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The prediction of protein 3D structure from amino acid sequence is a computational
grand challenge in biophysics and plays a key role in robust protein structure prediction ~ Significance
algorithms, from drug discovery to genome interpretation. The advent of Al models,

such as AlphaFold, is revolutionizing applications that depend on robust protein We introduce APACE, AlphaFold2

structure prediction algorithms. To maximize the impact, and ease the usability, and advanced computing as a
of these Al tools we introduce APACE, AlphaFold2 and advanced computing as service, a computational

a service, a computational framework that effectively handles this AI model and framework that optimizes

its TB-size database to conduct accelerated protein structure prediction analyses AlphaFold2 to run at scale in

in modern supercomputing environments. We deployed APACE in the Delta and high-performance computing
Polaris supercomputers and quantified its performance for accurate protein structure platforms, and which effectively

predictions using four exemplar proteins: 6AWO, 60AN, 7TMEZ, and 6D6U. Using up
to 300 ensembles, distributed across 200 NVIDIA A100 GPUs, we found that APACE
is up to two orders of magnitude faster than off-the-self AlphaFold2 implementations,
reducing time-to-solution from weeks to minutes. This computational approach may be
readily linked with robotics laboratories to automate and accelerate scientific discovery.

handles this TB-size Al model and
database. We showcase the use
of APACE in the Delta and Polaris
supercomputers to accelerate
protein structure prediction

for a variety of proteins, and
demonstrate that using 200

Al for science \ biophysics |supercomputing |automation

Innovation at the interface of AI and advanced computing is enabling breakthroughs in ensembles distributed over 300
science and engineering (1-7). The rise of Al models such as GPT-4 (8), AlphaFold (9),  NVIDIA A100 GPUs, APACE
among others, provides new capabilities to accelerate and automate scientific discovery.  reduces time-to-insight from days
However, some of these models have not been released to the public, breaking a strong to minutes. This framework may
tradition in the Al community. It has been argued that the sheer size of these Al models be readily linked with self-driving
prohibits their use by a large cross-section of potential users.

To address this shortcoming, we demonstrate how to combine large Al models with
high-performance computing platforms to empower a broad cross-section of users to full
exploit the capabilities of Al for scientific discovery. We have selected AlphaFold2 (10)
as the science driver for this study, since this AI model is revolutionizing discovery in
biophysics, and its use for accurate and rapid protein structure prediction (PSP) demands
an optimal use of modern supercomputing environments. Here, we demonstrate how t0  aytnor affiliations: 2Data Science and Learning Division,
optimize AlphaFold2 and its database, which exceed 2.6 TB in data storage, to reduce ~ Argomne ~National Laboratory, Lemont, I 60439;

. . Theoretical and Computational Biophysics Group,
the time needed for accurate PSPs from weeks to minutes. Beckman Institute for Advanced Science and Technology,

University of lllinois at Urbana-Champaign, Urbana, IL

. . : s 61801; SCenter for Biophysics and Quantitative Biology,
AlphaFold2’s Features. With a deep 1earn1ng teChnlque_based structure predlctlon, University of lllinois at Urbana-Champaign, Urbana, IL

AlphaFold2 (9) showed unprecedented performance at the 14th Community Wide 61801; YDepartment of Computer Science, University
: ie: : : : of lllinois at Urbana-Champaign, Urbana, IL 61801;
Experiment on the Critical - Assessmentof Techniques for Protein Structure Predic- *National Center for  Supercomputing  Applications,
tion (11), later improved further with multimer prediction (12). Ever since, efforts to University of llinois at Urbana-Champaign, Urbana, L
: : : 61801; 'Department of Computer Science, The University
make Alpha.Fole faste.r (13, 14), to .predlct protein complex, e.g., gptlbody (}O, 15), and Chicage, Chioago, 1L 60637 and SDepartment . of
to sample diverse protein conformations (16—18) have come to fruition. In this study, Physics, University of llinois at Urbana-Champaign,
we use AlphaFold2 version 2.3.0., as of August, 2023. The pre-trained neural network ~ Urbana, IL 61801
parameters used include both monomer and multimer v3.
AlphaFold2 utilizes Central Processing Units (CPUs) to compute key input features:

