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On the time constant of high dimensional first passage
percolation, revisited”
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Abstract

In [2], it was claimed that the time constant u4(e1) for the first-passage percolation

model on Z% is pa(e1) ~ logd/(2ad) as d — oo, if the passage times (7).cpa are i.i.d.,

C

Tzl for some constants a,C' and

with a common c.d.f. F' satisfying ’@ — a’ <
sufficiently small x.
However, the proof of the upper bound, namely, Equation (2.1) in [2]

. ualer)ad 1

1 [ i 0.1

TSP T oed T 2 ©.1)
is incorrect. In this article, we provide a different approach that establishes (0.1).
As a side product of this new method, we also show that the variance of the non-

backtracking passage time to the first hyperplane is of order o((log d/ d)2) as d — oo
in the case of the when the edge weights are exponentially distributed.
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1 Introduction

In this paper we study first passage percolation on Z? which is defined as follows. At
each nearest-neighbor edge in Z%, we attach a non-negative random variable 7., known
as the passage time of the edge e. These random variables (7.) are independent and
identically distributed with common distribution F'. We will also assume that F' satisfies
the following conditions:

F(z)

lim =a, for some a > 0 (1.1)
x—0 €T
and /xdF(x) < 00. (1.2)
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A path v is a sequence of nearest-neighbor edges in Z¢ such the starting point of
each edge coincides with the endpoint of the previous edge. For any finite path v we
define the passage time of v to be

T(H) =) 7

ecy
Given two points z,y € Z? we define

T(z,y) = ilng('Y),

where the infimum is over all finite paths v that start at the point x and end at y. For a
review, we invite the readers to see the book [1] or the classical paper of Kesten [6].
If ET. < oo, the following limit exists

T(0
paler) == lim 70, ner) a.s. and in L'.

n—00 n

and pug(eq) is called the time constant. See [1, Theorem 2.1] and the discussion therein.
In this paper, we prove the following limit for p4(e1), as the dimension d — oc.

Theorem 1.1. Assume (1.1) and (1.2). Then
d 1
lim Ha(c1) =

d>oo logd 2a’

This result was first claimed in [2], under an additional assumption on the conver-
gence rate in (1.1). However, the proof for the upper bound there, namely,

lim sup 7/&1(61 Jad L
d—o0 IOg d 2

IN

contains an error. Specifically, for the choices of p,n and x in [2, Equation (3.1)], the
error term is not negligible compared to the main order (logd/d) as d — co. Here, we fix
this error by presenting a new method that also has consequences to point-to-hyperplane
passage times.

The main result in this paper is the following.

Theorem 1.2. Assume (1.1) and (1.2). The following bound holds:

paler)d _ 1

The lower bound was correctly established in [2], which we state below.

Proposition 1.3 ([2, Proposition 4.1]). Assume (1.1) and (1.2) for the passage times,
then

lim inf M > 1
d—oco  logd 2
Proof of Theorem 1.1. It follows from the combination of Theorem 1.2 and Proposition

1.3. O

As an outcome of the new method we introduce to prove Theorem 1.2, we also obtain
the following theorem. Let

501 = inf {T(V) s 0 — H; such that except for the end point, } 7

all other vertices on v are contained in Hy

where H,, := {(1,...,24) € Z% : ; = n} is the n-th hyperplane orthogonal to e;.
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Theorem 1.4. Assume (1.1) and (1.2). Then, as d — oo

Zadso.y — 1 in probability and in L.
log d

Let us make a few comments about our strategy and how the rest of the paper is
organized. Our approach will first consider (the edge version of) the Eden model [5], i.e.,
the FPP model where the passage times are i.i.d. Exponential(a). Under the Exponential
setting, we will make use of Dhar’s exploration idea (see [4]), and then combine with an
appropriate coupling between the F-distribution and the Exponential(a) distribution (a
similar coupling was also used in [8, Section 6]).

