN 10. Leto; > --- > o, > 0 be the/\singular values of M defined in (3.6). When d’ = 1,
assume that o; > 0 and n > 1/e. For the output X in Algorithm 3, we have

1/2 d?
E W, (ux_x17> #g) < (E W3 (ix i “f()) S Zai S
i>1 1

Proof. Similar to the proof of Theorem 3, we can define Z;, = X, — X and deduce that

Ypgr 1!
n

M,
n

n—1
n

Lo
;IIZIIF = tr(M),

and
2 2 Ty 12 2
Wz (“X—Yl""”‘i) = Z”Z — Vi1 Z”F + 2”)\”2-
By the inequality /x +y < /x + /y forx,y > 0,
> 1/2
EW,(ux_ 517 ig) < E [;nz —m{zni] +V2E Al

Let § = 0; — 0,. Next, we will discuss two cases for the value of §.

Case 1: When § = o) — 0, < %01, we have 0| < 20, and

tr(M)=01+~-~+ad§320i.

i>1

As any projection map has spectral norm 1, we have ||v, VI —?I?IH < 2. Applying (7.1), we have

1 2 2
= T2 T =T 2
SN2 =V ZIE <2 o+ vl =PI IZIG
i>1
<2 8,z
< ;aﬁnn I7
>

<2) o, +8u(M) <26 > o,

i>1 i>1

G20z AN Lz uo Jasn sulAl| - DN AG 89EYSE./PE0OEEY/ L/ L/oIoIE/IEIEW/WO0"dNO"IWSPEDE//:SARY WOl papeojumod
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Jd
EW(ux xim i) S [2 0+ Bl S [D 0+ (7.2)
i>1 i>1

Case 2: When § > 01, we have

Hence

44682
trM) <do; < —.
0]

For any fixed §, by Lemma 5,

1
SZ—VZIE <22 0+ 52 IAI1Z13

i>1

8 2
<22 0+ SIAIP uV

i>1

<2> o+ —||A||2

i>1

So we have the Wasserstein distance bound

32d
EW,(ux_xim- %) < 2D 0+ [——E|A| + V2E|IAl,
i>1 o1
32d d25 «/2d
< /2 Yy
22 0+ —
i>1

< 220 + fgn (7.3)

i>1

From (3.6),
n
= M)l < IMlly < ——d < 2d.

Combining the two cases (7.2) and (7.3), we deduce the result. O
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Proof of Theorem 9 Following the steps in the proof of Theorem 3, we obtain

E W, (ux, MMX)) <2E W, (ux, Mx/+(§+)\/)1T)
<2EW;(ux_x17> #%) + 2E W, (g, ix) +2E |11 |

dd? dlog? (e 2Clogd
< S+ | Ydlog(em)  2Clog

~Y
JO1ENn en en
i>1 1

R 2
< S+ d'd +ﬂlog (en)
~ ! /o en en ’
i>1 1

where for the second inequality, we apply the bound from [31, Theorem 1.1] for the second term, and
we use (5.4) for the third term. O

8. Conclusion

In this paper, we provide a DP algorithm to generate synthetic data, which closely approximates the
true data in the hypercube [0, l]d under 1-Wasserstein distance. Moreover, when the true data lies in a
d’-dimensional affine subspace, we improve the accuracy guarantees in [31] and circumvents the curse
of dimensionality by generating a synthetic dataset close to the affine subspace.

It remains open to determine the optimal dependence on d in the accuracy bound in Proposition 8
and whether the third term in (5.1) is needed. Our analysis of private PCA works without using the
classical Davis-Kahan inequality that requires a spectral gap on the dataset. However, to approximate a
dataset close to a line (d = 1), additional assumptions are needed in our analysis to achieve the near-
optimal accuracy rate, see Section 7. It is an interesting problem to achieve an optimal rate without the
dependence on o, (M) when d’ = 1.

Our Algorithm 1 only outputs synthetic data with a low-dimensional linear structure, and its analysis
heavily relies on linear algebra tools. For original datasets from a d’-dimensional linear subspace, we
improve the accuracy rate from (en)~V/ @+ jp [19] to (sn)_l/d/. It is also interesting to provide
algorithms with optimal accuracy rates for datasets from general low-dimensional manifolds beyond
the linear setting.
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