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In this paper, we propose and analyze a numerically stable and convergent scheme for a convection-diffusion-
reaction equation in the convection-dominated regime. Discontinuous Galerkin (DG) methods are considered 
since standard finite element methods for the convection-dominated equation cause spurious oscillations. We 
choose to follow a DG finite element differential calculus framework introduced in Feng et al. (2016) and 
approximate the infinite-dimensional operators in the equation with the finite-dimensional DG differential 
operators. Specifically, we construct the numerical method by using the dual-wind discontinuous Galerkin 
(DWDG) formulation for the diffusive term and the average discrete gradient operator for the convective term 
along with standard DG stabilization. We prove that the method converges optimally in the convection-dominated 
regime. Numerical results are provided to support the theoretical findings.
1. Introduction

Let Ω be a convex polygonal domain in ℝ2. We consider the follow-
ing convection-diffusion-reaction equation

−𝜀Δ𝑢+ 𝜻 ⋅∇𝑢+ 𝛾𝑢 = 𝑓 in Ω, (1.1a)

𝑢 = 𝑔 on 𝜕Ω, (1.1b)

where the diffusive coefficient 𝜀 > 0, the source term 𝑓 ∈ 𝐿2(Ω), the 
convective velocity 𝜻 ∈ [𝑊 1,∞(Ω)]2 and the reaction coefficient 𝛾 ∈
𝑊 1,∞(Ω) is nonnegative. We assume

𝛾 − 1
2
∇ ⋅ 𝜻 ≥ 𝛾0 > 0 (1.2)

for some constant 𝛾0 so that the problem (1.1) is well-posed. Note that 
the convective term in (1.1) is written in non-conservative form. It is 
equivalent to consider the conservative form

−𝜀Δ𝑢+∇ ⋅ (𝜻𝑢) + (𝛾 −∇ ⋅ 𝜻)𝑢 = 𝑓 in Ω, (1.3a)

𝑢 = 𝑔 on 𝜕Ω. (1.3b)
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The equation (1.1)/(1.3) and the corresponding numerical methods 
were intensively studied in the literature [30,15,24,33,29,17,31,28,9,
25] and the references therein. The difficulties of designing numerical 
methods to solve (1.1)/(1.3) arise when one considers the convection-
dominated case, namely, when 0 < 𝜀 ≪ 1. In the convection-dominated 
regime, the solution to (1.1) exhibits boundary layers near the outflow 
boundary. We refer to [30] for more discussion about the analytic be-
havior of the solution to (1.1). The sharp gradients in the boundary 
layer pose challenges in designing robust numerical methods for (1.1). 
It is well known that a standard finite element method for (1.1) produces 
spurious oscillations near the outflow boundary when 𝜀 ≤ ℎ‖𝜻‖∞, where 
ℎ is the mesh size of the triangulation. These oscillations then propagate 
into the interior of the domain where the solution is smooth and destroy 
the convergence of the finite element methods.

To remedy this issue, many methods were proposed to stabilize the 
numerical solutions to (1.1), for example, SUPG [5,16], local projection 
[14,19,20], EAFE [33,32,18] and DG methods [1,13,12,4]. We refer to 
[30,17,29,9] and the references therein for more details about stabi-
lization techniques. Among these methods, discontinuous Galerkin (DG) 
methods are favorable in many aspects. First, DG methods do not require 
the numerical solutions to be continuous, and, hence, they are more suit-
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able to capture sharp gradients in the solutions. Secondly, DG methods 
impose the boundary conditions weakly which prevents the boundary 
layers propagating into the interior of the domain. Lastly, DG methods 
have a natural upwind stabilization that can stabilize oscillatory behav-
iors of the numerical solutions [1,24].

In this work, we consider a new type of DG methods inspired by the 
DG finite element differential calculus framework [10], to solve (1.1). 
Specifically, the diffusion part of the equation is discretized by the dual-
wind discontinuous Galerkin (DWDG) method and the convection part is 
discretized by an average discrete divergence operator. DWDG methods 
were introduced for diffusion problems in [21] based on the DG differen-
tial calculus framework [10]. Such methods have optimal convergence 
properties even in the absence of a penalty term which is different from 
many existing DG methods. DWDG methods also have been applied to 
other problems [23,22,2,11]. However, the study of the DG finite ele-
ment differential calculus for convection-diffusion-reaction equations is 
still missing in the literature. In this paper, we extend the methods to 
convection-diffusion-reaction equations, with a particular focus on the 
convection-dominated regime. In order to apply the methods, we first 
consider a reduced problem by taking 𝜀 = 0 in (1.3) and approximate the 
divergence operator ∇⋅ with the discrete divergence operator divℎ. We 
show, with this choice of discrete operator, the method for the reduced 
problem is consistent with a centered fluxes DG method [7] for the con-
vective term. This is due to the fact that the discrete operator divℎ is 
defined as the average of the “left” discrete divergence operator and the 
“right” discrete divergence operator. Using this equivalence, we add a 
standard penalty term to stabilize the numerical solution which leads to 
an upwind DG method. Combining the existing DWDG analysis for the 
diffusive equation with the aforementioned equivalence, we show that 
the proposed methods are optimal for the convection-diffusion-reaction 
equations in the sense of the following,

‖𝑢− 𝑢ℎ‖ℎ♯ ≤
⎧⎪⎨⎪⎩
𝑂(ℎ) if diffusion-dominated,

𝑂(ℎ
3
2 ) if convection-dominated,

(1.4)

where 𝑢 is the solution to (1.1), 𝑢ℎ is the numerical solution, and the 
mesh-dependent norm ‖ ⋅ ‖ℎ♯ is defined in Section 4. We analyze the 
numerical methods using a coercive framework as well as an inf-sup 
approach. The inf-sup approach allows us to establish a stronger result 
which also controls the convective derivative (cf. [7]).

The rest of the paper is organized as follows. In Section 2, we re-
call the results about the DG differential calculus framework and define 
various discrete operators that are useful in the following sections. In 
Section 3, we consider the reduced problem when taking 𝜀 = 0. We 
propose the numerical approximations for the reduced problem and 
establish concrete error estimates. In Section 4, we propose fully dis-
cretized methods for (1.3) and justify the main convergence theorem. 
Finally, we provide some numerical results in Section 5 and end with 
some concluding remarks in Section 6.

Throughout this paper, we use 𝐶 (with or without subscripts) to 
denote a generic positive constant that is independent of any mesh pa-
rameter. Also to avoid the proliferation of constants, we use the notation 
𝐴 ≲ 𝐵 (or 𝐴 ≳ 𝐵) to represent 𝐴 ≤ (constant)𝐵. The notation 𝐴 ≈ 𝐵 is 
equivalent to 𝐴 ≲ 𝐵 and 𝐵 ≲𝐴.

2. Notations and the DG differential calculus

In this section, we briefly introduce the DG differential calculus 
framework (cf. [10]) and the notations that will be used in the rest 
of the paper. We also provide some useful properties of the DG oper-
ators. Throughout the paper we will follow the standard notation for 
differential operators, function spaces, and norms that can be found, for 
example, in [3,6].
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Fig. 1. The operators ±
𝑖
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2.1. DG operators

Let 𝑊 𝑚,𝑝(Ω) denote the set of all functions that are in 𝐿𝑝(Ω) whose 
weak derivatives up to order 𝑚 also belong to 𝐿𝑝(Ω). We denote 
𝐻𝑚(Ω) ∶= 𝑊 𝑚,2(Ω) when 𝑝 = 2. Let 𝑊 𝑚,𝑝

0 (Ω) be the set of functions 
in 𝑊 𝑚,𝑝(Ω) with vanishing traces up to order 𝑚 − 1 on 𝜕Ω, and let 
𝐻𝑚

0 (Ω) =𝑊 𝑚,2
0 (Ω).

Let ℎ denote a locally quasi-uniform simplicial triangulation of 
Ω ⊂ ℝ2 with a mesh size ℎ ∶= max

𝑇∈ℎ
ℎ𝑇 , where ℎ𝑇 is the diameter of 

the simplex 𝑇 ∈ ℎ. Let ℎ ∶=
⋃

𝑇∈ℎ
𝜕𝑇 be the set of all edges in ℎ and 

𝐵
ℎ
∶=

⋃
𝑇∈ℎ

(𝜕𝑇 ∩ 𝜕Ω) be the set of boundary edges in ℎ. Moreover, de-
note 𝐼

ℎ
∶= ℎ ⧵𝐵

ℎ
as the set of interior edges in ℎ. We now define the 

following piecewise Sobolev spaces

𝑊 𝑚,𝑝(ℎ) ∶= {𝑣 ∶ 𝑣|𝑇 ∈𝑊 𝑚,𝑝(𝑇 ) ∀ 𝑇 ∈ ℎ},
𝑾 𝑚,𝑝(ℎ) ∶= {𝒗 ∶ 𝒗|𝑇 ∈𝑊 𝑚,𝑝(𝑇 ) ×𝑊 𝑚,𝑝(𝑇 ) ∀ 𝑇 ∈ ℎ}.
We then denote

ℎ ∶=𝑊 1,1(ℎ) ∩𝐶0(ℎ) and ℎ ∶= ℎ × ℎ. (2.1)

We also define the following inner products,

(𝑣,𝑤)ℎ ∶=
∑
𝑇∈ℎ ∫𝑇

𝑣𝑤𝑑𝑥 and ⟨𝑣,𝑤⟩ℎ
∶=

∑
𝑒∈ℎ

∫
𝑒

𝑣𝑤𝑑𝑠, (2.2)

where ℎ is a subset of ℎ.

Define the DG space

𝑉ℎ ∶= {𝑣 ∈𝐿2(Ω) ∶ 𝑣|𝑇 ∈ ℙ1(𝑇 ) ∀ 𝑇 ∈ ℎ} (2.3)

and define 𝑽 ℎ ∶= 𝑉ℎ × 𝑉ℎ. Note that 𝑉ℎ ⊂ ℎ and 𝑽 ℎ ⊂ ℎ. For each 
edge 𝑒 = 𝜕𝑇 + ∩ 𝜕𝑇 − with some 𝑇 + and 𝑇 − in ℎ, we assume the global 
numbering of 𝑇 + is more than that of 𝑇 − for simplicity. We define the 
jump and the average across an edge 𝑒 ∈ 𝐼

ℎ
as follows:

[𝑣]|𝑒 ∶= 𝑣+ − 𝑣−, {𝑣}|𝑒 ∶= 1
2
(
𝑣+ + 𝑣−

)
∀𝑣 ∈ ℎ,

where 𝑣± ∶= 𝑣|𝑇± . If an edge 𝑒 ∈ 𝐵
ℎ
, then define

[𝑣]|𝑒 ∶= 𝑣+, {𝑣}|𝑒 ∶= 𝑣+ ∀𝑣 ∈ ℎ.