More precise, Dhar used in [4] a cluster exploration process to predict that for the
Exponential(a) FFP model

. 2ad
lim sup ——

Esp; < 1. (1.3)
d—oo Ogd

By a standard subadditivity argument (see, e.g., [7, Theorem 4.2.5], [6, pp.246] or [9,
Lemma 5.2]), we know that u4(e;) is no larger than E5p,1. So Equation (1.3) implies an
upper bound for y4(e;) in the Exponential(a) case. Proposition 1.3 then implies that

2ad
E——-=501 — 1.
logd 0.1
The main obstacle that prevents us from directly generalizing this result to other
distributions is that the exploration process will only provide convergence in expectation
for 59,1, which is not enough for our purposes. Thus, we first establish a convergence-in-

lifg“fj 50,1 L, 1 for the Exponential(a)-weighted case by showing

. log d 2
Var(5p,1) = o p] , asd— oo,

expanding on Dhar’s cluster exploration idea (see Sections 2 and 3).

In Section 4, we derive a coupling between F'-distributed FPP and the Eden model
that preserves the convergence in probability. Finally, in Section 5, we show that
the collection of random variables {(2ad/logd) 5y 1 }4>1 is uniformly integrable, which

completes a proof of the L;-convergence of li‘;ilj 50,1 — 1 in the F-distributed case.

probability result

2 A recap of Dhar’s exploration idea in the Exponential case

In this section, we recap Dhar’s cluster exploration idea, where we introduce the
notations and fill in some technical details that were omitted in [4]. Without loss of
generality, we assume a = 1 and consider the standard Exponential case. Note that the
exploration idea works nicely because in this case, the first-passage percolation model is
Markovian: given the configuration of already-infected sites at any time ¢, the time until
next infection is independent of the history before time ¢.

Consider any infected cluster C' C Hj that contains ¢ vertices and S perimeter edges
within Hy. Let T(C) denote the waiting time until infection reaches H; using a non-
backtracking path (i.e., one of those paths in the definition of 5y ;). There are i + S
possible edges to cross for the next infection to happen, where i of them are along the
ey direction and leading to H; (denoted by fi, fo,..., f;) and S of them remain in the
hyperplane Hy (denoted by fi11,..., fi+s). The passage times of these i + S edges are
i.i.d. Exponential(1) random variables. Let Y denote the edge being crossed when next
infection occurs (i.e., one of the boundary edges of C with the smallest passage time),

EJP 30 (2025), paper 21. https://www.imstat.org/ejp
Page 3/13


https://doi.org/10.1214/25-EJP1274
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

On the time constant of high dimensional first passage percolation, revisited

and we have
i+S
BIT(C)] = E[B{T(C)1Y] = S BT = £1P( = £)

i+S

=S BIOY = £

i+ S

Given that Y = fy,..., f;, then the conditional distribution of T(C) is the same as the
minimum of (i + S) i.i.d. Exponential(1) random variables and thus

1
ET(C)Y = fj] = — forj=1,2,...,i.

i+ S

Given that Y = f;41,..., firs, then the next infection will cross a perimeter edge of C'
within Hy and expand the infected cluster to a larger cluster C’ of (i + 1) vertices. In
this case, the conditional distribution of T'(C) is the same as

Exponential(i + S) + T'(C U f;)

where the Exponential random variable is independent of T'(C'U f;), due to the Markov
property. In this case, we have

1
E[T(C)Y = fi] = -5 +E[T(CUf)] forj=i+1i+2.. . i+5.

Combining these together, we obtain

; i+S 1 ]
E[T(C)] = TS + Z {H—S +E[T(CU fj)}] TrS
j=i+1
1 /
= Z_+S[1+;]E[T(C )]},

where the sum is over all clusters ¢/ C Hy of (i + 1) infected vertices that can be
obtained from cluster C' by infecting one additional healthy vertex adjacent to C. For
eachi=1,2,3,..., define

T = max  ET(C).

