
RESEARCH ARTICLE PHYSICS OPEN ACCESS

APACE: AlphaFold2 and advanced computing as a service for
accelerated discovery in biophysics
Hyun Parka,b,c, Parth Patela,d,e ID , Roland Haase ID , and E. A. Huertaa,f,g,1 ID

Edited by Herbert Levine, Northeastern University, Boston, MA; received August 14, 2023; accepted December 25, 2023

The prediction of protein 3D structure from amino acid sequence is a computational
grand challenge in biophysics and plays a key role in robust protein structure prediction
algorithms, from drug discovery to genome interpretation. The advent of AI models,
such as AlphaFold, is revolutionizing applications that depend on robust protein
structure prediction algorithms. To maximize the impact, and ease the usability,
of these AI tools we introduce APACE, AlphaFold2 and advanced computing as
a service, a computational framework that effectively handles this AI model and
its TB-size database to conduct accelerated protein structure prediction analyses
in modern supercomputing environments. We deployed APACE in the Delta and
Polaris supercomputers and quantified its performance for accurate protein structure
predictions using four exemplar proteins: 6AWO, 6OAN, 7MEZ, and 6D6U. Using up
to 300 ensembles, distributed across 200 NVIDIA A100 GPUs, we found that APACE
is up to two orders of magnitude faster than off-the-self AlphaFold2 implementations,
reducing time-to-solution from weeks to minutes. This computational approach may be
readily linked with robotics laboratories to automate and accelerate scientific discovery.

AI for science | biophysics | supercomputing | automation

Innovation at the interface of AI and advanced computing is enabling breakthroughs in
science and engineering (1–7). The rise of AI models such as GPT-4 (8), AlphaFold (9),
among others, provides new capabilities to accelerate and automate scientific discovery.
However, some of these models have not been released to the public, breaking a strong
tradition in the AI community. It has been argued that the sheer size of these AI models
prohibits their use by a large cross-section of potential users.

To address this shortcoming, we demonstrate how to combine large AI models with
high-performance computing platforms to empower a broad cross-section of users to fully
exploit the capabilities of AI for scientific discovery. We have selected AlphaFold2 (10)
as the science driver for this study, since this AI model is revolutionizing discovery in
biophysics, and its use for accurate and rapid protein structure prediction (PSP) demands
an optimal use of modern supercomputing environments. Here, we demonstrate how to
optimize AlphaFold2 and its database, which exceed 2.6 TB in data storage, to reduce
the time needed for accurate PSPs from weeks to minutes.

AlphaFold2’s Features. With a deep learning technique–based structure prediction,
AlphaFold2 (9) showed unprecedented performance at the 14th Community Wide
Experiment on the Critical Assessmentof Techniques for Protein Structure Predic-
tion (11), later improved further with multimer prediction (12). Ever since, efforts to
make AlphaFold2 faster (13, 14), to predict protein complex, e.g., antibody (10, 15), and
to sample diverse protein conformations (16–18) have come to fruition. In this study,
we use AlphaFold2 version 2.3.0., as of August, 2023. The pre-trained neural network
parameters used include both monomer and multimer v3.

AlphaFold2 utilizes Central Processing Units (CPUs) to compute key input features:
multiple sequence alignment (MSA), and structural templates. MSA represents a
collection of protein sequence homologues related to the query protein. MSA captures
evolutionary relationships between various proteins such as conserved and variation
amino acid residues. MSA is computed using CPU-based sequence alignment algorithms,
such as Jackhmmer, which align a query protein sequence with known sequence
homologues obtained from databases such as Uniclust. AlphaFold2 can glean key residue
interactions from MSA (9). Furthermore, structural templates refer to experimentally
known protein homologue structures that share significant sequence similarity with the
query protein. These template structures are used to improve the accuracy of AlphaFold2’s
predictions. CPU-based algorithms, such as HHsearch (for monomer) and Hmmsearch
(for multimer), search public protein structure databases such as the Protein Data Bank

Significance

We introduce APACE, AlphaFold2
and advanced computing as a
service, a computational
framework that optimizes
AlphaFold2 to run at scale in
high-performance computing
platforms, and which effectively
handles this TB-size AI model and
database. We showcase the use
of APACE in the Delta and Polaris
supercomputers to accelerate
protein structure prediction
for a variety of proteins, and
demonstrate that using 200
ensembles distributed over 300
NVIDIA A100 GPUs, APACE
reduces time-to-insight from days
to minutes. This framework may
be readily linked with self-driving
laboratories to enable automated
discovery at scale.

Author affiliations: aData Science and Learning Division,
Argonne National Laboratory, Lemont, IL 60439;
b Theoretical and Computational Biophysics Group,
Beckman Institute for Advanced Science and Technology,
University of Illinois at Urbana-Champaign, Urbana, IL
61801; cCenter for Biophysics and Quantitative Biology,
University of Illinois at Urbana-Champaign, Urbana, IL
61801; d Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, IL 61801;
eNational Center for Supercomputing Applications,
University of Illinois at Urbana-Champaign, Urbana, IL
61801; f Department of Computer Science, The University
of Chicago, Chicago, IL 60637; and gDepartment of
Physics, University of Illinois at Urbana-Champaign,
Urbana, IL 61801

Author contributions: E.A.H. designed research; H.P.,
P.P.,and R.H. performed research; H.P., P.P.,and E.A.H.
contributed new reagents/analytic tools; H.P., P.P., and
E.A.H. analyzed data; and H.P., P.P., and E.A.H. wrote the
paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives
License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
elihu@anl.gov.

Published June 24, 2024.