For an edge 𝑒 ∈ 𝐼
ℎ
, set 𝐧𝑒 = (𝑛(1)𝑒 , 𝑛(2)𝑒 )𝑡 ∶= 𝐧𝑇+ |𝑒 = −𝐧𝑇− |𝑒 as the unit 

normal vector. Given any 𝑣 ∈ ℎ, the trace operator ±
𝑖
on 𝑒 ∈ 𝐼

ℎ
in 

the direction 𝑥𝑖 (𝑖 = 1, 2) is defined as follows:

+
𝑖 (𝑣) ∶=

⎧⎪⎨⎪⎩
𝑣|𝑇+ , 𝑛

(𝑖)
𝑒 > 0

𝑣|𝑇− , 𝑛
(𝑖)
𝑒 < 0

{𝑣}, 𝑛
(𝑖)
𝑒 = 0

and −
𝑖 (𝑣) ∶=

⎧⎪⎨⎪⎩
𝑣|𝑇− , 𝑛

(𝑖)
𝑒 > 0

𝑣|𝑇+ , 𝑛
(𝑖)
𝑒 < 0

{𝑣}, 𝑛
(𝑖)
𝑒 = 0

.

See Fig. 1 for an example where +
1 (𝑣) = 𝑣|𝑇− and −

2 (𝑣) = 𝑣|𝑇+ . 
Alternatively, we can define ±

𝑖
(𝑣) ∶= {𝑣} ± 1

2 sgn(𝑛
(𝑖)
𝑒 )[𝑣], and hence 

the operators +
𝑖
(𝑣) and −

𝑖
(𝑣) can be interpreted as “right” and “left” 

limits in the 𝑥𝑖 direction on 𝑒 ∈ 𝐼
ℎ
. For 𝑒 = 𝜕𝑇 + ∩ 𝜕Ω ∈ 𝐵

ℎ
, we simply 

set ±(𝑣) ∶= 𝑣+.

𝑖
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Having defined the trace operators as above, for any 𝑣 ∈ ℎ

and a given 𝑔 ∈ 𝐿1(Ω), we introduce the discrete partial derivatives 
𝜕±
ℎ,𝑥𝑖

, 𝜕±,𝑔

ℎ,𝑥𝑖
∶ ℎ → 𝑉ℎ(𝑖 = 1, 2) as follows:(

𝜕±
ℎ,𝑥𝑖

𝑣,𝜑ℎ

)
ℎ ∶=

⟨±
𝑖
(𝑣)𝑛(𝑖), [𝜑ℎ]

⟩
ℎ −

(
𝑣, 𝜕𝑥𝑖𝜑ℎ

)
ℎ , (2.4a)(

𝜕
±,𝑔

ℎ,𝑥𝑖
𝑣,𝜑ℎ

)
ℎ ∶=

⟨±
𝑖
(𝑣)𝑛(𝑖), [𝜑ℎ]

⟩
𝐼
ℎ

+
⟨
𝑔𝑛(𝑖), 𝜑ℎ

⟩
𝐵
ℎ

−
(
𝑣, 𝜕𝑥𝑖𝜑ℎ

)
ℎ
(2.4b)

for all 𝜑ℎ ∈ 𝑉ℎ. Accordingly, for any 𝑣 ∈ ℎ, the discrete gradient oper-
ators are defined as:

∇±
ℎ
𝑣 = (𝜕±

ℎ,𝑥1
𝑣, 𝜕±

ℎ,𝑥2
𝑣) and ∇±

ℎ,𝑔
𝑣 = (𝜕±,𝑔

ℎ,𝑥1
𝑣, 𝜕

±,𝑔

ℎ,𝑥2
𝑣).

We define the average operators 𝜕ℎ,𝑥𝑖𝑣, 𝜕
𝑔

ℎ,𝑥𝑖
𝑣, ∇ℎ𝑣, and ∇ℎ,𝑔𝑣 as fol-

lows,

𝜕ℎ,𝑥𝑖𝑣 ∶=
1
2
(𝜕+

ℎ,𝑥𝑖
𝑣+ 𝜕−

ℎ,𝑥𝑖
𝑣), 𝜕

𝑔

ℎ,𝑥𝑖
𝑣 ∶= 1

2
(𝜕+,𝑔

ℎ,𝑥𝑖
𝑣+ 𝜕

−,𝑔

ℎ,𝑥𝑖
𝑣),

∇ℎ𝑣 ∶=
1
2
(∇+

ℎ
𝑣+∇−

ℎ
𝑣), ∇ℎ,𝑔𝑣 ∶=

1
2
(∇+

ℎ,𝑔
𝑣+∇−

ℎ,𝑔
𝑣).

Similarly, we can also define the discrete divergence operators div±
ℎ
, divℎ∶

ℎ → 𝑉ℎ as follows,

div±
ℎ
𝐯 =

2∑
𝑖=1

𝜕±
ℎ,𝑥𝑖

𝑣(𝑖) and divℎ𝐯 =
1
2
(div+

ℎ
𝐯+ div−ℎ 𝐯). (2.5)

2.2. Preliminary properties

We present some preliminary properties of the DG operators defined 
in the previous subsection and some results that will be used in the 
subsequent analysis. We first need the following generalized integration 
by parts formula.

Lemma 2.1. For any 𝑣ℎ ∈ 𝑉ℎ and 𝜑ℎ ∈ 𝑉ℎ, we have

(𝜕±
ℎ,𝑥𝑖

(𝜁𝑖𝑣ℎ), 𝜑ℎ)ℎ = −(𝜕∓
ℎ,𝑥𝑖

(𝜁𝑖𝜑ℎ), 𝑣ℎ)ℎ + (𝜑ℎ, (𝜕𝑥𝑖 𝜁𝑖)𝑣ℎ)ℎ
+ ⟨𝜁𝑖𝜑ℎ, 𝑣ℎ𝑛

(𝑖)⟩𝐵
ℎ
.

(2.6)

Proof. By the definitions of 𝜕±
ℎ,𝑥𝑖

, ±
𝑖
, the fact that 𝜁𝑖 ∈𝑊 1,∞(Ω), and 

integration by parts, we have

(𝜕±
ℎ,𝑥𝑖

(𝜁𝑖𝑣ℎ), 𝜑ℎ)ℎ = ⟨±
𝑖
(𝜁𝑖𝑣ℎ)𝑛(𝑖), [𝜑ℎ]⟩ℎ − (𝜁𝑖𝑣ℎ, 𝜕𝑥𝑖𝜑ℎ)ℎ

= ⟨𝜁𝑖±
𝑖
(𝑣ℎ)𝑛(𝑖), [𝜑ℎ]⟩ℎ − (𝜁𝑖𝑣ℎ, 𝜕𝑥𝑖𝜑ℎ)ℎ

= (𝜕𝑥𝑖 (𝜁𝑖𝑣ℎ), 𝜑ℎ)ℎ + ⟨𝜁𝑖(±
𝑖
(𝑣ℎ) − {𝑣ℎ}), [𝜑ℎ]𝑛(𝑖)⟩ℎ

− ⟨𝜁𝑖[𝑣ℎ],{𝜑ℎ}𝑛(𝑖)⟩𝐼
ℎ

= (𝜕𝑥𝑖 (𝜁𝑖𝑣ℎ), 𝜑ℎ)ℎ ± ⟨1
2
sgn(𝑛(𝑖))[𝑣ℎ]𝜁𝑖, [𝜑ℎ]𝑛(𝑖)⟩𝐼

ℎ

− ⟨𝜁𝑖[𝑣ℎ],{𝜑ℎ}𝑛(𝑖)⟩𝐼
ℎ

= (𝜕𝑥𝑖 (𝜁𝑖𝑣ℎ), 𝜑ℎ)ℎ
+ ⟨𝜁𝑖[𝑣ℎ],±1

2
|𝑛(𝑖)|[𝜑ℎ]𝑛(𝑖) − {𝜑ℎ}𝑛(𝑖)⟩𝐼

ℎ
.

(2.7)

Use the definition of 𝜕±
ℎ,𝑥𝑖

again, we have

(𝜁𝑖𝜑ℎ, 𝜕𝑥𝑖𝑣ℎ)ℎ = −(𝜕∓
ℎ,𝑥𝑖

(𝜁𝑖𝜑ℎ), 𝑣ℎ)ℎ + ⟨𝜁𝑖∓
𝑖
(𝜑ℎ)𝑛(𝑖), [𝑣ℎ]⟩ℎ

= −(𝜕∓
ℎ,𝑥𝑖

(𝜁𝑖𝜑ℎ), 𝑣ℎ)ℎ + ⟨𝜁𝑖{𝜑ℎ}, [𝑣ℎ]𝑛(𝑖)⟩𝐼
ℎ

∓ ⟨1
2
|𝑛(𝑖)|[𝜑ℎ]𝜁𝑖, [𝑣ℎ]⟩𝐼

ℎ
+ ⟨𝜁𝑖𝜑ℎ, 𝑣ℎ𝑛

(𝑖)⟩𝐵
ℎ
.

(2.8)

Note that (𝜕𝑥𝑖 (𝜁𝑖𝑣ℎ), 𝜑ℎ)ℎ = (𝜁𝑖𝜑ℎ, 𝜕𝑥𝑖𝑣ℎ)ℎ + (𝜑ℎ, (𝜕𝑥𝑖 𝜁𝑖)𝑣ℎ)ℎ . Insert 
(2.8) into (2.7), we have
226
(𝜕±
ℎ,𝑥𝑖

(𝜁𝑖𝑣ℎ), 𝜑ℎ)ℎ = −(𝜕∓
ℎ,𝑥𝑖

(𝜁𝑖𝜑ℎ), 𝑣ℎ)ℎ + (𝜑ℎ, (𝜕𝑥𝑖 𝜁𝑖)𝑣ℎ)ℎ
+ ⟨𝜁𝑖𝜑ℎ, 𝑣ℎ𝑛

(𝑖)⟩𝐵
ℎ
. □

(2.9)

Remark 2.2. The immediate consequence of Lemma 2.1 is the follow-
ing,

(div±
ℎ
(𝜻𝑣ℎ), 𝜑ℎ)ℎ = −(div∓

ℎ
(𝜻𝜑ℎ), 𝑣ℎ)ℎ + (𝜑ℎ, (∇ ⋅ 𝜻)𝑣ℎ)ℎ

+ ⟨𝜻 ⋅ 𝐧, 𝑣ℎ𝜑ℎ⟩𝐵
ℎ
.

