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THE SPARSE-GRID-BASED ADAPTIVE SPECTRAL KOOPMAN
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Abstract. The adaptive spectral Koopman (ASK) method was introduced to numerically solve
autonomous dynamical systems that laid the foundation for numerous applications across di!erent
fields in science and engineering. Although ASK achieves high accuracy, it is computationally more
expensive for multidimensional systems compared with conventional time integration schemes like
Runge–Kutta. In this work, we combine the sparse grid and ASK to accelerate the computation for
multidimensional systems. This sparse-grid-based ASK (SASK) method uses the Smolyak structure
to construct multidimensional collocation points as well as associated polynomials that are used to
approximate eigenfunctions of the Koopman operator of the system. In this way, the number of
collocation points is reduced compared with using the tensor product rule. We demonstrate that
SASK can be used to solve ordinary di!erential equations (ODEs) and partial di!erential equations
(PDEs) based on their semidiscrete forms. Numerical experiments are illustrated to compare the
performance of SASK and state-of-the-art ODE solvers.
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1. Introduction. The Koopman operator [19] is an infinite-dimensional linear
operator that describes the evolution of a set of observables. It provides a principled
and often global framework to describe the dynamics of a finite-dimensional nonlin-
ear system. Consequently, the Koopman operator approach to nonlinear dynamical
systems has attracted considerable attention in recent years. One can define its ei-
genvalues, eigenfunctions, and modes and then use them to represent dynamically
interpretable low-dimensional embeddings of high-dimensional state spaces to con-
struct solutions through linear superposition [6]. In particular, the spectrum of the
Koopman operator in properly defined spaces does not contain continuous spectra,
and the observable of the system can be represented as a linear combination of eigen-
functions associated with discrete eigenvalues of the Koopman operator [29, 20, 31].

The Koopman operator provides powerful analytic tools to understand behaviors
of dynamical systems by conducting Koopman mode analysis. Such analysis starts
with a choice of a set of linearly independent observables, and the Koopman operator
is then analyzed through its action on the subspace spanned by the chosen observ-
ables [28]. This approach has been applied to study ordinary di!erential equations
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A2926 BIAN LI, YUE YU, AND XIU YANG

(ODEs), partial di!erential equations (PDEs) [47, 23, 35, 31], dissipative dynami-
cal systems [29], etc. Furthermore, novel numerical schemes, especially data-driven
algorithms, motivated by or related to the Koopman operator have attracted much
attention in the past decade. For example, the dynamic mode decomposition (DMD)
[37, 38, 43, 36, 22, 23, 2, 11] and its variants like extended DMD (EDMD) [46, 25] use
snapshots of a dynamical system to extract temporal features as well as correlated
spatial activity. Subsequently, they can predict the behavior of the system in a short
time. These approaches have been applied to design filters (e.g., [41, 33]), train neural
networks (e.g., [10]), etc.

In [24] we proposed a novel numerical method based on the spectral-collocation
method (i.e., the pseudospectral method) [12, 42] to implement the Koopman oper-
ator approach to solving nonlinear ODEs. This method leverages the di!erentiation
matrix in spectral methods to approximate the generator of the Koopman opera-
tor and then conducts an eigendecomposition numerically to obtain eigenvalues and
eigenvectors that approximate the Koopman operator’s eigenvalues and eigenfunc-
tions, respectively. Here, each element of an eigenvector is the approximation of the
associated eigenfunction evaluated at a collocation point. The Koopman modes are
approximated by computing eigenvalues, eigenvectors, and the observable based on
the initial state. This approach is more e""cient than the conventional ODE solvers
such as Runge–Kutta and Adam–Bashforth for low-dimensional ODEs in terms of
computational time, especially when evaluating the dynamics is costly [24]. This is
because it allows evaluating the dynamics of the system at multiple collocation points
simultaneously instead of computing them sequentially at di!erent time steps as the
aforementioned state-of-the-art ODE solvers do. In other words, ASK introduces a
new parallelization mechanism for solving ODEs, which makes it more e""cient than
conventional approaches for some problems.

However, ASK’s e""ciency decreases as the system’s dimension increases for it
employs the tensor product rule to construct multidimensional collocation points and
basis functions for polynomial interpolation. Consequently, the number of such points
as well as basis functions increases exponentially. This number is associated with the
size of the eigendecomposition problem and the linear system in the ASK scheme.
Therefore, ASK is less e""cient in multidimensional cases. To overcome this di""culty,
we propose to combine the sparse grids method with ASK, wherein the Smolyak struc-
ture is applied to construct collocation points. This sparse-grid-based ASK (SASK)
method reduces the number of collocation points and that of basis functions used
in the vanilla ASK. Hence, the computational e""ciency is enhanced. In numerical
experiments, we demonstrate that SASK can solve ODEs and PDEs (based on their
semidiscrete forms) accurately.

The paper is organized as follows. Section 2 introduces the background topics. A
detailed discussion of the sparse-grid-based adaptive spectral Koopman method fol-
lows in section 3. Section 4 presents a numerical analysis to evaluate the convergence
of ASK and SASK. We then show our numerical results in section 5. Finally, section
6 concludes the paper with a summary and further discussion.

2. Background.

2.1. Koopman operator. Borrowing notations from [21], we consider an au-
tonomous system described by the ODEs

dx

dt
= f(x),(2.1)
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THE SPARSE-GRID-BASED ASK METHOD A2927

where the state x = (x1, x2, . . . , xd)\rightarrow belongs to a d-dimensional smooth manifold
M , and the dynamics f : M \rightarrow M does not explicitly depend on time t. Here, f is
a possibly nonlinear vector-valued smooth function of the same dimension as x. In
many studies, we aim to investigate the behavior of observables on the state space.
For this purpose, we define an observable to be a scalar function g :M \rightarrow R, where g
is an element of some function space G (e.g., G = L2(M ) as in [28]). The flow map
Ft : M \rightarrow M induced by the dynamical system (2.1) depicts the evolution of the
system as

x(t0 + t) =Ft(x(t0)) =x(t0) +

\Biggr) t0+t

t0

f(x(s))ds.(2.2)

Now we define the Koopman operator for continuous-time dynamical systems as fol-
lows [29].

Definition 2.1. Consider a family of operators {Kt}t\uparrow 0 acting on the space of
observables so that

Ktg(x0) = g(Ft(x0)),

where x0 =x(t0). We call the family of operators Kt indexed by time t the Koopman
operators of the continuous-time system (2.1).

By definition, Kt is a linear operator acting on the function space G for each fixed
t. Moreover, {Kt} form a semigroup.

2.2. Infinitesimal generator. The Koopman spectral theory [28, 37] unveils
properties that enable the Koopman operator to convert nonlinear finite-dimensional
dynamics into linear infinite-dimensional dynamics. A key component in such spec-
tral analysis is the infinitesimal generator (or generator for brevity) of the Koopman
operator. Specifically, for any smooth observable function g, the generator of the
Koopman operator Kt, denoted as K, is given by

Kg= lim
t\downarrow 0

Ktg\uparrow g

t
,(2.3)

which leads to

Kg(x) =\downarrow g(x) · dx
dt

=
dg(x)

dt
.(2.4)

Denoting by \omega an eigenfunction of K and by \varepsilon the eigenvalue associated with \omega ,
we have K\omega (x) = \varepsilon \omega (x), and hence \varepsilon \omega (x) = K\omega (x) = d\omega (x)

dt . This indicates that
\omega (x(t0 + t)) = e\varepsilon t\omega (x(t0)), i.e.,

Kt\omega (x(t0)) = e\varepsilon t\omega (x(t0)).(2.5)

Therefore, \omega is an eigenfunction of Kt associated with eigenvalue \varepsilon . Note that, fol-
lowing notations in literature, we consider the eigenpair for Kt as (\omega ,\varepsilon ) instead of
(\omega , e\varepsilon t).

Now suppose g exists in the function space spanned by all the eigenfunctions \omega j

(associated with eigenvalues \varepsilon j) of K, i.e., g(x) =
\Biggl[ \updownarrow 

j cj\omega j(x); then

Kt[g(x(t0))] =Kt

\Biggr] 

\Biggl\lfloor 
\updownarrow \Biggr\rfloor 

j

cj\omega j(x(t0))

\Biggl\lceil 

\Biggr\rceil =
\updownarrow \Biggr\rfloor 

j

cjKt[\omega j(x(t0))].(2.6)
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A2928 BIAN LI, YUE YU, AND XIU YANG

Hence,

g(x(t0 + t)) =
\updownarrow \Biggr\rfloor 

j

cj\omega j(x(t0))e
\varepsilon jt.(2.7)

Similarly, for a vector-valued observable g :M \rightarrow Rd with g := (g1(x), g2(x), . . . , gd(x))\rightarrow ,
the system of observables becomes

dg(x)

dt
=Kg(x) =

\Biggr] 

\Biggl\{ \Biggl\{ \Biggl\{ \Biggl\lfloor 

Kg1(x)
Kg2(x)

...
Kgd(x)

\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\rceil 
=

\updownarrow \Biggr\rfloor 

j

\varepsilon j\omega j(x)cj ,(2.8)

where cj \updownarrow Cd is called the jth Koopman mode with cj := (c1j , c
2
j , . . . , c

d
j )

\rightarrow .
The ASK method uses the following truncated form of (2.7):

g(x(t0 + t)) =
\updownarrow \Biggr\rfloor 

j

cj\omega j(x(t0))e
\varepsilon jt \nearrow 

N\Biggr\rfloor 

j=0

c̃j\omega 
N
j (x(t0))e

\̃varepsilon jt(2.9)

for d = 1. Here, \omega j are approximated by Nth order interpolation polynomials \omega N
j ,

where N is a positive integer. Also, \varepsilon j and cj are approximated by \̃varepsilon j and c̃j [24]. For
d> 1, \omega N

j is constructed by the tensor product rule with one-dimensional interpolation
polynomials.

