
npj | quantum information Article
Published in partnership with The University of New South Wales

https://doi.org/10.1038/s41534-024-00916-8

Unleashed fromconstrained optimization:
quantum computing for quantum
chemistry employing generator
coordinate inspired method

Check for updates

Muqing Zheng 1,2, Bo Peng1 , Ang Li 1,3, Xiu Yang2 & Karol Kowalski1

Hybrid quantum-classical approaches offer potential solutions to quantum chemistry problems, yet
they often manifest as constrained optimization problems. Here, we explore the interconnection
between constrained optimization and generalized eigenvalue problems through the Unitary Coupled
Cluster (UCC) excitation generators. Inspired by the generator coordinate method, we employ these
UCC excitation generators to construct non-orthogonal, overcomplete many-body bases, projecting
the systemHamiltonian into an effective Hamiltonian, which bypasses issues such as barren plateaus
that heuristic numerical minimizers often encountered in standard variational quantum eigensolver
(VQE). Diverging fromconventional quantumsubspace expansionmethods,we introduce an adaptive
scheme that robustly constructs the many-body basis sets from a pool of the UCC excitation
generators. This scheme supports the development of a hierarchical ADAPT quantum-classical
strategy, enabling a balanced interplay between subspace expansion and ansatz optimization to
address complex, strongly correlated quantum chemical systems cost-effectively, setting the stage
for more advanced quantum simulations in chemistry.

Accurately obtaining ground and excited state energies, along with the
corresponding many-body wave functions, is pivotal in comprehending
diverse physical phenomena in molecules and materials. This ranges from
high-temperature superconductivity in materials like cuprates1 and bond-
breaking chemical reactions to complex electronic processes in biological
and synthetic catalysts with transition metals2 or f-block atoms3. The
associated spin, electronic properties, and dynamics are crucial for deci-
phering the structure-property-function correlation in various fields,
including catalysis, sensors, and quantum materials. However, this task
becomes exceptionally challenging in the presence of non-trivial quantum
effects, such as strong electron correlation, which influence the evolution of
nuclei, electrons, and spins under external stimuli. Conventional wave
functionmethodologies, like configuration interaction, coupled cluster, and
many-body perturbation theory, are tailored for diverse electron correlation
scenarios4. Still, they often fall short in handling complex cases or exhibit
prohibitive scaling with increasing system size. Consequently, this has
become a vigorous area of computational research, encompassing both
classical and burgeoning quantum computing studies. The primary

objective is to strike an optimal balance between accuracy and computa-
tional scalability.

In the realmof quantumcomputing, significant strideshavebeenmade
towards promising near-term hybrid quantum-classical strategies, which
includes variational quantum algorithm5–19, quantum approximate opti-
mization algorithm20,21, quantum annealing22,23, Gaussian boson sampling24,
analog quantum simulation25,26, iterative quantum assisted
eigensolver17,27–29, and many others. These approaches typically delegate
certain computational tasks to classical computers, thereby conserving
quantum resources in contrast to exclusively to quantummethods. Within
this framework, the variational quantumeigensolver (VQE)and its adaptive
derivatives are seen as the frontrunners in leveraging near-future quantum
advantages5,14. However, these anticipations are also potentially impeded by
the heuristic nature inherent in the critical optimization processes. Issues
such as the rigor of ansatz exactness, the challenges in navigating potential
energy surfaces replete with numerous local minima, and the numerical
nuances in minimization techniques, remain nebulous. These queries are
further convoluted when considering the scalability of these methods
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concerning the number of operators or the depth of quantum circuits
involved.

As an alternative to VQE, which employs a highly nonlinear para-
metrization of the wave function, other near-term strategies aim to con-
struct and traverse a subspace within the Hilbert space to closely
approximate the desired state and energy. Typical examples include the
quantum subspace expansion11,30–33, the hybrid and quantum Lanczos
approaches27,34,35, quantum computed moment approaches29,36–39, and
quantum equation-of-motion approach40. These strategies often draw
inspiration from truncated configuration interaction approaches or explore
the Krylov subspace (see, e.g., ref. 41 for a recent review on subspace
methods for electronic structure simulations on quantum computers).
However, the comparison and interrelation of these methods, especially
when contrasting subspace expansion with nonlinear optimization, fre-
quently remain unclear. This uncertainty is exacerbated by the choice of
ansätze, which rarely guarantees exactness.

Recently, motivated from the generator coordinate approaches42–49,
we developed a generator coordinate inspired nonorthogonal quantum
eigensolver as an alternative near-term approach50, potentially addressing
the limitations identified in the VQE/ADAPT-VQE. Similar to its con-
temporaries, the Generator Coordinate Inspired Method (GCIM)
employs low-depth quantum circuits and efficiently utilizes existing
ansätze to explore a subspace, targeting specific states and energy levels.
Nonetheless, the original GCIM approach demands a priori knowledge of
the system tometiculously select both the ansätze and generators, thereby
circumventing heuristic approaches but potentially affecting its scalability
and efficiency.