(2.10)

Remark 2.3. Another consequence of the derivation (2.7) is the follow-
ing,

(divℎ(𝜻𝑣ℎ), 𝜑ℎ)ℎ = (∇ ⋅ (𝜻𝑣ℎ), 𝜑ℎ)ℎ − ⟨𝜻 ⋅ 𝐧[𝑣ℎ],{𝜑ℎ}⟩𝐼
ℎ
. (2.11)

In fact, the following is also valid,

(divℎ(𝜻𝑣), 𝜑ℎ)ℎ = (∇ ⋅ (𝜻𝑣), 𝜑ℎ)ℎ ∀𝑣 ∈𝐻1(Ω). (2.12)

3. The reduced problem and discretization

Our goal is to design a numerical method based on the DG differential 
calculus framework for (1.1) (or (1.3)). Since the DWDG method for the 
diffusion part is well-established [21], we first consider the following 
reduced problem by taking 𝜀 = 0,

∇ ⋅ (𝜻𝑢0) + (𝛾 −∇ ⋅ 𝜻)𝑢0 = 𝑓 in Ω, (3.1a)

𝑢0 = 𝑔 on 𝜕Ω−, (3.1b)

where the inflow part of the boundary Ω− is defined as

𝜕Ω− ∶= {𝑥 ∈ 𝜕Ω ∶ 𝜻(𝑥) ⋅ 𝐧(𝑥) < 0}.

Here 𝐧 is the outward unit normal vector of 𝜕Ω at 𝑥.
Let 𝑉 0 ∶= {𝑣 ∈𝐿2(Ω) | 𝜻 ⋅∇𝑣 ∈ 𝐿2(Ω)}. Then the weak form of the 

problem (3.1) is to find 𝑢0 ∈ 𝑉 0 such that

𝑎𝑎𝑟(𝑢0, 𝑣) = (𝑓, 𝑣)𝐿2(Ω) + ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑔 𝑣𝑑𝑥 ∀𝑣 ∈ 𝑉 0, (3.2)

where the bilinear form 𝑎𝑎𝑟(⋅, ⋅) is defined as

𝑎𝑎𝑟(𝑣,𝑤) = (∇ ⋅ (𝜻𝑣),𝑤)𝐿2(Ω) + ((𝛾 −∇ ⋅ 𝜻)𝑣,𝑤)𝐿2(Ω) + ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑣𝑤𝑑𝑥.

(3.3)

The problem (3.2) is well-posed [7] under the assumption (1.2).
The discrete problem for (3.2) is to find 𝑢0

ℎ
∈ 𝑉ℎ such that

𝑎𝑎𝑟
ℎ
(𝑢0

ℎ
, 𝑣ℎ) = (𝑓, 𝑣ℎ)𝐿2(Ω) + ∫

𝜕Ω−

|𝜻 ⋅ 𝐧|𝑔 𝑣ℎ 𝑑𝑥 ∀𝑣ℎ ∈ 𝑉ℎ. (3.4)

Here the bilinear form 𝑎𝑎𝑟
ℎ
(⋅, ⋅) is defined as,

𝑎𝑎𝑟
ℎ
(𝑣,𝑤) = (divℎ(𝜻𝑣),𝑤)ℎ + ((𝛾 −∇ ⋅ 𝜻)𝑣,𝑤)𝐿2(Ω) + ∫

𝜕Ω−

|𝜻 ⋅ 𝐧|𝑣𝑤𝑑𝑠,

(3.5)

where divℎ is defined in (2.5).

Remark 3.1. In (3.5), we approximate the divergence operator ∇⋅ with 
the discrete divergence operator divℎ defined in (2.5).

3.1. Consistency

Let 𝑢0 be the solution to (3.1) and 𝑢0
ℎ
be the solution to (3.4). We 

have, by (2.12),
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𝑎𝑎𝑟
ℎ
(𝑢0, 𝑣ℎ) = (divℎ(𝜻𝑢0), 𝑣ℎ)ℎ + ((𝛾 −∇ ⋅ 𝜻)𝑢0, 𝑣ℎ)𝐿2(Ω)

+ ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑢0 𝑣ℎ 𝑑𝑠
= (∇ ⋅ (𝜻𝑢0), 𝑣ℎ)ℎ + ((𝛾 −∇ ⋅ 𝜻)𝑢0, 𝑣ℎ)𝐿2(Ω)

+ ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑢0 𝑣ℎ 𝑑𝑠
= (∇ ⋅ (𝜻𝑢0) + (𝛾 −∇ ⋅ 𝜻)𝑢0, 𝑣ℎ)𝐿2(Ω)

+ ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑢0 𝑣ℎ 𝑑𝑠
= (𝑓, 𝑣ℎ)𝐿2(Ω) + ∫

𝜕Ω−

|𝜻 ⋅ 𝐧|𝑔 𝑣ℎ 𝑑𝑠

= 𝑎𝑎𝑟
ℎ
(𝑢0

ℎ
, 𝑣ℎ) ∀𝑣ℎ ∈ 𝑉ℎ.

(3.6)

Therefore we have the usual Galerkin orthogonality

𝑎𝑎𝑟
ℎ
(𝑢0 − 𝑢0

ℎ
, 𝑣ℎ) = 0 ∀𝑣ℎ ∈ 𝑉ℎ. (3.7)

3.2. 𝐿2 coercivity

Define the norm

‖𝑣‖2𝑎𝑟 = ‖𝑣‖2
𝐿2(Ω)

+ ∫
𝜕Ω

1
2
|𝜻 ⋅ 𝐧|𝑣2𝑑𝑠. (3.8)

Lemma 3.2. We have

𝑎𝑎𝑟
ℎ
(𝑣ℎ, 𝑣ℎ) ≥ 𝐶‖𝑣ℎ‖2𝑎𝑟 ∀𝑣ℎ ∈ 𝑉ℎ. (3.9)

Proof. It follows from (2.10) that

𝑎𝑎𝑟
ℎ
(𝑣ℎ, 𝑣ℎ) = (divℎ(𝜻𝑣ℎ), 𝑣ℎ)ℎ + ((𝛾 −∇ ⋅ 𝜻)𝑣ℎ, 𝑣ℎ)𝐿2(Ω)

+ ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑣2
ℎ
𝑑𝑠

= 1
2
(div+

ℎ
(𝜻𝑣ℎ), 𝑣ℎ)ℎ +

1
2
(div−ℎ (𝜻𝑣ℎ), 𝑣ℎ)ℎ

+ ((𝛾 −∇ ⋅ 𝜻)𝑣ℎ, 𝑣ℎ)𝐿2(Ω) + ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑣2
ℎ
𝑑𝑠

= 1
2
(𝑣ℎ, (∇ ⋅ 𝜻)𝑣ℎ)ℎ +

1
2
⟨𝜻 ⋅ 𝐧, 𝑣2

ℎ
⟩𝐵

ℎ
+

+ ((𝛾 −∇ ⋅ 𝜻)𝑣ℎ, 𝑣ℎ)𝐿2(Ω) + ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑣2
ℎ
𝑑𝑠

= ((𝛾 − 1
2
∇ ⋅ 𝜻)𝑣ℎ, 𝑣ℎ)𝐿2(Ω) + ∫

𝜕Ω

1
2
|𝜻 ⋅ 𝐧|𝑣2

ℎ
𝑑𝑠.

(3.10)

The estimate (3.9) immediately follows from the assumption (1.2). □

Remark 3.3. Using (2.11), we obtain

𝑎𝑎𝑟
ℎ
(𝑢0

ℎ
, 𝑣ℎ) = (∇ ⋅ (𝜻𝑢0

ℎ
), 𝑣ℎ)ℎ − ⟨𝜻 ⋅ 𝐧[𝑢0

ℎ
],{𝑣ℎ}⟩𝐼

ℎ

+ ((𝛾 −∇ ⋅ 𝜻)𝑢0
ℎ
, 𝑣ℎ)𝐿2(Ω) + ∫

𝜕Ω−

|𝜻 ⋅ 𝐧|𝑢0
ℎ
𝑣ℎ 𝑑𝑠.

(3.11)

Therefore, the proposed method (3.4) is consistent with the standard 
centered fluxes DG method (cf. [7]).

3.3. Stabilization

It is well-known that the solution to (3.11) (or equivalently, (3.4)) 
exhibits spurious oscillations near the outflow boundary if no additional 
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stabilization is added. Hence, we define the following method with a 
stabilization term: Find 𝑢0

ℎ
∈ 𝑉ℎ such that

𝑎
𝑢𝑝𝑤

ℎ
(𝑢0

ℎ
, 𝑣ℎ) = (𝑓, 𝑣ℎ)𝐿2(Ω) + ∫

𝜕Ω−

|𝜻 ⋅ 𝐧|𝑔 𝑣ℎ 𝑑𝑥 ∀𝑣ℎ ∈ 𝑉ℎ, (3.12)

where the bilinear form 𝑎𝑢𝑝𝑤
ℎ

(⋅, ⋅) is defined as,

𝑎
𝑢𝑝𝑤

ℎ
(𝑣,𝑤) = 𝑎𝑎𝑟

ℎ
(𝑣,𝑤) + ⟨1

2
|𝜻 ⋅ 𝐧|[𝑣], [𝑤]⟩𝐼

ℎ
. (3.13)

Remark 3.4. The method (3.12) can be interpreted as an upwind 
method [7].

