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In this paper, we propose and analyze a numerically stable and convergent scheme for a convection-diffusion-
reaction equation in the convection-dominated regime. Discontinuous Galerkin (DG) methods are considered
since standard finite element methods for the convection-dominated equation cause spurious oscillations. We
choose to follow a DG finite element differential calculus framework introduced in Feng et al. (2016) and
approximate the infinite-dimensional operators in the equation with the finite-dimensional DG differential

operators. Specifically, we construct the numerical method by using the dual-wind discontinuous Galerkin
(DWDG) formulation for the diffusive term and the average discrete gradient operator for the convective term
along with standard DG stabilization. We prove that the method converges optimally in the convection-dominated
regime. Numerical results are provided to support the theoretical findings.

1. Introduction

Let Q be a convex polygonal domain in R?. We consider the follow-
ing convection-diffusion-reaction equation

—eAu+¢-Vu+yu=f in Q, (1.1a)

u=g on 09Q, (1.1b)

where the diffusive coefficient € > 0, the source term f € L,(Q), the
convective velocity § € [Wl(Q)]? and the reaction coefficient y €
wleQ)is nonnegative. We assume

y—%V-CznpO (1.2)

for some constant y, so that the problem (1.1) is well-posed. Note that
the convective term in (1.1) is written in non-conservative form. It is
equivalent to consider the conservative form
—eAu+V -+ -V-Ou=f in Q, (1.32)

u=g on 0Q. (1.3b)

* Corresponding author.

The equation (1.1)/(1.3) and the corresponding numerical methods
were intensively studied in the literature [30,15,24,33,29,17,31,28,9,
25] and the references therein. The difficulties of designing numerical
methods to solve (1.1)/(1.3) arise when one considers the convection-
dominated case, namely, when 0 < € < 1. In the convection-dominated
regime, the solution to (1.1) exhibits boundary layers near the outflow
boundary. We refer to [30] for more discussion about the analytic be-
havior of the solution to (1.1). The sharp gradients in the boundary
layer pose challenges in designing robust numerical methods for (1.1).
It is well known that a standard finite element method for (1.1) produces
spurious oscillations near the outflow boundary when € < 4||{||,, where
h is the mesh size of the triangulation. These oscillations then propagate
into the interior of the domain where the solution is smooth and destroy
the convergence of the finite element methods.

To remedy this issue, many methods were proposed to stabilize the
numerical solutions to (1.1), for example, SUPG [5,16], local projection
[14,19,20], EAFE [33,32,18] and DG methods [1,13,12,4]. We refer to
[30,17,29,9] and the references therein for more details about stabi-
lization techniques. Among these methods, discontinuous Galerkin (DG)
methods are favorable in many aspects. First, DG methods do not require
the numerical solutions to be continuous, and, hence, they are more suit-
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able to capture sharp gradients in the solutions. Secondly, DG methods
impose the boundary conditions weakly which prevents the boundary
layers propagating into the interior of the domain. Lastly, DG methods
have a natural upwind stabilization that can stabilize oscillatory behav-
iors of the numerical solutions [1,24].

In this work, we consider a new type of DG methods inspired by the
DG finite element differential calculus framework [10], to solve (1.1).
Specifically, the diffusion part of the equation is discretized by the dual-
wind discontinuous Galerkin (DWDG) method and the convection part is
discretized by an average discrete divergence operator. DWDG methods
were introduced for diffusion problems in [21] based on the DG differen-
tial calculus framework [10]. Such methods have optimal convergence
properties even in the absence of a penalty term which is different from
many existing DG methods. DWDG methods also have been applied to
other problems [23,22,2,11]. However, the study of the DG finite ele-
ment differential calculus for convection-diffusion-reaction equations is
still missing in the literature. In this paper, we extend the methods to
convection-diffusion-reaction equations, with a particular focus on the
convection-dominated regime. In order to apply the methods, we first
consider a reduced problem by taking £ = 0 in (1.3) and approximate the
divergence operator V- with the discrete divergence operator Eh. We
show, with this choice of discrete operator, the method for the reduced
problem is consistent with a centered fluxes DG method [7] for the con-
vective term. This is due to the fact that the discrete operator E,, is
defined as the average of the “left” discrete divergence operator and the
“right” discrete divergence operator. Using this equivalence, we add a
standard penalty term to stabilize the numerical solution which leads to
an upwind DG method. Combining the existing DWDG analysis for the
diffusive equation with the aforementioned equivalence, we show that
the proposed methods are optimal for the convection-diffusion-reaction
equations in the sense of the following,

O(h) if diffusion-dominated,
llu = wpllpy < ; 1.4
O(h2) if convection-dominated,
where u is the solution to (1.1), u;, is the numerical solution, and the
mesh-dependent norm || - ||4 is defined in Section 4. We analyze the
numerical methods using a coercive framework as well as an inf-sup
approach. The inf-sup approach allows us to establish a stronger result
which also controls the convective derivative (cf. [7]).

The rest of the paper is organized as follows. In Section 2, we re-
call the results about the DG differential calculus framework and define
various discrete operators that are useful in the following sections. In
Section 3, we consider the reduced problem when taking £ = 0. We
propose the numerical approximations for the reduced problem and
establish concrete error estimates. In Section 4, we propose fully dis-
cretized methods for (1.3) and justify the main convergence theorem.
Finally, we provide some numerical results in Section 5 and end with
some concluding remarks in Section 6.

Throughout this paper, we use C (with or without subscripts) to
denote a generic positive constant that is independent of any mesh pa-
rameter. Also to avoid the proliferation of constants, we use the notation
A S B (or A2 B) to represent A < (constant) B. The notation A = B is
equivalent to A < B and B < A.