3. Sparse-grid-based adaptive spectral Koopman method. As mentioned
in [24], ASK su!ers from the curse of dimensionality as we approach high-dimensional
systems. It is not surprising to see this phenomenon in numerical integration and
interpolation on multidimensional domains when the tensor product rule is used to
construct high-dimensional quadrature points. Specifically, if N denotes the number
of points for one dimension and d denotes the number of dimensions, the tensor
product rule gives a domain containing Nd points, which quickly grows prohibitive
with d.

The sparse grid method is one of the most e!ective approaches to overcoming the
aforementioned di""culties to a certain extent as it needs significantly fewer points
in the computation. This method is also known as the Smolyak grid (or Smolyak’s
construction) in the name of Sergei A. Smolyak [40]. A series of seminal works fur-
ther studied the properties of the sparse grid method and completed the framework
[7, 16, 14, 48]. The full Nd-grid is a direct consequence of the tensor product of the
points in each dimension, while the sparse grid method chooses only a subset of these
grid points so that the total number increases much more slowly in d. As shown by
Zenger [48], the total number of points is polynomial in d. This drastically reduces
the computation complexity, enabling a more e""cient variant of ASK. In this section,
we introduce the sparse-grid-based adaptive spectral Koopman (SASK) method, an
improved version of ASK for multidimensional problems.

3.1. Sparse grids for interpolation. The idea of sparse grids is that some grid
points contribute more than the others in the numerical approximation. Thus, it does
not undermine the interpolation if only a subset of the important grid points is utilized.
In fact, the order of the error only increases slightly [48]. The polynomial interpolation
in SASK borrows the ideas from [18], which leveraged Chebyshev extreme points to
generate the sparse grids and Chebyshev polynomials to construct the basis functions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE SPARSE-GRID-BASED ASK METHOD A2929

Following a similar structure, this subsection first discusses the generation of the
sparse grid. Then, the basis function interpolation is explained, followed by the
computation of the coe""cients in the linear combination of the basis functions.

3.1.1. Sparse grid construction. In this work, the points of a sparse grid
are based on the extreme points of the Chebyshev polynomials. Specifically, denote
\vargamma j = cos

\Biggl\langle j\vargamma 
ne\nearrow 1

\Biggr\rangle 
for j \updownarrow {0,1, . . . , ne \uparrow 1}, where ne is an integer. The construction

of the sparse grids in a multidimensional domain builds on the unidimensional set of
Chebyshev points that satisfy the Smolyak rule.

Let {Ni}i\uparrow 1 be a sequence of sets which contain the Chebyshev points such that
the number of points in set i is M(i) = 2i\nearrow 1 + 1 for i \searrow 2 and M(1) = 1, and that
Ni \simeq Ni+1. Then,

N1 = {0}, N2 = {0,\uparrow 1,1}, N3 =

\Bigg/ 
0,\uparrow 1,1,\uparrow 

\Leftarrow 
2

2
,

\Leftarrow 
2

2

\Bigg\backslash 
.

To construct the sparse grid, we need another parameter, the approximation level
\varpi \updownarrow Z\uparrow 0. This parameter controls the number of points np in one dimension, thus
further dictating the overall degree of approximation. In particular, np = 2\varpi +1 when
\varpi \searrow 1 and np = 1 when \varpi = 0. Let ij denote the index of the set in dimension j. Then,
the Smolyak rule states that

d\Rightarrow 
d\Biggr\rfloor 

j=1

ij \Rightarrow d+ \varpi .

Here, we show an example with d= 2,\varpi = 2. In this case, 2\Rightarrow i1 + i2 \Rightarrow 4, and hence
the possible combinations are as follows:

(1) i1 = 1, i2 = 1, (2) i1 = 2, i2 = 1, (3) i1 = 3, i2 = 1,

(4) i1 = 1, i2 = 2, (5) i1 = 1, i2 = 3, (6) i1 = 2, i2 = 2.
(3.1)

Let S(·, ·) be the tensor product of two sets of points. Then, the combinations (i1, i2)
in (3.1) provide S(Ni1 ,Ni2). For example, S(N1,N3) = {(0,0), (0,\uparrow 1), (0,1), (0,\uparrow 

\searrow 
2
2 ),

(0,
\searrow 
2
2 )}. In this way, the sparse grid can be constructed as the union of S(Ni1 ,Ni2).

The illustration of the sparse grids and its comparison with the full grids are enclosed
in Appendix A.

By construction, there are repetitions of points in the union of S(Ni1 ,Ni2) since
the sets are nested. For example, S(N1,N2) \Uparrow S(N1,N3) = S(N1,N2). Hence, a
more concise way to construct sparse grids is to apply disjoint sets [14, 18]. Denote
Ai := Ni\Ni\nearrow 1 for i = 2,3, . . . and A1 := N1. Then, we have Ai \Uparrow Aj \simeq =i = \Downarrow . The
number of points in Ai is computed by M̄(i) = M(i) \uparrow M(i \uparrow 1) = 2i\nearrow 2 for i \searrow 3,
M̄(1) = 1, and M̄(2) = 2. Specifically,

A1 = {0}, A2 = {\uparrow 1,1}, A3 =

\Bigg/ 
\uparrow 
\Leftarrow 
2

2
,

\Leftarrow 
2

2

\Bigg\backslash 
.

Subsequently, we use the union of S(Ai1 ,Ai2) to construct sparse grids. By construc-
tion,

\Big/ 
i1,i2

S(Ni1 ,Ni2) =
\Big/ 

i1,i2
S(Ai1 ,Ai2).

3.1.2. Polynomial interpolation. We aim to approximate a smooth multi-
variate function h(x) with a linear combination of polynomials that serve as the basis
functions. Here, we choose the Chebyshev polynomials of the first kind to be the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

1/
25

 to
 1

28
.1

80
.1

59
.2

0 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



A2930 BIAN LI, YUE YU, AND XIU YANG

univariate basis functions. It follows to construct multivariate basis functions with
the tensor product of the univariate basis functions. The Chebyshev polynomials of
the first kind Tk are given by a recurrence relation: Tk+1(x) = 2xTk(x) \uparrow Tk\nearrow 1(x)
with T0(x) = 1, T1(x) = x, and x \updownarrow [\uparrow 1,1]. Hence, the basis functions used are
\varrho 1(x) = 1,\varrho 2(x) = x,\varrho 3(x) = 2x2 \uparrow 1,\varrho 4(x) = 4x3 \uparrow 3x, and so on. Corresponding to
the sets {Ai}, we define the disjoint sets of unidimensional basis functions {Fi} by

F1 = {\varrho 1(x)}, F2 = {\varrho 2(x),\varrho 3(x)}, F3 = {\varrho 4(x),\varrho 5(x)} .

Let (x1, x2) \updownarrow [\uparrow 1,1] \leftrightarrow [\uparrow 1,1]. By the Smolyak rule, the example above has the
following basis function tensor products:

(1) S(F1,F1) = {\varrho 1(x1)\varrho 1(x2)},
(2) S(F2,F1) = {\varrho 2(x1)\varrho 1(x2),\varrho 3(x1)\varrho 1(x2)},
(3) S(F3,F1) = {\varrho 4(x1)\varrho 1(x2),\varrho 5(x1)\varrho 1(x2)},
(4) S(F1,F2) = {\varrho 1(x1)\varrho 2(x2),\varrho 1(x1)\varrho 3(x2)},
(5) S(F1,F3) = {\varrho 1(x1)\varrho 4(x2),\varrho 1(x1)\varrho 5(x2)},
(6) S(F2,F2) = {\varrho 2(x1)\varrho 2(x2),\varrho 2(x1)\varrho 3(x2),\varrho 3(x1)\varrho 2(x2),\varrho 3(x1)\varrho 3(x2)}.

The union of these S(Fi1 ,Fi2) forms the basis functions for the polynomial interpo-
lation.

Suppose the total number of sparse grid points is N . Then, the total number of
basis functions is also N , and we denote them as \#l(x), ordering them with index
l. For example, \#1(x) = \varrho 1(x1)\varrho 1(x2),\#2(x) = \varrho 2(x1)\varrho 1(x2), and so on. It then
remains to approximate h(x) as the following linear combination:

h(x)\nearrow hN (x) =
N\Biggr\rfloor 

l=1

wl\#l(x),

where wl denotes the unknown coe""cients. Given the grid points {\bfitomega l}Nl=1, we can
write

\Biggr] 

\Biggl\{ \Biggl\{ \Biggl\{ \Biggl\lfloor 

hN (\bfitomega 1)
hN (\bfitomega 2)

...
hN (\bfitomega N )

\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\rceil 
=

\Biggr] 

\Biggl\{ \Biggl\{ \Biggl\{ \Biggl\lfloor 

\#1(\bfitomega 1) \#2(\bfitomega 1) . . . \#N (\bfitomega 1)
\#1(\bfitomega 2) \#2(\bfitomega 2) . . . \#N (\bfitomega 2)

...
...