It is trivial to see that (3.12) is a consistent method in the sense that

𝑎
𝑢𝑝𝑤

ℎ
(𝑢0 − 𝑢0

ℎ
, 𝑣ℎ) = 0 ∀𝑣ℎ ∈ 𝑉ℎ. (3.14)

Define the norm ‖ ⋅ ‖𝑢𝑝𝑤 on 𝑉ℎ as

‖𝑣‖2𝑢𝑝𝑤 = ‖𝑣‖2𝑎𝑟 + ∑
𝑒∈𝐼

ℎ

∫
𝑒

1
2
|𝜻 ⋅ 𝐧|[𝑣]2 𝑑𝑠. (3.15)

Lemma 3.5. We have, for all 𝑣 ∈ 𝑉ℎ,

𝑎
𝑢𝑝𝑤

ℎ
(𝑣ℎ, 𝑣ℎ) ≥ 𝐶‖𝑣ℎ‖2𝑢𝑝𝑤. (3.16)

Proof. The coercivity follows from (3.9), (3.13), and (3.15) immedi-
ately. □

3.4. Convergence analysis

We would like to establish the error estimates of the stabilized 
method (3.12). Note that (3.12) is well-posed due to the discrete coerciv-
ity (3.16). Note that the norm ‖ ⋅‖𝑢𝑝𝑤 is not strong enough to establish a 
boundedness result for the bilinear form 𝑎𝑢𝑝𝑤

ℎ
(⋅, ⋅) which is crucial to the 

convergence analysis. To remedy this issue, we define a stronger norm 
on 𝑉 0 + 𝑉ℎ,

‖𝑣‖2𝑢𝑝𝑤,∗ = ‖𝑣‖2𝑢𝑝𝑤 +
∑
𝑇∈ℎ

‖𝑣‖2
𝐿2(𝜕𝑇 )

. (3.17)

We then have the following boundedness result (cf. [7, Lemma 2.30]).

Lemma 3.6. We have, for all 𝑣 ∈ 𝑉 0 and 𝑤ℎ ∈ 𝑉ℎ

𝑎
𝑢𝑝𝑤

ℎ
(𝑣− 𝜋ℎ𝑣,𝑤ℎ) ≤ 𝐶‖𝑣− 𝜋ℎ𝑣‖𝑢𝑝𝑤,∗‖𝑤ℎ‖𝑢𝑝𝑤, (3.18)

where 𝜋ℎ ∶ 𝑉 0 → 𝑉ℎ is the 𝐿2-orthogonal projection.

Proof. It follows from (3.11), (3.13) and integration by parts that

𝑎
𝑢𝑝𝑤

ℎ
(𝑣− 𝜋ℎ𝑣,𝑤ℎ)

= −(𝑣− 𝜋ℎ𝑣,𝜻 ⋅∇𝑤ℎ)ℎ + ⟨𝜻 ⋅ 𝐧{𝑣− 𝜋ℎ𝑣}, [𝑤ℎ]⟩𝐼
ℎ

+ ((𝛾 −∇ ⋅ 𝜻)(𝑣− 𝜋ℎ𝑣),𝑤ℎ)𝐿2(Ω) + ∫
𝜕Ω+

|𝜻 ⋅ 𝐧|(𝑣− 𝜋ℎ𝑣)𝑤ℎ 𝑑𝑠

+ ⟨1
2
|𝜻 ⋅ 𝐧|[𝑣− 𝜋ℎ𝑣], [𝑤ℎ]⟩𝐼

ℎ
.

(3.19)

We have, by Cauchy-Schwarz inequality and (3.8),

((𝛾 −∇ ⋅ 𝜻)(𝑣− 𝜋ℎ𝑣),𝑤ℎ)𝐿2(Ω) + ∫
𝜕Ω+

|𝜻 ⋅ 𝐧|(𝑣− 𝜋ℎ𝑣)𝑤ℎ 𝑑𝑠

≤𝐶‖𝑣− 𝜋ℎ𝑣‖𝑎𝑟‖𝑤ℎ‖𝑎𝑟 ≤ 𝐶‖𝑣− 𝜋ℎ𝑣‖𝑢𝑝𝑤‖𝑤ℎ‖𝑢𝑝𝑤.

(3.20)

Similarly, it follows from (3.15) that



S.B. Boyana, T. Lewis, S. Liu et al. Computers and Mathematics with Applications 175 (2024) 224–235
⟨1
2
|𝜻 ⋅ 𝐧|[𝑣− 𝜋ℎ𝑣], [𝑤ℎ]⟩𝐼

ℎ
≤ ‖𝑣− 𝜋ℎ𝑣‖𝑢𝑝𝑤‖𝑤ℎ‖𝑢𝑝𝑤. (3.21)

Let ⟨𝜻⟩𝑇 be the mean value of 𝜻 over 𝑇 . Notice that ⟨𝜻⟩𝑇 ⋅ ∇𝑤ℎ is a 
constant and hence we have, by the definition of 𝜋ℎ,

(𝑣− 𝜋ℎ𝑣, ⟨𝜻⟩𝑇 ⋅∇𝑤ℎ)ℎ = 0 ∀ 𝑤ℎ ∈ 𝑉ℎ. (3.22)

Notice that we assume 𝜻 ∈ [𝑊 1,∞(Ω)]2, and, hence we have ‖𝜻 −⟨𝜻⟩𝑇 ‖𝐿∞(𝑇 ) ≲ ℎ𝑇 .

Therefore, we obtain, by (3.22) and inverse inequalities,

(𝑣− 𝜋ℎ𝑣,𝜻 ⋅∇𝑤ℎ)ℎ
=(𝑣− 𝜋ℎ𝑣, (𝜻 − ⟨𝜻⟩𝑇 ) ⋅∇𝑤ℎ)ℎ
≤𝐶‖𝑣− 𝜋ℎ𝑣‖𝑢𝑝𝑤 ∑

𝑇∈ℎ
ℎ𝑇 ‖∇𝑤ℎ‖𝐿2(𝑇 )

≤𝐶‖𝑣− 𝜋ℎ𝑣‖𝑢𝑝𝑤 ∑
𝑇∈ℎ

‖𝑤ℎ‖𝐿2(𝑇 )

≤𝐶‖𝑣− 𝜋ℎ𝑣‖𝑢𝑝𝑤‖𝑤ℎ‖𝑢𝑝𝑤.

(3.23)

Lastly, we have

⟨𝜻 ⋅ 𝐧{𝑣− 𝜋ℎ𝑣}, [𝑤ℎ]⟩𝐼
ℎ

≤𝐶
∑
𝑇∈ℎ

‖𝑣− 𝜋ℎ𝑣‖2𝐿2(𝜕𝑇 )
‖𝑤ℎ‖𝑢𝑝𝑤

≤𝐶‖𝑣− 𝜋ℎ𝑣‖𝑢𝑝𝑤,∗‖𝑤ℎ‖𝑢𝑝𝑤.

(3.24)

The estimate (3.18) follows from (3.19)-(3.24). □

Combining (3.14), (3.16), and (3.18), we conclude

‖𝑢0 − 𝑢0
ℎ
‖𝑢𝑝𝑤 ≤ 𝐶‖𝑢0 − 𝜋ℎ𝑢

0‖𝑢𝑝𝑤,∗. (3.25)

By standard projection error estimates, we have (cf. [7]) the following 
theorem.

Theorem 3.7. Let 𝑢0 be the solution to (3.2) and 𝑢0
ℎ
be the solution to 

(3.12). Assume 𝑢0 ∈𝐻2(Ω) and then we have

‖𝑢0 − 𝑢0
ℎ
‖𝑢𝑝𝑤 ≤ 𝐶ℎ

3
2 ‖𝑢0‖𝐻2(Ω). (3.26)

3.5. Convergence analysis based on an inf-sup condition

We could obtain a similar error estimate with a stronger norm which 
involves the gradient in the direction of 𝜻 . Define

‖𝑣‖2
𝑢𝑝𝑤♯

= ‖𝑣‖2𝑢𝑝𝑤 +
∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑣‖2
𝐿2(𝑇 )

. (3.27)

We first need the following inf-sup condition (cf. [7]).

Lemma 3.8. We have

sup
𝑤ℎ∈𝑉ℎ⧵{0}

𝑎
𝑢𝑝𝑤

ℎ
(𝑣ℎ,𝑤ℎ)‖𝑤ℎ‖𝑢𝑝𝑤♯

≥ 𝐶‖𝑣ℎ‖𝑢𝑝𝑤♯ ∀𝑣ℎ ∈ 𝑉ℎ, (3.28)

where the constant 𝐶 is independent of 𝜻 and ℎ.

Sketch of proof. The proof is identical to that of [7, Lemma 2.35]
due to Remark 3.3. We briefly discuss the strategy here. Let  =

sup𝑤ℎ∈𝑉ℎ⧵{0}
𝑎
𝑢𝑝𝑤
ℎ

(𝑣ℎ,𝑤ℎ)‖𝑤ℎ‖𝑢𝑝𝑤♯
. Given any 𝑣ℎ ∈ 𝑉ℎ, we construct a particular 

𝑤ℎ ∈ 𝑉ℎ ⧵ {0} such that, for all 𝑇 ∈ ℎ, 𝑤ℎ|𝑇 = ℎ𝑇 ⟨𝜻⟩𝑇 ⋅ ∇𝑣ℎ, where ⟨𝜻⟩𝑇 denotes the mean value of 𝜻 over 𝑇 as in the proof of Lemma 3.6. 
We first notice that, by (3.16),

𝐶‖𝑣ℎ‖2𝑢𝑝𝑤 ≤ 𝑎
𝑢𝑝𝑤

ℎ
(𝑣ℎ, 𝑣ℎ) =

𝑎
𝑢𝑝𝑤

ℎ
(𝑣ℎ, 𝑣ℎ)‖𝑣 ‖ ‖𝑣ℎ‖𝑢𝑝𝑤♯ ≤ ‖𝑣ℎ‖𝑢𝑝𝑤♯. (3.29)

ℎ 𝑢𝑝𝑤♯
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We claim that∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑣ℎ‖2𝐿2(𝑇 )
≲ ‖𝑣ℎ‖𝑢𝑝𝑤♯ + ‖𝑣ℎ‖𝑢𝑝𝑤‖𝑣ℎ‖𝑢𝑝𝑤♯ + ‖𝑣ℎ‖2𝑢𝑝𝑤.