Itinl li MSA d st t 1t lat MSA t Author contributions:  E.A.H. designed research; H.P.,
mu tlp .6 sequenc§ a 1gnment ( )s and structura emplates. - represents a P.P.,and R.H. performed research; H.P., P.P.,and E.A.H.
collection of protein sequence homologues related to the query protein. MSA captures  contributed new reagents/analytic tools; ~ H.P., P.P., and
evolutionary relationships between various proteins such as conserved and variation ;Eé/;; analyzed data; and H.P., P.P., and EAH. wrote the
amino acid residues. MSA is computed using CPU-based sequence alignment algorithms ..., nors dectare no competing interest.
suchas J ackhmmer, which align a query protein sequence with known sequence " This article is a PNAS Direct Submission.
homologues obtained from databases such as Uniclust. AlphaFold2 can gleap key residucs, on © 2024 the Author(s).  Published by PNAS.
interactions from MSA (9). Furthermore, structural templates refer to experimentally  This open access article is distributed under Creative

3 ot L. : : Commons  Attribution-NonCommercial-NoDerivatives
known protein homologue structures that share s1gn1ﬁcant sequence similarity with the License 40 (GG BY-NG-ND).
query protein. These template structures are used to improve the accuracy of AlphaFold2s .
T . 0 whom correspondence may be addressed. Email:
predictions. CPU-based algorithms, such as HHsearch (for monomer) and Hmmsearch  eiihu@ani.gov.

(for multimer), search public protein structure databases such as the Protein Data Bank  pubiished June 24, 2024.

laboratories to enable automated
discovery at scale.
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(PDB). Then, AlphaFold2 extracts spatial information from the
template relevant to the query protein (9).

In the Graphics Processing Unit (GPU) phase, AlphaFold2
utilizes the features generated from MSA and templates, pass-
ing them through the evoformer network. Evoformer refines
representations for both the MSA and pair interactions while
iteratively exchanging information between them in a criss-
cross fashion to extract amino acid residue relationships. The
updated representations then enter a structure module, where
predictions for rotations and translations are made to position
each residue (9).

The resulting predicted 3D structure undergoes a relaxation
process via minimization by Molecular Dynamics (MD) engine
to enhance accuracy. Upon generating the final structure, the
information cycles back to the beginning of the evoformer blocks
in a recycle procedure, further refining the structure predictions.
Overall, AlphaFold2 is trained end-to-end, leading to remarkable
accuracy and reliability in predicting protein 3D structures (9).

APACE’s Improvement over AlphaFold2. We introduce APACE,
AlphaFold2 and advanced computing as a service, a computa-
tional framework to accelerate AlphaFold2 through CPU & GPU
optimizations, and distributed computing in supercomputing
environments. Key features of this approach encompass:

Data management. First, APACE facilitates the usage of
AlphaFold2’s2.6 TB Al model and database (9) by hosting

it at the Delta and Polaris supercomputers (19). AlphaFold2’s
neural networks can readily access data by leveraging solid state
drive (SSD) data storage, and Infinite Memory Engine (IME)
data staging.

CPU optimization. Second, inspired by ref. 13, APACE uses Ray
library’s (20) CPU optimization to parallelize CPU intensive
MSA and template computation calculations. As part of CPU op-
timization, APACE allocates higher CPU cores to MSA/template
search tools, rather than default numbers (4 or 8), which showed
heuristic speed improvement in our experiments. In addition, in
a similar manner as ref. 13, we also implemented a checkpoint to
circumvent redundant MSA/template steps if features.pkl file
exists, i.e., an intermediate file storing MSA/template search
result.

GPU opt'm,zat,on Thlrd, APACE uses Ray hbrary’s (20) GPU
optimization to parallelize GPU intensive neural network protein
structure prediction steps. An important key difference from
ParaFold (13) interms of GPU speedup is that, ParaFold
predicted one conformation with only model 1 (a template-
based pretrained model) mostly on peptide sequences (e.g., with
an average size less than 100 amino acid residues),rather than
protein sequences (i.e.;~ 400 amino acid residues and more). In
stark contrast, APACE predicts multiple protein conformations

for each protein sequence, and peptide sequence if necessary, withbinding protein bound with single-chain variable

all five pretrained models in parallel, which is computationally
demanding.

New functionalities. Fourth, APACE can predict multiple
monomer conformations per pretrained neural network model
(out of five models), a simple functionality existing only in
multimer prediction in the original AlphaFold2 model. APACE
includes functionalities such as enabling dropout during structure
prediction, changing number of Evoformer (9) recycles, or
subsampling MSA options, as provided in ref. 14.

Results and Discussions

We completed three computational experiments to carry out a de-

tailed comparison between APACE and the original AlphaFold2

https://doi.org/10.1073/pnas.2311888121

model. We describe each experiment at a time and then provide
the corresponding results.