. . .
...

\#1(\bfitomega N ) \#2(\bfitomega N ) . . . \#N (\bfitomega N )

\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\rceil 

\Biggr] 

\Biggl\{ \Biggl\{ \Biggl\{ \Biggl\lfloor 

w1

w2
...

wN

\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\rceil 
(3.2)

as hN = Mw, where hN =
\Biggl\langle 
hN (\bfitomega 1), . . . , h

N (\bfitomega N )
\Biggr\rangle \rightarrow 

,w = (w1, . . . ,wN )\rightarrow , and Mij =
\#j(\bfitomega i). Here, matrix M is full-ranked due to the orthogonality of Chebyshev polyno-
mials. Vector w can be obtained by w=M\nearrow 1hN when hN and M are known.

3.2. Finite-dimensional approximation. To leverage the properties of the
Koopman operator for solving dynamical systems, we intend to find the approximation
of (2.7) as

g(x(t+ t0))\nearrow gN (x(t+ t0)) =
N\Biggr\rfloor 

j=1

c̃j\omega 
N
j (x(t0))e

\̃varepsilon jt,(3.3)

where c̃j is the approximate Koopman mode, \̃varepsilon j is the approximate eigenvalue, and
\omega N
j is the polynomial approximation of eigenfunction \omega j . Without loss of generality,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE SPARSE-GRID-BASED ASK METHOD A2931

we will assume that t0 = 0 and denote x0 := x(t0) = x(0). The property of the
infinitesimal generator (2.4) leads to K\omega (x) = dx

dt · \downarrow \omega (x) for any eigenfunction \omega .
Since dx

dt = f(x), we have

K\omega = f ·\downarrow \omega = f1
\varsigma \omega 

\varsigma x1
+ f2

\varsigma \omega 

\varsigma x2
+ . . .+ fd

\varsigma \omega 

\varsigma xd
.(3.4)

The polynomial approximation \omega N
j in (3.3) can be obtained based on (3.4).

Consider the following polynomial approximation of an eigenfunction:

\omega (x)\nearrow \omega N (x) =
N\Biggr\rfloor 

l=1

wl\#l(x).

It then follows that

\varsigma \omega (x)

\varsigma xi
\nearrow \varsigma \omega N (x)

\varsigma xi
=

N\Biggr\rfloor 

l=1

wl
\varsigma \#l(x)

\varsigma xi
\nwarrow i.

Denote the sparse grid points in Rd by {\bfitomega l}Nl=1, where \bfitomega l := (\vargamma l1 , \vargamma l2 , . . . , \vargamma ld) \updownarrow Rd.
Replacing h in (3.2) with \omega , we have \bfitvarepsilon N = Mw, where \bfitvarepsilon N is the vector of \omega 
evaluated at \bfitomega l. Accordingly, letting matrix Gi be \varsigma xi\#l(x) evaluated at the sparse
grids points, we have

Gi =

\Biggr] 

\Biggl\{ \Biggl\{ \Biggl\{ \Biggl\lfloor 

\varrho !1

\varrho xi
(\bfitomega 1)

\varrho !2

\varrho xi
(\bfitomega 1) . . . \varrho !N

\varrho xi
(\bfitomega 1)

\varrho !1

\varrho xi
(\bfitomega 2)

\varrho !2

\varrho xi
(\bfitomega 2) . . . \varrho !N

\varrho xi
(\bfitomega 2)

...
...

. . .
...

\varrho !1

\varrho xi
(\bfitomega N ) \varrho !2

\varrho xi
(\bfitomega N ) . . . \varrho !N

\varrho xi
(\bfitomega N )

\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\rceil 
.

Then, \varsigma xi\bfitvarepsilon 
N = Giw, where (\varsigma xi\omega 

N )l := \varrho !
\varrho xi

(\bfitomega l). Let K \updownarrow RN\Leftarrow N be the finite-
dimensional approximation of K. Given the dynamics f = [f1, f2, . . . , fd]\rightarrow , (3.4) im-
plies

K\bfitvarepsilon N =
d\Biggr\rfloor 

i

diag
\Biggl\langle 
fi(\bfitomega 1), . . . , fi(\bfitomega N )

\Biggr\rangle 
Giw.(3.5)

3.3. Eigendecomposition. With the discretized Koopman operator, we intend
to obtain the eigenfunction values using the eigendecomposition. One can formulate
the eigenvalue problem K\omega j = \varepsilon j\omega j , where (\omega j ,\varepsilon j) is an eigenpair of K. Correspond-
ingly, the discrete eigenvalue problem is K\bfitvarepsilon N

j = \̃varepsilon j\bfitvarepsilon N
j . By (3.5) and \bfitvarepsilon N

j =Mwj , we
have

d\Biggr\rfloor 

i

diag
\Biggl\langle 
fi(\bfitomega 1), . . . , fi(\bfitomega N )

\Biggr\rangle 
Giwj = \̃varepsilon jMwj .(3.6)

Let U :=
\Biggl[ d

i diag
\Biggl\langle 
fi(\bfitomega 1), . . . , fi(\bfitomega N )

\Biggr\rangle 
Gi; Uwj = \̃varepsilon jMwj is a generalized eigenvalue

problem, from which we solve for wj . For compactness, we write this in the matrix
form

UW=MW!,(3.7)

where W :=
\Big\backslash 
w1 w2 . . . wN

\left( 
,! := diag(\̃varepsilon 1, \̃varepsilon 2, . . . , \̃varepsilon N ). Then, the matrix of

eigenfunctions can be defined by ""N :=MW, whose jth column is \bfitvarepsilon N
j .
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A2932 BIAN LI, YUE YU, AND XIU YANG

We note that SASK requires solving a generalized eigenvalue problem while ASK
uses a standard eigendecomposition. This is because matrix M is an identity matrix
I in ASK as it uses a Lagrange polynomial for the interpolation, which indicates
that \#i(\bfitomega j) = \varphi ij , where \varphi ij is the Kronecker delta function. Thus, in this setting,
the generalized eigenvalue problem (3.7) is degenerated as UW =W!. Further, by
construction, Gi =DiM, where Di is the di!erentiation matrix in the ith direction.
This formula reduces to Gi =Di when M= I in ASK (see [24]). On the other hand,
SASK uses a more general setting for the interpolation, i.e., \#i are not necessarily
Lagrange polynomials. Therefore, M \swarrow = I and the di!erentiation matrices Di need
to be obtained by solving a linear system. Instead of computing Di explicitly, we
compute Gi in SASK.

3.4. Constructing the solution. The eigendecomposition yields eigenfunction
values \omega N

j at the sparse grid points \bfitomega l. By construction, the central point of the
domain is also the first sparse grid point generated. For example, (0,0, . . . ,0) = \bfitomega 1 for
a multidimensional domain [\uparrow 1,1]d. Hence, to avoid interpolating the eigenfunction
when x0 /\updownarrow {\bfitomega l}, we propose to construct a neighborhood of x0 defined by [x0 \uparrow 
r,x0 + r], where r = (r1, r2, . . . , rd)\rightarrow is the radius. Equivalently, the neighborhood
in dimension i is [xi

0 \uparrow ri, xi
0 + ri]. For simplicity, we apply the isotropic setting with

r := r1 = r2 = · · · = rd in this work, but we emphasize that it is not necessary, and
that the anisotropic setting might be more e!ective. Therefore, the observable of the
dynamical system is constructed as

gN (x(t)) =
N\Biggr\rfloor 

j=1

c̃j\omega 
N
j (x0)e

\̃varepsilon jt.(3.8)

Setting t = 0, we compute the approximate Koopman modes c̃j using the following
equation:

g(x0)\nearrow gN (x0) =
N\Biggr\rfloor 

j=1

c̃j\omega 
N
j (x0),

which must be satisfied for di!erent initial conditions in the neighborhood of x0.
Thus, by considering all sparse grid points as di!erent initial conditions, we have

g(\bfitomega l)\nearrow gN (\bfitomega l) =
N\Biggr\rfloor 

j=1

c̃j\omega 
N
j (\bfitomega l), l= 1,2, . . . ,N.

These formulas can be summarized in a matrix form by defining the matrix of the
sparse grid as

\# :=

\Biggr] 

\Biggl\{ \Biggl\{ \Biggl\{ \Biggl\lfloor 

(\bfitomega 1)
\rightarrow 

(\bfitomega 2)
\rightarrow 

...
(\bfitomega N )\rightarrow 

\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\rceil 
=

\Biggr] 

\Biggl\{ \Biggl\{ \Biggl\{ \Biggl\lfloor 

\vargamma 11 \vargamma 12 . . . \vargamma 1d
\vargamma 21 \vargamma 22 . . . \vargamma 2d
...

...
. . .