(3.30)

Combining (3.30) and (3.16) and using (3.29) again, we have

𝐶‖𝑣ℎ‖2𝑢𝑝𝑤♯
≲ ‖𝑣ℎ‖𝑢𝑝𝑤♯ + ‖𝑣ℎ‖𝑢𝑝𝑤‖𝑣ℎ‖𝑢𝑝𝑤♯. (3.31)

Upon using Young’s inequality and iterating the inequality (3.29) once 
again, we have

𝐶‖𝑣ℎ‖2𝑢𝑝𝑤♯
≲ ‖𝑣ℎ‖𝑢𝑝𝑤♯ (3.32)

which leads to (3.28). The claimed estimate (3.30) can be proved by in-
verse inequalities, trace inequalities and the Cauchy-Schwarz inequality. 
For simplicity, we refer to [7, Lemma 2.35] for more details. □

To formulate a concrete error estimate, we define the following norm 
on 𝑉 0 + 𝑉ℎ,

‖𝑣‖2
𝑢𝑝𝑤♯,∗ = ‖𝑣‖2

𝑢𝑝𝑤♯
+

∑
𝑇∈ℎ

(ℎ−1
𝑇
‖𝑣‖2

𝐿2(𝑇 )
+ ‖𝑣‖2

𝐿2(𝜕𝑇 )
). (3.33)

Similar to (3.18), we have (cf. [7]),

𝑎
𝑢𝑝𝑤

ℎ
(𝑣− 𝜋ℎ𝑣,𝑤ℎ) ≤ 𝐶‖𝑣− 𝜋ℎ𝑣‖𝑢𝑝𝑤♯,∗‖𝑤ℎ‖𝑢𝑝𝑤♯ (3.34)

for all 𝑣 ∈ 𝑉 0 and 𝑤ℎ ∈ 𝑉ℎ.

The immediate consequence of (3.28) and (3.34) is the following 
lemma.

Lemma 3.9. Let 𝑢0 be the solution to (3.2) and 𝑢0
ℎ
be the solution to (3.12). 

Assume 𝑢0 ∈𝐻2(Ω) and then we have

‖𝑢0 − 𝑢0
ℎ
‖𝑢𝑝𝑤♯ ≤ 𝐶‖𝑢0 − 𝜋ℎ𝑢

0‖𝑢𝑝𝑤♯,∗ ≤ 𝐶ℎ
3
2 ‖𝑢0‖𝐻2(Ω). (3.35)

Proof. It follows from (3.28), (3.34), and (3.14) that,

‖𝜋ℎ𝑢
0 − 𝑢0

ℎ
‖𝑢𝑝𝑤♯ ≤ 𝐶 sup

𝑤ℎ∈𝑉ℎ⧵{0}

𝑎
𝑢𝑝𝑤

ℎ
(𝜋ℎ𝑢

0 − 𝑢0
ℎ
,𝑤ℎ)‖𝑤ℎ‖𝑢𝑝𝑤♯

= 𝐶 sup
𝑤ℎ∈𝑉ℎ⧵{0}

𝑎
𝑢𝑝𝑤

ℎ
(𝜋ℎ𝑢

0 − 𝑢0,𝑤ℎ)‖𝑤ℎ‖𝑢𝑝𝑤♯

≤ 𝐶‖𝑢0 − 𝜋ℎ𝑢
0‖𝑢𝑝𝑤♯,∗.

(3.36)

The first inequality in (3.35) is immediate due to triangle inequality and 
(3.36). For the second inequality, we have∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇(𝑢0 − 𝜋ℎ𝑢
0)‖2

𝐿2(𝑇 )
≤ 𝐶ℎ3‖𝑢0‖2

𝐻2(Ω) (3.37)

and∑
𝑇∈ℎ

ℎ−1
𝑇
‖𝑢0 − 𝜋ℎ𝑢

0‖2
𝐿2(𝑇 )

≤ 𝐶ℎ3‖𝑢0‖2
𝐻2(Ω) (3.38)

by standard projection error estimates. We finish the proof by combining 
Theorem 3.7, (3.27), (3.33), (3.37), and (3.38). □

4. The full problem and discretization

The weak form of the problem (1.3) is to find 𝑢 ∈ 𝑉𝑔 ∶= {𝑣 ∈𝐻1(Ω) ∶
𝑣 = 𝑔 on 𝜕Ω} such that

𝑎(𝑢, 𝑣) = (𝑓, 𝑣)𝐿2(Ω) ∀ 𝑣 ∈𝐻1
0 (Ω), (4.1)

where the bilinear form 𝑎(⋅, ⋅) is defined as

𝑎(𝑣,𝑤) = 𝜀𝑎𝑑 (𝑣,𝑤) + 𝑎𝑎𝑟(𝑣,𝑤) (4.2)
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for the bilinear form 𝑎𝑑 (𝑣, 𝑤) ∶= (∇𝑣, ∇𝑤)𝐿2(Ω) and 𝑎
𝑎𝑟(⋅, ⋅) defined in 

(3.3). The problem (4.1) is well-posed [7] under the assumption (1.2).
The discrete problem for (4.1) is to find 𝑢ℎ ∈ 𝑉ℎ such that

𝑎ℎ(𝑢ℎ, 𝑣ℎ) = (𝑓, 𝑣ℎ)𝐿2(Ω) + ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑔 𝑣ℎ 𝑑𝑥

− 𝜀⟨𝑔,∇ℎ,0𝑣ℎ ⋅ 𝐧−
𝜎𝑒

ℎ𝑒

𝑣ℎ⟩𝐵
ℎ

∀𝑣ℎ ∈ 𝑉ℎ,

(4.3)

where the bilinear form 𝑎ℎ(⋅, ⋅) ∶= 𝜀𝑎𝑑
ℎ
(⋅, ⋅) + 𝑎

𝑢𝑝𝑤

ℎ
(⋅, ⋅). Here the bilinear 

form 𝑎𝑢𝑝𝑤
ℎ

(⋅, ⋅) is defined in (3.13) and 𝑎𝑑
ℎ
(⋅, ⋅) (cf. [22]) is defined as

𝑎𝑑
ℎ
(𝑣,𝑤) ∶= 1

2

[
(∇+

ℎ,0𝑣,∇
+
ℎ,0𝑤)ℎ + (∇−

ℎ,0𝑣,∇
−
ℎ,0𝑤)ℎ

]
+ ⟨ 𝜎𝑒

ℎ𝑒

[𝑣], [𝑤]⟩ℎ
(4.4)

with the penalty parameter 𝜎𝑒 ≥ 0 for all 𝑒 ∈ ℎ.

Remark 4.1. Unlike most standard DG methods where the penalty pa-
rameter is positive, DWDG methods allow 𝜎𝑒 = 0 for all 𝑒 ∈ ℎ under 
the assumptions ℎ is locally quasi-uniform and each simplex in the 
triangulation has at most one boundary edge. This result was estab-
lished in [21,22,10] for a diffusive equation. Here we maintain the same 
assumptions and allow the case where 𝜎𝑒 = 0 for the general convection-
diffusion-reaction equation.

4.1. Consistency

Let 𝑢 be the solution to (1.3) and 𝑢ℎ be the solution to (4.3). It follows 
from [22] and (3.14) that

𝑎ℎ(𝑢− 𝑢ℎ, 𝑣ℎ) = −𝜀⟨{∇ℎ,𝑔𝑢−∇𝑢} ⋅ 𝐧, [𝑣ℎ]⟩ℎ ∀𝑣ℎ ∈ 𝑉ℎ. (4.5)

Remark 4.2. The method (4.3) is not consistent in the sense of (4.5).

4.2. Coercivity

Define the norm ‖ ⋅ ‖ℎ on 𝑉ℎ by

‖𝑣‖2
ℎ
∶= 𝜀‖𝑣‖2

𝑑
+ ‖𝑣‖2𝑢𝑝𝑤, (4.6)

where ‖ ⋅ ‖𝑢𝑝𝑤 is defined in (3.15) and ‖ ⋅ ‖𝑑 is defined as
‖𝑣‖2

𝑑
∶= 1

2
(‖∇+

ℎ,0𝑣‖2𝐿2(Ω)
+ ‖∇−

ℎ,0𝑣‖2𝐿2(Ω)
) +

∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒

‖[𝑣]‖2
𝐿2(𝑒)

. (4.7)

It follows from (3.16), (4.4), and (4.7) that

𝑎ℎ(𝑣ℎ, 𝑣ℎ) ≥ 𝐶‖𝑣ℎ‖2ℎ ∀𝑣ℎ ∈ 𝑉ℎ. (4.8)

4.3. Convergence analysis

Note that (4.3) is well-posed due to the discrete coercivity (4.8). It 
is shown (cf. [22, (3.15)]) that for 𝜎𝑒 ≥ 0,

𝑎𝑑
ℎ
(𝑣,𝑤) ≤ ‖𝑣‖𝑑‖𝑤‖𝑑 ∀𝑣,𝑤 ∈ 𝑉 + 𝑉ℎ. (4.9)

Consequently, we have, by (3.18) and (4.9),

𝑎ℎ(𝑣− 𝜋ℎ𝑣,𝑤ℎ) ≤ 𝐶‖𝑣− 𝜋ℎ𝑣‖ℎ,∗‖𝑤ℎ‖ℎ ∀𝑣 ∈ 𝑉 , 𝑤ℎ ∈ 𝑉ℎ, (4.10)

where the norm ‖ ⋅ ‖ℎ,∗ is defined by
‖𝑣‖2

ℎ,∗ = 𝜀‖𝑣‖2
𝑑
+ ‖𝑣‖2𝑢𝑝𝑤,∗. (4.11)

Here the operator 𝜋ℎ ∶ 𝑉 → 𝑉ℎ is the 𝐿2-orthogonal projection.