In this study, we present novel quantum-classical hybrid approaches,
inspired by the GCIM approach, aimed at establishing a theoretically exact
yet automated subspace expansion procedure. This approach addresses the
optimization challenges inherent in conventional VQE methods while
maintaining an adaptive framework. Recent efforts have either focused on
practical solutions to mitigate some of these optimization limitations-such
as leveraging domain-specific knowledge from classical quantum chemistry
to construct high-quality wave functions51-or have moved toward auto-
mated circuit-subspace VQE and its adaptive algorithms, though they still
require optimization52,53. In our approach, we use the conventional Unitary
Coupled Cluster (UCC) excitation generators as the basis for subspace
expansion, establishing a lower bound on the constrained optimization
problem typically encountered in VQE.More importantly, we introduce an
optimization-free, gradient-based automated basis selection method from
the UCC operator pool. This allows us to develop a hierarchical ADAPT
quantum-classical strategy that enables controllable interplay between
subspace expansion and ansatz optimization. Our preliminary results sug-
gest that these new approaches not only excel in addressing strongly cor-
related molecular systems but also significantly reduce simulation time,
facilitating deployment on real quantum computers.

Results
Comparison between VQE and GCIM approaches: general
eigen-probelm vs. constrained optimization
We provided a brief review of generator coordinate methods (GCM) in
Supplementary Information (Section I). A primary advantage of GCM is
that variation occurs in the generating function, rather than directly on the

Fig. 1 | A comparative illustration of GCIM and VQE on a two-electron four-
spin-orbital system. aA toymodel consists of two-electron (one alpha electron and
one beta electron) in four spin-orbitals (two alpha spin-orbitals and two beta spin-
orbitals), where the spin-flip transition is assumed forbidden. bThe projection of the
exact wave function on each configuration (yellow shadow). A constrained opti-
mization of the free parameters will put limits on the projection (dashed line).
c Comparative demonstration between GCIM method and VQE. The GCIM
method generates a set of non-orthogonal bases, called generating functions. Then,
the GCIM explores the projection of the system on these generating functions and
solves a corresponding generalized eigenvalue problem for the target state and its
energy. The conventional VQE essentially explores the parameter subspace for a

given wave function ansatz through numerical optimization that can be usually
constrained bymany factors ranging from ansatz inexactness to barren plateaus and
others. For given Givens rotations that generated excited state configurations, the
lowest eigenvalue obtained from the GCIMmethod guarantees a lower bound of the
most optimal solution from the VQE. It is worth mentioning that: (i) for a standard
(single-circuit) VQE, having one two-qubit Givens rotation acting on a standard
quantum-chemistry reference (restricted Hartree-Fock) would not improve the
energy estimate; (ii) “fermionic swap” gates71 would be required if the excitations
included in the ansätze involve spin-orbitals that are not mapped onto adjacent
qubits for a given quantum architecture.
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scalar generator coordinate.This distinction enables the variational problem
to be addressed through a straightforward eigenvalue process, contrasting
with solving a constrained optimization problem, the advantages of which
can even be demonstrated with a simple toy model.

Building on this, as depicted in Fig. 1, we explore the ground state of a
toy model comprising two electrons and four spin orbitals using a VQE
approach. The VQE approach is mathematically represented as:

Eg ! min
~θ

hψVQEð~θÞjHjψVQEð~θÞi; ð1Þ

where ∣ψVQEð~θÞi employs Trotterized UCC single-type ansätze

∣ψVQEð θ
!

Þi ! G2;4ðθ2ÞG1;3ðθ1Þ∣ϕ0i ð2Þ

with ∣ϕ0
!
being a reference state and Gpi;qi

ðθiÞ ! exp½θiðApi ;qi
% Ay

pi;qi
Þ&

being a single excitation Givens rotation and Ap;q ! aypaq. The VQE
approach here explores a two-dimensional parameter subspace. The
consecutive actions of G2,4 and G1,3 generate four distinct configurations,
including the reference.However, due to fewer free parameters than distinct
configurations required, the VQE approach is constrained, unable to fully
explore the configuration space to guarantee the most optimal solution,
irrespective of the numerical minimizer used. In contrast, GCIM solver
employs the same Givens rotations, separately or in the product form as
discussed by Fukutome54, to create four generating functions. These
functions correspond to a subspace consisting of four non-orthogonal
superpositioned states, providing a scope sufficiently expansive to
encapsulate the target state. Here, each Givens rotation is essentially a
UCC single circuit, simplifying the quantum implementation compared to
its double or higher excitation analogs.