2. Notations and the DG differential calculus

In this section, we briefly introduce the DG differential calculus
framework (cf. [10]) and the notations that will be used in the rest
of the paper. We also provide some useful properties of the DG oper-
ators. Throughout the paper we will follow the standard notation for
differential operators, function spaces, and norms that can be found, for
example, in [3,6].
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Fig. 1. The operators Q.

2.1. DG operators

Let W™P(Q) denote the set of all functions that are in L?(€2) whose
weak derivatives up to order m also belong to LP(2). We denote
H™(Q) := W™2(Q) when p = 2. Let VVO'""" (Q) be the set of functions
in W™P(Q) with vanishing traces up to order m — 1 on 0%, and let
HI'(Q) =W (Q).

Let 7, denote a locally quasi-uniform simplicial triangulation of
Q C R? with a mesh size h := max hy, where h; is the diameter of

TETy,
the simplex T € 7},. Let £, := |J 0T be the set of all edges in 7}, and
TETy,
é‘f := U (0T n9Q) be the set of boundary edges in 7},. Moreover, de-
TeT,

note £ fl =&\ € f as the set of interior edges in 7;,. We now define the
following piecewise Sobolev spaces

W™(T) :={v:vlp e W™(T) VT eT,},
WmP(T) i={v:vlp e W™ (T)XW™(T) YT€eT,}.
We then denote

V, =W T)NCT,) and PV, =V, xV,. (2.1)
We also define the following inner products,
(U,LU)Th = Z /dex and <U,w)5h = Z vwds, 2.2)
TET), eES) Y,
where S, is a subset of &,.
Define the DG space
V,i={vel,(Q): vl eP(T) VT ET,} (2.3)

and define V', :=V}, X V},. Note that V, C V), and V, C V,,. For each
edge e =0T+ N AT~ with some T* and T~ in 7, we assume the global
numbering of T is more than that of T~ for simplicity. We define the
jump and the average across an edge e € £ ,{ as follows:

Pl i=0" =0, (o)li=5

where v* 1= v|r:. If an edge e € £5, then define

(vt +07) YveEY,

+

[U]le:=U g *

v

{vll,

YveV,.

For an edge e € £/, set n, = " nPy

normal vector. Given any v € V, the trace operator Q;—’ onee Eé in
the direction x; (i = 1,2) is defined as follows:

=ng+|, = —np-|, as the unit

Ulr+, nﬁ,i) >0 vlr-, nﬁ,i) >0
Q?—(U) =40, n(ei) <0 and Q7 (v) 1=qvlp+, n(ei) <0.
o}, n=0 o}, n=0

See Fig. 1 for an example where QT(U) = v|y- and Q;(v) = 0lp+.
Alternatively, we can define Q;—r(v) ={v} + lsgn(ng))[v], and hence
the operators Q;’(U) and Q; (v) can be interpreted as “right” and “left”
limits in the x; direction on e € £/ For e = 9T+ N 9Q € £F, we simply
set QF (v) :=vt.
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Having defined the trace operators as above, for any v € V,
and a given g € L'(Q), we introduce the discrete partial derivatives
0f .0, 1V, — V(i =1,2) as follows:

(2.4a)

@n)7, = (Qr@n?, [¢h]>ghl + (g”(i)’fﬂh)g,f = (v.05,01)7,
(2.4b)

for all ¢, € V},. Accordingly, for any v € V,,, the discrete gradient oper-
ators are defined as:

v, 0%

£ (3% + (a8
th—(dhyx1 h,xzv) and Vh,gu—(d

+.8
v v, ahyxz v).

. 5 =8 = =
We define the average operators 9, , v, d, U Vb, and V.0 as fol-
lows,

= 1 _ =8 1 -
Opx,U = E(aZx,»” AN 0y, U= E(am v+ ah’fi v),
= 1 _ = 1 _
Vv i= E(V;U-'- v, ), Vhgt = E(V;’gv+ ViV

Similarly, we can also define the discrete divergence operators divf , Eh :

VY, =V, as follows,

2
divi v= FZ] 6ixi v®  and Ehv = %(divz v +div, v). (2.5)

2.2. Preliminary properties

We present some preliminary properties of the DG operators defined
in the previous subsection and some results that will be used in the
subsequent analysis. We first need the following generalized integration
by parts formula.

Lemma 2.1. For any v;, € V), and ¢, € V},, we have

(aix_(é‘,-l)h)y (Ph)Th = —(d,fx_(s’,-w;,), Uh)Th + ((0;,, (6x,.C,)vh)rh
! o . (2.6)
+{iPn Uhn('))g}zl;.

Proof. By the definitions of a;x_, Q7, the fact that §; € W (Q), and
integration by parts, we have
@5 Givn)en)7, = (QF o™, [@n))e, = ops Ox, 017,
= (59X (v, [@nl)e, — (Cion. O, @17,
= (0, (Gion)- @17, + (G(QF (W) — (0D [y 1n D),
—(Gilvpl Aoy }n(i)>gl:
= O, Gon @n)7, £ (5 50001 [ D)
= (Gilvpl {op, }”(i)>g’:
= (axi(é',- Uh)v(Ph)T,,

1. . .
+ (Gl £5 1o = (@ D)1

(2.7)
Use the definition of 6;7')(‘ again, we have
& 05,007, = =0 Gop)-vn)y, +(GQT (@, [,)),
= _(aix,- (&en)vn)7, + (Cifon} [Uh]"(i)>g}: (2.8)
1 .
F (IOl Lop)er + &y vpn) g5
Note that (9, (§;up), @1)7, = (§i@p:Ox, V)7, + (@45 (0, E)vy)7, - Insert