C:CCHy,|C|=i

Note that z; = Es5g; is the quantity of interest here. Taking the maximum over all
clusters C’, we obtain

1 1 1

E[T(C)] < H_—S[l + Szipq] = Py + mxiﬂ. (2.1)
For any cluster C' C Hj of i vertices, the number of its perimeter edges in Hj is bounded
above by i times 2(d — 1), the maximum number of edges in H, adjacent to a given vertex.
Meanwhile, by the edge-isoperimetric inequality on Z¢ [3, Theorem 8], one has for any
set in a box {0,...,¢}¢1 C Z4~1 of cardinality i < ¢¢~!/2 the number of perimeter edges
is bounded below by

min {21@1*%6%*1}. (2.2)
1<k<d—1

Choosing ¢ = i, with 7 > 3, the minimum of (2.2) is achieved at £ = d — 1 and thus we
obtain the bounds

s;=2(d—1)iTT < § < (2d — 1)i. (2.3)
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Here, we also used the fact that the lower bound in (2.3) for ¢ = 1,2,3 can be easily
checked case by case as follows:

i=1, §S=2(d—-1)> s,
i=2, S=4(d—-1)—2> s,
i=3, S=6(d—1)—4>ss,

as long as d is large enough. Therefore, using (2.3), we have

1 1 1 1 1
< and < -1~ 2.4
i+8 Sits NS +1S1/@d-1)+1 2d @4

Thus, we bound the right side of (2.1) by

1 1
< R . X
E[T(C)] < ot (1 Qd) Tit1

Write A =1 — i for notation simplicity. Now taking the maximum over all possible
cluster C' C Hy with i vertices yields an iterative inequality

-Ti<

Az, 2.5
i+si+ Tit1 (2.5)

Iterating the relation, we get an upper bound for 5 ;

+ Axo < +A
+51 2_1+51 |:2+52

1 A A? 1 = A
<0< + + +-- < + .
1+s1 248y 3+ s3 1+ 5 = Sn

n=

Esp1 =121 < + Al“g]

(2.6)

The reason to single out the first term in the summation is to avoid integrating from
0 when bounding the infinite sum by an integral in the next step. Plugging in the
expression for s;, we get

1 1 = 1
Es < An—l
80’1—2d—1+2(d—1)n§ =2
1 1 00 1
ATl 2.7
S9d—1 " 20d=1 ), =t @7

We break the integral above into two parts: ffd and [, . For the first integral, we have

2d 2d Py T4 po0 gpw
/ g :/ AT o D) / A
1 = 1 x A T

rd—1

Notice that as d — oo, (2d)ﬁ — 1, A — 1 and floo A%d:z: ~ logd. To see the last
asymptotic, we apply L'Hopital’s rule and get

f1oo A””%dx — lim M%AflooAmdz

li
iseo  logd droo 1/d
1 (=) 1 L1
= lim —  ——2¢ =L _ |jy — .24 =1 (2.8)
EJP 30 (2025), paper 21. https://www.imstat.org/ejp
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For the second integral, we get

o0 1 z—1 o) rz—1
/ <1 — ) (1172 dr < 1d72 / (1 — 1) dz
2d 2d g1 (2d)a=1 Jaa 2d

)77 (1 55)" |,y

2d log(1 —1/(2d))

. _(1 2d)2d
2dlog(1 —1/(2d))

-1

= (2d)7T7 e

Thus, combining the two integrals, we have as d — oo,

o0 1\*' 1
1— — —dz ~logd.
1( 2J =) &

log d

Plugging this back to (2.7), we prove Esy; < (14 0o(1)) for d large. Combining with

Proposition 1.3, we conclude
log d

2d
as d — oo in the i.i.d. Exponentially-weighted case.

Esp,1 ~

3 Iteration of the second moment in the Exponential case

2
In this section, we prove that E5j ; < (logd) (14 0(1)) as d — oo in the Exponential

2d
case. Thus, combining with the first moment result, E5q; ~ 1°2gdd, we achieve Var(5p1) =

d
with ¢ infected vertices and S perimeter edges within Hy, and define T(C) and Y in the
same way. Foreach ¢ =1,2,3,..., define

logd?
0 << o8 > ) as desired. Like before, consider any already-infected cluster C' C Hy

;= ET?(0).
Y C:CCH]II{%?TQ:i ( )