Theorem 4.3. Let 𝑢 be the solution to (1.3) and 𝑢ℎ be the solution to (4.3). 
Assume 𝑢 ∈𝐻2(Ω) and then we have
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‖𝑢− 𝑢ℎ‖ℎ ≤ 𝐶(𝜀
1
2 ℎ+ ℎ

3
2 )‖𝑢‖𝐻2(Ω). (4.12)

Proof. It follows from [22, Theorem 4.2] and [7] that

‖𝑢− 𝜋ℎ𝑢‖2ℎ = 𝜀‖𝑢− 𝜋ℎ𝑢‖2𝑑 + ‖𝑢− 𝜋ℎ𝑢‖2𝑢𝑝𝑤
≤ 𝐶(𝜀ℎ2 + ℎ3)‖𝑢‖2

𝐻2(Ω).
(4.13)

It follows from (4.8), (4.5), and (4.10) that

‖𝜋ℎ𝑢− 𝑢ℎ‖2ℎ ≲ 𝑎ℎ(𝜋ℎ𝑢− 𝑢ℎ, 𝜋ℎ𝑢− 𝑢ℎ)

= 𝑎ℎ(𝜋ℎ𝑢− 𝑢,𝜋ℎ𝑢− 𝑢ℎ) + 𝑎ℎ(𝑢− 𝑢ℎ, 𝜋ℎ𝑢− 𝑢ℎ)

≲ ‖𝑢− 𝜋ℎ𝑢‖ℎ,∗‖𝜋ℎ𝑢− 𝑢ℎ‖ℎ
− 𝜀⟨{∇ℎ,𝑔𝑢−∇𝑢} ⋅ 𝐧, [𝜋ℎ𝑢− 𝑢ℎ]⟩ℎ .

(4.14)

It is shown in [22] that

|||⟨{∇ℎ,𝑔𝑢−∇𝑢} ⋅ 𝐧, [𝜋ℎ𝑢− 𝑢ℎ]⟩ℎ ||| ≤ 𝐶ℎ‖𝑢‖𝐻2(Ω)‖𝜋ℎ𝑢− 𝑢ℎ‖𝑑 , (4.15)

and hence

𝜀
|||⟨{∇ℎ,𝑔𝑢−∇𝑢} ⋅ 𝐧, [𝜋ℎ𝑢− 𝑢ℎ]⟩ℎ ||| ≤ 𝐶𝜀

1
2 ℎ‖𝑢‖𝐻2(Ω)‖𝜋ℎ𝑢− 𝑢ℎ‖ℎ.

(4.16)

Similar to Theorem 3.7, we have, by the trace inequality with scaling,∑
𝑇∈ℎ

‖𝑢− 𝜋ℎ𝑢‖2𝐿2(𝜕𝑇 )
≤ 𝐶

∑
𝑇∈ℎ

ℎ−1
𝑇
‖𝑢− 𝜋ℎ𝑢‖2𝐿2(𝑇 )

+ ℎ𝑇 ‖∇(𝑢− 𝜋ℎ𝑢)‖2𝐿2(𝑇 )

≤ 𝐶ℎ3‖𝑢‖𝐻2(Ω).

(4.17)

It follows from (4.13), (4.11), and (3.17) that

‖𝑢− 𝜋ℎ𝑢‖ℎ,∗ ≤ 𝐶(𝜀
1
2 ℎ+ ℎ

3
2 )‖𝑢‖𝐻2(Ω). (4.18)

We then conclude, by (4.18), (4.14), and (4.16),

‖𝜋ℎ𝑢− 𝑢ℎ‖ℎ ≤ 𝐶(𝜀
1
2 ℎ+ ℎ

3
2 )‖𝑢‖𝐻2(Ω). (4.19)

Combining (4.13), (4.19), and triangle inequality, we obtain

‖𝑢− 𝑢ℎ‖ℎ ≤ 𝐶(𝜀
1
2 ℎ+ ℎ

3
2 )‖𝑢‖𝐻2(Ω). □ (4.20)

4.4. Convergence analysis based on an inf-sup condition

We present an error estimate with a stronger norm that is similar to 
Section 3.5. Define

‖𝑣‖2
ℎ♯

= ‖𝑣‖2
ℎ
+

∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑣‖2
𝐿2(𝑇 )

. (4.21)

We first need the following inf-sup condition (cf. [7, Lemma 2.35] and 
[13, Lemma A.1]).

Lemma 4.4. We have

sup
𝑤ℎ∈𝑉ℎ⧵{0}

𝑎ℎ(𝑣ℎ,𝑤ℎ)‖𝑤ℎ‖ℎ♯ ≥ 𝐶‖𝑣ℎ‖ℎ♯. (4.22)

Proof. We again follow the approaches in [7,8]. Let  =
sup𝑤ℎ∈𝑉ℎ⧵{0}

𝑎ℎ(𝑣ℎ,𝑤ℎ)‖𝑤ℎ‖ℎ♯ . Given any 𝑣ℎ ∈ 𝑉ℎ, we again construct a 𝑤ℎ ∈
𝑉ℎ ⧵ {0} such that, for all 𝑇 ∈ ℎ, 𝑤ℎ|𝑇 = ℎ𝑇 ⟨𝜻⟩𝑇 ⋅∇𝑣ℎ. Similar to the 
proof of Lemma 3.8, we first notice that, by (4.8),

𝐶‖𝑣ℎ‖2ℎ ≤ 𝑎ℎ(𝑣ℎ, 𝑣ℎ) =
𝑎ℎ(𝑣ℎ, 𝑣ℎ)‖𝑣ℎ‖ℎ♯ ‖𝑣ℎ‖ℎ♯ ≤ ‖𝑣ℎ‖ℎ♯. (4.23)

We claim that

sliu13
Highlight

sliu13
Sticky Note
Typo here. No boundary term in (3.3)
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∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑣ℎ‖2𝐿2(𝑇 )
≲ ‖𝑣ℎ‖ℎ♯ + ‖𝑣ℎ‖ℎ‖𝑣ℎ‖ℎ♯ + ‖𝑣ℎ‖2ℎ. (4.24)

Combining (4.24) and (4.23) and using (4.23) again, we have

𝐶‖𝑣ℎ‖2ℎ♯ ≲ ‖𝑣ℎ‖ℎ♯ + ‖𝑣ℎ‖ℎ‖𝑣ℎ‖ℎ♯. (4.25)

Upon using Young’s inequality and iterating the inequality (4.23) once 
again, we have

𝐶‖𝑣ℎ‖2ℎ♯ ≲ ‖𝑣ℎ‖ℎ♯ (4.26)

which leads to (4.22). The rest of the proof is devoted to (4.24). We first 
prove the estimate

‖𝑤ℎ‖ℎ♯ ≲ ‖𝑣ℎ‖ℎ♯. (4.27)

Indeed, it follows from (4.21) that

‖𝑤ℎ‖2ℎ♯ = 𝜀‖𝑤ℎ‖2𝑑 + ‖𝑤ℎ‖2𝑢𝑝𝑤 +
∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑤ℎ‖2𝐿2(𝑇 )
.

(4.28)

A standard inverse inequality implies∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑤ℎ‖2𝐿2(𝑇 )
≲

∑
𝑇∈ℎ

ℎ−1
𝑇
‖𝑤ℎ‖2𝐿2(𝑇 )

(4.29)

and, together with a trace inequality

‖𝑤ℎ‖2𝑢𝑝𝑤 = ‖𝑤ℎ‖2𝐿2(Ω)
+ ∫

𝜕Ω

1
2
|𝜻 ⋅ 𝐧|𝑤2

ℎ
𝑑𝑠

+
∑
𝑒∈𝐼

ℎ

∫
𝑒

1
2
|𝜻 ⋅ 𝐧|[𝑤ℎ]2 𝑑𝑠

≲ ‖𝑣ℎ‖2𝐿2(Ω)
+

∑
𝑇∈ℎ

ℎ−1
𝑇
‖𝑤ℎ‖2𝐿2(𝑇 )

.

(4.30)

We also have ‖𝑤ℎ‖2𝑑 ≲ ‖𝑣ℎ‖2𝑑 . In fact, we have, if 𝜎𝑚𝑖𝑛 ∶= min𝑒∈ℎ 𝜎𝑒 > 0,

∑
𝑒∈ℎ

𝜎𝑒

ℎ𝑒

‖[𝑤ℎ]‖2𝐿2(𝑒)
≤ 𝐶

∑
𝑇∈ℎ

‖∇𝑣ℎ‖2𝐿2(𝑇 )
≤ 𝐶(1 + 1

𝜎𝑚𝑖𝑛

)‖𝑣ℎ‖2𝑑 , (4.31)

where we use a standard trace inequality and [22, Lemma 4.1]. It also 
follows from [22, Lemma 4.1] and a trace inequality that, for 𝜎𝑒 ≥ 0,

1
2
(‖∇+

ℎ,0𝑤ℎ‖2𝐿2(Ω)
+ ‖∇−

ℎ,0𝑤ℎ‖2𝐿2(Ω)
)

≲
∑
𝑇∈ℎ

‖∇𝑤ℎ‖2𝐿2(𝑇 )
+

∑
𝑒∈ℎ

1
ℎ𝑒

‖[𝑤ℎ]‖2𝐿2(𝑒)

≲‖𝑣ℎ‖2𝑑 .
(4.32)

The estimates (4.31) and (4.32) then imply ‖𝑤ℎ‖2𝑑 ≲ ‖𝑣ℎ‖2𝑑 .
At last, it is known that (cf. [7])∑

𝑇∈ℎ
ℎ−1
𝑇
‖𝑤ℎ‖2𝐿2(𝑇 )

≲ ‖𝑣ℎ‖2ℎ♯. (4.33)

The estimate (4.27) is immediate upon combining (4.29)-(4.33).
It follows from (4.4), (3.11), and (3.12) that∑

𝑇∈ℎ
ℎ𝑇 ‖𝜻 ⋅∇𝑣ℎ‖2𝐿2(𝑇 )

= 𝑎ℎ(𝑣ℎ,𝑤ℎ) − 𝜀𝑎𝑑
ℎ
(𝑣ℎ,𝑤ℎ)

+ (𝜻 ⋅∇𝑣ℎ,ℎ𝑇 (𝜻 − ⟨𝜻⟩𝑇 ) ⋅∇𝑣ℎ)ℎ
+ ⟨𝜻 ⋅ 𝐧[𝑣ℎ],{𝑤ℎ}⟩𝐼

ℎ
− (𝛾𝑣ℎ,𝑤ℎ)𝐿2(Ω)

− ∫
𝜕Ω−

|𝜻 ⋅ 𝐧|𝑣ℎ 𝑤ℎ 𝑑𝑠− ⟨1
2
|𝜻 ⋅ 𝐧|[𝑣ℎ], [𝑤ℎ]⟩𝐼

ℎ

= 𝑇1 + 𝑇2⋯+ 𝑇7.