(2.8) into (2.7), we have
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(a;_,-_x[ (&v)s op)r, = —(aiX[(Ci(ﬂh), o7, + (@4, 0y, EvR)7T,

. (2.9)
+{ion, Uhn(’))ef. O

Remark 2.2. The immediate consequence of Lemma 2.1 is the follow-
ing,

(AVEQU). @17, = ~(AVECRp). 0,7, + (@4 (V- Doy,

(2.10)
+(¢-n, Uh‘/’h)g’?-

Remark 2.3. Another consequence of the derivation (2.7) is the follow-
ing,

(Eh(CUh),(Ph)Th =(V-Gop)s@p)r, — (€ -nlul, {(ph}>g’{~ (2.11)
In fact, the following is also valid,
(div,,(&v). @), = (V- (0).@p)y, Vo€ H'(Q). (2.12)

3. The reduced problem and discretization

Our goal is to design a numerical method based on the DG differential
calculus framework for (1.1) (or (1.3)). Since the DWDG method for the
diffusion part is well-established [21], we first consider the following
reduced problem by taking £ =0,

Q,

V- @)+ -V-Ou'=f in (3.12)

W=g on 0Q, (3.1b)

where the inflow part of the boundary Q™ is defined as

0Q™ :={x€dQ: {(x) -n(x)<0}.

Here n is the outward unit normal vector of 0Q at x.
Let VO :={ve Ly(Q) | - Vve L,(Q)}. Then the weak form of the
problem (3.1) is to find u® € V0 such that

a” @, 0) = (f, V), + / ¢ nlgodx VYoeV?, (3.2)
0Q-
where the bilinear form a (-, -) is defined as
a” (v, w) = (V- (), w)p @) +((r = V- Do), + / [ -nlvwdx.
Q-
3.3)
The problem (3.2) is well-posed [7] under the assumption (1.2).
The discrete problem for (3.2) is to find “2 €V}, such that
@l @), vp) = (f> vy + / |€-nlgv,dx Vv, €V, (3.4)
0Q-
Here the bilinear form a;’lr (-,-) is defined as,
al (v, w) = (div,(Ev), w)y, +((r =V - O, W) ) + / I¢ -njvwds,
Q-
(3.5)

where Eh is defined in (2.5).

Remark 3.1. In (3.5), we approximate the divergence operator V- with
the discrete divergence operator div; defined in (2.5).

3.1. Consistency

Let «° be the solution to (3.1) and ”2 be the solution to (3.4). We
have, by (2.12),
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all @, 0p) = divy(§u®), )7, +((r = V- O, vp) 1,0

+/|C-n|uovhds
Q=
= (V- @), 0)7, + (7 =V - O, 0) 1,0

+/|§-n|u°u,,ds

0Q~

0 0 (3.6)
=(V-u)+ G-V -Ou,v),@
+ / |§-n|uovhds
Q-
=o)L, t / I -nlgv,ds
Q-
= a;’l’(ug, v,) Yo, €V,
Therefore we have the usual Galerkin orthogonality
a @’ =) v,)=0 Vv, V. (3.7)
3.2. L, coercivity
Define the norm
2 (112 1 2
10l = NolF g, + [ 316 nli?as. 3.9
Q
Lemma 3.2. We have
@l (vy,04) > Cllogll2, VYo, €V, (3.9)
Proof. It follows from (2.10) that
aj (vy, vp) = (Eh(é’vh), op)g, + (v =V - Doy, v) 1, @)
+ / |- nlui ds
Q-
1 divt 1 dive
= 5( iv, (Cvp), vp)y, + 5( vy, (Cvp)svp)r,
+((y = V-Oup, U, t / [¢- n|U%, ds
(3.10)

0Q~

= %(Uh,(v . C)Uh)Th + %((-n,ui)£’?+

+((}’—V‘C)Uthh)L2(Q)+/|C'n|U%,dS
Q-

1 1
=y - EV O, Uh)LZ(Q) +/ §|§ . nluids.
2Q

The estimate (3.9) immediately follows from the assumption (1.2). []

Remark 3.3. Using (2.11), we obtain

@iy Wy vp) = (V- (Guy), vy, = (€ -mlupl, {0 )) 1

3.11
-V Dot [ aiods P

0Q~

Therefore, the proposed method (3.4) is consistent with the standard
centered fluxes DG method (cf. [7]).

3.3. Stabilization

It is well-known that the solution to (3.11) (or equivalently, (3.4))
exhibits spurious oscillations near the outflow boundary if no additional
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stabilization is added. Hence, we define the following method with a
stabilization term: Find u2 €V}, such that

@y Wy, vp) = (fron) Ly + [ 1€ -nlgu,dx Vo, €V, (3.12)
o0~
where the bilinear form a,” “(-,-) is defined as,
) 1
a';lp“(u, w) = a;’ (v, w) + (5 |¢ - m|[v], [ngﬁ . (3.13)

Remark 3.4. The method (3.12) can be interpreted as an upwind
method [7].

It is trivial to see that (3.12) is a consistent method in the sense that

a" W’ =i, v,) =0 Vv, €V, (3.14)
Define the norm || - ||, on V}, as
1
1012, = 1ol + 3 [ 2ig-niioPas. (3.15)
eeé‘;l e
Lemma 3.5. We have, forall v € V),
azpw(Uh, vy) > C||Uh||ﬁpw~ (3.16)

Proof. The coercivity follows from (3.9), (3.13), and (3.15) immedi-
ately. [

3.4. Convergence analysis

We would like to establish the error estimates of the stabilized
method (3.12). Note that (3.12) is well-posed due to the discrete coerciv-
ity (3.16). Note that the norm || - ||,,,,,, is not strong enough to establish a
boundedness result for the bilinear form a';lp “(.,-) which is crucial to the
convergence analysis. To remedy this issue, we define a stronger norm

on VO +V,,

2 2
=olZ+ 25 M0l or
TeT,

upw

2
10120

(3.17)
We then have the following boundedness result (cf. [7, Lemma 2.30]).