From the performance difference we observe that
• Although thedisentangledUCCansätze canbe crafted tobe exact55, the

ansätze employed in GCIM approach or in the generalized eigenvalue
problemneednot be exact. Theonlyprerequisite for the ansätzeused in
this process is their ability to generate sufficient superpositioned states
for a better approximation to the target state to be found in the cor-
responding subspace.

• The N-qubit Givens rotations (N ≥ 2) used in both VQE and GCIM
solvermay originate from the same set, ensuring a comparable level of
complexity in the quantum circuits involved. To achieve the same level
of exactness, VQE would require a deeper circuit by incorporating
additional Givens rotations, while the GCIM algorithm necessitates
more measurements (than a single VQE iteration). A direct compar-
ison of the total quantum resources utilized between the two methods
would hinge on both the number of generating functions required in
the GCIM and the number of iterations needed in VQE.

• In the context of non-orthogonal quantum eigensolvers51,53,56,57,
entangled basis sets are usually employed by applying entanglers on

a single determinant reference. Some of these approaches rely on the
modified Hadamard test of ref. 12 for evaluating the off-diagonal
elements at a polynomial cost.Others53,57 often require domain-specific
knowledge available in classical quantum chemistry to construct high-
quality wave functions. Nevertheless, automating the sophisticated
ansatz construction process to facilitate easier deployment of the non-
orthogonal quantum solver, especially for non-experts, remains a
challenge.

These observations then lead us to the pivotal question in advancing a
more efficient GCIM algorithm for both classical and quantum computa-
tion: “How can we efficiently select the generating functions to construct a
subspace in the Hilbert space that encompasses the target state?”

The scaling of number of generating functions: Fromexponential
to linear
In constructing a non-trivialUCCansatz for amolecular systemcomprising
ne electrons in N spin orbitals, one might consider applying a sequence of
K ≤ ne Givens rotations to a reference state ∣ϕ0

!
to generate all the possible

configurations. For example, if eachGivens rotation corresponds to a single
excitation, the disentangled UCC Singles ansatz can be expressed as:

∣ψð~θÞi !
YK

i!1

Gpi;qi
ðθiÞ∣ϕ0i; ð3Þ

where each Gpi;qi
generates a superposition of no more than two states.

Therefore, the total number of configurations, nc, within the super-
positioned ansätze (3) —where θ

!
! fθiji ! 1; ' ' ' ;Kg varies —cannot

exceed 2K. This number indicates the maximum number of generating
functions utilized to achieve the most optimal solution within the corre-
sponding subspace but exhibits an exponential scaling relative to the count
of Givens rotations applied. A strategy to potentially generate the full set of
2K generating functions involves applying 1, 2, ⋯, N two-qubit Givens
rotations separately to the reference, as shown below and in Fig. 2:
• ∣ϕ0i;
• Gpi;qi

ðθiÞ∣ϕ0i; 1≤ i≤K;
• Gpi;qi

ðθiÞGpj ;qj
ðθjÞ∣ϕ0

!
; 1≤ i<j≤K;

• Gpi;qi
ðθiÞGpj ;qj

ðθjÞGpk ;qk
ðθkÞ∣ϕ0

!
; 1 ≤ i<j<k≤K;

• ⋮
•

QK
i!1 Gpi ;qi

ðθiÞ∣ϕ0
!

Here, the number of generating functions employing k Givens rota-
tions is equivalent to thenumber of k-combinations from the set ofKGivens

rotations, aligning with the combinatorial identity
PK

k!0
K
k

" #
! 2K .

Importantly, when K = ne, each sequence of Givens rotations in the above
list can be tailored to include a unique excited configuration within the

Fig. 2 |Number of generating functions as functions
of the number of Givens rotations (denoted as m)
included in the GCIM wave function ansätze at
different truncation levels.
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associated subspace, thereby mapping the entire configuration space to
ensure exactness in this limit. This characteristic bears notable similarity to
full configuration interaction treatments, with the distinctive aspect that this
approach constructs a non-orthogonal many-body basis set. In practice, to
capture strong correlation with a fewer number of generating functions,
generalized N-qubit Givens rotations are commonly applied in quantum
chemical simulations. A typical example includes the particle-hole one- and
two-body unitary operators frequently employed in VQE and ADAPT-
VQE simulations. Notably, it has been demonstrated that products of only
these particle-hole one- and two-body unitary operators can approximate
any state with arbitrary precision55.

It’s important to recognize that the generating functions, including the
ansätze, are not generally orthogonal. This non-orthogonality necessitates
extra resources for evaluating the associated off-diagonal matrix elements
and the entire overlap matrix for solving a generalized eigenvalue problem.
Additionally, if higher-order Givens rotations are involved, the configura-
tion subspace expansion will be influenced by the ordering of the Givens
rotations in the ansätze. Nevertheless, the ordering limitation can be par-
tially circumvented by allowing the possible permutations of the Givens
rotations within the generating functions.