We now derive an iterative inequality that relates y; with y;+; (and also z;1, see below).
Again, using law of total expectation, we get

+S
E[T2<0>1=E[E[ } S B (O = [P0 = 1)
i+S 1
=S BN =1l

Like before, given Y = f; for j = 1,...,4, then T(C) follows an Exponential(i + 5)

distribution and 5

(i+95)% J=
whereas given Y = f; for j = i+ 1,...,i + S, T(C) has the same distribution as
Exponential(i+S)+7(CUf;) distribution. Thus, recalling that z; = maxc.ccm,,|c|=i ET(C),
we have

E[T*(O)Y = f;] = 1,2,...,4,

2

E[T?(C)Y = f;] = ——= + E[T?*(CU 2- T(CU f;
PO = il = gy HETHCU A +2: g BITCU )]
< gt s j=i+1,...,i+8S
>~ (Z+S) y1+1 +S i+1 J= ey .
EJP 30 (2025), paper 21. https://www.imstat.org/ejp

Page 6/13


https://doi.org/10.1214/25-EJP1274
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

On the time constant of high dimensional first passage percolation, revisited

Therefore, we get

24 25 25 1
2 <
B[] = {(i+8)2 Tt s)e TSy +le+1} i+S
2
= e g T F gy

< 2 + 2 1- L Tiy1 + 1—i ;
Slts)2 its 94 ) itt 2 Yi+1

where, in the last step, we use (2.4) again to make sure that the right hand side does
not depend on the boundary size S of the cluster C'. Again, we write A =1 — 5. Now
taking the maximum over all clusters of size ¢ on the left hand side, we get an 1terat1ve
inequality

o2 24
Yi > —
(

i Ayiy. 3.1
z+8i)2+i+siz’+1+ Yi+1 (3.1)

Keeping iterating this relation together with (2.5) and noticing that EE%J = Y1, we
achieve an upper bound for ]EE%J, which is of the following form

2 2A
Es2, =y < A
50,1 y1_(1+81)2+1+81x2+ Y2
2 24 [ 1 2 2A
< + + Axs| + A + T3+ A
T (1+s1)2 1481 |2+s2 3} [(2+82)2 245, 0 yg]
2 24 [ 1 1 1 1
= + + + 242 +—— | a3+ A
(I14+s1)2 2482 [1+4s1 2-1—82} 1+s1 2459 8 ys
< 2 n 24 [ 1 n 1 } 242 { 1 " 1 n 1 }
T (T+s1)? 2+4sp |[14+s1 2482 3+s3[l4+s 245 3+s3
1 1 1
+ 243 + + x4+ Ay, <
|:1+81 2+ 59 3+3 4 Ya =

An— 1 " An— 1
SQ;n—&—sn;k—&—sk ij—l—skzn—i—sn

where each inequality follows plugging-in Equations (2.5) and (3.1), and the equalities
are simple expansions of the brackets Agam we use integral to bound the double sum

from above. First, for each k fixed, &— decreases in n, and thus the inner sum over n
is no more than

Sl An—l oo Ay—l
> A< / dy.
n:kn—i—sn k—1Y T+ Sy
Moreover, since 3 +18 <. -and - :01 AZ dy decreases in k, we have
1 An 1
32, gzzkﬂk Z: =
92 An—l 9 An— 1 o0 An— 1
< 2
_1+slzn+s +2+5222 Sn, + Z Zk
n=1 = n

o0

A" 1 2 An—l Ay—l
< 2 — dydzx.
*1+812n+87b 2+52n§::2 Sn + /2 sw/x_l Sy yas

Here, the reason to single out the first two terms is again to avoid integrating from 0
when applying an integral approximation in the next step. We note that s; = 2(d — 1) and

EJP 30 (2025), paper 21. https://www.imstat.org/ejp
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sy > d, thus the first two terms are smaller order of (logd/d)?, i.e.,

An— 1 ) 2 &0 A 1
> ey
1+51n=1n+sn (14+s1)2 14s Sn

2 2 C’logd
+
( —1)2 2d—1  d
I At 1 &K At Clogd
> gz = o((log d/d)*),

24 59 Sn,
n=2

o((logd/d)?), and

where we used the fact that ) An ! < Clogd ; see the last term in (2.6). It remains to
show that for d sufficiently large

