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Abstract
Spatial-temporal data is a prevalent data type in biomedical do-
mains, encompassing instances like multi-channel EEG and fMRI.
In the analysis of such data, the connectivity matrix (e.g., func-
tional connectivity derived from fMRI, covariance matrix derived
from EEG) is widely extracted and analyzed. Rather than analyzing
these matrices within the Euclidean space, this paper considers
each matrix as a point situated on the manifold of positive semi-
definite (PSD) matrices coupled with Bures-Wasserstein (BW) met-
ric. Within this framework, two machine learning models based on
the BW metric are proposed for the classification of PSD matrices
on the manifold. Specifically, projection map techniques, based on
the BW metric, have been introduced and integrated into machine
learningmodels such as support vector machines and random forest.
In comparison with Euclidean methods, our approach considers the
geometry of the Riemannian manifold where PSD matrices reside.
Moreover, compared with prevalent Affine-Invariant (AI) metrics,
our framework does not require matrix regularization and is com-
putationally efficient. To comprehensively evaluate the proposed
methods, four fMRI datasets and three brain-computer interface
datasets with varying dimensions and quantities have been utilized.
The results demonstrate comparable and even superior performance
of the proposed methods compared with Euclidean and AI-based
approaches.
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1 Introduction
Positive semi-definite (PSD) matrices play a pivotal role in address-
ing various challenges in machine learning, particularly when deal-
ing with high-dimensional data, including metric and kernel learn-
ing [1–5], medical diagnosis [6, 7], natural language processing
[8–10], computer vision [11, 12], object detection [13, 14], etc. In
this study, we focus on the development of machine learning al-
gorithms for PSD matrices classification, and applying it to neuro-
science data, including EEG-based Brain-Computer Interface (BCI)
[15] and functional Magnetic Resonance Imaging (fMRI) [16] data.
BCIs serve as a crucial link between the human brain and exter-
nal devices by recording brain signals and translating them into
commands for devices to execute users’ imagined actions. In the
analysis of BCIs and fMRI data, vital spatial and temporal character-
istics are efficiently represented through covariance or correlation
descriptors. In the case of BCIs, covariance matrices are utilized
in EEG analysis, while fMRI analysis incorporates functional con-
nectivity matrices expressed through Pearson’s correlation and
structural connectivity matrices based on the number of fibers con-
necting Regions of Interest (ROIs). The shared characteristic across
these applications is the inherent structure taking the form of a PSD
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matrix, its effectiveness is also highlighted in diverse classification
tasks, such as image processing [17], pattern recognition [18], and
computer vision [11], etc.

The classification of covariance/correlation matrices typically
and initially commences in Euclidean space. In this process, the
matrices are first half-vectorized since they are symmetric. Then,
they are transformed into concise one-dimensional feature vectors.
As the dimensionality of these matrices escalates, feature selection
techniques are applied to effectively achieve dimension reduction.
Following this, a classification algorithm, such as Support Vector
Machines (SVM) or k-Nearest Neighbors (k-NN), is carefully chosen
for the training phase. During this training stage, the classifier is
fed with the vectorized and normalized covariance matrices, along
with their respective labels.

This approach enhances the classifier’s capability to discern intri-
cate patterns and relationships within symmetric matrices, thereby
establishing a robust foundation for accurate predictions when ap-
plied to testing data. However, it is noteworthy that matrices classi-
fication in Euclidean space possesses certain limitations, including
sensitivity to the dimensionality, the assumption of linearity, and
limited flexibility. In response to these constraints, symmetric
matrices classification in manifold space, such as the Riemannian
manifold, is purposefully designed to mitigate these shortcomings
[19–21]. The Riemannian manifold provides a more flexible frame-
work for capturing non-linear relationships, making it particularly
suitable for working with these matrices, which naturally reside on
such manifolds. This manifold-based approach allows for a more
accurate representation of the underlying structure of symmetric
matrices, proving especially advantageous in applications like neu-
roscience data analysis, where relationships among variables are
often intricate and non-linear. Therefore, analyzing these matrices
in Riemannian space allows for a more accurate characterization
of brain connectivity patterns.

Recent research has conducted the symmetric matrices classifica-
tion on the manifold P= of = × = symmetric positive definite (SPD)
matrices using Affine-Invariant (AI) Riemannian metric by treating
them as positive definite matrices. Utilizing the AI distance, various
statistical and computational methodologies have been developed
[22-29] for the comprehensive analysis of covariance and correla-
tion matrices, encompassing tasks such as barycenter estimation
and matrix classification. However, calculating the AI distance
can be computationally intensive and unstable, especially for large
matrices. Moreover, in the case of high-dimensional data, the covari-
ance/correlation matrix often exhibits positive semi-definiteness.
The probability of encountering zero eigenvalues significantly rises
with the increasing dimensionality of the covariance matrix, ren-
dering the application of AI distance impractical and leading to
inaccuracy in the classification of PSD matrices. In contrast, the
Bures-Wasserstein (BW) metric naturally handles these challenges
without requiring matrix regularization. The BW metric accounts
for data variations, ensures stability with ill-conditioned matrices,
and maintains computational efficiency without additional pertur-
bations [30]. In this paper, we introduce two machine learning
algorithms tailored for the classification of PSD matrices on their
manifold, utilizing the BW distance as a key metric. Specifically,
we first propose a BW-based classification algorithm by projecting
all PSD matrices onto the tangent space, that is computed based