...
\vargamma N1 \vargamma N2 . . . \vargamma Nd

\Biggl\lceil 

\Biggr\} \Biggr\} \Biggr\} \Biggr\rceil 
,

and denoting column i of the matrix by \#i. If we choose the vector-valued observable
g(x) =x, then the Koopman modes must satisfy ""Nci =\#i for all i. The Koopman
modes are computed by solving these linear systems. In a more compact form, ""NC=
\#. In particular, ci is column i of the matrix C = (cji), containing the Koopman
modes for dimension i.
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THE SPARSE-GRID-BASED ASK METHOD A2933

Finally, \bfitomega 1 =x0 by construction, and hence, \omega N
j (x0) is the first element of vector

\bfitvarepsilon N
j , denoted by (\bfitvarepsilon N

j )1. Therefore, the solution of the dynamical system is constructed
as

x(t) =
N\Biggr\rfloor 

j=1

c̃j\omega 
N
j (x0)e

\̃varepsilon jt =
N\Biggr\rfloor 

j=1

c̃j(\bfitvarepsilon 
N
j )1e

\̃varepsilon jt,(3.9)

wherein the observable function is identity.

3.5. Adaptivity. Due to the finite-dimensional approximation of K and local
approximation (in the neighborhood of x0) of \omega , the accuracy of the solution decays
as the system evolves in time. This is particularly the case for systems with highly
nonlinear dynamics. To solve this problem, we adaptively update ""N , !, and C via
procedures discussed in subsection 3.2–subsection 3.4.

Specifically, we set a series of check points in the time span 0 < \leftharpoonup 1 < \leftharpoonup 2 < · · · <
\leftharpoonup n < T . On each of the points, the algorithm examines whether the neighborhood
of x(\leftharpoonup k) is “valid” so as to further guarantee the accuracy of the finite-dimensional
approximation. For such a purpose, we define the acceptable range

Ri := [Li + \leftharpoondown r,Ui \uparrow \leftharpoondown r] ,(3.10)

where Li,Ui are the lower and upper bounds, r is the radius mentioned in subsection
3.4, and \leftharpoondown \updownarrow (0,1] is a tunable parameter. At the initial time point, Li = xi

0 \uparrow r
and Ui = xi

0 + r. For the current state x(\leftharpoonup k) = (x1(\leftharpoonup k), x2(\leftharpoonup k), . . . , xd(\leftharpoonup k))
\rightarrow , the

neighborhood R1 \leftrightarrow R2 \leftrightarrow · · ·\leftrightarrow Rd is valid if xi(\leftharpoonup k)\updownarrow Ri for all i. In the case where at
least one component xi(\leftharpoonup k) /\updownarrow Ri, we realize the update by the following procedures:

1. Update Li = xi(\leftharpoonup k)\uparrow r, Ui = xi(\leftharpoonup k) + r for all i.
2. Generate the sparse grid and compute matrices M,Gi.
3. Apply the eigendecomposition to update ""N ,!.
4. Compute the Koopman modes C with the updated ""N .
5. Construct solution x(t) by replacing e\̃varepsilon jt with e\̃varepsilon j(t\nearrow \varsigma k) in (3.9).

Step 5 above comes from the adjustment t0 = \leftharpoonup k and x0 = x(t0) = x(\leftharpoonup k) whenever
the update is performed. Notably, the parameter \leftharpoondown controls the strictness of the
validity check. When \leftharpoondown is large, the updates occur more frequently. Setting \leftharpoondown = 1 is
tantamount to forcing an update at every check point. As addressed in [24], SASK
also di!ers from traditional ODE solvers as it does not discretize the system in time,
and the check points are essentially di!erent from the time grid points in traditional
solvers. Instead, the discretization is in the state space. As a result, SASK is time-
mesh-independent.

3.6. Algorithm summary. To leverage the properties of the Koopman oper-
ator, subsections 3.2–3.4 find the finite-dimensional approximation of the Koopman
operator and approximate the eigenfunctions and eigenvalues. The solution is ob-
tained by a linear combination of the eigenfunctions. In order to preserve accuracy
as time evolves, the adaptivity is added into the numerical scheme. The complete
algorithm is summarized in Algorithm 3.1. Note that the construction of the sparse
grid is based on the reference domain [\uparrow 1,1] in practice. We then only need to rescale
the sparse grid points and matrices Gi on the reference domain by Ui\nearrow Li

2 (\#i+1)+Li

and 2Gi
Ui\nearrow Li

, respectively, so that they match the real domain [Li,Ui].
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A2934 BIAN LI, YUE YU, AND XIU YANG

Algorithm 3.1 Sparse-grid-based adaptive spectral Koopman method.
Require: n,T,x(0), r,\varpi ,\leftharpoondown 
1: Set check points at 0 = \leftharpoonup 0, \leftharpoonup 1, . . . , \leftharpoonup n <T .
2: Let Li = xi

0 \uparrow ri,Ui = xi
0 + ri and set neighborhood Ri = [Li + \leftharpoondown ri,Ui \uparrow \leftharpoondown ri] for

i= 1,2, . . . , d.
3: Generate sparse grid points {\bfitomega l}Nl=1 and compute M,Gi for i= 1,2, . . . , d.
4: Apply eigendecomposition to UW=MW! and compute ""N =MW.
5: Solve linear system ""NC=\#, where \# is defined as in subsection 3.4.
6: for k= 1,2,3, . . . , n do
7: Let \rightharpoonup j be the first element of the jth column of "". Construct solution at time

\leftharpoonup k as x(\leftharpoonup k) =
\Biggl[ 

j C(j, :)\rightharpoonup je\̃varepsilon j(\varsigma k\nearrow \varsigma k\rightarrow 1), where C(j, :) is the jth row of C.
8: if xi(\leftharpoonup k) /\updownarrow Ri for any i then
9: Set Li = xi(\leftharpoonup k)\uparrow ri, Ui = xi(\leftharpoonup k) + ri, and Ri = [Li + \leftharpoondown ri,Ui \uparrow \leftharpoondown ri].
10: Repeat steps 3–5.
11: end if
12: end for

13: return x(T ) =
\Biggl[ 

j C(j, :)\rightharpoonup je\̃varepsilon j(T\nearrow \varsigma n).

4. Numerical analysis. In this section, we provide numerical analysis results
to understand the performance of the ASK and SASK methods. We start with a
lemma adapted from [29].

Lemma 4.1. Consider a linear dynamical system dx
dt = Ax, where x \updownarrow Rd and

A \updownarrow Rd\Leftarrow d. Then the eigenvalues of A are eigenvalues of the Koopman operator, and
the associated Koopman eigenfunctions are \omega j(x) = \propto x,wj\prime for j = 1,2, . . . , d, where
wj are eigenvectors of A\rightarrow such that \infty wj\infty 2 = 1 and \propto ·, ·\prime denotes the complex inner
product on the manifold M.

Proof. Let \varepsilon j be an eigenvalue of A; then it is also an eigenvalue of A\rightarrow . Assume
A\rightarrow wj = \varepsilon jwj , as shown in [29]; we have

d\omega j

dt
=

d

dt
\propto x,wj\prime =

\right) 
dx

dt
,wj

\left[ 
= \propto Ax,wj\prime = \propto x,A\rightarrow wj\prime = \varepsilon j\propto x,wj\prime = \varepsilon j\omega j .

Thus, \omega j is an eigenfunction of the linear system’s Koopman operator. Alternatively,
using (3.4), we have

K\omega j =
d\Biggr\rfloor 

i=1

(Ax)i
\varsigma \omega j

\varsigma xi
= \propto Ax,wj\prime = \propto x,A\rightarrow wj\prime = \varepsilon j\propto x,wj\prime = \varepsilon j\omega j .

These two di!erent proofs of this lemma illustrate the connection of temporal
derivatives and spatial derivatives via the Koopman operator.

Next, as long as A has a full set of eigenvectors at distinct eigenvalues \varepsilon j , we
have

g(x(t0 + t)) =
d\Biggr\rfloor 

j=1

cj\omega j(x(t0))e
\varepsilon jt

for observable g : M \rightarrow R, and g(x(t0)) =
\Biggl[ d

j=1 cj\omega j(x(t0)). When \omega j and \varepsilon j are
perturbed, we have the following convergence estimate.
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THE SPARSE-GRID-BASED ASK METHOD A2935

Theorem 4.2. Consider a linear dynamical system dx
dt =Ax, where x \updownarrow Rd and

A \updownarrow Rd\Leftarrow d. Assume A\rightarrow has a full set of eigenvectors at distinct eigenvalues \varepsilon j. Let
\omega j(x) and \̃varepsilon j be approximations of \omega j(x) and \varepsilon j, respectively. Consider a scalar
observable g(x(t0 + t)) =

\Biggl[ d
j cj\omega j(x(t0))e\varepsilon jt. Denote \rightharpoondown \omega 0

= max1\Rightarrow j\Rightarrow d |\omega j(x(t0)) \uparrow 
\omega j(x(t0))| and \rightharpoondown \varepsilon =max1\Rightarrow j\Rightarrow d |\varepsilon j \uparrow \̃varepsilon j |. We have

|g(x(t0 + t))\uparrow g̃(x(t0 + t))|\Rightarrow d\infty c\infty \updownarrow eRe\varepsilon maxt

\right] 
max

j
|\omega j(x(t0))|\rightharpoondown \varepsilon t+ \rightharpoondown \omega 0

e\varphi \omega t
 
,(4.1)

where g̃(x(t0 + t)) =
\Biggl[ d

j=1 cj\omega j(x(t0))e\̃varepsilon jt and Re\varepsilon max =maxj Re\varepsilon j.