The strategy outlined above can also be employed to establish a hier-
archy of approximations to the GCIM wave function, targeting a config-
uration subspacewhere the ansatz (3) is fully projected out. For example, the
approximation at level k (0 ≤ k <K) can be defined by a working subspace
that incorporates both the ansatz (3) and some generating functions pro-
duced by acting a product of at most k Givens rotations on the reference.
Notably, when k =K, regardless of the rotations in the generating functions,
the configuration subspace has expanded sufficiently for the ansatz (3) to be
fully projectedout, completely removing the constraints in the optimization.
For other approximations where 0 ≤ k <K, a variational procedure can be
undertaken before the configurational subspace expansion, aiming to

deduce a lower bound for the optimal expectation value ofHwith respect to
the ansatz (3). In this fashion, the GCIM solver can be implemented as a
subsequent step either after each VQE iteration or following a complete
VQE calculation to unleash some constraints due to the local minima and
the inexactness of the ansatz.

Integration of GCIM with ADAPT approach
To facilitate a more robust selection of generating functions, we
consider the fluctuation of the GCIM energy when a new generating
function is included. In the context of VQE, similar considerations
have led to the development of its ADAPT (Adaptive Derivative-
Assembled Pseudo-Trotter) version. In the GCIM framework, several
routines can be proposed for a gradient-based ADAPT-GCIM
approach. A straightforward method is to directly compute the
GCIM energy gradient with respect to the scalar rotation, as detailed
in the Supplementary Information (Section III). The energy gradient
computed in this way depends on the eigenvector solved from the
GCIM general eigenvalue problem after the inclusion of new gen-
erating functions. However, when solving a generalized eigenvalue
problem, the eigenvalue (i.e. the energy) is more sensitive to the
working subspace than to the scalar rotation in the employed gen-
erating functions. This sensitivity is exemplified in the Lemma 1 of
Theorem 1 in the Supplementary Information (Section II), where, for
a 2 × 2 generalized eigenvalue problem, the choice of the scalar
rotations in the employed generating functions is relatively flexible.

This consideration leads us to propose a more flexible, gradient-
based ADAPT-GCIM algorithm (illustrated in Fig. 2, 3a). In this
approach, we use a surrogate product state ∣ψis that, irrespective of
its specific non-singular scalar rotations, primarily serves as a metric
to (i) abstract the change in the GCIM working subspace and (ii)
approximate the GCIM energy gradient calculation. Utilizing this

Fig. 3 | Overview of ADAPT-GCIM and the effects
of Givens rotations. a Schematic depiction of the
ADAPT-GCIM algorithm in (n+ 1)-th iteration.
The working subspace and its corresponding con-
figuration subspace are characterized by a surrogate
state ∣ψis . b In a two-configuration subspace,
a Givens rotation can couple two configurations,
effectively generating a surrogate state, a super-
position of two configurations, that can be employed
as a metric to characterize this subspace. The quality
of the working subspace, comprising one config-
uration and the surrogate state, is not sensitive to the
specific choice of scalar rotation.
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metric, we can compute the gradient in a manner similar to that in
the conventional ADAPT-VQE. However, a significant difference
from ADAPT-VQE is that in ADAPT-GCIM, we skip the optimi-
zation of phases, which as we will see later significantly reduces the
simulation time. Also, the energy in ADAPT-GCIM is not directly
obtained from the measurement of the expectation value with respect
to the surrogate state. Instead, it is obtained from solving a gen-
eralized eigenvalue problem within the working subspace.

Numerical and real hardware experiments
We have performed numerical experiments on four molecular systems
across seven geometries to test the performance of our proposed ADAPT-
GCIM approach in searching the ground states corresponding to different
electronic configurations. All experiments use STO-3G basis. For instance,
the more pronounced quasidegeneracy in the almost-square H4 compared
to linearH4

50, and in stretchedH6 as opposed to compactH6, presents strong
static correlations that pose a challenge for traditional single-reference
methods58. Additionally we proposed two GCIM modified ADAPT-VQE
approaches: ADAPT-VQE-GCIM and ADAPT-VQE-GCIM(1) for per-
formance analysis. In the ADAPT-VQE-GCIM approach, a GCIM step is
performed after each ADAPT-VQE iteration, while in the ADAPT-VQE-
GCIM(1) approach, a ‘one-shot’ GCIM calculation is performed at the
conclusion of an ADAPT-VQE calculation (see Supplementary Informa-
tion (Section IV) for more details). The performance results, as shown in
Fig. 4, include comparisonswithADAPT-VQE. It is evident that theGCIMs
offer several strategies for locating a lower bound to the ADAPT-VQE
energy. In all the test cases, the ADAPT-VQE-GCIM and ADAPT-GCIM
approaches exhibit steady monotonic converging curves, almost always
reaching close to machine precision. To verify the accuracy, we reconstruct
the ADAPT-GCIM approximation to the ground-state vector of H by