These results were obtained using the Delta and Polaris
supercomputers, housed at the National Center for Supercom-
puting Applications, and at the Argonne Leadership Computing
Facility (ALCF), respectively. Both machines provide highly
capable GPU-focused compute environment for GPU and CPU
workloads.

Delta offers a mix of standard and reduced precision GPU
resources, as well as GPU-dense nodes with both NVIDIA and
AMD GPUs. It also provides high-performance node-local SSD
scratch file systems, as well as both standard Lustre and relaxed-
POSIX parallel file systems spanning the entire resource. On
the other hand, the Polaris supercomputer has 560 nodes. Each
compute node consists of 1 AMD EPYC Milan processor, four
NVIDIA A100 GPUs, unified memory architecture, two fabric
endpoints, and two NVMe SSDs. The system interconnect is
HPE Slingshot 11, and uses a Dragonfly topology with adaptive
routing.

We compared APACE and AlphaFold2 performance using
both NVIDIA A100 and A40 GPUs in Delta, and NVIDIA
A100 GPUs in Polaris. The computational benchmarks we report
below in terms of CPU and GPU runtimes  were extracted
from the generated timings.json file of both APACE and
AlphaFold2.

Experiment 1: Predicting Structures for Four Benchmark Pro-
teins. Four proteins were selected as benchmarks to assess

the effectiveness and operational proficiency of APACE. To
predict protein structures with APACE, we developed scientific
software that enables users to provide suitable headers in
sbatch scripts and to load the appropriate environment  and
module, that are used to successfully submit and complete
simulations in the Delta and Polaris supercomputers. These are
the Simple Linux Utility for Resource Management (SLURM)
parameters we used: --mem=240g, --nodes=10, --exclusive,
--ntasks-per-node=1, --cpus-per-task=64, --gpus-per-task=4,
--gpus-per-node=4. The neural network and MSA/template-
related parameters were the same as AlphaFold2.

Monomers. We used the monomer protein 6AWO (serotonin
transporter) as a basic structure to test baseline prediction
accuracy and conformational diversity using a total of five models.
Thus, we created a Ray cluster consisting of eight NVIDIA
A100/A40 GPUs (equivalent to 2 A100/A40 GPU nodes in Delta
and Polaris) to facilitate both CPU and GPU parallel execution
and relaxation for all five models, i.e., one structure per model,

as in the case of AlphaFold2.

Multimers. For multimer proteins, we tested 60AN, Duffy-
fragment
antibody (15); 7MEZ, phosphoinositide 3-kinase (10); and
6D6U, a three distinct chain heteropentamer GABA transporter,
which represents a more challenging case for multimer prediction.
For each of these proteins, we had eight structure predictions per
model, yielding a total of 40 predictions (five ensemble modes
eight predictions per model). To facilitate concurrent execution
and relaxation for the entire array of 40 models, 40 NVIDIA
A100 and also 40 A40 GPUs (10 A100/A40 GPU nodes) were
harnessed using a Ray cluster.

To initiate a Ray cluster utilizing compute nodes (as described
in Methods), we first fetched a list of available compute nodes and
their IP addresses. We then launched a head Ray process using
one of these nodes, referred to as the “head node.” Subsequently,
we started Ray worker processes for the remaining compute

pnas.org
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Table 1 . Performance benchmarks between off-the-shelf
framework for four exemplar proteins

AlphaFold2 and our APACE CPU & GPU optimized

# of AlphaFold2-A40 AlphaFold2-A100 APACE-A40 APACE-A100 AlphaFold2-Polaris APACE-A100 Polaris
Protein ensembles CPU/GPU [min] CPU/GPU [min] CPU/GPU [min] CPU/GPU [min] CPU/GPU [min] CPU/GPU [min]
1. 6AWO 5 33.0/17.7 33.0/12.8 16.1/4.0 16.1/2.9 189.0/46.8 92.2/9.4
2. 60AN 40 99.1/268.1 99.4/181.4 56.5/7.9 57.1/5.6 306.2/593.5 175.9/14.8
3. 7MEZ 40 100.7/3756.3 100.7/2339.4 58.0/100.1 58.8/63.0 556.2/3640.9 324.8/91.0
4. 6D6U 40 143.6/1528.7 143.8/786.9 89.3/72.2 89.4/35.1 485.9/1279.1 302.1/32.0

We present results for two types of GPUs available in the Delta supercomputer, NVIDIA A40 and A100 GPUs. We also present results using the Polaris supercomputer housed at the ALCF.

nodes. Each worker is equipped with all four GPUs, and Ray
automatically determines the utilization of available GPUs for
running and relaxation of models. The workers are then linked
to the head node by providing the head node’s address.