Lemma 3.6. We have, for all v € V° and w;, €V,

upw

h (3.18)

a (U_”hv’ wh)SC”U_”hullupw,*”wh”upw’

where , : V0 = V, is the L,-orthogonal projection.

Proof. It follows from (3.11), (3.13) and integration by parts that
a," (v = o, wp)
=—(—m, 8 Vwy)g, +( - n{v—m,v}, [wh]>5;f

+((r = V-Ow—mpv), wp) @) + / [§-n|(v—rmv)wyds (3.19)

oQ+
1

+ <§ |¢-n|[v— ﬂhv],[wh])gp{.

We have, by Cauchy-Schwarz inequality and (3.8),

(r=V-O-mv),wp)p,@ + / [§-n|(v—mv)wyds
s (3.20)
<Cllv = mpvllgllwpllar < Cllv = 730l ypio |0 lpi-

Similarly, it follows from (3.15) that
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1
(31¢ - mllw =m0l [wpDgr < o= 7h0llpo W lipuo- (3.21)

Let ({)r be the mean value of { over T. Notice that ({)r - Vw,, is a
constant and hence we have, by the definition of z,

=m0, () - Vwp)y, =0 YV w, €V (3.22)

Notice that we assume ¢ € [W1*(Q)]?, and, hence we have ||& —

(Orllpeer) S hy
Therefore, we obtain, by (3.22) and inverse inequalities,

(w—myv,¢- th)fh
= =m0, (& = (€)p) - Viop)r,
<Cllo = myollyps D, hr Vol

Ter, (3.23)
<Clv = 20llupe Y, Nwhll ey
TETy,
<Cllv = w0l ypeo 10p lpio-
Lastly, we have
(€ -0l =m0} lwy))es
2
SC 2 ”U_ﬂhU”Lz((;T)”wh”upw (324)
TETy,
<Cllv = wRUlypio e W lupro-
The estimate (3.18) follows from (3.19)-(3.24). [
Combining (3.14), (3.16), and (3.18), we conclude
6 = ) o < Cll® = 78 N - (3.25)

By standard projection error estimates, we have (cf. [7]) the following
theorem.

Theorem 3.7. Let u° be the solution to (3.2) and u(;l be the solution to
(3.12). Assume u® € H%(Q) and then we have

3
116 = ) o < CR 16l 2y (3.26)

0
h "upw
3.5. Convergence analysis based on an inf-sup condition

We could obtain a similar error estimate with a stronger norm which
involves the gradient in the direction of {. Define

N0 g = N02, + D ATIIE - VOIS . (3.27)
TET,
We first need the following inf-sup condition (cf. [7]).
Lemma 3.8. We have
apr(U},, wp)
sup ETere— C”Uh”upwn VUh € Vh’ (3.28)
wpeVy\ {0} ”wh“upw)i

where the constant C is independent of { and h.

Sketch of proof. The proof is identical to that of [7, Lemma 2.35]
due to Remark 3.3. We briefly discuss the strategy here. Let S =

a'P (v wp)
h i H .
SUP,, eV;,\ (0} ol Given any vy, € V},, we construct a particular

wy, € V, \ {0} such that, for all T € T),, wy,|r = hy ()7 - Vv, where
(¢)r denotes the mean value of { over T as in the proof of Lemma 3.6.
We first notice that, by (3.16),

aupw(vh Uh)
2 upw h ’
Clloal2,, < at AL

p,vp) = ”Uh“upw)i < S”Uh“upwli‘ (3.29)

Nonllupu
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We claim that

2 2
Z hT”C : VUh”Lz(T) s S”Uh”upw]:[ + ”Uh”upwllvh“upwl:i + ”Uh”upw‘

TET),

(3.30)
Combining (3.30) and (3.16) and using (3.29) again, we have
Cllvhllipwn S Slopllupwt + 100 lupw lon lupuws - (3.31)

Upon using Young’s inequality and iterating the inequality (3.29) once
again, we have

Cllogl? .S (3.32)

upwi ~

S”Uh"u])wﬁ

which leads to (3.28). The claimed estimate (3.30) can be proved by in-
verse inequalities, trace inequalities and the Cauchy-Schwarz inequality.
For simplicity, we refer to [7, Lemma 2.35] for more details. []

To formulate a concrete error estimate, we define the following norm
on V0 +V,,

N0 s = N0 s+ D CHTH OISy + 11011 - (3.33)
TeT),

Similar to (3.18), we have (cf. [7]),

a';l"w(v =m0, wy) S Cllo = 70| ypug, s |1 W luprot (3.34)

for all v € V0 and w;, €V},
The immediate consequence of (3.28) and (3.34) is the following
lemma.