PNAS 2024 Vol. 121 No. 27 e2311888121 https://doi.org/10.1073/pnas.2311888121 1 of 7

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
:/

/w
w

w
.p

na
s.

or
g

by
 7

1.
20

1.
20

5.
14

3
on

 J
ul

y
21

, 2
02

5
fr

om
 I

P
 a

dd
re

ss
 7

1.
20

1.
20

5.
14

3.

(PDB). Then, AlphaFold2 extracts spatial information from the
template relevant to the query protein (9).

In the Graphics Processing Unit (GPU) phase, AlphaFold2
utilizes the features generated from MSA and templates, pass-
ing them through the evoformer network. Evoformer refines
representations for both the MSA and pair interactions while
iteratively exchanging information between them in a criss-
cross fashion to extract amino acid residue relationships. The
updated representations then enter a structure module, where
predictions for rotations and translations are made to position
each residue (9).

The resulting predicted 3D structure undergoes a relaxation
process via minimization by Molecular Dynamics (MD) engine
to enhance accuracy. Upon generating the final structure, the
information cycles back to the beginning of the evoformer blocks
in a recycle procedure, further refining the structure predictions.
Overall, AlphaFold2 is trained end-to-end, leading to remarkable
accuracy and reliability in predicting protein 3D structures (9).

APACE’s Improvement over AlphaFold2. We introduce APACE,
AlphaFold2 and advanced computing as a service, a computa-
tional framework to accelerate AlphaFold2 through CPU & GPU
optimizations, and distributed computing in supercomputing
environments. Key features of this approach encompass:
Data management. First, APACE facilitates the usage of
AlphaFold2’s 2.6 TB AI model and database (9) by hosting
it at the Delta and Polaris supercomputers (19). AlphaFold2’s
neural networks can readily access data by leveraging solid state
drive (SSD) data storage, and Infinite Memory Engine (IME)
data staging.
CPU optimization. Second, inspired by ref. 13, APACE uses Ray
library’s (20) CPU optimization to parallelize CPU intensive
MSA and template computation calculations. As part of CPU op-
timization, APACE allocates higher CPU cores to MSA/template
search tools, rather than default numbers (4 or 8), which showed
heuristic speed improvement in our experiments. In addition, in
a similar manner as ref. 13, we also implemented a checkpoint to
circumvent redundant MSA/template steps if features.pkl file
exists, i.e., an intermediate file storing MSA/template search
result.
GPU optimization. Third, APACE uses Ray library’s (20) GPU
optimization to parallelize GPU intensive neural network protein
structure prediction steps. An important key difference from
ParaFold (13) in terms of GPU speedup is that, ParaFold
predicted one conformation with only model_1 (a template-
based pretrained model) mostly on peptide sequences (e.g., with
an average size less than 100 amino acid residues),rather than
protein sequences (i.e.,∼ 400 amino acid residues and more). In
stark contrast, APACE predicts multiple protein conformations
for each protein sequence, and peptide sequence if necessary, with
all five pretrained models in parallel,which is computationally
demanding.
New functionalities. Fourth, APACE can predict multiple
monomer conformations per pretrained neural network model
(out of five models), a simple functionality existing only in
multimer prediction in the original AlphaFold2 model. APACE
includes functionalities such as enabling dropout during structure
prediction, changing number of Evoformer (9) recycles, or
subsampling MSA options, as provided in ref. 14.

Results and Discussions
We completed three computational experiments to carry out a de-
tailed comparison between APACE and the original AlphaFold2

model. We describe each experiment at a time and then provide
the corresponding results.

These results were obtained using the Delta and Polaris
supercomputers, housed at the National Center for Supercom-
puting Applications, and at the Argonne Leadership Computing
Facility (ALCF), respectively. Both machines provide highly
capable GPU-focused compute environment for GPU and CPU
workloads.

Delta offers a mix of standard and reduced precision GPU
resources, as well as GPU-dense nodes with both NVIDIA and
AMD GPUs. It also provides high-performance node-local SSD
scratch file systems, as well as both standard Lustre and relaxed-
POSIX parallel file systems spanning the entire resource. On
the other hand, the Polaris supercomputer has 560 nodes. Each
compute node consists of 1 AMD EPYC Milan processor, four
NVIDIA A100 GPUs, unified memory architecture, two fabric
endpoints, and two NVMe SSDs. The system interconnect is
HPE Slingshot 11, and uses a Dragonfly topology with adaptive
routing.

We compared APACE and AlphaFold2 performance using
both NVIDIA A100 and A40 GPUs in Delta, and NVIDIA
A100 GPUs in Polaris. The computational benchmarks we report
below in terms of CPU and GPU runtimes were extracted
from the generated timings.json file of both APACE and
AlphaFold2.

Experiment 1: Predicting Structures for Four Benchmark Pro-
teins. Four proteins were selected as benchmarks to assess
the effectiveness and operational proficiency of APACE. To
predict protein structures with APACE, we developed scientific
software that enables users to provide suitable headers in
sbatch scripts and to load the appropriate environment and
module, that are used to successfully submit and complete
simulations in the Delta and Polaris supercomputers. These are
the Simple Linux Utility for Resource Management (SLURM)
parameters we used: --mem=240g, --nodes=10, --exclusive,
--ntasks-per-node=1, --cpus-per-task=64, --gpus-per-task=4,
--gpus-per-node=4. The neural network and MSA/template-
related parameters were the same as AlphaFold2.
Monomers. We used the monomer protein 6AWO (serotonin
transporter) as a basic structure to test baseline prediction
accuracy and conformational diversity using a total of five models.
Thus, we created a Ray cluster consisting of eight NVIDIA
A100/A40 GPUs (equivalent to 2 A100/A40 GPU nodes in Delta
and Polaris) to facilitate both CPU and GPU parallel execution
and relaxation for all five models, i.e., one structure per model,
as in the case of AlphaFold2.
Multimers. For multimer proteins, we tested 6OAN, Duffy-
binding protein bound with single-chain variable fragment
antibody (15); 7MEZ, phosphoinositide 3-kinase (10); and
6D6U, a three distinct chain heteropentamer GABA transporter,
which represents a more challenging case for multimer prediction.
For each of these proteins, we had eight structure predictions per
model, yielding a total of 40 predictions (five ensemble modes×
eight predictions per model). To facilitate concurrent execution
and relaxation for the entire array of 40 models, 40 NVIDIA
A100 and also 40 A40 GPUs (10 A100/A40 GPU nodes) were
harnessed using a Ray cluster.