We utilize srun via message passing interface (MPI) to start
the workers on the compute nodes. This is necessary because
the sbatch script executes solely on the first compute node.
Given the simultaneous launch of all Ray processes using MPI,
we incorporate safeguards to prevent race conditions.The race
condition safeguards ensure that the head node is started before
the worker nodes and the beginning of predictions.

After the underlying Ray cluster was ready, we established
a connection to it using ray.init within the run_alphafold.py
code and initiated the prediction of the protein structure using
APACE. Ray automatically allocates resources and concurrently
executes MSA tools on CPUs, model runs, and model relaxation
on a distinct GPU. This operation efficiently harnesses the full
computational potential of both CPU cores and GPUs available
on the compute node.

Experiment 1: Results and Discussion. ]
CPU acceleration. Through the implementation of parallel

optimization techniques, APACE achieved an 1.8X average CPU
speedup in Delta, and 1.78X average CPU speedup in Polaris.
These results are independent of the number of compute nodes.
GPU acceleration. APACE achievessignificant GPU speedups.
The following results were obtained using 8 GPUs for 6AWO,
and 40 GPUs for 60AN, 7TMEZ, and 6D6U:

1. 6AWO. 4.4X speedup on both A40 and A100 GPUs for
Delta; and 4.98X speedup on Polaris.

2. 60AN. 34 X and 32.4 X speedup on A40 and A100 GPUs,
respectively, for Delta; and 40.K speedup for Polaris.

3. TMEZ. 37.5X and 37.1X speedup on A40 and A100 GPUs,
respectively, for Delta; and 40X speedup for Polaris.

4. 6D6U. 21.2X and 22 X speedup on A40 and A100 GPUs,
respectively, for Delta; and 4 speedup for Polaris.

We summarize these results in Table . We also note that
prediction times are consistently shorter when using NVIDIA
A100 GPUs. In brief, APACE provides remarkable speedups
for basic and complex structures, retaining the accuracy and

Table 2.

robustness of the original AlphaFold2 model. Furthermore,
APACE can readily be used for analyses at scale using hundreds
of GPUs, as shown below.

Experiment 2: Predicting Protein 7MEZ using 100 and 200

NVIDIA A100 GPUs. To quantify the performance and scalability
of APACE in the Delta and Polaris supercomputers, we con-
ducted protein 7MEZ predictions utilizing a significant number
of compute nodes. Specifically, we utilized 100 NVIDIA A100
GPUs, which correspond to 25 A100 GPU compute nodes to
generate predictions (20 predictions per model). Likewise,we
leveraged the computational power of 200 NVIDIA A100 GPUs,
equivalent to 50 A100 compute nodes to generate a total of 200
predictions (40 predictions per model). To predict the structures,
the sbatch script was modified to allocate the correct number of
compute nodes. We also modified the srun and singularity run
parameters to successfully complete these calculations.

Experiment 2: Results and Discussion. APACE delivered re-
markable speedups. If we compute 100 ensembles (distributed

over 100 GPUs) for protein 7TMEZ, APACE completed the
required calculations within 67.8 min, as opposed to Al-
phaFold2’s 6068.8 min (101.1 h/4.2 d) in Delta. In Polaris, we
observe that APACE reduced time-to-solution from 8793.3 min
(146.5 h/6.1 d) to 87.9 min.

Similarly, if we now require 200 ensembles for the same
protein, APACE in Delta completed all predictions within
64 min, as opposed to the 12023.3 min (200.4 h/8.3 d) that
would be needed using the original ~AlphaFold2 method. In
Polaris, APACE reduced time-so-solution from 12741.2 min
(212.4 1/8.8 d) to only 84.9 min.

Finally, using 300 ensembles for protein 7TMEZ, APACE in
Delta completed all predictions within 68.2 min, as opposed to
the 18064.3 min (301.1 h/12.5 d) that would be needed using
the original AlphaFold2 method. In Polaris, APACE reduced
time-so-solution from 15295.6 min (254.9 h/10.6 d) to only
76.9 min. These results are summarized in Table 2.