Proof. With the triangle inequality, we have

|g(x(t0 + t))\uparrow g̃(x(t0 + t))|

=

      

d\Biggr\rfloor 

j

cj\omega j(x(t0))e
\varepsilon jt \uparrow 

d\Biggr\rfloor 

j

cj\omega j(x(t0))e
\̃varepsilon jt

      

\Rightarrow 
d\Biggr\rfloor 

j=1

|cj | ·
   \omega j(x(t0))e

\varepsilon jt \uparrow \omega j(x(t0))e
\̃varepsilon jt

   

\Rightarrow 
d\Biggr\rfloor 

j=1

|cj | ·
   \omega j(x(t0))e

\varepsilon jt
  |1\uparrow e(\̃varepsilon j\nearrow \varepsilon j)t|

+ |\omega j(x(t0))\uparrow \omega j(x(t0))| · |e\varepsilon jt| · |e(\̃varepsilon j\nearrow \varepsilon j)t|
 

\Rightarrow d\infty c\infty \updownarrow eRe\varepsilon maxt

\right] 
max

j
|\omega j(x(t0))| · |1\uparrow e\varphi \omega t|+ \rightharpoondown \omega 0

e\varphi \omega t
 
.

(4.2)

If the eigendecomposition solver is accurate, then \rightharpoondown \omega 0
and \rightharpoondown \varepsilon are very close to zero.

Consequently, |1\uparrow e\varphi \omega t|\nearrow \rightharpoondown \varepsilon t, and g̃ is very close to g given accurate Koopman modes
cj . For example, when solving linear PDEs, A can be the di!erentiation matrix of \downarrow 
or \$ (or other di!erential operators in the finite di!erence or pseudospectral method).
Hence, it is promising that when solving these PDEs based on their semidiscrete form,
the time evolution can be very accurate by ASK. Moreover, since \omega j(x) = \propto x,wj\prime in
the linear case, we can further bound \rightharpoondown \omega and |\omega j(x(t0))| by \infty x(t0)\infty 2 via the Cauchy–
Schwarz inequality.

We note that in Theorem 4.2, Koopman modes cj are assumed to be accurate.
As shown in subsection 3.4, the ASK method computes these modes by solving linear
systems based on the computed eigenfunctions \omega j using di!erent initial value g(x(t0)).
The following theorem provides the error estimate in this practical scenario.

Theorem 4.3. Given the condition in Theorem 4.2, if the Koopman modes cj
are approximated by c̃j that are computed by solving a linear system "̃"c̃ = g, where
\̃%ij = \omega j(xi), gj = g(xj), and xi are d di!erent initial values. Let \rightharpoondown \omega max

=max1\Rightarrow i\Rightarrow d

max1\Rightarrow j\Rightarrow d |\omega j(xi)\uparrow \omega j(xi)|. Consider g̃(x(t0 + t)) =
\Biggl[ d

j=1 c̃j\omega j(x(t0))e\̃varepsilon jt, which is

an approximation of g(x(t0 + t)). Let \varphi ""= "̃"\uparrow "". If \infty ""\nearrow 1\infty \updownarrow \rightharpoondown \omega max
< 1/d, we have

|g(x(t0 + t))\uparrow g̃(x(t0 + t))|(4.3)

\Rightarrow d\infty c\infty \updownarrow \rightharpoondown \omega max
eRe\varepsilon maxt

\right] 
max

j
|\omega j(x(t0))|(|1\uparrow e\varphi \omega t|+ \lhook e\varphi \omega t) + \rightharpoondown \omega 0

e\varphi \omega t
 
,

where \lhook = \varpi d\varphi \varepsilon max

\Uparrow !\Uparrow \uparrow \nearrow \varpi d\varphi \varepsilon 
and \varpi = \infty ""\infty \updownarrow · \infty ""\nearrow 1\infty \updownarrow .
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A2936 BIAN LI, YUE YU, AND XIU YANG

Proof. The Koopman modes cj in this case satisfy ""c = g, where \%ij = \omega j(xi).
Therefore, \infty \varphi ""\infty \updownarrow \Rightarrow d\rightharpoondown \omega max

. Then, a well-known conclusion in numerical linear alge-
bra indicates that

\infty c\uparrow c̃\infty \updownarrow 
\infty c\infty \updownarrow 

\Rightarrow \varpi \infty \varphi ""\infty \updownarrow 
\infty ""\infty \updownarrow \uparrow \varpi \infty \varphi ""\infty \updownarrow 

\Rightarrow \varpi d\rightharpoondown \omega max

\infty ""\infty \updownarrow \uparrow \varpi d\rightharpoondown \omega max

;

we have

|g(x(t0 + t))\uparrow g̃(x(t0 + t))|

\Rightarrow 

      

d\Biggr\rfloor 

j

cj\omega j(x(t0))e
\varepsilon jt \uparrow 

d\Biggr\rfloor 

j

cj\omega j(x(t0))e
\̃varepsilon jt

      
\left\{ \right\}   

I

+

      

d\Biggr\rfloor 

j

cj\omega j(x(t0))e
\̃varepsilon jt \uparrow 

d\Biggr\rfloor 

j

c̃j\omega j(x(t0))e
\̃varepsilon jt

      

\Rightarrow I +
d\Biggr\rfloor 

j=1

|cj \uparrow c̃j | ·
   \omega j(x(t0))e

\̃varepsilon jt
   

\Rightarrow I + d\lhook \infty c\infty \updownarrow 
\right] 
max

j
|\omega j(x(t0))|+ \rightharpoondown \omega max

 
e(Re\varepsilon max+\varphi \omega )t

\Rightarrow d\infty c\infty \updownarrow eRe\varepsilon maxt

\right] 
max

j
|\omega j(x(t0))| · |1\uparrow e\varphi \omega t|+ \rightharpoondown \omega 0

e\varphi \omega t
 

+ d\lhook \infty c\infty \updownarrow 
\right] 
max

j
|\omega j(x(t0))|+ \rightharpoondown \omega max

 
e(Re\varepsilon max+\varphi \omega )t

\Rightarrow d\infty c\infty \updownarrow \rightharpoondown \omega max
eRe\varepsilon maxt

\right] 
max

j
|\omega j(x(t0))|(|1\uparrow e\varphi \omega t|+ \lhook e\varphi \omega t) + \rightharpoondown \omega 0

e\varphi \omega t
 
.

(4.4)

Theorem 4.3 also holds for general cases, i.e., when f in (2.1) has a full set of
eigenvectors at distinct eigenvalues.

Note that these preliminary analysis results provide the first glance on the accu-
racy of the ASK (as well as the SASK) method, which will serve as the foundation of
more comprehensive study. For the most general cases, we need to consider the error
of (1) approximating global eigenfunctions locally; (2) approximating local eigenfunc-
tions using predecided basis functions (polynomials in this work); and (3) the eigen-
solver and the linear solver. Also, we need to investigate the impact of continuous
spectrum in some systems, e.g., following the existing works in [1, 9]. These analyses
require very systematic study and will be included in our future work. We include
an illustrative example in Appendix B to demonstrate the accuracy of approximating
desired eigenpairs using SASK for linear equations.

5. Numerical results. SASK’s performance is demonstrated by multiple ODEs
and PDEs in this section. Specifically, the ODEs are multidimensional nonlinear
systems. Our numerical experiments investigate the impact of the parameters in
SASK, including approximation level \varpi , and number of eigendecompositions, denoted
by nd. Note that nd reflects how adaptivity may increase the accuracy. Additionally,
one may refer to [24] for the e!ect of number of check points n and radius r, for they
have an e!ect on SASK that is similar to their e!ect on ASK. For ODEs that do not
have a closed-form solution, Verner’s ninth-order Runge–Kutta (RK9) method [44] is
implemented to provide the reference solutions.
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THE SPARSE-GRID-BASED ASK METHOD A2937

To solve a PDE, SASK exploits the semidiscrete form of the PDE, where the
spatial discretization is performed by the spectral-collocation method. In this way, the
PDE is converted to a high-dimensional ODE system. For such a system, using a large
\varpi will significantly increase the computational cost, so we keep \varpi = 1 to investigate
the performance of SASK for solving PDEs with this low-order approximation of
eigenfunctions.

Regarding the computational e""ciency, we perform a comparison between SASK
and other state-of-the-art ODE solvers for ODEs examples, including the Euler for-
ward method, the fourth-order Runge–Kutta (RK4) method, and the five-step Adams–
Bashforth (AB5) method. Then, we demonstrate the computational e""ciency of
SASK on the PDEs, where RK4 is incorporated as a comparison to solve the semidis-
cretized form since it is one of the most widely used methods. The e""ciency is
measured by the accuracy against the running time (i.e., wall time) in subsection 5.3.
All the experiments are implemented in MATLAB 2020 and performed on a machine
with Intel Core i7 CPU and 32 GB RAM.