To initiate a Ray cluster utilizing compute nodes (as described
in Methods), we first fetched a list of available compute nodes and
their IP addresses. We then launched a head Ray process using
one of these nodes, referred to as the “head node.” Subsequently,
we started Ray worker processes for the remaining compute

2 of 7 https://doi.org/10.1073/pnas.2311888121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
:/

/w
w

w
.p

na
s.

or
g

by
 7

1.
20

1.
20

5.
14

3
on

 J
ul

y
21

, 2
02

5
fr

om
 I

P
 a

dd
re

ss
 7

1.
20

1.
20

5.
14

3.

Table 1 . Performance benchmarks between off-the-shelf AlphaFold2 and our APACE CPU & GPU optimized
framework for four exemplar proteins

of AlphaFold2-A40 AlphaFold2-A100 APACE-A40 APACE-A100 AlphaFold2-Polaris APACE-A100 Polaris
Protein ensembles CPU/GPU [min] CPU/GPU [min] CPU/GPU [min] CPU/GPU [min] CPU/GPU [min] CPU/GPU [min]

1. 6AWO 5 33.0/17.7 33.0/12.8 16.1/4.0 16.1/2.9 189.0/46.8 92.2/9.4
2. 6OAN 40 99.1/268.1 99.4/181.4 56.5/7.9 57.1/5.6 306.2/593.5 175.9/14.8
3. 7MEZ 40 100.7/3756.3 100.7/2339.4 58.0/100.1 58.8/63.0 556.2/3640.9 324.8/91.0
4. 6D6U 40 143.6/1528.7 143.8/786.9 89.3/72.2 89.4/35.1 485.9/1279.1 302.1/32.0

We present results for two types of GPUs available in the Delta supercomputer, NVIDIA A40 and A100 GPUs. We also present results using the Polaris supercomputer housed at the ALCF.

nodes. Each worker is equipped with all four GPUs, and Ray
automatically determines the utilization of available GPUs for
running and relaxation of models. The workers are then linked
to the head node by providing the head node’s address.

We utilize srun via message passing interface (MPI) to start
the workers on the compute nodes. This is necessary because
the sbatch script executes solely on the first compute node.
Given the simultaneous launch of all Ray processes using MPI,
we incorporate safeguards to prevent race conditions.The race
condition safeguards ensure that the head node is started before
the worker nodes and the beginning of predictions.

After the underlying Ray cluster was ready, we established
a connection to it using ray.init within the run_alphafold.py
code and initiated the prediction of the protein structure using
APACE. Ray automatically allocates resources and concurrently
executes MSA tools on CPUs, model runs, and model relaxation
on a distinct GPU. This operation efficiently harnesses the full
computational potential of both CPU cores and GPUs available
on the compute node.

Experiment 1: Results and Discussion.
CPU acceleration. Through the implementation of parallel
optimization techniques, APACE achieved an 1.8X average CPU
speedup in Delta, and 1.78X average CPU speedup in Polaris.
These results are independent of the number of compute nodes.
GPU acceleration. APACE achievessignificant GPU speedups.
The following results were obtained using 8 GPUs for 6AWO,
and 40 GPUs for 6OAN, 7MEZ, and 6D6U:

1. 6AWO. 4.4× speedup on both A40 and A100 GPUs for
Delta; and 4.98× speedup on Polaris.

2. 6OAN. 34× and 32.4× speedup on A40 and A100 GPUs,
respectively, for Delta; and 40.1× speedup for Polaris.

3. 7MEZ. 37.5× and 37.1× speedup on A40 and A100 GPUs,
respectively, for Delta; and 40X speedup for Polaris.

4. 6D6U. 21.2× and 22× speedup on A40 and A100 GPUs,
respectively, for Delta; and 40× speedup for Polaris.

We summarize these results in Table 1. We also note that
prediction times are consistently shorter when using NVIDIA
A100 GPUs. In brief, APACE provides remarkable speedups
for basic and complex structures, retaining the accuracy and

robustness of the original AlphaFold2 model. Furthermore,
APACE can readily be used for analyses at scale using hundreds
of GPUs, as shown below.

Experiment 2: Predicting Protein 7MEZ using 100 and 200
NVIDIA A100 GPUs. To quantify the performance and scalability
of APACE in the Delta and Polaris supercomputers, we con-
ducted protein 7MEZ predictions utilizing a significant number
of compute nodes. Specifically, we utilized 100 NVIDIA A100
GPUs, which correspond to 25 A100 GPU compute nodes to
generate predictions (20 predictions per model). Likewise,we
leveraged the computational power of 200 NVIDIA A100 GPUs,
equivalent to 50 A100 compute nodes to generate a total of 200
predictions (40 predictions per model). To predict the structures,
the sbatch script was modified to allocate the correct number of
compute nodes. We also modified the srun and singularity run
parameters to successfully complete these calculations.