Experiment 3: Ensemble Diversity of APACE. AlphaFold2’s in-
herent limitations restrict us to generating merely five predic-
tions per monomer, e.g., one prediction per model, thereby

Performance benchmarks between off-the-shelf AlphaFold2 and APACE for protein 7TMEZ

AlphaFold2-Delta APACE-Delta AlphaFold2-Polaris APACE-Polaris
Nodes/ensembles CPU/GPU [min] CPU/GPU [min] CPU/GPU [min] CPU/GPU [min]
25/100 100.7/6068.8 58.8/67.8 556.2/8793.3 324.8/87.9
50/200 100.7/12023.3 58.8/64.0 556.2/12741.2 324.8/84.9
75/300 100.7/18064.3 58.8/68.2 556.2/15295.6 324.8/76.9

We present results for 25, 50, and 75 nodes in Delta and the Polaris supercomputers. Each node has 4 NVIDIA A100 GPU.
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confining the diversity of protein conformation. Moreover,
fine-tuning parameters such as dropout remain inaccessi-
ble. However, we successfullyaddressed this constraint by
adapting the ColabFold (14) code. For experimental pur-
poses, we generated 100 structures for protein 6AWO using
--num_multimer predictions _per model=20 while employing
the parameter --use_dropout=True. This was accomplished by
configuring the sbatch script with the appropriate parameters.
APACE enables users to select the following options (14):

Ensemble of structure module with -num_ensemble,
Control for recycles with --num_recycles,

Subsampling of MSA with --max_seq, --max_extra_seq,
Evoformer fusion with --use_fuse,

Bfloat16 mixed precision with --use bfloat16,
Bernoulli-masking based diverse conformational sampling
with --use dropout.

Nk L=

Experiment 3: Results and Discussion.

Protein structure prediction and conformational diversity by
APACEWe have modified AlphaFold2 code to mirror Co-

labFold (14)’s versatile protein structure prediction pipeline
parameter customization. With these improvements, we have
successfully expanded the spectrum of predictions, thereby
enhancing the overall reliability of the predicted structures.
Although protein structure prediction is of great significance,
we would like to expand APACE to predict  conformational
diversity since proteins are not static but malleable and flexible
structures. Sampling a wide range of conformational ensemble
is important for drug discovery (16—18). In the case of 6AWO
(~500 amino acid residues), Fig. 1, we used our parameter cus-
tomization enhancements (with the option --use_dropout=True)
and predicted 100 structures of serotonin transporter (SERT).
We have found that the structure predicted by APACE is
comparable to the ground truth structure. When we visualize
most variant transmembrane domain alpha helices (cyan in
the Right panel), we observe that TM2, TM6, TM10, and
TM12 are highlighted. Among these, TM6, TM 10, and TM12
are responsible for conformational change or ligand binding
from outward-facing to inward-facing structures (22—24). This
implies that APACE learned patterns to predict a wide range of

Fig. 1. Protein structure used to test APACE:
accession: 6AWO; shorthand SERT). The Left panel is 100 SERT predicted
conformational ensemble overlaid, which has good agreement with ground
truth SERT. The Right panel is high variant transmembrane domains, shown

in cyan, and computed with root mean square fluctuations overlayed. Figures
are generated with Visual Molecular Dynamics (21).

serotonin transporter (PDB

https://doi.org/10.1073/pnas.2311888121

Fig. 2. Protein structure used to test APACE: the antibody—antigen complex
Plasmodium vivax Duffy-binding protein (PDB accession: 60AN). The struc-
ture has good agreement with ground truth bound structure conformation.

The predicted conformational ensemble of complementary determining
region (CDR; loops) of the antibody (red) binding against helical secondary
structure epitopes of antibody (blue) are predicted well when compared to
ground truth.

conformational landscape of SERT. APACE makes an accurate
prediction for SERT, which is an integral membrane protein.
Even without the presence of membranes, APACE manages
to predict transmembrane domains with high accuracy, hence
demonstrating APACE’s promise in drug discovery research.
In the case of 60AN, 7MEZ, and 6D6U ( ~600, 2,000, and
1,800 amino acid residues, respectively), we have multimer
predictions. Both 60AN and 7MEZ in Figs. 2 and 3 each
predict conformational ensemble of heterodimer structures
with high accuracy. Especially, the interface binding pose is
well predicted and comparable with ground truth structures.
Although there may be minor errors in predicted secondary
structures not involved in interface binding, correct interface

Fig. 3. Protein structure used to test APACE:
(PI3K) consisting of p110 ¥ and p101 subunits (PDB accession:
structure has good agreement with ground truth bound structure confor-
mation. Although there are mispredictions of loop secondary structures in
p101 (red; Top Left helical loop; mispredicted as alpha helix rather than loop)

a phosphoinositide 3-kinase
7MEZ). The

subunit, the interface binding pose between p101 and p110 7 (blue) is well
predicted, implying conserved binding interface in evolution. Also, rest of
the secondary structures and overall heterodimer structure of the predicted
conformational ensemble are comparable with ground truth structure.

pnas.org
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Fig. 4. Protein structure used to test APACE: a pentameric GABA 5 receptor
(PDB accession: 6D6U). We show one predicted heteropentamer structure of
neurotransmitter GABA A receptor. The Left panel shows a comparable struc-
ture with ground truth predictions. Blue and gray chains form a homodimer
while red and orange chains form the other homodimer. Yellow chain is a
monomer differing in sequence from other two homodimers. However, the
location of transmembrane helices (toward the paper direction) does not
exactly reproduce the ground truth structure. This is understandable since
APACE does not use membrane as an input to predict the transmembrane
domain. However, the overall structure is comparable with the ground truth.