5.1. ODEs. This part summarizes the numerical results of SASK on six nonlin-
ear dynamical systems that are well-known benchmarks across di!erent fields.

5.1.1. Lotka–Volterra model. The Lotka–Volterra model is a two-dimensional
system that describes the interaction between the population evolution of prey and
that of predators [5]:

dx1

dt
= 1.1x1 \uparrow 0.4x1x2,

dx2

dt
= 0.1x1x2 \uparrow 0.4x2.

The initial state is set to x(0) = (5,2)\rightarrow , and the terminal time is T = 20. The two
tests corresponding to \varpi , nd employ the following specification:

(a) test of \varpi : n= 200, r= 0.75,\leftharpoondown = 0.8;
(b) test of nd: \varpi = 3, r= 0.5,\leftharpoondown = 0.8.

The results in Figure 1 align with our expectation. First, the error decreases expo-
nentially with the approximation level. This is expected as we leverage the ideas from
spectral-collocation methods. On the other hand, adaptivity is shown to contribute
to the accuracy, which is illustrated by the downward trending error curves as nd

increases. The small-scale fluctuations come from numerical issues in the eigende-
composition on a small local domain.
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Fig. 1. Lotka–Volterra model: \uparrow ,\leftrightsquigarrow denote x1, x2, respectively.
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5.1.2. Simple pendulum. In mechanics, the movement of the pendulum can
be modeled by an second order ODE, d2\leftharpoonup 

dt2 =\uparrow g
L sin(\rhook ), where the gravity acceleration

is g, the length of the pendulum is L, and the displacement is \rhook . Setting L = g for
convenience, we can further convert the ODE into an equivalent two-dimensional first
order ODE,

dx1

dt
= x2,

dx2

dt
=\uparrow sin(x1).

Here, x1 := \rhook , x2 :=
d\leftharpoonup 
dt . The initial state is x(0) =

\Biggl\langle 
\uparrow \vargamma 

4 ,
\vargamma 
6

\Biggr\rangle \rightarrow 
, and the terminal time is

T = 20. For the simple pendulum, the parameters are listed below:
(a) test of \varpi : n= 200, r= 0.2,\leftharpoondown = 0.5;
(b) test of nd: \varpi = 3, r= 0.1,\leftharpoondown = 0.1.

As shown in Figure 2, SASK achieves an exponential convergence with respect to \varpi 
in this example as well. Also, the error curves flattened when nd \searrow 160, indicating
that 160 decompositions su""ce.

5.1.3. Limit cycle. The limit cycle can be applied to describe the oscillatory
patterns [45], which is defined by the two-dimensional ODE as follows:

dx1

dt
=\uparrow x1 \uparrow x2 +

x1 
x2
1 + x2

2

,

dx2

dt
= x1 \uparrow x2 +

x2 
x2
1 + x2

2

.

This model has a closed-form solution,

x1(t) =
 
1\uparrow 

 
1\uparrow 

 
x1(0)2 + x2(0)2

 
e\nearrow t

 
cos(t+ arctan(x2(0)/x1(0))),

x2(t) =
 
1\uparrow 

 
1\uparrow 

 
x1(0)2 + x2(0)2

 
e\nearrow t

 
sin(t+ arctan(x2(0)/x1(0))).

The parameters in the experiments are specified as follows:
(a) test of \varpi : n= 200, r=

\searrow 
2

20 ,\leftharpoondown = 0.2;

(b) test of nd: \varpi = 3, r=
\searrow 
2

40 ,\leftharpoondown = 0.8.
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Fig. 2. Simple pendulum: \uparrow ,\leftrightsquigarrow denote x1, x2, respectively.
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We set x(0) = (
\searrow 
2
2 ,\uparrow 

\searrow 
2
2 )\rightarrow , T = 20 in the above tests. Similar to the Lotka–Volterra

case, Figure 3 demonstrates that the accuracy directly depends on the approxima-
tion level. As the states strongly oscillate as time evolves, the validity of the local
domain breaks more frequently. Therefore, more decompositions are utilized than the
aforementioned models.

5.1.4. Kraichnan–Orszag model. The Kraichnan–Orszag problem was intro-
duced in [34]. It induces a chaotic three-dimensional dynamical system, defined by
the following equations:

dx1

dt
= x2x3,

dx2

dt
= x1x3,

dx3

dt
=\uparrow 2x1x2.

For this model, x(0) = (1,2,\uparrow 1)\rightarrow , T = 20. The other parameters are specified as
follows:

(a) test of \varpi : n= 2000, r= 0.5,\leftharpoondown = 0.8;
(b) test of nd: \varpi = 3, r= 0.3,\leftharpoondown = 0.5.

The test of \varpi only includes \varpi = 1,2,3 because SASK encounters numerical issues when
\varpi = 4, which leads to a drastic decrease in accuracy. This is because the Kraichnan–
Orszag dynamics are less smooth. As illustrated by Figure 4, a large \varpi as well as a
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(a) Approximation level
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Fig. 3. Limit cycle: \uparrow ,\leftrightsquigarrow denote x1, x2, respectively.
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Fig. 4. Kraichnan–Orszag model: \uparrow ,\leftrightsquigarrow ,\downarrow denote x1, x2, x3, respectively.
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Fig. 5. Lorenz attractor: \uparrow ,\leftrightsquigarrow ,\downarrow denote x1, x2, x3, respectively.

large nd are required to guarantee high accuracy due to the chaotic behavior of the
state.

5.1.5. Lorenz attractor. The Lorenz attractor [27] was introduced to model
the turbulence in dynamic flows. The system is highly chaotic and exhibits behaviors
that pose challenges to solving numerically. The governing equations are shown below:

dx1

dt
= 10(x2 \uparrow x1),

dx2

dt
= x1(28\uparrow x3)\uparrow x2,

dx3

dt
= x1x2 \uparrow 3x3.

The terminal time is T = 10, and the initial state is x(0) = (3,2,\uparrow 1)\rightarrow . We present
the SASK parameters as follows:

(a) test of \varpi : n= 2000, r= 1,\leftharpoondown = 0.5;
(b) test of nd: \varpi = 3, r= 1,\leftharpoondown = 0.5.

With the chaotic state, SASK needs \varpi = 3 to reach a 10\nearrow 8 scale of error. Moreover,
Figure 5 shows that nd has a significant impact on the accuracy until nd = 700, which
is not surprising since a local domain becomes invalid quickly.

5.1.6. Influenza virus model. The target cell-limited model with delayed virus
production is a four-dimensional dynamical system proposed in [3] to model the ki-
netics of influenza A virus of individual infection. For convenience, we call it the
influenza virus model and write the equations in our notation as follows:

dx1

dt
=\uparrow 0.5x1x4,

dx2

dt
= 0.5x1x4 \uparrow 4x2,

dx3

dt
= 4x2 \uparrow 0.5x3,

dx4

dt
= 0.05xx \uparrow 0.5x4.

For this example, we set T = 10 and x(0) = (4,2,2,1)\rightarrow . The parameters used in the
two experiments are shown below:

(a) test of \varpi : n= 1000, r= 0.3,\leftharpoondown = 0.2;
(b) test of nd: \varpi = 3, r= 0.3,\leftharpoondown = 0.8.
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Fig. 6. Influenza virus model: \uparrow ,\leftrightsquigarrow ,\downarrow ,3 denote x1, x2, x3, x4, respectively.

Our numerical results on the influenza virus model are illustrated in Figure 6. The
exponential convergence manifests in the test of approximation level. Moreover, we
do not need many decompositions to achieve a high accuracy, for this model has less
chaotic dynamics compared with the Lorenz attractor.

5.2. Solving PDEs. To illustrate SASK’s e!ectiveness, we implemented numer-
ical experiments on four PDEs, the details of which will be exhibited subsequently.
Specifically, the spatial discretization is based on the Fourier collocation method (see
e.g., [39, 17, 42]) as we impose periodic boundary conditions to all the PDEs. The
MATLAB code generating di!erentiation matrices can be found in [42]. Since the
induced ODE systems tend to be high-dimensional, we fix the approximation level
\varpi = 1 so that the computation cost remains feasible as the number of sparse grid
points is 2m+1, if the ODE system is m-dimensional. Suppose the degree of freedom
in space is m; then the ODE system is m-dimensional. Nevertheless, the results turn
out to be accurate with such a low approximation level. We denote by y \updownarrow Rm the
SASK solution at di!erent spatial grid points, and by y\Downarrow the exact solution (or the
reference solution). The performance of SASK is quantified by the relative L2 error
defined by \Uparrow y\nearrow y\downarrow \Uparrow 2

\Uparrow y\downarrow \Uparrow 2

and L\updownarrow error defined by \infty y\uparrow y\Downarrow \infty \updownarrow .