Lemma 3.9. Let u” be the solution to (3.2) and ”2 be the solution to (3.12).
Assume u° € H%(Q) and then we have

3
flu® - u(;),”upwn <Cllu® - ”huO”upwu,* <Ch2 ||u0||H2(Q)~ (3.35)
Proof. It follows from (3.28), (3.34), and (3.14) that,
&Pz — 0, wy)
||7rhu0 - u(,),”upwﬁ <C sup h h
wpeVL\{0} ”wh”upw]i
a"pw(ﬂhuo —u0, wy) (3.36)
=C sup
whEV,\0) le0p prot

0 0
<Cllu” = Tl "upw]i,*'

The first inequality in (3.35) is immediate due to triangle inequality and
(3.36). For the second inequality, we have

2 hrlle V@ = mudlIg, gy < CRIECI o (3.37)
TET),
and
=1y,,0 012 311,012
2 hpt e’ = w1 oy < CRANCIG o (3.38)

TeTy,

by standard projection error estimates. We finish the proof by combining
Theorem 3.7, (3.27), (3.33), (3.37), and (3.38). [

4. The full problem and discretization

The weak form of the problem (1.3) isto find u € vV, :={veH Q) :
v =g on 0Q} such that

a(,v) = (f, ), VYvEHQ), 4.1)
where the bilinear form a(-, -) is defined as
a(v, w) = ea’ (v, w) + a® (v, W) (4.2)
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for the bilinear form a“(v, w) := (Vo, Vw) L@ and a%(.,) defined in

(8:3). The problem (4.1) is well-posed [7] under the assumption (1.2).
The discrete problem for (4.1) is to find u;, € V}, such that

ap(up,vp) =0+ [ 1€ -nlgv,dx
Q- (4.3)
— c
—&(g, Vyovp-n— h—evh)é.}ls Yv, €V,
where the bilinear form a,(-,-) :=¢ea h( )+t “(-,-). Here the bilinear

form ahp“( ,) is defined in (3.13) and aZ( D) (cf. [22]) is defined as

2 [Vhow Viigwis, + Vgt Vigrg |+ ‘o L,

(4.4)

d .
ah(v,w) :

with the penalty parameter ¢, >0 for all e € &,.

Remark 4.1. Unlike most standard DG methods where the penalty pa-
rameter is positive, DWDG methods allow ¢, =0 for all e € £, under
the assumptions 7, is locally quasi-uniform and each simplex in the
triangulation has at most one boundary edge. This result was estab-
lished in [21,22,10] for a diffusive equation. Here we maintain the same
assumptions and allow the case where 6, = 0 for the general convection-
diffusion-reaction equation.

4.1. Consistency

Let u be the solution to (1.3) and u;, be the solution to (4.3). It follows
from [22] and (3.14) that

ap(u—uy,v,) = —e({Vyou—Vu}-n, [0y, Vv, €V (4.5)
Remark 4.2. The method (4.3) is not consistent in the sense of (4.5).

4.2. Coercivity

Define the norm || - ||;, on V}, by

lolly :=ellvll + IIUIIu,,w, (4.6)
where || - ||, is defined in (3.15) and || - || is defined as
1013 = AV 0I2 0 + Vgl )+ X 5 O] AR
e€&y
It follows from (3.16), (4.4), and (4.7) that
ap(p, vy) 2 C”Uh”%, Yo, €V),. (4.8)

4.3. Convergence analysis

Note that (4.3) is well-posed due to the discrete coercivity (4.8). It
is shown (cf. [22, (3.15)]) that for 6, > 0,

al,w) < llyllwlly Yo,weV +V,,. (4.9)
Consequently, we have, by (3.18) and (4.9),

ap(v = wpv,wy) L Cllo = mpollpllwpll, YveEV, w, €V, (4.10)
where the norm || - ||, .. is defined by

lolly, =ellolly + 1115, .- (4.11)

Here the operator z;, : V — V), is the L,-orthogonal projection.

Theorem 4.3. Let u be the solution to (1.3) and u;, be the solution to (4.3).
Assume u € H*(Q) and then we have
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1 3
llu = uylly < CeZ h+ h2)llull 2 4.12)

Proof. It follows from [22, Theorem 4.2] and [7] that

2 2
llu = mpully = ellu = mpully + llu = mpull,,

(4.13)

< Ceh® + h)llully -

It follows from (4.8), (4.5), and (4.10) that
[|zpu — ”h”i Sap(wpu —up, wpu—uy)
=ay(wpu—u,mpu—uy)+ ap,(u—upy, mpu—up)

(4.14)

S lu— mpullp g — gl

—6({thu—Vu} Ampu—uple,

It is shown in [22] that

|({§h’gu —Vu} -, [zu— u,,]>8h| < Chllull g llmpu = uplly,  (4.15)

and hence

— 1
£|({Vh’gu = Vu}n, [mpu—uyl)e, | < Ce2hllull g2 (gl — up -
(4.16)

Similar to Theorem 3.7, we have, by the trace inequality with scaling,

2 -1 2
Z ”u_”hu”LZ(()T)SC Z hT ”u_”hu”Lz(T)

TeTy, TEeTy,
2 (4.17)
+hp||V(u— ﬂhu)||L2(T)
< Ch |lull y20-
It follows from (4.13), (4.11), and (3.17) that
1 3
lu = zpully . SC(£5h+h§)|lu||H2(Q). (4.18)
We then conclude, by (4.18), (4.14), and (4.16),
1 3
||ﬂhu—uh||hSC(85h+h5)|lu||Hz(Q). (4.19)
Combining (4.13), (4.19), and triangle inequality, we obtain
1 3
llu—uplly <C(€Zh+h2)|lull g2y O (4.20)

4.4. Convergence analysis based on an inf-sup condition

We present an error estimate with a stronger norm that is similar to
Section 3.5. Define

2 _ 2 2
o2, =112 + Y Arlig - Vol 4.21)

TET,

We first need the following inf-sup condition (cf. [7, Lemma 2.35] and
[13, Lemma A.1]).