On the other hand, in the Right panel, we see an Al-predicted protein whose
structure is erroneous, and where blue and gray chains bind to each other.

This structure may have high thermodynamic instability and steric hindrance
when being crystallized.

binding pose between proteins by nonbonded interactions is
of greater importance. Minor misfolding may be addressed
with methods such as MD, Monte Carlo, and protein design
tools (25-38).

In 6D6U in Fig. 4, we observe comparable structure (Left
panel) with ground truth and wrong structure (Right  panel)
with wrong homodimer location predictions. Since 6D6U is a

membrane pentameric heteromer protein, it lends a challenging

case of predicting not only correct structure of each monomer
but also alternating chain patterns. The transmembrane helices

are therefore mispredicted but overall structure is still comparable Limitations of AlphaFold2 Model.

with ground truth.

In short, we have demonstrated APACE’s capabilities to
predict protein structures, mirroring AlphaFold2’s robustness
and accuracy, and providing remarkable speedups, reducing

time-to-solution from days to minutes. APACE may be limited
occasionally when it comes to predicting transmembrane proteins

and/or multi-chain multimers, features it has inherited from
AlphaFold2.

Methods

Given thatDeltaand Polaris’&ontainesupportis only availabldor

Running the Singularity image built using the default Dockerfile resul
an HHsearch (used for template search against PDB database) runti
To address this issue, modifications were made to the Dockerfile. Ini
the Dockerfile involved cloning and compiling the HHsuite package ft
source locally, which posed portability challenges across different mg
The compilation process with cmake relied on the processor architec
the user’'s machine, potentially leading to compatibility issues. For ins
the user building the Docker image locally had a processor with an Ir
SetArchitecture (ISAatdiffered from Delta’s supported architecture,
HHsearch encountered a runtime error with “lllegal Instruction.”

To address this issue and ensure cross-machine cowpatibiliy,
modifications to the DockerFile. Instead of compiling HHsuite from sc
we adopted a differapproach by installing HHsuite using a statically
compiled version that supports the AVX2 ISA. This modification elimi
the dependency on local processor architecture during the build proc
mitigating the potential runtime errors and enhancing the portability ¢
Singularity image.

4. To completéhe setup,we created an outpudirectorydefaultis
/tmp/alphafold) and ensured that it had the necessary permissions to
writing.

5. Due to Delta and Polarig®sence obockesupportthe standard
run_docker.py scrgas notiablelnsteadwe devised a custom shell
script to replicate the essential functionality of run_docker.py. Emplo
a singularity run command effectively bound the necessary mounts
and passed the required flags for exewitioning the procedure of
run_alphafold.py with Docker.

6. Upon completion of the deployment process, the output directory cor
the predicted structures of the target protein, accurately obtained thre
AlphaFold2’s advanced prediction capabilities.

In conclusion, deploying AlphaFold2 on Delta and Polaris required a
modifications to account for Singularity containerization. Through this aj
we successfully integrated AlphaFold2’s pasteirfiiolding prediction
capabilities into these supercomputers’ environments.

The originalphaFold2 modelhile
highly accurate in predicting protein struttbesebave some limitations
in terms of computational efficiency. Some of the key limitations include

1. Long Inference Time: The time taken for the model to make predictio
considerable, especially for larger and more complex protein structur
can hinder its use in time-sensitive applications. Such long time infer
including both CPU and GPU computations have been reported and
elsewhere in the literature (13).

2. Computationallgtensive/Limited Real-Time Prediclioasriginal
AlphaFold2 modslcomputationally demandiaguiring significant
computationassources and time for accurate predictiansample,

MSA and template search have to be performed in CPU while GPU i
utilized for each structure predibtidimjin a sequenti@annerThis

Apptainer/Singularity (39), we modified the instructions provided in Alpg&Fetgits applicability for real-time predictions or on hardware with

GitHub repositomhich are intended for Docker containeBgl@h0)we

computational power. The computational demands of the model may

describe the steps followed to deploy AlphaFold2 on Delta and Polari§e@lejme prediction of protein structures, making it less suitable for ti

sensitive applications.