Experiment 2: Results and Discussion. APACE delivered re-
markable speedups. If we compute 100 ensembles (distributed
over 100 GPUs) for protein 7MEZ, APACE completed the
required calculations within 67.8 min, as opposed to Al-
phaFold2’s 6068.8 min (101.1 h/4.2 d) in Delta. In Polaris, we
observe that APACE reduced time-to-solution from 8793.3 min
(146.5 h/6.1 d) to 87.9 min.

Similarly, if we now require 200 ensembles for the same
protein, APACE in Delta completed all predictions within
64 min, as opposed to the 12023.3 min (200.4 h/8.3 d) that
would be needed using the original AlphaFold2 method. In
Polaris, APACE reduced time-so-solution from 12741.2 min
(212.4 h/8.8 d) to only 84.9 min.

Finally, using 300 ensembles for protein 7MEZ, APACE in
Delta completed all predictions within 68.2 min, as opposed to
the 18064.3 min (301.1 h/12.5 d) that would be needed using
the original AlphaFold2 method. In Polaris, APACE reduced
time-so-solution from 15295.6 min (254.9 h/10.6 d) to only
76.9 min. These results are summarized in Table 2.

Experiment 3: Ensemble Diversity of APACE. AlphaFold2’s in-
herent limitations restrict us to generating merely five predic-
tions per monomer, e.g., one prediction per model, thereby

Table 2. Performance benchmarks between off-the-shelf AlphaFold2 and APACE for protein 7MEZ

AlphaFold2-Delta APACE-Delta AlphaFold2-Polaris APACE-Polaris
Nodes/ensembles CPU/GPU [min] CPU/GPU [min] CPU/GPU [min] CPU/GPU [min]

25/100 100.7/6068.8 58.8/67.8 556.2/8793.3 324.8/87.9
50/200 100.7/12023.3 58.8/64.0 556.2/12741.2 324.8/84.9
75/300 100.7/18064.3 58.8/68.2 556.2/15295.6 324.8/76.9

We present results for 25, 50, and 75 nodes in Delta and the Polaris supercomputers. Each node has 4 NVIDIA A100 GPU.

PNAS 2024 Vol. 121 No. 27 e2311888121 https://doi.org/10.1073/pnas.2311888121 3 of 7

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
:/

/w
w

w
.p

na
s.

or
g

by
 7

1.
20

1.
20

5.
14

3
on

 J
ul

y
21

, 2
02

5
fr

om
 I

P
 a

dd
re

ss
 7

1.
20

1.
20

5.
14

3.

confining the diversity of protein conformation. Moreover,
fine-tuning parameters such as dropout remain inaccessi-
ble. However, we successfully addressed this constraint by
adapting the ColabFold (14) code. For experimental pur-
poses, we generated 100 structures for protein 6AWO using
--num_multimer_predictions_per_model=20 while employing
the parameter --use_dropout=True. This was accomplished by
configuring the sbatch script with the appropriate parameters.

APACE enables users to select the following options (14):

1. Ensemble of structure module with -num_ensemble,
2. Control for recycles with --num_recycles,
3. Subsampling of MSA with --max_seq, --max_extra_seq,
4. Evoformer fusion with --use_fuse,
5. Bfloat16 mixed precision with --use_bfloat16,
6. Bernoulli-masking based diverse conformational sampling

with --use_dropout.

Experiment 3: Results and Discussion.
Protein structure prediction and conformational diversity by
APACE.We have modified AlphaFold2 code to mirror Co-
labFold (14)’s versatile protein structure prediction pipeline
parameter customization. With these improvements, we have
successfully expanded the spectrum of predictions, thereby
enhancing the overall reliability of the predicted structures.
Although protein structure prediction is of great significance,
we would like to expand APACE to predict conformational
diversity since proteins are not static but malleable and flexible
structures. Sampling a wide range of conformational ensemble
is important for drug discovery (16–18). In the case of 6AWO
(∼500 amino acid residues), Fig. 1, we used our parameter cus-
tomization enhancements (with the option --use_dropout=True)
and predicted 100 structures of serotonin transporter (SERT).
We have found that the structure predicted by APACE is
comparable to the ground truth structure. When we visualize
most variant transmembrane domain alpha helices (cyan in
the Right panel), we observe that TM2, TM6, TM10, and
TM12 are highlighted. Among these, TM6, TM10, and TM12
are responsible for conformational change or ligand binding
from outward-facing to inward-facing structures (22–24). This
implies that APACE learned patterns to predict a wide range of

Fig. 1. Protein structure used to test APACE: serotonin transporter (PDB
accession: 6AWO; shorthand SERT). The Left panel is 100 SERT predicted
conformational ensemble overlaid, which has good agreement with ground
truth SERT. The Right panel is high variant transmembrane domains, shown
in cyan, and computed with root mean square fluctuations overlayed. Figures
are generated with Visual Molecular Dynamics (21).