(4.34)

For the first two terms, we have, by (4.27) and (4.9),
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|𝑇1| = |𝑎ℎ(𝑣ℎ,𝑤ℎ)‖𝑤ℎ‖ℎ♯ ‖𝑤ℎ‖ℎ♯| ≤ ‖𝑤ℎ‖ℎ♯ ≲ ‖𝑣ℎ‖ℎ♯, (4.35)

|𝑇2| ≲ 𝜀
1
2 ‖𝑣ℎ‖𝑑𝜀 1

2 ‖𝑤ℎ‖𝑑 ≲ ‖𝑣ℎ‖ℎ‖𝑣ℎ‖ℎ♯. (4.36)

It follows from Cauchy-Schwarz inequality and (4.27) that

|𝑇5|+ |𝑇6|+ |𝑇7| ≲ ‖𝑣ℎ‖ℎ‖𝑤ℎ‖ℎ♯ ≲ ‖𝑣ℎ‖ℎ‖𝑣ℎ‖ℎ♯. (4.37)

To bound 𝑇4, we have, by a standard trace inequality, (4.33), and (4.27),

⟨𝜻 ⋅ 𝐧[𝑣ℎ],{𝑤ℎ}⟩𝐼
ℎ

≤
⎛⎜⎜⎝
∑
𝑒∈𝐼

ℎ

∫
𝑒

1
2
|𝜻 ⋅ 𝐧|[𝑣ℎ]2 𝑑𝑠⎞⎟⎟⎠

1
2 ⎛⎜⎜⎝

∑
𝑒∈𝐼

ℎ

∫
𝑒

2|𝜻 ⋅ 𝐧|{𝑤ℎ}2 𝑑𝑠
⎞⎟⎟⎠
1
2

≲ ‖𝑣ℎ‖ℎ ⎛⎜⎜⎝
∑
𝑇∈ℎ

ℎ−1
𝑇
‖𝑤ℎ‖2𝐿2(𝑇 )

⎞⎟⎟⎠
1
2

≲ ‖𝑣ℎ‖ℎ‖𝑣ℎ‖ℎ♯.
(4.38)

Finally, we bound 𝑇3 as follows,

(𝜻 ⋅∇𝑣ℎ,ℎ𝑇 (𝜻 − ⟨𝜻⟩𝑇 ) ⋅∇𝑣ℎ)ℎ

≲

⎛⎜⎜⎝
∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑣ℎ‖2𝐿2(𝑇 )

⎞⎟⎟⎠
1
2 ⎛⎜⎜⎝

∑
𝑇∈ℎ

ℎ𝑇 ‖𝑣ℎ‖2𝐿2(𝑇 )

⎞⎟⎟⎠
1
2

≲

⎛⎜⎜⎝
∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑣ℎ‖2𝐿2(𝑇 )

⎞⎟⎟⎠
1
2 ‖𝑣ℎ‖ℎ♯

≲
1
2

∑
𝑇∈ℎ

ℎ𝑇 ‖𝜻 ⋅∇𝑣ℎ‖2𝐿2(𝑇 )
+𝐶‖𝑣ℎ‖2ℎ♯,

(4.39)

where we use an inverse inequality and Young’s inequality. We also use 
the fact 𝜻 ∈ [𝑊 1,∞(Ω)]2, and, hence, ‖𝜻−⟨𝜻⟩𝑇 ‖𝐿∞(𝑇 ) ≲ ℎ𝑇 . The claimed 
estimate (4.24) follows from (4.34)-(4.39). □

Similar to Section 3.5, we define the following norm on 𝑉 + 𝑉ℎ,

‖𝑣‖2
ℎ♯,∗ ∶= ‖𝑣‖2

ℎ♯
+

∑
𝑇∈ℎ

(ℎ−1
𝑇
‖𝑣‖2

𝐿2(𝑇 )
+ ‖𝑣‖2

𝐿2(𝜕𝑇 )
). (4.40)

We then have (cf. [7])

𝑎ℎ(𝑣− 𝜋ℎ𝑣,𝑤ℎ) ≤ 𝐶‖𝑣− 𝜋ℎ𝑣‖ℎ♯,∗‖𝑤ℎ‖ℎ♯, (4.41)

for all 𝑣 ∈ 𝑉 and 𝑤ℎ ∈ 𝑉ℎ. We omit the proof here since it is similar to 
that of Lemma 3.18.

Consequently, we obtain the following convergence theorem from 
(4.22) and (4.41).

Theorem 4.5. Let 𝑢 be the solution to (1.3) and 𝑢ℎ be the solution to (4.3). 
Assume 𝑢 ∈𝐻2(Ω) and then we have

‖𝑢− 𝑢ℎ‖ℎ♯ ≤ 𝐶(𝜀
1
2 ℎ+ ℎ

3
2 )‖𝑢‖𝐻2(Ω). (4.42)

Proof. It follows from (4.5), (4.22), (4.41), and (4.16) that

‖𝜋ℎ𝑢− 𝑢ℎ‖ℎ♯ ≤ 𝐶 sup
𝑤ℎ∈𝑉ℎ⧵{0}

𝑎ℎ(𝜋ℎ𝑢− 𝑢ℎ,𝑤ℎ)‖𝑤ℎ‖ℎ♯
= 𝐶 sup

𝑤ℎ∈𝑉ℎ⧵{0}

𝑎ℎ(𝜋ℎ𝑢− 𝑢,𝑤ℎ) + 𝑎ℎ(𝑢− 𝑢ℎ,𝑤ℎ)‖𝑤ℎ‖ℎ♯
≤ 𝐶‖𝑢− 𝜋ℎ𝑢‖ℎ♯,∗ +𝐶𝜀

1
2 ℎ‖𝑢‖𝐻2(Ω).

(4.43)

We also obtain the following estimate, by (4.18) and arguments similar 
to (3.37) and (3.38),

‖𝑢− 𝜋ℎ𝑢‖ℎ♯,∗ ≤ 𝐶(𝜀
1
2 ℎ+ ℎ

3
2 )‖𝑢‖𝐻2(Ω). (4.44)
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Fig. 2. Results of Example 5.1: 𝑢ℎ (left) and 𝑢 (right) for ℎ = 1∕128.
We finish the proof by combining (4.43), (4.44), and triangle inequal-
ity. □

Remark 4.6. Theorem 4.5 implies the following convergence results,

‖𝑢− 𝑢ℎ‖ℎ♯ ≤
⎧⎪⎨⎪⎩
𝑂(ℎ) when (1.3) is diffusion-dominated,

𝑂(ℎ
3
2 ) when (1.3) is convection-dominated.

(4.45)

Note that ‖𝑢‖𝐻2(Ω) = 𝑂(𝜀−
3
2 ) ([30, Part III, Lemma 1.18]), hence, the 

estimate (4.42) is not informative when 𝜀 ≤ ℎ. More delicate interior 
error estimates that stay away from the boundary layers and interior 
layers for standard DG methods can be found in [24,15].

5. Numerical results

In this section, we present some numerical examples that support the 
theoretical results. All experiments are performed using MATLAB. We 
measure the absolute errors both globally and locally to examine the 
convergence behaviors of our numerical methods. For comparison, we 
test the penalty parameter choices 𝜎𝑒 = 5 and 𝜎𝑒 = 0 for all 𝑒 ∈ ℎ. Note 
that our primary focus is on the convection-dominated scenario where 𝜀
is small. Consequently, the penalty parameter 𝜎𝑒 has a minimal impact, 
as demonstrated by the following numerical results.

Example 5.1 (Smooth solution). In this example, we take Ω = [1, 3] ×
[0, 2], 𝛾 = 2, 𝜻 = [𝑥1, 𝑥2]𝑡, and 𝜀 = 10−9. We define the exact solution as

𝑢(𝑥1, 𝑥2) =
𝑥2
𝑥1

. (5.1)

We show the global convergence rates in Table 1. We observe 𝑂(ℎ2)
convergence in the 𝐿2 norm and 𝑂(ℎ

3
2 ) convergence in the ‖ ⋅‖ℎ and ‖ ⋅‖ℎ♯ norms. See Fig. 2 for an illustration of the numerical solution and the 

exact solution. Note that the convergence rates are all optimal. Indeed, 
the optimal convergence rates in 𝐿2 norm is due to the smoothness of 
the solution, similar convergence behavior was observed in [1]. The 
optimal convergence rates in the ‖ ⋅‖ℎ and ‖ ⋅‖ℎ♯ norms match with our 
theoretical results in Remark 4.6.

Example 5.2 (Boundary layer [1]). In this example, we take Ω = [0, 1]2, 
𝛾 = 0, 𝜻 = [1, 1]𝑡, and 𝜀 = 10−9. We define the exact solution as

𝑢(𝑥1, 𝑥2) = 𝑥1 + 𝑥2(1 − 𝑥1) +
𝑒−1∕𝜀 − 𝑒

(𝑥1−1)(1−𝑥2)
𝜀

1 − 𝑒−1∕𝜀
. (5.2)

Note that the exact solution exhibits boundary layers near 𝑥1 = 1 and 
𝑥2 = 1.
231
Table 1

Errors and rates of convergence for 𝑢ℎ on Ω = [1, 3] × [0, 2] for Example 5.1
when 𝜀 = 10−9.

𝐿2 || ⋅ ||ℎ || ⋅ ||ℎ♯
ℎ Error Rate Error Rate Error Rate

𝜎𝑒 = 0

1/4 6.86e-03 - 2.99e-02 - 5.66e-02 -

1/8 1.95e-03 1.81 1.08e-02 1.47 2.09e-02 1.43

1/16 5.31e-04 1.88 3.84e-03 1.49 7.57e-03 1.47

1/32 1.39e-04 1.93 1.36e-03 1.50 2.70e-03 1.49

1/64 3.57e-05 1.96 4.81e-04 1.50 9.61e-04 1.49

𝜎𝑒 = 5

1/4 6.86e-03 - 2.99e-02 - 5.66e-02 -

1/8 1.95e-03 1.81 1.08e-02 1.47 2.09e-02 1.43

1/16 5.31e-04 1.88 3.84e-03 1.49 7.57e-03 1.47

1/32 1.39e-04 1.93 1.36e-03 1.50 2.70e-03 1.49

1/64 3.57e-05 1.96 4.81e-04 1.50 9.61e-04 1.49

Table 2

Errors and rates of convergence for Example 5.2 on the subdomain [0, 0.875]2
(away from the boundary layer) when 𝜀 = 10−9.