<1 o Av-l log d 2
_ < .
2/2 . </ml 5 dy)dx_<2d> (I1+0(1))

We break the integral into three parts:
2d+1 2d —1
1 AY
@O = 2/ — / dy | dz,
2 Sz z—1 Sy
2d+1 %) -1
1 AY
(I) := 2/ — (/ dy) dx,
2 Sz \J2da Sy
[eoe) 1 oo Ayfl
(I11) := 2/ — </ dy) dz.
2d+1 Sz z—1 Sy

For (III), when z > 2d +1 and y > =z — 1 > 2d, both s, and s, are greater than
Soq = 2(d — 1)(2d)%. Thus, we replace them by s, and evaluate the integrals to get

2 oo
Im < —/ / AV rdyde = ————— A* Yy
2d+1 Jz—1 ASQd log A Joqi1

S34
—2 o 2A%
= SR Axdl' = A2 A Ao
Ass,-log A Joy Ass, - (log A)?

Note that 24%¢ — 2e~! and (log A)? ~ (—55)% = =, thus we get for all d sufficiently
large,
C1 - 4d? Cod™T  C

I < PTREREET ~ e~ d—;” = o((logd/d)?),

where (4, C5 and C3 are absolute constants that do not depend on d and may vary from
d—2
line to line. For (II), again since s, > soq when y > 2d and s, = (2d — 1)z -1, we have

2 2d+1 1 00 2d+1 Az
I < — — AV Ydyde = ————— 7d
an = SQd/ Sx Je—1 yar = A282d IOgA/ t
_9 2d+1 Aa;xﬂ
< dx
2(d —1)A2%s94 - log A Jy x
—2(2d+1)7 T 2d+1 A
T 2(d—1)A%s94 -log A J, x
—2(2d + 1)71 A
T 2(d—1)A%s94-logA J; «x
EJP 30 (2025), paper 21. https://www.imstat.org/ejp
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The rightmost integral is of order logd as d — oo, following (2.8). Thus for all sufficiently
large d,

—Cy(2d + 1) 7T

(d—1)A%s9q - logA g d.

(I < 3

As d — oo, (2d+ 1)ﬁ —1,2(d—1)log A — —1 and A — 1, thus for all d large,

Cologd  C3d™Tlogd

an < o pE = O(logd/d*) = o((log d/d)?).

Finally, for (I), we plug in the expression for s, and s, and use the fact that x,y are both

less than 2d + 1, and
(2d +1)7°1
|m< 4A ~1y / /L —dyd:z:

The double integral is ~ (logd)? as d — oc. To see this, we apply L’Hopital’s rule and
take the derivative with respect to d:

00 9 oo AY 1 0o 1 oo —
lim fl z Jz—1 Yy dydl‘ — lim ﬁfl ;fa:fl AY 1dyd£€
d—oo (log d)? d—o0 (logd) - &
At —1 00 A*
— lim 2dA logA fl T — lim 2dA?%log A T odx -1
d—oo logd d—o0 log d ’

where the last equality follows from (2.8), 2dlog A — —1, and A — 1 as d — oo. Plugging
this back to the upper bound of (I), we obtain that for all sufficiently large d,

(2d+1)a7 logd

< O powar o) = (25) (o),

2
which concludes the proof for Esf; < (1"2gdd) (14 o(1)) in the Exponentially-weighted
case.

4 Generalization to edge-weight distribution F

Recall that if X is an Exponential(1) random variable, then X /a follows an Exponential(a)
distribution. Thus if the passage times are i.i.d. Exponential(a) distributed, we have

B logd . _ logd 2
Sad’ 81<(2ad) (1+0(1)),

which implies Var(5,;) = o((logd/d)?) and liadgso . £ 1 as d — oo. In this section, we
generalize this in-probability convergence to other distributions F' satisfying (1.1).
Since we are working with two different probability distributions in this section, we
will always write a superscript F' when we work with F-distributed passage times; the
superscript is omitted when the passage times are Exponential(a) distributed. We couple
the distribution F' with an Exponential(a) distribution using the left-continuous inverse

function F* : [0,1] — R of F, i.e., for any y € [0, 1]

F*(y) :=inf{z: F(x) > y}.