∣ψGCIMi ! N '
X

j

f j∣ψji; ð4Þ

where f is the eigenvector solved from the generalized eigenvalue problem in
ADAPT-GCIM at the final iteration and f∣ψjig is the selected basis set.N
denotes the normalization factor. Table 1 provides the overlaps between the
exact ground-state vector, ∣ψexacti, and corresponding GCIM approxima-
tion for all molecules in this work, numerically proving the accuracy of the
ADAPT-GCIMmethod. Furthermore, compared to ADAPT-VQE, GCIM
approaches perform better in strongly correlated cases. For example, in the
case of H6, as the H − H bond length increases, the number of ADAPT-
GCIM or ADAPT-VQE-GCIM iterations decreases, while the number of
ADAPT-VQE iterations increases.

Fig. 4 | Convergence performance of ADAPT-GCIM in computing the ground
states of four molecules. For comparison, results from ADAPT-VQE, ADAPT-
VQE-GCIM, and ADAPT-VQE-GCIM(1) are also included. The shaded region is
when error is smaller than the chemical accuracy. ADAPT-VQE andADAPT-VQE-
GCIM are set to converged when the sum of the magnitudes of all gradients falls

below 10−4. ADAPT-GCIM is terminated if the changes on lowest eigenvalue are
under 10−6 a.u. for at most 10 (for H4) or 25 (the other molecules) consecutive
iterations, where this threshold depends on the size of the operator pool and the
amount of unchosen ansätze.

Table 1 | Overlaps between ADAPT-GCIM and exact ground-
state vectors (machine precision is 2.22 × 10−16)

Molecule 1% jhψGCIMjψexactij
2

H4 (linear) 2.22 × 10−16

H4 (square) < 2.22 × 10−16

LiH 2.22 × 10−16

BeH2 2.22 × 10−15

H6 (1.0584Å) 1.55 × 10−15

H6 (1.8521Å) 2.66 × 10−15

H6 (5.0000Å) 2.42 × 10−2

Table 2 | Excitation energies in eV from different methods

Molecule Character of EOMCC- EOMCC- ADAPT-
excited state SD SDT GCIM

H4 (linear) SD(1 excited) 12.738 12.555 12.565

H4 (square) D (1 excited) 4.275 4.273 4.183

LiH SD (1 excited) 3.588 3.586 3.586

BeH2 SD (3 excited) 15.558 14.563 14.545

H6 (1.0584Å) SD (1 excited) 9.846 9.386 9.477

H6 (1.8521Å) D (1 excited) 2.927 1.581 1.340
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Using the same set of circuits, the GCIM formalism, in addition to
ground-state energies, provides estimates of the excited-state energies cor-
responding to low-lying excited states. In Table 2, we compare excitation
energies corresponding to EOMCCSD (equation-of-motion CC approa-
ches with singles and doubles)59, EOMCCSDT (equation-of-motion CC

approaches with singles, doubles, and triples)60, and the ADAPT-GCIM
approaches. The character of excited states collated inTable 2 correspond to
states of mixed configurational character dominated by single and double
excitations from the ground-state Hartree-Fock determinant (SD) and
challenging states dominated by double excitations (D). For the challenging

Fig. 5 | Energy difference as a function of the number of CNOT gates in the
circuits of newly formed ansätze. For ADAPT-VQE, such ansatz is the product of
operators that prepare the VQE state ∣ψVQEi. For ADAPT-GCIM, the newly formed
ansätze are the newly selected Givens rotation operator and the product of Givens
rotation operators. All circuits are generated from the order-1 trottered fermionic
operators by Qiskit. The reduced counts are obtained using qiskit.transpile with

optimization level 3, which includes canceling back-to-back CNOT gates, com-
mutative cancellation, and unitary synthesis. Our estimations to ADAPT-VQE
match with the corresponding calculations in ref. 61. A further discussion on the
calculation of the number of CNOT gates is in the Supplementary Information
(Section V).

Table 3 | Simulation costs for energy calculations of seven geometries using the ADAPT approaches on a laptop equippedwith
an Apple M3 Max chip

Molecule ADAPT- Min # of ADAPT Total # of Optim- Total Simulation Time (s) Ground-State

Iterations ization Rounds Gradients Energy Eval. Energy Error (in a.u.)