Lemma 4.4. We have

ap(vp,
sup G- 0p) > Clloglipg- (4.22)
wreVi\0} 1wl
Proof. We again follow the approaches in [7,8]. Let S =

apOp, W
Supwhth\(O} Nyl

V, \ {0} such that, for all T € T}, wy|7 = hy({)r - Vv;,. Similar to the
proof of Lemma 3.8, we first notice that, by (4.8),

) Given any v, € V,, we again construct a w;, €

a,(vy,,vy)
Cllvgll < apwp.vy) = Wuvhnm < Sllopllpg- (4.23)

We claim that
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Z hyllg - VUh”L @) S Slopllpg + lopllpllvgllng + lloall3- (4.24)
TeT),

Combining (4.24) and (4.23) and using (4.23) again, we have
C”Uh”hﬁNS”Uh”hu""”Uh”hllvh”hﬁ (4.25)

Upon using Young’s inequality and iterating the inequality (4.23) once
again, we have

Cllv;,llhji S Sllopllpg (4.26)

which leads to (4.22). The rest of the proof is devoted to (4.24). We first

prove the estimate

leopllpg S o llpg- 4.27)

Indeed, it follows from (4.21) that

lwill}, = ellwp ]l + lwyllZ,, + Y, hrlls - Vioyll; .

2
TET, (4.28)

A standard inverse inequality implies

D hlie -Vl gy s Y, At llwgll} g

TeTy, TET,

(4.29)

and, together with a trace inequality

1 2
a2, = oyl g + / S1¢ - nlu ds
0Q
+ E /
eeé‘}{e

2 -1 2
S ||Uh||L2(Q)+ Z h'T ”wh”Lz(T)'
TET),

%IC -n|[w,)*ds (4.30)

We also have ||w), ||§ S oy ||fl. In fact, we have, if5,,;, := mineegh c,>0,

> h—n[wh 1,0 SC X IVORlIZ, ¢y S CA+ ~

e€Ey TET,

)”Uh”d’ (4.31)

min

where we use a standard trace inequality and [22, Lemma 4.1]. It also
follows from [22, Lemma 4.1] and a trace inequality that, for ¢, >0,

1
_(”V wh”L (Q)+”Vh0wh”L (Q))

S D IVwully oy + Z - lLepll (4.32)
TeT), eGEh
Slopllg-
The estimates (4.31) and (4.32) then imply ||wh||§ s ||Uh||§.
At last, it is known that (cf. [7])
> A lwally o S loaly,. (4.33)

TET),

The estimate (4.27) is immediate upon combining (4.29)-(4.33).
It follows from (4.4), (3.11), and (3.12) that

3 hrlig- Voullg, o) = an(0ps 103) = £y (0 103)
TeT,
+(& - Vo, hp (€ = (E)p) - Vop)r,

+ (¢ -nlvy], {wh}>g’{ — (Yo Wy, @

= [ 16 nloywyds = L 1¢ ity
0Q~
=T+ Ty +T.
(4.34)

For the first two terms, we have, by (4.27) and (4.9),
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ap(vy, w
7=l 0alin ||wh"hz:t| <Sllwpllpg S Sllopllpg (4.35)
|| Sfi ||Uh||d55 lwplly S Nopllpllopllpg- (4.36)
It follows from Cauchy-Schwarz inequality and (4.27) that
1751+ 1T6| + 1T71 S Nlopllpllwgllpg S Nopllplloplipg. (4.37)

To bound T, we have, by a standard trace inequality, (4.33), and (4.27),
(¢ -mluvy], {wh}>gp{

/—Is“ n|[v,1*ds

/2|¢ n|{w,}*ds

eeé" eES’ (438)
:
Shoalln| D5 Az lwnl g | S Nowllalloliag.
TeT),
Finally, we bound T as follows,
(- Vo, hp (€= (&)r) - Vop)r,
: :
S| 2 hrlie Vol oy | | X Arlloall?
TeT), TeT),
% (4.39)
S| X el -Voulls iy | Honlleg
TETy,
1
S5 2 hrlle VoL, )+ Cliogli,,
TET,

where we use an inverse inequality and Young’s inequality. We also use
the fact § € [W°(Q)]?, and, hence, [|§ = ({) 7|l zoo(ry S hr. The claimed
estimate (4.24) follows from (4.34)-(4.39). [

Similar to Section 3.5, we define the following norm on V +V},

ol , == N0l + 3, G 1ol gy + IOl or)- (4.40)
TET,
We then have (cf. [7])
ah(U—ﬂhU,wh)SC”U—ﬂ'hl]”hn’*”wh”hu, (4.41)

for all v € V and w,, € V},. We omit the proof here since it is similar to
that of Lemma 3.18.

Consequently, we obtain the following convergence theorem from
(4.22) and (4.41).

Theorem 4.5. Let u be the solution to (1.3) and u;, be the solution to (4.3).
Assume u € H*(Q) and then we have

1 3
llu = up ll g 5C(£§h+h§)|IuIIHz(Q). (4.42)
Proof. It follows from (4.5), (4.22), (4.41), and (4.16) that
ah(ﬂ'hu —Up, I/Uh)
Iy = uyllyg <C - sup iR
wheVR\(0) lewp |l pg
—u,wy)+ —u,, W
_ C sup ah(ﬂ'hu u h) ah(u Mh h) (4.43)
whEV,\0} [leop 1l g

1
<Cllu- ”h“”hn,* +Ce2 h||u||Hz(Q).

We also obtain the following estimate, by (4.18) and arguments similar
to (3.37) and (3.38),

1 3
< C(Ee2h+ hY)|lull g2

llu = 7ull g (4.44)
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Fig. 2. Results of Example 5.1: u,, (left) and u (right) for h =1/12s.