1. We began by cloning the AlphaFold2 directory from DeepMind éghdResdgatedntensive: AlphaFold2’s inference requirescmipsizntial

to the respective directditye code is availablehttps://github.com/

hyunp2/alphafold/tree/main.

tional resources, including powerful GPUs or tensor processing units
may limit its accessibility to researchers or institutiorecedtotd

2. Next, we downloaded the necessary genetic databases for MSA capdgiriegd hardware. Also, the storage of database amounts to 2.6 TB
sequence representation, as well as for template similarity capturingayriataereceed normal workstation storage capacity.
representation. We also downloaded AlphaFold2 model paramederdlesqaiseRequirements: The model’s memory footprint can be substa
for AlphaFold2’s functioning. Every database and model paramete(wsthpaiger protein requiring higher GPU memory), making it challen:

date (as of August 2023) and the multimer version is v3.

to process multiple protein structures concurrently, particularly on me

3. Since Singularity is used on Delta and Polaris for containeresupportyith limited RAM.
built the Singularity image by initially building the Docker image foc8lhgle GPU Utilization: The original AlphaFold2 model is designed tc

Afterwardye pushed thi®ockeimage to DockerHubtilizing the

a single GPU during inference, limiting its capability to work with mul

singularity pudbmmanadaye converted the Docker image to SingularitsPUs. As a result, it predicts and relaxes one protein structure (save
sif format, making it compatible with Delta and Polaris environmenfie format) at a time sequentially.
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6. Othemotentialimitations include bate notlimited to little protein  within the modeténsemblé/Vhen running AlphaFold2/ARMAEES, can
conformation diversity. Predicting correct, yet diverse protein cospartifattbesyalue for this flegeby controlling the number of predictions
is a significant task for drug discovery, partially addressed in refgehéraedlily each mddes. collective predictions from each model in the

model ensemble offer diverse final predicted 3D structures, e.g., plasme

Key Optimizations in APACE. 10 transcend the limitations of AIphaFoldQ[‘\ﬁépa"t'C protease causing maIaan(rilgﬁ),are cruci@l unQergtand
implemented optimizations in both CPU and GPU corsiviviatidior free energy Iandscapeppitelln gonformatlons and to identify important
enhanced efficiency and performance. qrug dlscpvery targegptic bln.c'hng pocktfts:ontrast to AlphaFold?2,

CPU optimization. AlphaFold2 utilizes Jackhmmer to conduct MSA selpehidedin APACE a capability to pnedticle monomer structures per
Uniref90, clustered MGnify and small Bulk File Distribution (BFD) dEfécB’dse., n . . .

the other hand, it employs HHBIits for MSA search on large BFD and Ul§i@tigi8ghiphaFold2 modeldesigned to use a single ,GPU during
databases. In addition, AlphaFold2 utilizes HHSearch for template ‘SeieRcsyhib does ndeke fulladvantage afeep learning’s parallel
PDB70 in the monomer case and Hmmsearch for template search §§&7etippaapabilities. During GPU utilization, AlphaFold2 performs se

Segres in the multimer case. For the multimer only, Jackhmmer baSEdatipRIediction, which is one of the reasons why AlphaFold2 takes
database parsing step exists as well. time tillcompletion (13) (LimitatiomlpfiaFold2 Modeljo expedite the

To process a single quesiphaFold2 limits itstsf8 CPU cores for GPU phase, we used the Ray library for GPU parallelization as well for

Jackhmmer, four CPU cores for HHblits, and eight CPU cores for Hifi€&Rach ensemble model and its corresponding predictions are
Given the vast database sizes (around 2.6 TB) and the considerabl€ i GPAS for structure prediction. As a result, APACE can harne:
access involved, the MSA search for a single prediction can take s&ers fogficiently run models in panatisdedly expediting the overall