Fig. 2. Protein structure used to test APACE: the antibody–antigen complex
Plasmodium vivax Duffy-binding protein (PDB accession: 6OAN). The struc-
ture has good agreement with ground truth bound structure conformation.
The predicted conformational ensemble of complementary determining
region (CDR; loops) of the antibody (red) binding against helical secondary
structure epitopes of antibody (blue) are predicted well when compared to
ground truth.

conformational landscape of SERT. APACE makes an accurate
prediction for SERT, which is an integral membrane protein.
Even without the presence of membranes, APACE manages
to predict transmembrane domains with high accuracy, hence
demonstrating APACE’s promise in drug discovery research.
In the case of 6OAN, 7MEZ, and 6D6U (∼600, 2,000, and
1,800 amino acid residues, respectively), we have multimer
predictions. Both 6OAN and 7MEZ in Figs. 2 and 3 each
predict conformational ensemble of heterodimer structures
with high accuracy. Especially, the interface binding pose is
well predicted and comparable with ground truth structures.
Although there may be minor errors in predicted secondary
structures not involved in interface binding, correct interface

Fig. 3. Protein structure used to test APACE: a phosphoinositide 3-kinase
(PI3K) consisting of p110 𝛾 and p101 subunits (PDB accession: 7MEZ). The
structure has good agreement with ground truth bound structure confor-
mation. Although there are mispredictions of loop secondary structures in
p101 (red; Top Left helical loop; mispredicted as alpha helix rather than loop)
subunit, the interface binding pose between p101 and p110 𝛾 (blue) is well
predicted, implying conserved binding interface in evolution. Also, rest of
the secondary structures and overall heterodimer structure of the predicted
conformational ensemble are comparable with ground truth structure.

4 of 7 https://doi.org/10.1073/pnas.2311888121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
:/

/w
w

w
.p

na
s.

or
g

by
 7

1.
20

1.
20

5.
14

3
on

 J
ul

y
21

, 2
02

5
fr

om
 I

P
 a

dd
re

ss
 7

1.
20

1.
20

5.
14

3.

Fig. 4. Protein structure used to test APACE: a pentameric GABA A receptor
(PDB accession: 6D6U). We show one predicted heteropentamer structure of
neurotransmitter GABA A receptor. The Left panel shows a comparable struc-
ture with ground truth predictions. Blue and gray chains form a homodimer
while red and orange chains form the other homodimer. Yellow chain is a
monomer differing in sequence from other two homodimers. However, the
location of transmembrane helices (toward the paper direction) does not
exactly reproduce the ground truth structure. This is understandable since
APACE does not use membrane as an input to predict the transmembrane
domain. However, the overall structure is comparable with the ground truth.
On the other hand, in the Right panel, we see an AI-predicted protein whose
structure is erroneous, and where blue and gray chains bind to each other.
This structure may have high thermodynamic instability and steric hindrance
when being crystallized.

binding pose between proteins by nonbonded interactions is
of greater importance. Minor misfolding may be addressed
with methods such as MD, Monte Carlo, and protein design
tools (25–38).

In 6D6U in Fig. 4, we observe comparable structure (Left
panel) with ground truth and wrong structure (Right panel)
with wrong homodimer location predictions. Since 6D6U is a
membrane pentameric heteromer protein, it lends a challenging
case of predicting not only correct structure of each monomer
but also alternating chain patterns. The transmembrane helices
are therefore mispredicted but overall structure is still comparable
with ground truth.

In short, we have demonstrated APACE’s capabilities to
predict protein structures, mirroring AlphaFold2’s robustness
and accuracy, and providing remarkable speedups, reducing
time-to-solution from days to minutes. APACE may be limited
occasionally when it comes to predicting transmembrane proteins
and/or multi-chain multimers, features it has inherited from
AlphaFold2.

Methods
Given thatDeltaand Polaris’scontainersupportis only availablefor
Apptainer/Singularity (39), we modified the instructions provided in AlphaFold2
GitHub repository,which are intended for Docker containers (40).Below we
describe the steps followed to deploy AlphaFold2 on Delta and Polaris (19):

1. We began by cloning the AlphaFold2 directory from DeepMind and navigated
to the respective directory.The code is available athttps://github.com/
hyunp2/alphafold/tree/main.

2. Next, we downloaded the necessary genetic databases for MSA capturing
sequence representation, as well as for template similarity capturing structure
representation. We also downloaded AlphaFold2 model parameters required
for AlphaFold2’s functioning. Every database and model parameter is up-to-
date (as of August 2023) and the multimer version is v3.

3. Since Singularity is used on Delta and Polaris for container support,we
built the Singularity image by initially building the Docker image locally.
Afterward,we pushed thisDockerimage to DockerHub.Utilizing the
singularity pullcommand,we converted the Docker image to Singularity
sif format, making it compatible with Delta and Polaris environments.

Running the Singularity image built using the default Dockerfile resulted in
an HHsearch (used for template search against PDB database) runtime error.
To address this issue, modifications were made to the Dockerfile. Initially,
the Dockerfile involved cloning and compiling the HHsuite package from
source locally, which posed portability challenges across different machines.
The compilation process with cmake relied on the processor architecture of
the user’s machine, potentially leading to compatibility issues. For instance, if
the user building the Docker image locally had a processor with an Instruction
SetArchitecture (ISA)thatdiffered from Delta’s supported architecture,
HHsearch encountered a runtime error with “Illegal Instruction.”
To address this issue and ensure cross-machine compatibility,we made
modifications to the DockerFile. Instead of compiling HHsuite from source,
we adopted a differentapproach by installing HHsuite using a statically
compiled version that supports the AVX2 ISA. This modification eliminated
the dependency on local processor architecture during the build process,
mitigating the potential runtime errors and enhancing the portability of the
Singularity image.

4. To completethe setup,we created an outputdirectory(defaultis
/tmp/alphafold) and ensured that it had the necessary permissions to allow
writing.

5. Due to Delta and Polaris’sabsence ofDockersupport,the standard
run_docker.py scriptwas notviable.Instead,we devised a custom shell
script to replicate the essential functionality of run_docker.py. Employing
a singularity run command,we effectively bound the necessary mounts
and passed the required flags for execution,mirroring the procedure of
run_alphafold.py with Docker.

6. Upon completion of the deployment process, the output directory contained
the predicted structures of the target protein, accurately obtained through
AlphaFold2’s advanced prediction capabilities.