We finish the proof by combining (4.43), (4.44), and triangle inequal-

ity. [

Remark 4.6. Theorem 4.5 implies the following convergence results,
O(h) when (1.3) is diffusion-dominated,

llu = upllpg < (4.45)

3
O(h?) when (1.3) is convection-dominated.

Note that [lull 2.0, = O(e™2) ([30, Part III, Lemma 1.181), hence, the
estimate (4.42) is not informative when £ < h. More delicate interior
error estimates that stay away from the boundary layers and interior
layers for standard DG methods can be found in [24,15].

5. Numerical results

In this section, we present some numerical examples that support the
theoretical results. All experiments are performed using MATLAB. We
measure the absolute errors both globally and locally to examine the
convergence behaviors of our numerical methods. For comparison, we
test the penalty parameter choices ¢, =5 and o, =0 for all e € £,. Note
that our primary focus is on the convection-dominated scenario where €
is small. Consequently, the penalty parameter o, has a minimal impact,
as demonstrated by the following numerical results.

Example 5.1 (Smooth solution). In this example, we take Q =[1,3] X
[0,2], y =2, ¢ =[x;,x,], and e = 10°. We define the exact solution as

X2
u(xy,xy) = ot (5.1)
1

We show the global convergence rates in Table 1. We observe O(h?)

convergence in the L, norm and O(h%) convergence in the || - ||, and || -
[ 4 norms. See Fig. 2 for an illustration of the numerical solution and the
exact solution. Note that the convergence rates are all optimal. Indeed,
the optimal convergence rates in L2 norm is due to the smoothness of
the solution, similar convergence behavior was observed in [1]. The
optimal convergence rates in the || - ||, and || - || ;3 norms match with our
theoretical results in Remark 4.6.

Example 5.2 (Boundary layer [1]). In this example, we take Q = [0, 113,

¥y=0,¢=[1,11,and e = 1072, We define the exact solution as
(o =D-xp)

—e P

1—el/e

e~/

u(xy,x,) =x; +x,(1 —xp) + (5.2)

Note that the exact solution exhibits boundary layers near x; = 1 and
Xy = 1.
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Table 1
Errors and rates of convergence for u;, on Q =[1,3] % [0, 2] for Example 5.1
when £ = 107°.

L, 1115 I g
h Error Rate Error Rate Error Rate
1/4 6.86e-03 - 2.99e-02 - 5.66e-02 -
1/8 1.95e-03 1.81 1.08e-02 1.47 2.09e-02 1.43
c,=0 1/16 5.31e-04 1.88 3.84e-03 1.49 7.57e-03 1.47
1/32 1.39e-04 1.93 1.36e-03 1.50 2.70e-03 1.49
1/64 3.57e-05 1.96 4.81e-04 1.50 9.61e-04 1.49
1/4 6.86e-03 - 2.99e-02 - 5.66e-02 -
1/8 1.95e-03 1.81 1.08e-02 1.47 2.09e-02 1.43
c,=5 1/16 5.31e-04 1.88 3.84e-03 1.49 7.57e-03 1.47
1/32 1.39e-04 1.93 1.36e-03 1.50 2.70e-03 1.49
1/64 3.57e-05 1.96 4.81e-04 1.50 9.61e-04 1.49
Table 2

Errors and rates of convergence for Example 5.2 on the subdomain [0, 0.875]*
(away from the boundary layer) when £ = 107°.

L, 11115 I g

h Error Rate Error Rate Error Rate

1/8 2.32e-04 - 2.29e-03 - 2.10e-02 -
6 =0 1/16 5.81e-05 2.00 8.08e-04 1.50 7.43e-03 1.50
e 1/32 1.45e-05 2.00 2.85e-04 1.50 2.63e-03 1.50
1/64 3.63e-06 2.00 1.00e-04 1.50 9.28e-04 1.50

1/8 2.32e-04 - 2.29¢e-03 - 2.10e-02 -
o =5 1/16 5.81e-05 2.00 8.08e-04 1.50 7.43e-03 1.50
e 1/32 1.45e-05 2.00 2.85e-04 1.50 2.63e-03 1.50
1/64 3.63e-06 1.99 1.00e-04 1.50 9.28e-04 1.50

As observed in Fig. 3, the numerical solution u;, has no spurious
oscillations in the convection-dominated regime. It is also obvious that
the numerical solution u;, ignores the boundary layers since we impose
boundary conditions weakly.

Table 2 shows the local convergence results on the subdomain
[0,0.875]% in the L, norm, the || - ||, norm and the || - I3 norm. We

observe O(h%) convergence in the | - ||, and || - ||, norms as well as
O(h?) convergence in the L, norm. Note that the local convergence be-
havior in the L, norm is optimal which indicates the boundary layer
does not pollute the solution in the interior.

In Table 3, we show the global errors in the L, norm, the || - ||,
norm and the || - || ;4 norm on Q = [0, 1]%. We observe again the optimal
convergence in the L, norm. Notice that the global || - ||, errors do
not converge at all due to the sharp boundary layer near the outflow
boundary. Similar convergence behaviors were also observed in [1].
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Fig. 4. Results of Example 5.3: u,, (left) and the profile of u,, at x; =0 (right) for e = 10~ and h = !/12s.

Table 3
Errors and rates of convergence for u, on Q = [0, 11> for Example 5.2 when
e=1077.