𝐿2 || ⋅ ||ℎ || ⋅ ||ℎ♯
ℎ Error Rate Error Rate Error Rate

𝜎𝑒 = 0

1/8 2.32e-04 – 2.29e-03 – 2.10e-02 –

1/16 5.81e-05 2.00 8.08e-04 1.50 7.43e-03 1.50

1/32 1.45e-05 2.00 2.85e-04 1.50 2.63e-03 1.50

1/64 3.63e-06 2.00 1.00e-04 1.50 9.28e-04 1.50

𝜎𝑒 = 5

1/8 2.32e-04 – 2.29e-03 – 2.10e-02 –

1/16 5.81e-05 2.00 8.08e-04 1.50 7.43e-03 1.50

1/32 1.45e-05 2.00 2.85e-04 1.50 2.63e-03 1.50

1/64 3.63e-06 1.99 1.00e-04 1.50 9.28e-04 1.50

As observed in Fig. 3, the numerical solution 𝑢ℎ has no spurious 
oscillations in the convection-dominated regime. It is also obvious that 
the numerical solution 𝑢ℎ ignores the boundary layers since we impose 
boundary conditions weakly.

Table 2 shows the local convergence results on the subdomain 
[0, 0.875]2 in the 𝐿2 norm, the ‖ ⋅ ‖ℎ norm and the ‖ ⋅ ‖ℎ♯ norm. We 
observe 𝑂(ℎ

3
2 ) convergence in the ‖ ⋅ ‖ℎ and ‖ ⋅ ‖ℎ♯ norms as well as 

𝑂(ℎ2) convergence in the 𝐿2 norm. Note that the local convergence be-
havior in the 𝐿2 norm is optimal which indicates the boundary layer 
does not pollute the solution in the interior.

In Table 3, we show the global errors in the 𝐿2 norm, the ‖ ⋅ ‖ℎ
norm and the ‖ ⋅ ‖ℎ♯ norm on Ω = [0, 1]2. We observe again the optimal 
convergence in the 𝐿2 norm. Notice that the global ‖ ⋅ ‖ℎ errors do 
not converge at all due to the sharp boundary layer near the outflow 
boundary. Similar convergence behaviors were also observed in [1].
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Fig. 3. Results of Example 5.2: 𝑢ℎ (left) and 𝑢 (right) for 𝜀 = 10−9, ℎ = 1∕128.

Fig. 4. Results of Example 5.3: 𝑢ℎ (left) and the profile of 𝑢ℎ at 𝑥1 = 0 (right) for 𝜀 = 10−9 and ℎ = 1∕128.
Table 3

Errors and rates of convergence for 𝑢ℎ on Ω = [0, 1]2 for Example 5.2 when 
𝜀 = 10−9.

𝐿2 || ⋅ ||ℎ || ⋅ ||ℎ♯
ℎ Error Rate Error Rate Error Rate

𝜎𝑒 = 0

1/4 1.06e-03 - 1.00e+00 - 1.00e+00 -

1/8 2.66e-04 2.00 1.00e+00 0.00 1.00e+00 0.00

1/16 6.64e-05 2.00 1.00e+00 0.00 1.00e+00 0.00

1/32 1.66e-05 2.00 1.00e+00 0.00 1.00e+00 0.00

1/64 4.15e-06 2.00 1.00e+00 0.00 1.00e+00 0.00

𝜎𝑒 = 5

1/4 1.06e-03 - 1.00e+00 - 1.00e+00 -

1/8 2.66e-04 1.99 1.00e+00 0.00 1.00e+00 0.00

1/16 6.64e-05 2.00 1.00e+00 0.00 1.00e+00 0.00

1/32 1.66e-05 2.00 1.00e+00 0.00 1.00e+00 0.00

1/64 4.15e-06 2.00 1.00e+00 0.00 1.00e+00 0.00

Example 5.3 (Interior layer [1]). In this example, we take Ω = [0, 1]2, 
𝛾 = 0, 𝜻 = [ 12 , 

√
3
2 ]𝑡, 𝑓 = 0, and the Dirichlet boundary conditions as:

𝑢(𝑥1, 𝑥2) =
⎧⎪⎨⎪⎩
1, on {𝑥2 = 0,0 ≤ 𝑥1 ≤ 1},
1, on {𝑥1 = 0, 𝑥2 ≤ 1

5 },
0, elsewhere.

Fig. 4 shows that the presence of an internal layer in the approximate 
solution. Although the internal layer is captured by the approximate 
solution, there is small overshooting/undershooting along the internal 
232
layer. This is emphasized in the picture on the right in Fig. 4 where the 
profile of 𝑢ℎ is plotted on {𝑥1 ∶ 𝑥1 = 0} ×{𝑥2 ∶ 𝑥2 ∈ [0, 1]}. For compari-
son, we show the numerical solution for 𝜀 = 10−3 in Fig. 5. The behavior 
of our numerical methods is similar to standard DG methods (cf. [1]). 
For example, there are wiggles near the outflow boundary in the in-
termediate regime and the boundary layer is ignored on the outflow 
boundary.

Example 5.4 (Interior layer [24]). In this example, we take Ω = [0, 1]2, 
𝛾 = 0, 𝜻 = [1, 0]𝑡, and 𝜀 = 10−9. The exact solution is

𝑢(𝑥1, 𝑥2) = (1 − 𝑥1)3 arctan
(

𝑥2 − 0.5
𝜀

)
. (5.3)

As one can see from Fig. 6, the exact solution 𝑢 has an internal layer 
along 𝑥2 = 0.5. It is also clear that the numerical solution does not re-
solve the interior layer (cf. [24]).

In Table 4, we compute the local convergence in the 𝐿2 norm, the ‖ ⋅‖ℎ norm and the ‖ ⋅‖ℎ♯ norm. We again observe 𝑂(ℎ2) convergence in 

the 𝐿2 norm and 𝑂(ℎ
3
2 ) convergence in the ‖ ⋅‖ℎ and ‖ ⋅‖ℎ♯ norms. One 

can see that the convergence rates are optimal in the region where the 
solution is smooth. This indicates that the interior layer does not pollute 
the solution into the region that stays away from the interior layer.

For comparison, we show the global convergence rates in Table 5. 
We see that the convergence rates deteriorate when ℎ is small due to the 
interior layer. We also illustrate the behavior of our numerical methods 
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Fig. 5. Results of Example 5.3: 𝑢ℎ (left) and the profile of 𝑢ℎ at 𝑥1 = 0 (right) for 𝜀 = 10−3 and ℎ = 1∕128.

Fig. 6. Results of Example 5.4: 𝑢ℎ (left) and 𝑢 (right) for 𝜀 = 10−9 and ℎ = 1∕128.

Fig. 7. Results of Example 5.4: 𝑢ℎ (left) and 𝑢 (right) for 𝜀 = 10−3 and ℎ = 1∕128.
in Figs. 7 and 8 when 𝜀 = 10−3 and 𝜀 = 1. We can clearly see our methods 
capture the interior layer when 𝜀 increases.

6. Concluding remarks

In this paper we developed and analyzed numerical approxima-
tions based on the DG finite element differential calculus framework 
for a convection-diffusion-reaction equation. We proved that the pro-
posed methods have optimal convergence behaviors, in the sense of 
233
Remark 4.6, in the convection-dominated regime. As a byproduct, we 
also showed that the method for the reduced convection-reaction prob-
lem is equivalent to a centered fluxes DG method. Numerically, we also 
observed that our methods have optimal convergence rates in the inte-
rior of the domain which are away from the boundary layers and interior 
layers. An interesting problem is to extend our methods to an optimal 
control problem that is constrained by a convection-dominated equation 
(cf. [27,26]). This is being investigated in an ongoing project.
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Fig. 8. Results of Example 5.4: 𝑢ℎ (left) and 𝑢 (right) for 𝜀 = 1 and ℎ = 1∕128.
Table 4

Errors and rates of convergence for 𝑢ℎ for Example 5.4 in the subdomain 
[0, 1] × [0.625, 1] (away from the interior layer) when 𝜀 = 10−9.

𝐿2 || ⋅ ||ℎ || ⋅ ||ℎ♯
ℎ Error Rate Error Rate Error Rate

𝜎𝑒 = 0

1/8 9.57e-04 – 8.16e-03 – 5.78e-02 –

1/16 2.42e-04 1.98 2.88e-03 1.50 2.04e-02 1.49

1/32 6.10e-05 1.99 1.02e-03 1.50 7.23e-03 1.50

1/64 1.53e-05 2.00 3.59e-04 1.50 2.55e-03 1.50

𝜎𝑒 = 5

1/8 9.57e-04 – 8.16e-03 – 5.78e-02 –

1/16 2.42e-04 1.98 2.88e-03 1.50 2.04e-02 1.49

1/32 6.10e-05 1.99 1.02e-03 1.50 7.23e-03 1.50

1/64 1.53e-05 2.00 3.59e-04 1.50 2.55e-03 1.50

Table 5

Errors and rates of convergence for Example 5.4 on Ω = [0, 1]2 for 𝜀 = 10−9.

𝐿2 || ⋅ ||ℎ || ⋅ ||ℎ♯
ℎ Error Rate Error Rate Error Rate

𝜎𝑒 = 0

1/4 6.06e-03 - 3.77e-02 - 1.00e-01 -

1/8 1.56e-04 1.96 1.33e-02 1.50 3.56e-02 1.50

1/16 3.96e-04 1.98 4.73e-03 1.49 1.26e-02 1.50

1/32 9.97e-05 1.99 1.82e-03 1.38 4.51e-03 1.48

1/64 2.72e-05 1.87 1.19e-03 0.60 1.89e-03 1.26

𝜎𝑒 = 5

1/4 6.06e-03 - 3.77e-02 - 1.00e-01 -

1/8 1.56e-04 1.96 1.33e-02 1.50 3.56e-02 1.50

1/16 3.96e-04 1.98 4.74e-03 1.49 1.26e-02 1.50

1/32 9.97e-05 1.99 1.88e-03 1.33 4.53e-03 1.47

1/64 2.95e-05 1.76 1.37e-03 0.45 2.00e-03 1.18

Data availability

Data will be made available on request.
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