In conclusion, deploying AlphaFold2 on Delta and Polaris required a series of
modifications to account for Singularity containerization. Through this approach,
we successfully integrated AlphaFold2’s powerfulprotein folding prediction
capabilities into these supercomputers’ environments.

Limitations of AlphaFold2 Model. The originalAlphaFold2 model,while
highly accurate in predicting protein structures,does have some limitations
in terms of computational efficiency. Some of the key limitations include:

1. Long Inference Time: The time taken for the model to make predictions can be
considerable, especially for larger and more complex protein structures. This
can hinder its use in time-sensitive applications. Such long time inference
including both CPU and GPU computations have been reported and analyzed
elsewhere in the literature (13).

2. ComputationallyIntensive/Limited Real-Time Predictions:The original
AlphaFold2 modelis computationally demanding,requiring significant
computationalresources and time for accurate predictions.For example,
MSA and template search have to be performed in CPU while GPU is
utilized for each structure prediction,both in a sequentialmanner.This
restricts its applicability for real-time predictions or on hardware with limited
computational power. The computational demands of the model may hinder
real-time prediction of protein structures, making it less suitable for time-
sensitive applications.

3. Resource-Intensive: AlphaFold2’s inference requires substantialcomputa-
tional resources, including powerful GPUs or tensor processing units. This
may limit its accessibility to researchers or institutions withoutaccess to
high-end hardware. Also, the storage of database amounts to 2.6 TB, which
may far exceed normal workstation storage capacity.

4. Memory Requirements: The model’s memory footprint can be substantial
(with larger protein requiring higher GPU memory), making it challenging
to process multiple protein structures concurrently, particularly on machines
with limited RAM.

5. Single GPU Utilization: The original AlphaFold2 model is designed to use
a single GPU during inference, limiting its capability to work with multiple
GPUs. As a result, it predicts and relaxes one protein structure (saved as PDB
file format) at a time sequentially.

PNAS 2024 Vol. 121 No. 27 e2311888121 https://doi.org/10.1073/pnas.2311888121 5 of 7

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
:/

/w
w

w
.p

na
s.

or
g

by
 7

1.
20

1.
20

5.
14

3
on

 J
ul

y
21

, 2
02

5
fr

om
 I

P
 a

dd
re

ss
 7

1.
20

1.
20

5.
14

3.

6. Otherpotentiallimitations include butare notlimited to little protein
conformation diversity. Predicting correct, yet diverse protein conformations,
is a significant task for drug discovery, partially addressed in refs. 17 and 16.

Key Optimizations in APACE. To transcend the limitations of AlphaFold2, we
implemented optimizations in both CPU and GPU computation,striving for
enhanced efficiency and performance.
CPU optimization. AlphaFold2 utilizes Jackhmmer to conduct MSA searches on
Uniref90, clustered MGnify and small Bulk File Distribution (BFD) database. On
the other hand, it employs HHBlits for MSA search on large BFD and Uniclust30
databases. In addition, AlphaFold2 utilizes HHSearch for template search against
PDB70 in the monomer case and Hmmsearch for template search against PDB
Seqres in the multimer case. For the multimer only, Jackhmmer based Uniprot
database parsing step exists as well.

To process a single query,AlphaFold2 limits itselfto 8 CPU cores for
Jackhmmer, four CPU cores for HHblits, and eight CPU cores for Hmmsearch.
Given the vast database sizes (around 2.6 TB) and the considerable amount of I/O
access involved, the MSA search for a single prediction can take several hours,
significantly impacting the overall runtime (see Limitations of AlphaFold2 Model
for bottlenecks for CPU computation).

To expedite the CPU stage,we implemented an approach inspired by
ParaFold (13). By orchestrating the three independent sequential MSA searches
in parallel,APACE significantly enhances the speed ofMSA construction.In
contrast to AlphaFold2, where UniRef90, MGnify, and BFD datasets were parsed
sequentially using Jackhmmer and/or HHblits (for large BFD), APACE employed
the Ray library (20) to simultaneously initiate three processes, enabling MSA
searches to run concurrently.

Additionally,we allocated 16 CPU coresto each MSA search tool
and template search tool:Jackhmmer,HHblits,and HHSearch/Hmmsearch
(monomer/multimer). By running all three MSA tools in parallel, utilizing a total
of 48 CPU cores, we achieved a substantial 1.8× speedup in performance.

After increasing the number of CPU cores, we observed remarkable speed
enhancements in the MSA computation. However, beyond 20 CPU cores, the
speed-up in MSA calculation plateaued. This observation unveiled the bottleneck
as being related to inputretrievalratherthan CPU processing,rendering
it input-bound.This inherent nature ofbeing input-bound presents hurdles
for straightforward parallelization (i.e., CPU multiprocessing or MPI) methods.
Upon the completion of parallel computation for MSA, the template search and
multimer Jackhmmer-Uniprot, sequentially ensue.

To further enhance speed in CPU intensive MSA computation, we made two
key optimizations.First,we migrated the entire datasetto SSD,minimizing
data retrieval time. Additionally, we leveraged the IME to stage the dataset files
into the SSD cache within the /ime file system. This pre-staging allowed jobs to
swiftly access and utilize the required data. IME is a DataDirect Networks solution
designed to facilitate fast data tiering between compute nodes and a file system
within a high-performance computing (HPC) environment.