L, I 1ln [ 1l
h Error Rate Error Rate Error Rate
1/4 1.06e-03 - 1.00e+00 - 1.00e+00 -
1/8 2.66e-04 2.00 1.00e+00 0.00 1.00e+00 0.00
c,=0 1/16 6.64e-05 2.00 1.00e+00 0.00 1.00e+00 0.00
1/32 1.66e-05 2.00 1.00e+00 0.00 1.00e+00 0.00
1/64 4.15e-06 2.00 1.00e+00 0.00 1.00e+00 0.00
1/4 1.06e-03 - 1.00e+00 - 1.00e+00 -
1/8 2.66e-04 1.99 1.00e+00 0.00 1.00e+00 0.00
c,=5 1/16 6.64e-05 2.00 1.00e+00 0.00 1.00e+00 0.00
1/32 1.66e-05 2.00 1.00e+00 0.00 1.00e+00 0.00
1/64 4.15e-06 2.00 1.00e+00 0.00 1.00e+00 0.00

Example 5.3 (Interior layer [1]). In this example, we take Q = [0, 113,

¥r=0,¢= [%, ?]’ , f =0, and the Dirichlet boundary conditions as:

—_

, on{x,=0,0<x; <1},
u(xy,x3) =141, %},
0,

on {x; =0,x, <
elsewhere.

Fig. 4 shows that the presence of an internal layer in the approximate
solution. Although the internal layer is captured by the approximate
solution, there is small overshooting/undershooting along the internal
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layer. This is emphasized in the picture on the right in Fig. 4 where the
profile of uy, is plotted on {x; : x; =0} X {x, : x, €[0, 1]}. For compari-
son, we show the numerical solution for ¢ = 10~3 in Fig. 5. The behavior
of our numerical methods is similar to standard DG methods (cf. [1]).
For example, there are wiggles near the outflow boundary in the in-
termediate regime and the boundary layer is ignored on the outflow
boundary.

Example 5.4 (Interior layer [24]). In this example, we take Q = [0, 117,
y=0,¢=[1,0]", and e = 107°. The exact solution is

3 <x2—0.5)
u(xy,x,) = (1 —x;)” arctan — ) (5.3)

As one can see from Fig. 6, the exact solution « has an internal layer
along x, = 0.5. It is also clear that the numerical solution does not re-
solve the interior layer (cf. [24]).

In Table 4, we compute the local convergence in the L, norm, the
I, norm and the || - ||, norm. We again observe O(h?) convergence in

the L, norm and O(h% ) convergence in the || - ||, and || - || ,§f norms. One
can see that the convergence rates are optimal in the region where the
solution is smooth. This indicates that the interior layer does not pollute
the solution into the region that stays away from the interior layer.
For comparison, we show the global convergence rates in Table 5.
We see that the convergence rates deteriorate when 4 is small due to the
interior layer. We also illustrate the behavior of our numerical methods
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Fig. 6. Results of Example 5.4: u;, (left) and u (right) for e = 102 and h=1! /128,

Fig. 7. Results of Example 5.4: u;, (left) and u (right) for € = 1073 and h =1/12s.

in Figs. 7 and 8 when & = 1073 and & = 1. We can clearly see our methods
capture the interior layer when ¢ increases.

6. Concluding remarks

In this paper we developed and analyzed numerical approxima-
tions based on the DG finite element differential calculus framework
for a convection-diffusion-reaction equation. We proved that the pro-
posed methods have optimal convergence behaviors, in the sense of
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Remark 4.6, in the convection-dominated regime. As a byproduct, we
also showed that the method for the reduced convection-reaction prob-
lem is equivalent to a centered fluxes DG method. Numerically, we also
observed that our methods have optimal convergence rates in the inte-
rior of the domain which are away from the boundary layers and interior
layers. An interesting problem is to extend our methods to an optimal
control problem that is constrained by a convection-dominated equation
(cf. [27,26]). This is being investigated in an ongoing project.
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Table 4
Errors and rates of convergence for u, for Example 5.4 in the subdomain
[0, 1] X [0.625, 1] (away from the interior layer) when £ = 10~°.

I1-11n

L, ||||hu

h Error Rate Error Rate Error Rate

1/8 9.57e-04 - 8.16e-03 - 5.78e-02 -
- =0 1/16 2.42e-04 1.98 2.88e-03 1.50 2.04e-02 1.49
e 1/32 6.10e-05 1.99 1.02e-03 1.50 7.23e-03 1.50
1/64 1.53e-05 2.00 3.59e-04 1.50 2.55e-03 1.50

1/8 9.57e-04 - 8.16e-03 - 5.78e-02 -
- =5 1/16 2.42e-04 1.98 2.88e-03 1.50 2.04e-02 1.49
e 1/32 6.10e-05 1.99 1.02e-03 1.50 7.23e-03 1.50
1/64 1.53e-05 2.00 3.59e-04 1.50 2.55e-03 1.50

Table 5
Errors and rates of convergence for Example 5.4 on Q = [0, 1]* for e = 107°.
L, -1 I 1

h Error Rate Error Rate Error Rate

1/4 6.06e-03 - 3.77e-02 - 1.00e-01 -
1/8 1.56e-04 1.96 1.33e-02 1.50 3.56e-02 1.50
c,=0 1/16 3.96e-04 1.98 4.73e-03 1.49 1.26e-02 1.50
1/32 9.97e-05 1.99 1.82e-03 1.38 4.51e-03 1.48
1/64 2.72e-05 1.87 1.19e-03 0.60 1.89e-03 1.26

1/4 6.06e-03 - 3.77e-02 - 1.00e-01 -
1/8 1.56e-04 1.96 1.33e-02 1.50 3.56e-02 1.50
c,=5 1/16 3.96e-04 1.98 4.74e-03 1.49 1.26e-02 1.50
1/32 9.97e-05 1.99 1.88e-03 1.33 4.53e-03 1.47
1/64 2.95e-05 1.76 1.37e-03 0.45 2.00e-03 1.18

Data availability

Data will be made available on request.
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