H4 (linear) GCIM 11 0 0.08 0.38 7.11 × 10−15

VQE 11 121 0.10 7.61 7.11 × 10−15

H4 (square) GCIM 15 0 0.11 0.73 2.89 × 10−15

VQE 11 136 0.09 17.44 4.88 × 10−15

LiH GCIM 56 0 2.53 30.50 8.88 × 10−15

VQE 27 439 1.24 253.64 6.36 × 10−8

BeH2 GCIM 104 0 10.05 242.14 8.70 × 10−14

VQE 41 1248 3.69 2308.14 1.91 × 10−06

H6 (1.0584Å) GCIM 79 0 3.77 77.55 1.33 × 10−15

VQE 70 4792 3.17 4627.37 1.70 × 10−6

GCIM(5,2) 67 28 3.35 85.47 6.66 × 10−15

H6 (1.8521Å) GCIM 70 0 3.42 55.85 1.90 × 10−13

VQE 88 9209 3.99 11924.84 9.98 × 10−08

H6 (5.0000Å) GCIM 37 0 1.79 12.03 9.57 × 10−8

VQE 84 11313 3.86 12765.16 1.15 × 10−6

GCIM(5,2) 26 12 1.24 13.41 9.61 × 10−8

During the optimization rounds, the default optimizer is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, implemented in SciPy69. ADAPT-GCIM(5,2) is an extended method introduced in
Supplementary Information (Section VIII).
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low-lying doubly excited state of the H6 system at RH−H = 1.8521Å, the
ADAPT-GCIM approach yields excitation energy in good agreement with
the EOMCCSDT one and outperforming the accuracy the EOMCCSD
estimate.

In assessing the quantum resources needed for the ADAPT approa-
ches, it is apparent that ADAPT-VQE-GCIM andADAPT-VQE-GCIM(1)
require additional resources compared to ADAPT-VQE approach to
improve energy results. On the other hand, the direct comparison between
ADAPT-VQE andADAPT-GCIM is not straightforward. For example, the
number of CNOT gates in ADAPT-VQE and ADAPT-GCIM simulations
depends on the ansatz preparation and the number of measurements to
reachadesiredaccuracy. Fig. 5demonstrates the total numberofCNOTs for
preparing the following ansätze:
•

Qk
i!1 GiðθiÞ∣ϕHFi at the k-th ADAPT-VQE iteration;

• GkðθkÞ∣ϕHFi and
Qk

i!1 GiðθiÞ∣ϕHFi at the k-th ADAPT-GCIM
iteration,

at each energy error level. Here,Gi is eitherUCC single or double excitation
operator, and chosen from the same operator pool. As can be seen, the
ADAPT-GCIM, compared to ADAPT-VQE, appears requiring fewer
CNOT gates for more strongly correlated cases.

Regarding measurements in fault tolerant quantum computation,
ADAPT-VQE requiresmeasurements forVQE and gradient calculations at
each iteration. The number of VQEmeasurements depends on the average
optimizations per iteration (~Nopt) and the total number of iterations (Niter).
Gradient measurements are roughly equal to the size of the pool multiplied
by the number of unitary terms in the Hamiltonian (Nterm), which can be
reduced with grouping techniques. Thus, total measurements for ADAPT-
VQE scales as Oð~Nopt ×N iter þ N term ×N iterÞ. In ADAPT-GCIM, mea-
surements are needed for gradients and constructing theH and Smatrices.
The latter scales as the squared number of generating functions, OðN2

GFÞ,
but per iteration, it only grows as OðNGFÞ, assuming a linear increase of
generating functions with iterations. Since NGF ) OðN iterÞ, measurement
comparison between the two ADAPT approaches reduces to
Oð~Nopt ×N iterðVQEÞÞ vs.OðN2

iterðGCIMÞÞ.
It is worth mentioning, for weakly or moderately correlated cases,

ADAPT-GCIM usually requires more iterations than ADAPT-VQE as
shown in Fig. 4. The reason could be partially attributed to the ordering of
the operators due to the skip of the parameter optimization, as well as the
non-orthogonal nature of the bases. To enforce orthogonality of the GCIM
bases, a secondary subspace projection can be performed on the effective
Hamiltonian as illustrated in Section VI of the Supplementary Information,
where the numerical simulations indeed exhibit slightly better convergence
performance from some molecules (see LiH and H6 performance curves in
Fig. S1). To improve the convergencedue to the ordering of the operators, in
Section VIII of the Supplementary Information, we consider a middle
ground between ADAPT-VQE-GCIM and ADAPT-GCIM by allowing
intermittent and truncated optimization, where for every m ADAPT

iterations (“intermittent”), at most n rounds (“truncated”) of classical
optimization can be conducted on ansatz parameters over the corre-
sponding objective function. The proposedADAPT-GCIM(m,n) approach
indeed provides a significant improvement on the convergence speed:
ADAPT-GCIM(5,2) reaches 10−6 error level faster thanADAPT-GCMand
ADAPT-VQEas evidenced in Fig. S3 for twoH6 test cases.Also, as shown in
Table 3, the extra optimization rounds and simulation time brought by
introducing the intermittent and truncated optimization to the ADAPT-
GCM can be very minimal.