The MSA and structural template search results acquired on CPUs are stored
in features.pkland passed to the neuralnetwork forprediction on GPUs.
Additionally, we have incorporated a code check in our pipeline to circumvent
CPU-burdening MSA computation.That is,if features.pklalready exists (as a
result of storing features.pkl by successfully executing CPU computation at least
once for a given protein sequence), the pipeline skips the MSA and structure
template search and computation steps and proceeds directly to predict the
protein structure,in a similar manner as ref.13.This optimization ensures
efficient processing and avoids redundant computations.
GPU optimization. AlphaFold2/APACE employs an ensemble offive neural
network models to predict the 3D structure of proteins. This ensemble approach
entails using multiple pretrained models with slight variations hyperparameters
for protein structure prediction. The three models out of five make predictions
based on MSA (i.e., models 3 to 5) while the other two models (i.e., models
1 to 2) also rely on templates. For details of how the five models differ, we refer
the refer to refs. 9 and 18

The “--num_multimer_predictions_per_model" flag governs the number
of independentpredictions made by each individualneuralnetwork model

within the modelensemble.When running AlphaFold2/APACE,users can
specify the value for this flag,thereby controlling the number of predictions
generated by each model.The collective predictions from each model in the
model ensemble offer diverse final predicted 3D structures, e.g., plasmepsin II,
an aspartic protease causing malaria (16),which are crucialto understand
free energy landscape ofprotein conformations and to identify important
drug discovery target,cryptic binding pockets.In contrast to AlphaFold2,we
included in APACE a capability to predictmultiple monomer structures per
model.

The originalAlphaFold2 modelis designed to use a single GPU during
inference,which does nottake fulladvantage ofdeep learning’s parallel
processing capabilities. During GPU utilization, AlphaFold2 performs sequential
structure prediction, which is one of the reasons why AlphaFold2 takes a long
time tillcompletion (13) (Limitations ofAlphaFold2 Model).To expedite the
GPU phase, we used the Ray library for GPU parallelization as well for APACE.
Therefore, each ensemble model and its corresponding predictions are allocated
to distinct GPUs for structure prediction. As a result, APACE can harness multiple
GPUs to efficiently run models in parallel,markedly expediting the overall
prediction process.

Following prediction by each model, the corresponding structure undergoes
a relaxation process in a sequentialmanner in AlphaFold2.To enhance the
efficiency of this step,we once more harnessed the power of the Ray library
in APACE.Through this optimization,each structure predicted by ensemble
of models is assigned to an individualdedicated GPU,facilitating parallel
relaxation processing. This enhancement by APACE has substantially reduced
processing time,contributing to the overallacceleration ofthe relaxation
process.

Conclusions
We have introduced APACE, a framework that retains the
robustness and accuracy of AlphaFold2, and which leverages
supercomputing to reduce time-to-insight from days to minutes.
We have accomplished this by a) making an efficient use of
the Delta and Polaris supercomputer systems’data storage and
data staging; b) optimizing CPU and GPU computing; and
c) developing scientific software to enable the prediction of
conformational ensemble of protein structures. These tools are
released with this manuscript to provide researchers with a
computational framework that may be readily linked with robotic
laboratories to automate and accelerate scientific discovery.

Data, Materials, and Software Availability. The data and scientific software
needed to reproduce this work are available athttps://github.com/hyunp2/
alphafold/tree/main (41).

ACKNOWLEDGMENTS. This work was supported by Laboratory Directed Re-
search and Development funding from Argonne National Laboratory, provided
by the Director,Office ofScience,of the United States (U.S.) Department of
Energy under Contract No. DE-AC02-06CH11357. E.A.H. was partially supported
by NSF award OAC-2209892.This research used resources ofthe Argonne
Leadership Computing Facility, which is a Department of Energy (DOE) Office
of Science User Facility supported under Contract DE-AC02-06CH11357.This
research used the Delta advanced computing and data resource which is
supported by the National Science Foundation (award OAC 2005572) and the
State ofIllinois.Delta is a joint effort ofthe University ofIllinois at Urbana-
Champaign and its NationalCenterfor Supercomputing Applications.The
authors acknowledge support from the NationalInstitute of GeneralMedical
Sciences ofthe NationalInstitutes ofHealth under awards P41-GM104601,
R24-GM145965, and R01-GM123455. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National
Institutes of Health.

6 of 7 https://doi.org/10.1073/pnas.2311888121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
:/

/w
w

w
.p

na
s.

or
g

by
 7

1.
20

1.
20

5.
14

3
on

 J
ul

y
21

, 2
02

5
fr

om
 I

P
 a

dd
re

ss
 7

1.
20

1.
20

5.
14

3.

1. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015).
2. E. A. Huerta et al., Enabling real-time multi-messenger astrophysics discoveries with deep learning.

Nat. Rev. Phys. 1, 600–608 (2019).
3. M. Krenn et al., On scientific understanding with artificial intelligence. Nat. Rev. Phys. 4, 761–769

(2022).
4. S. Issue, A machine-intelligent world. Science 381, 136–137 (2023).
5. S. Bianchini, M. Müller, P. Pelletier, Artificial intelligence in science: An emerging general method

of invention. Res. Policy 51, 104604 (2022).
6. K. Crawford, Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence

(Yale University Press, New Haven, 2021).
7. J. Dean, A golden decade of deep learning: Computing systems & applications. Daedalus 151,

58–74 (2022).
8. OpenAI (2023). GPT-4 technical report.
9. J. Jumper et al., Highly accurate protein structure prediction with alphafold. Nature 596, 583–589

(2021).
10. P. Bryant, G. Pozzati, A. Elofsson, Improved prediction of protein-protein interactions using

alphafold2. Nat. Commun. 13, 1265 (2022).
11. J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, M. Topf, Critical assessment of techniques for

protein structure prediction, fourteenth round. CASP 14 Abstract Book (2020).
12. R. Evans et al., Protein complex prediction with alphafold-multimer. bioRxiv (2021). https://www.

biorxiv.org/content/10.1101/2021.10.04.463034v2 (Accessed 30 November 2023).
13. B. Zhong et al., “Parafold: paralleling alphafold for large-scale predictions” in International

Conference on High Performance Computing in Asia-Pacific Region Workshops (Association for
Computing Machine, New York, NY, 2022), pp. 1–9.