It follows that if (7.).cr are i.i.d. Exponential(a)-distributed edge weights in a first-
passage percolation model, then (7/).cp := (h(7e))ecr are i.i.d. F-distributed, where

h(t) .= F*(1 —e ) =inf{x >0: F(z) >1—e *}.
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Note that % is a monotonically increasing function. Also, since F'(z) ~ ax as ¢ — 0,
then F*(y) ~ y/a as y — 0. This implies lim;_,o h(t)/t = 1, i.e., for any € > 0, there is
6 = 6. > 0 such that

(1—e)t <h(t)<(1+e)t, foralltel0,d]. (4.1)

Denote by 55 1 in the same way as 50,1 but for the case when the passage times are i.i.d.
F-distributed. Let I" be one path that realizes 5y ; in the Exponential(a) case. Then, for
any § > 0,

P(re <odforalleeT)— 1. (4.2)
This is because the complement of the event satisfies
P(r. > § for some e € I') < P(501 > 0) = P(2ad30.1/logd > 26ad/logd) — 0

2ad

as we have already showed that =>% 501 —> lasd— oo.

The main result of this sectlon is the following.

Proposition 4.1. Assume (1.1). As d goes to infinity, we have

Proof of Proposition 4.1. We start with an upper bound for 55 ;- Consider any n > 0.

Choose € € (0,1) and § > 0 according to € such that (4.1) is satisfied. Then
2ad ad
P <logd851 = 1+77> 2 P (1 gds()l <l+mn1e<dforallec F)

2d
> P a4 (I‘)§1+77,Te§5foralleef ,
logd

where T (I') denotes the passage time along the path I' with edge weights (7/).cp :=
(h(7e))eer

= ZTeF = Zh(re).

ecl’ ecl

IA

On the event that {7, < ¢ for all e € I'}, we have h(7.) < (14 €)7e, and thus > . h(7e)
(14€) > .cr Te = (1 +€)30,1. Thus, the probability above is bounded from below by

2ad 2ad 1+7n
P <1 > P < . < 0 fi 11 Tr
(1ogd801 —i—n)_ (logd01_1 S T orall e € )

147 2ad =
due to Tre > 1, logd

path that realizes s 3071 in the case that edge weights are i.i.d. F-distributed. Take any
n > 0 and € € (0,7), and choose § = §. according to e such that (4.1) is satisfied. Then

50,1 —> 1 and (4.2). The lower bound is similar. Let I'¥ be one
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551 ZeerF Tf = ZeerF h(e)

2 2
P<IOZC;<§51§1—7]) < athTe<l—>

err

2ad
Z Te) <1—mn, Te<5fora116€FF>
(10gd€EFF

2ad
Z (1e) <1—n, Te>5forsomee€FF>
<logd eyt

IA

2ad
P(loZd ;F(1—E)Teg1—n, Te<§f0ralle€I‘F>

2ad
+P( W h)y<1—n, Te>6forsomeeeI‘F>

log d

2ad _ 1—n9 2ad
<P < P 1—¢€)d<1- .
- (logdso’l_ 1—e>+ <logd( €)o < 77)

The first term vanishes as d — oo because lza‘fi 50,1 P, 1 and 1 7’ < 1; and the second
term is 0 when d is sufficiently large. This complete the proof for li(gil 55 1 5. O

5 Proofs of Theorems 1.2 and 1.4

In this section, we prove Theorem 1.2 and Theorem 1.4. For this, we show the
following proposition.

Proposition 5.1. Assume (1.1) and (1.2). Then, as d — oo,

2ad

@Eg({l — 1.