significantly impacting the overall runtime (see Limitations of AlphaFRJRS $ifkProcess. .
for bottlenecks for CPU computation). Following prediction by each model, the corresponding structure und
To expedite the CPU stagejmplemented an approach inspired b relaxation process in a sequeraiaier in AlphaFoldd.enhance the
ParaFold (13). By orchestrating the three independent sequential M§i&igBaycplihis step,once more harnessed the power of the Ray library
in parallelAPACE significantly enhances the dg&#daxfnstruction.  in APACEhrough this optimizateach structure predicted by ensemble
contrast to AlphaFold2, where UniRef90, MGnify, and BFD datase®f warégiais@ssigned to an individedicated GPfdcilitating parallel
sequentially using Jackhmmer and/or HHblits (for large BFD), APA@Exatiploypedcessing. This enhancement by APACE has substantially r
the Ray library (20) to simultaneously initiate three processes, enabliogasiSidg timeontributing to the overaltceleration dfe relaxation
searches to run concurrently. process.
Additionallywe allocated 16 CPU cords each MSA search tool
and template search tdalckhmmeir{Hblitsand HHSearch/Hmmsearc .
(monoer/muItimer). By running all three MSA tools in parallel, ut”gﬂgg&g%'ons
of 48 CPU cores, we achieved a substaptaldl@in performance. We have introduced APACE, a framework that retains the
After increasing the number of CPU cores, we observed remarkabiaispred and accuracy of AlphaFold2, and which leverages
enhancements in the MSA computation. However, beyond 20 CPUgpegsofhfuting to reduce time-to-insight from days to minutes.
speeq-up in MSA cglculat!on plateaued. This observat.ion un\_/eiled e hetttena@mplished this by a) making an efficient use of
as being related to inptatrievatatherthan CPU processirgdering  the Delta and Polaris supercomputer systems’data storage and
it |nput-.boundfh|s |nherent.nat.ureb<.amg |nput-boupd presepts hurdleg, i, staging; b) optimizing CPU and GPU computing;  and
for stralghtforwarq parallelization (i.e., CP_U multiprocessing or MP ing scientific software to enable the prediction of
Upon the completion of parallel computation for MSA, the templatecﬁﬁ%%a gnal ensemble of protein structures. These tools are

multimer Jackhmmer-Uniprot, sequentially ensue. r . . . - .
. : . . eleased with this manuscript to provide researchers with a
To further enhance speed in CPU intensive MSA computation, we m de tw o . .
key optimizatioirstye migrated the entire datas&SDminimizing (oM ataiRal framework that may be readily linked with robotic

data retrieval time. Additionally, we leveraged the IME to stage thelgg g%g%rﬁ%sto aytomate and accelerate scientific discovery.

into the SSD cache within the /ime file system. This pre-staging allowed jobs to

swiftly access and utilize the required data. IME is a DataDirect Nepaarkm&alii@nd software Availability. 1 he data and scientific software
designed to facilitate fast data tiering between compute nodes andree@ldeslykierproduce this work are availabifesatgithub.com/hyunp2/
within a high-performance computing (HPC) environment. alphafold/tree/main (41).

The MSA and structural template search results acquired on CPUs are stored

in fe.a.tures.pldnd passgd to the neunaitwork fopreQiction on GPUS. ACKNOWLEDGMENTS. This work was supported by Laboratory Directed Re
Additionally, we have incorporated a code check in our pipeline to gggy&ﬂvg,qg Development funding from Argonne National Laboratory, pr

CPU-burden_ing MSA compuiiirisf features.palready exists (as a the Difectcp,ffice oBciencefthe United States (U.S.) Department of
result of storing features.pkl by successfully executing CPU comp th,n aLneéaesr Contract No. DE-AC02-06CH11357. E.A.H. was partiall
once for a given protein sequence), the pipeline skips the MSA and’s IS ard OAC-2209]§9§ research used resoﬁrd:lt:ve.éff onng y
template search and computation steps and proceeds directly to pre%hc h ’ 9

protein structurie,a similar manner as r&3. This optimization ensures"ea ers%ip Computing Facility, which is a Department of Energy (DOE)

efficient processing and avoids redundant computations. of Science User Facility supported under Cpntract DE-ACOImﬁCHﬂSE

GPU optimization. AlphaFold2/APACE employs an enseinbleatral research used the Dglta adva!nced computlpg and data resource which

network models to predict the 3D structure of proteins. This ensemBHPRYPRSRH the National Science Foundation (award OAC 2005572)

entails using multiple pretrained models with slight variations hype fgris Delta is a joint efforttbé University lifnois at Urbana-

for protein structure prediction. The three models out of five make préamggign and its NatioGehtefor Supercomputing Applicatiths.

based on MSA (i.e., models 3 to 5) while the other two models (i.e 2uHdRIsigcknowledge support from the Nestitatel of Geneliédical

1 to 2) also rely on templates. For details of how the five models diffsicngsrdiée Nationahstitutes dfiealth under awards P41-GM104601,

the refer to refs. 9 and 18 R24-GM145965, and R01-GM123455. The content is solely the respon:
The “--num_multimer_predictions_per_model" flag governs the nilnalsethors and does not necessarily represent the official views of the

of independemtredictions made by each indivieuadhetwork model Institutes of Health.
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