14. M. Mirdita et al., ColabFold: Making protein folding accessible to all. Nat. Methods 19, 679–682
(2022).

15. R. Yin, B. Y. Feng, A. Varshney, B. G. Pierce, Benchmarking alphafold for protein complex modeling
reveals accuracy determinants. Protein Sci. 31, e4379 (2022).

16. A. Meller, S. Bhakat, S. Solieva, G. R. Bowman, Accelerating cryptic pocket discovery using
alphafold. J. Chem. Theory Comput. 19, 4355–4363 (2023).

17. B. Faezov, R. L. Dunbrack Jr., Alphafold2 models of the active form of all 437 catalytically-competent
typical human kinase domains. bioRxiv (2023). https://www.biorxiv.org/content/10.1101/2023.07.
21.550125v1 (Accessed 30 November 2023).

18. D. Sala, F. Engelberger, H. Mchaourab, J. Meiler, Modeling conformational states of proteins with
alphafold. Curr. Opin. Struct. Biol. 81, 102645 (2023).

19. J. Towns et al., XSEDE: Accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).
20. P. Moritz et al., “Ray: A distributed framework for emerging AI applications” in 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18) (USENIX Association,
USA, 2018), pp. 561–577.

21. W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33–38
(1996).

22. J. A. Coleman et al., Serotonin transporter-ibogaine complexes illuminate mechanisms of
inhibition and transport. Nature 569, 141–145 (2019).

23. M. C. Chan, E. Procko, D. Shukla, Structural rearrangement of the serotonin transporter intracellular
gate induced by thr276 phosphorylation. ACS Chem. Neurosci. 13, 933–945 (2022).

24. M. C. Chan, B. Selvam, H. J. Young, E. Procko, D. Shukla, The substrate import mechanism of the
human serotonin transporter. Biophys. J . 121, 715–730 (2022).

25. G. Brändén, R. Neutze, Advances and challenges in time-resolved macromolecular crystallography.
Science 373, eaba0954 (2021).

26. M. E. Mäeots, R. I. Enchev, Structural dynamics: Review of time-resolved cryo-EM. Acta Crystal. Sect.
D Struct. Biol. 78, 927–935 (2022).

27. S. J. Amann, D. Keihsler, T. Bodrug, N. G. Brown, D. Haselbach, Frozen in time: Analyzing molecular
dynamics with time-resolved cryo-EM. Structure 31, 4–19 (2023).

28. M. Schmidt, Time-resolved macromolecular crystallography at pulsed X-ray sources. Int. J. Mol. Sci.
20, 1401 (2019).

29. F. Martín-García, E. Papaleo, P. Gomez-Puertas, W. Boomsma, K. Lindorff-Larsen, Comparing
molecular dynamics force fields in the essential subspace. PLoS One 10, e0121114 (2015).

30. J. K. Leman et al., Macromolecular modeling and design in Rosetta: Recent methods and
frameworks. Nat. Methods 17, 665–680 (2020).

31. D. Sala, A. Giachetti, A. Rosato, Insights into the dynamics of the human zinc transporter ZnT8 by
MD simulations. J. Chem. Inf. Model. 61, 901–912 (2021).

32. D. Sala, A. Giachetti, A. Rosato, An atomistic view of the YiiP structural changes upon Zinc (II)
binding. Biochimica et Biophysica Acta (BBA)-Gen. Subj. 1863, 1560–1567 (2019).

33. Y. Matsunaga, Y. Sugita, Use of single-molecule time-series data for refining conformational
dynamics in molecular simulations. Curr. Opin. Struct. Biol. 61, 153–159 (2020).

34. L. Cerofolini et al., Integrative approaches in structural biology: A more complete picture from the
combination of individual techniques. Biomolecules 9, 370 (2019).

35. J. R. Allison, Computational methods for exploring protein conformations. Biochem. Soc. Trans. 48,
1707–1724 (2020).

36. G. Bussi, A. Laio, Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys.
2, 200–212 (2020).

37. B. Webb, A. Sali, Comparative protein structure modeling using modeller. Curr. Protoc. Bioinform.
54, 5–6 (2016).

38. K. W. Kaufmann, G. H. Lemmon, S. L. DeLuca, J. H. Sheehan, J. Meiler, Practically useful: What the
Rosetta protein modeling suite can do for you. Biochemistry 49, 2987–2998 (2010).

39. G. M. Kurtzer, V. Sochat, M. W. Bauer, Singularity: Scientific containers for mobility of compute.
PLoS One 12, e0177459 (2017).

40. D. Merkel, Docker: Lightweight Linux containers for consistent development and deployment. Linux
J. 2014, 2 (2014).

41. H. Park, P. Patel, R. Haas, E. A. Huerta, Data and Software from “APACE: AlphaFold2 as a service
for accelerated discovery in biophysics”. GitHub. https://github.com/hyunp2/alphafold/tree/main.
Deposited 20 April 2023.

PNAS 2024 Vol. 121 No. 27 e2311888121 https://doi.org/10.1073/pnas.2311888121 7 of 7

D
ow

nl
oa

de
d

fr
om

 h
tt

ps
:/

/w
w

w
.p

na
s.

or
g

by
 7

1.
20

1.
20

5.
14

3
on

 J
ul

y
21

, 2
02

5
fr

om
 I

P
 a

dd
re

ss
 7

1.
20

1.
20

5.
14

3.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