Proof of Proposition 5.1. In view of Proposition 4.1, it suffices to show that the collection
of random variables {X;}4>1 := {%55 1}a>1 is uniformly integrable, i.e.,

A}lgloo bl(lpE [(Xalix,>my) = (5.1)
To do this, we adopt the “search-and-cross” strategy that were used in [6] and [2] when
estimating Eé{i 1, which we briefly describe below. In order to get to I; from 0 quickly,
one can first make a move in one of the e,»,...,eq directions and then search for a
fast path 7 (of length n) in a subspace of Z“ spanned by {+e,,..., +e,11} that ends with
the last step in the e; direction leading to H;. For j = p + 2, ...,d, if the first step has
passage time Tf;_ < y and the path TF (7) < z (denote this event by F}), follow e; and
then this path ~ to get to H;; otherwise move directly from 0 to H; using the edge in the
ey direction. Thus 55 1 is bounded from above by

55:1 < (‘T + y)]'U_?o:p+2 ST lmo'i afy TGII

Note that the choices for z, y, the length n of the fast path «, and the dimension p of the
search space are different in [6] and [2]. For example, in [6], Kesten chose

d 3 9logd
= — = 71 =
p=5] n=|Gioma|. o= 2R,

and with these choices, he showed that the probability of finding such a fast path v is at
least i, based on a second-moment method. These arguments rely on a rate O(|log z|~!)
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for the convergence in (1.1), which ensured that there were sufficiently many fast paths
as d — oo; see [6, pp.245] for the details on the moment computation. Thus we first
assume that the convergence in (1.1) has a logarithmic rate, that is, for some C, ¢y > 0,
|F(z)/x —a| < C/|logz| for all z € [0,¢]. We also adopt Kesten'’s choices for p,n and
x, but other choices can also work. Moreover, for small enough y, the probability
P(Té‘; < y) ~ ay due to (1.1). Thus, by choosing y = 321log d/(ad), we have that for all d
sufficiently large (say, d > dg),

ay 16logd
(e, <y) 25 7
which leads to ) tlogd
F )
P(F}) > - Pl <) > —
because for j =p+2,...,d, the random variable 75 is independent of the edge weights

along the fast path v. It then follows that

2ad
E [Xal{x,>um] < @E [($+y)ﬂU§‘;p+2 ..... dFj]l{g({lelogd/@ad)}}

2ad
+ @E {ﬂmj‘;pH dEf1{§§12M logd/(2ad)}} E(TeFl)-

If we choose M > 100, then the event 551 > M;ggd > x + y implies that none of the F}

events would happen, and the first term above is zero. Thus, for M > 100, we have

2ad
long{ N5=p2,. 0ty

d—p—1
2 41
ad (1_ ogd) B(rF)

E [Xglix,>my] <

~ logd d et
d
2ad 4logd) ? P 2ad _a
< 1- E < -Cd d .
_logd( pi ) (Te‘)_logd Cd 3 -0, asd— o0

Therefore, for any € > 0, choose d; such that E [X41{x,>100}] < €/2 for all d > dy. Then
for M > 100,

J d<d, d>dy
€
< sup E[Xqlix,>m3] + 9
d<dy

The first term vanishes by sending M — oo. This finishes the proof of uniform integrabil-
ity (5.1) under an additional logarithmic convergence rate assumption for (1.1). Now
consider an arbitrary edge-weight distribution F' satisfying (1.1) and (1.2), and define
Fz) := min{F(z),1 — e~**/?}. Then F satisfies |F(z)/z — a/2| < C/|log z| for all = small
(1.2). Thus {%55 1}a>1 is uniformly integrable, as we already shown above. Note that
F stochastically dominates F, which implies the stochastic dominance of 55;, , over 55 1
by a standard coupling argument. It follows that {%55 1}a>1 is uniformly integrable,
and s0 is {225 5( Ya>1- O

The proofs of our two main theorems are now straight-forward.

Proof of Theorem 1.2. It follows by combining Propositions 5.1 with the fact that ug (e1) <

E3{,, see [6, pp.246] or [9, Lemma 5.2]. O
Proof of Theorem 1.4. The proof follows by combining Proposition 4.1 and the uniform
integrability (5.1). O
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