5.2.1. Advection equation. We consider the following advection equation with
an initial condition:

\varsigma u

\varsigma t
+

\varsigma u

\varsigma x
= 0, x\updownarrow [0,1],

u(x,0) = 0.2 + sin(cos(4 \triangleleft x)).
(5.1)

The closed-form solution is u(x, t) = u(x\uparrow t,0). The collocation points in space are
set as xj =

j
32 , j = 0,1, . . . ,32, which leads to a 32-dimensional ODE system. SASK

applied the following set of parameters: n = 1, r = 1,\leftharpoondown = 0.2. The errors at T = 100
are eL2

= 2.41 \leftrightarrow 10\nearrow 11 and eL\uparrow = 2.83 \leftrightarrow 10\nearrow 11. Figure 7 illustrates the SASK
solutions compared with the exact solutions. For the advection equation, SASK only
performed eigendecomposition once. The high accuracy is due to the semidiscretized
system being linear, and adaptivity was barely triggered.
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Fig. 7. Advection equation: \uparrow ,\updownarrow denote SASK and the reference, respectively.
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Fig. 8. Heat equation: \uparrow ,\updownarrow denote SASK and the reference, respectively.

5.2.2. Heat equation. The following is a heat di!usion equation. Here, we also
incorporate an initial condition:

\varsigma u

\varsigma t
=

1

80 \triangleleft 2

\varsigma 2u

\varsigma x2
, x\updownarrow [0,1],

u(x,0) = sin(4 \triangleleft x).
(5.2)

This equation has a closed-form solution u(x, t) = sin(4 \triangleleft x)e\nearrow 0.2t. Specifying param-
eters m = 32, n = 10, r = 1,\leftharpoondown = 0.2, we obtain SASK numerical solutions at T = 10.
The comparison between the exact solutions with the numerical solutions is exhibited
in Figure 8. In particular, eL2

= 1.98\leftrightarrow 10\nearrow 14 and eL\uparrow = 3.47\leftrightarrow 10\nearrow 15. Also, nd = 2
in this case. Similar to the advection equation case, the semidiscrete form is a linear
ODE system, and we observed that eL2

= 2.29\leftrightarrow 10\nearrow 14 and eL\uparrow = 4.01\leftrightarrow 10\nearrow 15 even
when nd = n= 1.

5.2.3. Korteweg–de Vries equation. The next example is the Korteweg–de
Vries (KdV) equation with a solitary wave solution:

\varsigma u

\varsigma t
+  \triangleright u

\varsigma u

\varsigma x
+ µ

\varsigma 3u

\varsigma x3
= 0, x\updownarrow R,

u(x,0) =
3c

 \triangleright 
sech2

\right] 
1

2

 
c/µ (x\uparrow ( \triangleleft x0/p+  \triangleleft ))

 
.

(5.3)
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Fig. 9. KdV equation: \uparrow ,\updownarrow denote SASK and the reference, respectively.

The closed-form solution is u(x, t) = 3c
\leftharpoondown sech2( 12

 
c/µ (x\uparrow ( \triangleleft x0/p+  \triangleleft )\uparrow ct)). Here,

 \triangleright , µ, c are constants, and c is the wave speed. In this test, we set x0 = \uparrow 3.5, c =
0.3, \triangleright = 6, µ = 12. In general, the solution decays to zeros for |x| >> 1. Therefore,
numerically we solve this equation in a finite domain [\uparrow p, p] with a periodic boundary
condition. In this example we set p= 65. Furthermore, as shown in [13, 39], a change
of variable step (x\rightarrow  \triangleleft x/p+ \triangleleft ) transforms the solution interval from [\uparrow p, p] to [0,2 \triangleleft ].
Consequently,  \triangleright and µ in (5.3) are replaced by  \triangleright = \leftharpoondown \vargamma 

p and µ̃ = µ\vargamma 3

p3 , respectively.
For the spatial discretization, we set m= 128 since the behavior of the KdV equation
requires finer spatial grids. The SASK parameters are n = 6, r = 0.1,\leftharpoondown = 1. Since
\leftharpoondown = 1, nd = n = 6. SASK computed the solutions at T = 25, which is illustrated in
Figure 9. The errors are eL2

= 1.57\leftrightarrow 10\nearrow 4 and eL\uparrow = 2.51\leftrightarrow 10\nearrow 5.
The KdV equation exhibits more complicated behaviors with two solitons. There-

fore, we consider two solitons with speed c1 and c2, and c1 > c2. The closed-form
solution of two-soliton KdV can be written as

u(x, t)

=
12(c1 \uparrow c2)

 \triangleright 

s21 cosh
2(0.5s2z2) + s22 sinh

2(0.5s1z1)

[(s1 \uparrow s2) cosh(0.5(s1z1 + s2z2)) + (s1 + s2) cosh(0.5(s1z1 \uparrow s2z2))]
2 ,

where s1 =
 
c1/µ, s2 =

 
c2/µ, and z1 = x\uparrow ( \triangleleft x01/p+  \triangleleft )\uparrow c1t, z2 = x\uparrow ( \triangleleft x02/p+

 \triangleleft )\uparrow c2t. For this example, x01 =\uparrow 7.5, x02 =\uparrow 5, c1 = 1, c2 = 0.5, \triangleright = 6, µ= 1, p= 25.
The spatial grid remains with m = 128. We set n = 300, r = 0.1,\leftharpoondown = 1 for SASK
and compute the solutions at T = 15. The errors are eL2

= 3.68\leftrightarrow 10\nearrow 6 and eL\uparrow =
1.43\leftrightarrow 10\nearrow 6. Finally, Figure 10 visualizes the solutions.

5.2.4. Burgers equation. The last example is a viscous Burgers equation with
an initial condition considered:

\varsigma u

\varsigma t
+ u

\varsigma u

\varsigma x
= \rightharpoonup 

\varsigma 2u

\varsigma x2
, x\updownarrow [0,1],

u(x,0) = 0.2 + sin(2 \triangleleft x).
(5.4)

The advection term uux is treated in the conservation form, i.e., 1
2 (u

2)x. Particularly,
the reference solution is obtained by the high-order spectral method. For this example,
the degree of freedom in space is m = 64, and SASK admits the parameters n =
100, r = 0.1,\leftharpoondown = 1. Here, nd = n = 100 because \leftharpoondown = 1. With \rightharpoonup = 0.005 and T = 1,
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Fig. 10. Two-soliton KdV equation: \uparrow ,\updownarrow denote SASK and the reference, respectively.
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Fig. 11. Burgers equation: \uparrow ,\updownarrow denote SASK and the reference, respectively.

SASK yields eL2
= 4.94 \leftrightarrow 10\nearrow 4 and eL\uparrow = 6.12 \leftrightarrow 10\nearrow 4. The result is presented

in Figure 11, which indicates that the solution is accurate before the discontinuity
is fully developed. Additionally, we will observe the Gibbs phenomenon near the
discontinuity if we keep increasing T .

Remark 5.1. We test two linear PDEs and two nonlinear PDEs. The purpose of
starting with linear PDEs is to demonstrate that (1) ASK (or SASK) is di!erent from
conventional ODE solvers and it does not have a restriction like the CFL condition
or drawbacks like numerical viscosity; (2) the Koopman operator’s eigenpairs can be
accurately approximated in the linear cases, since the solution by SASK remains very
accurate even without the adaptivity for a large T , although SASK computes the
eigenpairs di!erently from the closed-form formulae shown in Lemma 4.1.

5.3. E\$ciency comparison.

5.3.1. Comparison on ODEs. Following a similar idea from the e""ciency
test in [24], we incorporate numerical tests that focus on the accuracy against the
running time, and we compare SASK with conventional ODE solvers. The accuracy

is measured by the error defined as
 \Biggr) d

i e2i
d , where ei is the integration error in

dimension i. More importantly, to demonstrate the impact of the cost of evaluating f
we artificially slow down its evaluation in the codes. Specifically, each f evaluation is
repeated 10,000 times in both the Kraichnan–Orszag model and the influenza virus
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(a) Kraichnan-Orszag model
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Fig. 12. Comparison of computational e!ciency: Error against running time. Symbols
\uparrow ,+,\downarrow ,3,\leftrightsquigarrow denote SASK, Euler, RK4, RK9, and AB5, respectively. The time of evaluating f

is artificially increased in the code.

model before the output is returned in the codes. Under this circumstance, SASK
gains an advantage over the conventional numerical solvers in the Kraichnan–Orszag
model and the influenza virus model.

Herein, SASK starts with \varpi = 1, which then increases to 2 and 3. The time
window is fixed at [0,10] in the experiments. For the Kraichnan–Orszag model with
x(0) = (1,2,\uparrow 1)\rightarrow , SASK has n= 200, r = 0.5,\leftharpoondown = 0.8, while n= 1000, r = 0.2,\leftharpoondown = 0.2
in the influenza virus model with x(0) = (4,2,2,1)\rightarrow . As for the conventional solvers,
we begin with a large time step and keep reducing it by half.

Figure 12 demonstrates that SASK is more e""cient than the conventional solvers
when high accuracy is desired. As expected, RK9 is the most comparable competitor
among the state-of-the-art schemes. Additionally, SASK exhibits an “elbow-shaped”
pattern when \varpi rises from 2 to 3. This is a numerical issue induced by the increase of
condition numbers of matrices used in the eigendecomposition.