To account for the impact of optimization on the performance dif-
ference, we list the total rounds of classical optimization and simulation
times for the energy calculations of seven geometries using the ADAPT
approaches on the same computing platform in Table 3. Remarkably, even
though the circuit for obtaining theH and Smatrices in ADAPT-GCIM is
different from the Hadamard circuit used in ADAPT-VQE, where the off-
diagonal matrix elements requiring more CNOT gates for simultaneous
base preparation, the ADAPT-GCIM approaches still significantly out-
perform the ADAPT-VQE in simulation time, in particular for more
strongly correlated cases. For example, for the strongly correlated H6

molecule at a stretched H−H bond length of 5.0000Å, the GCIM
approaches completed in 12 –13 s, while ADAPT-VQE required approxi-
mately four hours to achieve a similar level of accuracy. It is important to
note that stretched molecules often exhibit multi-reference characteristics,
posing significant challenges for single-reference methods. However,
quantum approaches, including VQEs and GCIM, with appropriately
designed circuits/operators that account for this multi-reference nature
should, in principle, offer superior simulation performance.

In practice, real quantum measurements often encounter significant
noise, especially in solving the generalized eigenvalue problem where finite
shot uncertainty is a concern50. Stronger correlations typically require
substantially more measurements than weaker ones. As detailed in the
Supplementary Information (Section VII), errors in the S matrix have a
greater impact than those in the H matrix. However, with importance
sampling, accuracy can still be improved by orders of magnitudes in most
cases despite these challenges (see Fig. S2).Wedeployed theADAPT-GCIM
computation of the strongly correlated linear H4 molecule on an IBM
superconducting quantumcomputer, ibm_osaka, to conduct a rudimentary
test of the applicability of the GCIM approaches on emerging hardware. As
shown in the Supplementary Information (Section IX), with problem-
specific error mitigation methods, the error in ground-state energy esti-
mation was reduced from 0.046 a.u. to 3.9 × 10−9 a.u.

Discussion
The GCIM approach stands out among other subspace expansion and
generalized eigenvalue problem-solving methods due to its size-extensive-
ness, attributed to its use ofUCCansätze as bases. The approach’s scalability
for larger systems will be enhanced by its direct application to qubit space,
using the exponential of anti-hermitian Pauli strings as generating func-
tions. This strategy aligns with developments like qubit-ADAPT-VQE,
which offers scalability for the ADAPT-VQE method61.

The straightforwardness of the GCIM ansätze makes it a promising
solver also for excited state computation and Hamiltonian downfolding, as
demonstrated in the ADAPT-GCIM procedure (Fig. 3a). This lays the
foundation for advanced quantum simulations in chemistry. To further
characterize the quality of the ADAPT-GCIM wave function, we find the
UCC-type ansatz that maximizes the overlap with the ADAPT-GCIM
optimized state and find the correspondingUCC energy. That is, we need to
find ∣ψ*

UCCi :! ∣ψUCCð~θ
*
Þi where

~θ
*
:! argmax

~θ

jhψGCIMjψUCCð~θÞij
2: ð5Þ

Themost straightforward scheme is to use theUCCSD ansatz.We illustrate
the quality of the UCCSD ansatz defined in such a way through eight
examples in Table 4, where Eexact is the exact ground-state energy and

Table 4 | Overlap between GCIM state and the optimized
UCCSD states, and the ground-state energy error of the
UCCSD states

Molecule 1% jhψGCIMjψ
*
UCCSDij

2 ∣EUCCSD − Eexact∣
(in a.u.)

H4 (linear, 0.7500Å) 2.53 × 10−6 9.81 × 10−6

H4 (linear, 0.8000Å) 4.18 × 10−6 1.46 × 10−5

H4 (linear, 1.0584Å) 6.07 × 10−5 1.29 × 10−4

H4 (square, 1.0584Å) 4.43 × 10−4 9.81 × 10−4

LiH 3.76 × 10−6 1.10 × 10−5

BeH2 2.89 × 10−4 4.06 × 10−4

H6 (1.0584Å) 4.90 × 10−4 8.26 × 10−4

H6 (1.8521Å) 1.71 × 10−2 1.19 × 10−2
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EUCCSD is its approximation from ∣ψ*
UCCSD

!
. The optimizer for UCCSD

ansatz is the limited-memory BFGS (L-BFGS) algorithm.
Last but not least, while the gate counts in Fig. 5 match with the

estimations for fermionic operators in ref. 61, the CNOT counts can be
greatly reduced by the implementations in other works in the future57,62–64.
Another important direction to explore is to evade Hadamard test for
evaluating off-diagonal matrix entries in ADAPT-GCIM to effectively
reduce the hardware requirements in the circuit implementation12,41,65.

Methods
The operator pool employed in all the ADAPT simulations in the present
study consists of generalized singly and doubly spin-adapted excitation
operators, as explicitly shown in theSupplementary Information (SectionV).
In all the ADAPT-VQE simulations, the convergence is achieved when the
norm of the gradient vector is less than 10−4. Here, we use a more strict
criteria than the one in ref. 66 to show the full picture of the performance of
ADAPT-VQE. Other criteria, such as the magnitude of the change of the
lowest eigenvalue, can be used for earlier convergence with the assistance of
ADAPT-VQE-GCIM.

For ADAPT-GCIM, the algorithm terminates when the change in the
lowest eigenvalue is smaller than 10−6 a.u. after T ! minfTauto;Tusrg
number of consecutive ADAPT iterations, where Tauto is set to 20% of the
number of unselected operators in the pool and Tusr is a user-defined
constant. In this work,Tusr is set to 10 forH4 and 25 for the othermolecules,
reflecting different sizes of operator pools. The reason why the termination
condition is heuristic, rather than gradient-based like ADAPT-VQE, is that
ADAPT-GCIM uses VQE’s objective function, as an approximation, along
with unoptimized parameter values during the ansatz selection. Hence, at
the later iterations, while ADAPT-GCIM may already provide highly
accurate energy estimations, the norm of the gradient vector at the operator
selection can still remain relatively large.

One issue in the GCIM simulations is the numerical instability of
solving the generalized eigenvalue problem. It is possible that the overlap
matrix S becomes numerically indefinite at certain iterations. In classical
computing, such issue can be perfectly avoided by orthogonalizing the
generating function basis set. However, in quantum computing, the quan-
tum version of the orthogonalization algorithm like the quantum Gram-
Schmidt process usually requires extra quantum resources, such as
QRAM67. In the present study, when a singular overlap matrix is encoun-
tered, we choose to project both H and S using the eigenvectors of S cor-
responding to large positive eigenvalues33. Without the disturbance due to
the finite number of shots, the threshold for a sufficiently “large” eigenvalue
can be as relaxed as 10−13. Otherwise, under the finite-sampling noise (see
Section VII of the Supplementary Information), this threshold is usually set
to 10−5 and 10−6. A comparison test in the Supplementary Information
(Section VI) shows that this mitigation is very effective in achieving the
accuracy levels reachable by GCIM methods.

In the proposed ADAPT-VQE-GCIM(1), the number of bases in the
working subspace equals to the number of Givens rotations in the ansatz
generated at the last ADAPT-VQE iteration, incremented by one. This
increment accounts for the product of theseGivens rotations corresponding
to the ansatz itself. Conversely, in the ADAPT-GCIM and ADAPT-VQE-
GCIMapproaches, the numberof bases is twice the numberof iterations. To
illustrate this, consider thek-th iteration (k>1):when theGivens rotationGk

with the greatest gradient is selected, two associated basis vectors,
• GkðθkÞ∣ϕHF

!
and

• GkðθkÞ
Qk%1

i!1 GiðθiÞ∣ϕHF
!

are added to the working subspace. When k = 1, the basis set is
f∣ϕHFi;G1ðθ1Þ∣ϕHFig. So the number of bases is increased by two in every
iteration. The key difference is that in ADAPT-GCIM, the phase is set to a
constant scalar (e.g., π/4) for any Givens rotation in the ansatz, while in
ADAPT-VQE-GCIM, the phases θ1 to θk are optimized during the k-th
iteration. In all the experiments of ADAPT-GCIM, θk is set to π/4 for all
iterations.

The implementation of ADAPT-VQE uses the original code in ref. 66
from the corresponding repository68, and its computation is based on the
SciPy sparse linear algebra package69. To have the same foundation for
comparison, calculations in Fig. 4 for three GCIM algorithms follow the
same manner. The quantum resources estimation, shown in Fig. 5, utilizes
Qiskit70 for trotterization and circuit generation for excitation operators.
The data in Table 4 were computed on NERSC Perlmutter supercomputer.
The rest of numerical experiments were carried on a laptop with an Apple
M3 Max chip.

Data availability
The datasets generated and/or analyzed during the current study are
available in the GitHub repository (https://github.com/pnnl/QuGCM).

Code availability
The underlying code [and training/validation datasets] for this study is
available in “QuGCM”GitHub repository and can be accessed via this link
https://github.com/pnnl/QuGCM.
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