5.3.2. Comparison on PDEs. To demonstrate the e""ciency of SASK com-
pared with RK4, we focus on the running time of the two methods based on the
PDEs. For RK4, the time step size is set as follows:

(1) advection equation: \$t= 0.01\$x= 3.13\leftrightarrow 10\nearrow 4;
(2) heat equation: \$t= 0.9(\$x)2 = 8.79\leftrightarrow 10\nearrow 4;
(3) KdV equation: \$t= 0.006(\$x)3 = 6.30\leftrightarrow 10\nearrow 3;
(4) two-soliton KdV equation: \$t= 0.09(\$x)3 = 5.40\leftrightarrow 10\nearrow 3;
(5) Burgers equation: \$t= 0.5(\$x)2 = 1.22\leftrightarrow 10\nearrow 4.

Here, we use a small \$t for the advection equation to improve the accuracy since T
is large. On the other hand, SASK parameters remain the same as in subsection 5.2.
Also, similar to the comparison experiments on ODEs, we artificially slow down the
dynamics evaluation in the two-soliton KdV example by repeating the evaluation 100
times to mimic the practical case with nonlinearity and high computational cost for
evaluating the right-hand side.

We summarize the results in Table 1. The first row of each PDE is the running
time, while the second and the third are the relative L2 error and the L\updownarrow error.
For the advection equation and the heat equation, the dynamics of their semidiscrete
form are linear, so SASK needs only 1 or 2 decompositions to be accurate. This
results in SASK’s higher computational e""ciency. In contrast, the Burgers equation
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Table 1
Performance comparison between SASK and RK4 on PDEs (the dynamics evaluation in two-

soliton KdV is artificially slowed down in the code).

SASK RK4

time (s) 0.0036 2.0867
Advection equation eL2

2.48e-11 2.82e-08
eL\uparrow 2.83e-11 3.91e-08

time (s) 0.0085 0.0829
Heat equation eL2

1.98e-14 4.41e-13
eL\uparrow 3.47e-15 6.05e-14

time (s) 0.4194 0.5508
KdV equation eL2

1.57e-04 1.26e-04
eL\uparrow 2.51e-05 2.81e-05

time (s) 26.2199 39.9604
two-soliton KdV equation eL2

3.68e-06 3.41e-06
eL\uparrow 1.43e-06 1.43e-06

time (s) 1.0962 0.2250
Burgers equation eL2

4.94e-04 4.88e-04
eL\uparrow 6.13e-04 4.96e-04

and KdV equation cost SASK more decompositions to preserve the accuracy since
the dynamics are nonlinear. While SASK has a comparable performance to RK4 for
the KdV equation, it needs around 5 times the time of RK4 to reach a comparable
accuracy for the Burgers equation. This is because SASK requires more adaptivity
steps to accurately track the evolution of the states in the Burgers equation, which is
probably due to the regularity of the system itself. The two-soliton KdV test indicates
that SASK can be more e""cient than state-of-the-art methods when evaluating the
dynamics is costly even though it requires more eigendecomposition steps for nonlinear
problems. This is because it enables evaluating the dynamics in parallel.

6. Conclusion and discussion. In this work, we propose the sparse-grid-based
ASK method to solve autonomous dynamical systems. Leveraging the sparse grid
method, SASK is an e""cient extension of the ASK for (high-dimensional) ODE sys-
tems. Also, we demonstrate SASK’s potential to solve PDEs e""ciently by solving
semidiscrete systems. In particular, our numerical results demonstrate that if the
semidiscrete form is a linear function of the discretized solution of the PDE, SASK is
very accurate and much more e""cient than conventional ODE-solver-based methods
when it is costly to evaluate the dynamics. Furthermore, by selecting the adaptivity
criteria carefully, SASK can solve highly nonlinear PDEs like the KdV equation and
deal with large total variation in the solution like the Burgers equation.

Regarding the sampling strategy, we test multiple level \varpi for ODEs but fix \varpi = 1
in the PDE tests to keep a low computational cost (and SASK still obtains good
results in the illustrative examples). In our future work, we will further investigate
the selection of adaptivity parameters and the requirement on the accuracy level of
the sparse grid method. For example, di!erent sparse grid structures may result in
di!erent convergence rates. Also, anisotropic or adaptive sparse grids [7] may enhance
the accuracy with a minimal increase in the computational cost.

Finally, it is possible to use randomized algorithms [32] combined with di!erent
basis functions like radial basis functions or activation functions used in neural net-
works to further enhance the accuracy and e""ciency of ASK for some high-dimensional
problems. Due to the close connection between data-driven methods like DMD (and
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its variants) and the Koopman operator, new developments on these methods may
be applicable to ASK (and SASK). For example, randomized algorithms have shown
great success in enhancing the e""ciency in DMD [11]. Also, various numerical meth-
ods can be used to approximate eigenfunctions such as radial basis functions in a
reproducing kernel Hilbert space [8] and neural networks [25, 26], etc. For PDEs, it is
possible to directly approximate the Koopman eigenfunctions without implementing
a spatial discretization for the equation first [4]. More discussions can be found in
[46, 31, 30, 15]. These works can motivate various ways of improving the design of
ASK/SASK.

Appendix A. Sparse grid illustration. Figure 13 is an illustration of sparse
grids and their full grid counterparts. To give a brief view of the growth in the grid
size, Table 2 shows that the full grid grows much faster than the sparse grid. Notably,
the sparse grid grows slowly.

Appendix B. Approximation of eigenpairs in a linear system. We pres-
ent an illustrative example to investigate the accuracy of approximating eigenpairs
for linear systems. We consider the following system:

-1 0 1
-1

-0.5

0

0.5

1

(a) \omega = 1
-1 0 1

-1

-0.5

0

0.5

1

(b) \omega = 2
-1 0 1

-1

-0.5

0

0.5

1

(c) \omega = 3

-1 0 1
-1

-0.5

0

0.5

1

(d) np = 3
-1 0 1

-1

-0.5

0

0.5

1

(e) np = 5
-1 0 1

-1

-0.5

0

0.5

1

(f) np = 9
Fig. 13. Sparse grid (first row); full grid (second row): np denotes the number of points in

each dimension.

Table 2
Grid growth: np denotes the number of points in each dimension.

d \omega = 1 np = 3 \omega = 2 np = 5 \omega = 3 np = 9

2 5 9 13 25 29 81
3 7 27 25 125 69 729
4 9 81 41 625 137 6561
5 11 243 61 3125 241 59049
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1 2 3 4 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

(a) Real part

1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

(b) Imaginary part

Fig. 14. Koopman eigenvalues of 2D linear ODE: The desired eigenvalues are marked by solid
points.

(a) Real part (b) Imaginary part

Fig. 15. Koopman eigenfunction of 2D linear ODE.

dx

dt
=Ax, with A=

 
\uparrow 1 1
\uparrow 1 \uparrow 1

 
,

and x(0) = (\uparrow 1,1)\rightarrow , T = 5. Notably, we conduct eigendecomposition at t = 0 with
\varpi = 1 to approximate eigenvalues and construct eigenfunctions. The total number
of collocation points is 5, so, numerically, we have 5 eigenpairs. We then compute
the Koopman modes and find that only 2 out of 5 are nonzero in the numerical
computation in SASK. On the other hand, the closed-form formula of the Koopman
eigenpairs shown in Lemma 4.1 indicates that there are only 2 eigenpairs. Specifically,
the two eigenvalues of A are \varepsilon 1 = \uparrow 1 + i,\varepsilon 2 = \uparrow 1\uparrow i. Figure 14 plots the real and
imaginary parts of the 5 eigenvalues obtained in SASK, and the two eigenvalues
corresponding to nonzeros Koopman modes are marked as solid points. They are
exactly the desired ones according to Lemma 4.1. The accuracy of approximating
these two eigenvalues is at the level of 10\nearrow 14. Next, as we construct eigenfunctions
based on SASK in a small neighborhood of x(0) numerically (see Figure 15), we
evaluate these functions at t= 5 (i.e., based on x(5)), and no additional decomposition
is used. The parameters are \varpi = 1, r = 0.1. Apparently, at t = 5, x has moved out
of the neighborhood of x(0). The relative L2 error is at the level of 10\nearrow 15. This
example illustrates that even though our method computes eigenpairs in a di!erent
way from the theoretical approach and yields more eigenpairs than desired, it can
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accurately approximate desired eigenpairs. And, due to the linearity of eigenfunctions,
extrapolation of the numerically computed eigenfunctions is still accurate.
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[31] H. Nakao and I. Mezić, Spectral analysis of the Koopman operator for partial di""erential

equations, Chaos, 30 (2020), 113131.
[32] Y. Nakatsukasa and J. A. Tropp, Fast and accurate randomized algorithms for linear systems

and eigenvalue problems, SIAM J. Matrix Anal. Appl., 45 (2024), pp. 1183–1214.
[33] M. Netto and L. Mili, A robust data-driven Koopman Kalman filter for power systems dy-

namic state estimation, IEEE Trans. Power Syst., 33 (2018), pp. 7228–7237.
[34] S. A. Orszag and L. Bissonnette, Dynamical properties of truncated Wiener-Hermite ex-

pansions, Phys. Fluids, 10 (1967), pp. 2603–2613.
[35] J. Page and R. R. Kerswell, Koopman analysis of Burgers equation, Phys. Rev. Fluids, 3

(2018), 071901.
[36] J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic mode decomposition with control ,

SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 142–161, https://doi.org/10.1137/15M1013857.
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