on BW metric. Subsequently, considering the variability of feature
distributions between BCI sessions, we derive the BW-based adap-
tive classification algorithm by adding the scalar during projection.
We assess the performance of the proposed algorithms and validate
the superiority of BW metric using seven real datasets, including
fMRI and EEG-based BCI data.

The subsequent sections are structured as follows: In Section 2,
we provide some preliminary information about the AI and BW
metric and the Fréchet mean algorithm. In Section 3, we propose
two BW-based projection algorithms for PSDmatrices classification.
In Section 4, the cross-validation classification results on five real
data are presented, and we further compare the results with those
publicly listed on the BCI competition leading board. In Section 5,
we summarize our contributions and conclude this paper.

2 Preliminary Information
In this section, we briefly introduce the concepts and tools of Rie-
mannian geometry for the spaces associated with symmetric posi-
tive definite (SPD) and positive semi-definite (PSD) matrices.

Let S= denote the set of = × = symmetric matrices in the
space of general real matrices M= , i.e., S= = {( ∈ M=, (

) = (}.
The set of all = × = SPD matrices can be denoted as P= =

{% ∈ S=, uZ%u > 0, ∀u ∈ R=}. Similarly, the set of all = × = PSD
matrices can be denoted as P̄= = {% ∈ S=, uZ%u ≥ 0,∀u ∈ R=}. Ad-
ditionally, the application of logarithmic and exponential functions
extends the compatibility of numerous methods designed for Eu-
clidean tangent spaces to the manifold. Moreover, projection maps
in both metrics are also incorporated. The tangent space at a matrix
� ∈ S= , i.e., )�S= , can be identified with the space H= of = × = real
symmetric matrices. This tangent space is Euclidean space E= .

2.1 Affine-Invariant (AI) Riemannian metric
For two positive-definite (PD) matrices � and � ∈ P= , the AI dis-
tance is

3�� (�, �) =
(
=∑
8=1

log2_8
(
�−1�

))1/2
(1)

where _8 (�−1�), 8 = 1, . . . , =, are the eigenvalues of �−1�. � can
be projected to the tangent space spanned at �, )�P= , via the loga-
rithmic map:

log��� (�) = �1/2logm
(
�−1/2��−1/2

)
�1/2 (2)

where logm(·) denotes the logarithm of a matrix [34]. Moreover,
the exponential map projects any elements, i.e., Hermitian matrix
- ∈ H= , from the tangent space )�P= back to the manifold by:

exp��� (�) = �1/2expm
(
�−1/2��−1/2

)
�1/2 (3)

Where expm(·) denotes the exponential of a matrix [31].

2.2 Bures-Wasserstein (BW) metric
The Bures-Wasserstein (BW) distance between �, � ∈ P= is defined
as [32]:

3�, =

{
tr (� + �) − 2tr

(
�1/2��1/2

)1/2}1/2
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=

{
tr (� + �) − 2tr(��)1/2

}1/2
(4)

The corresponding BW geodesic on P= is defined as:

�♦C� = (1 − C)2� + C2� + C (1 − C)
[
(��)1/2 + (��)1/2

]
(5)

The Wasserstein (BW) mean is the mid-point of the geodesic:

�♦� = �♦1/2� =
1
4

[
� + � + (��)1/2 + (��)1/2

]
(6)

The logarithm function on P= under the BW metric has been
described in [32], [33], and [34]. For any �, � ∈ P=, - ∈ H= , we
have

log�,
�

(- ) = (��)1/2 + (��)1/2 − 2�, (7)

Moreover, the concise form of the exponential map has been
proposed by [38]. Let �♦� deonte the Hadamard product of ma-
trices � and � of the same size. Suppose � ∈ P= has the spectral
decomposition � = *Λ* ∗, where * is an orthogonal matrix and
Λ = diag(_1, . . . , _2). Then for every Hermitian matrix - ∈ H= ,
such that �= +, ◦ -* is PSD, -* ≔ * ∗-* , we have

exp�,
�

(- ) = � + - +* [(, ◦ -* ) Λ (, ◦ -* )]* ∗, (8)

where, = ( 1
_8+_ 9

)
=×=

.
Unlike the AI metric, the above formulas (2.4)-(2.8) for BW dis-

tance, BW geodesic, BW mean and BW projection maps can be
extended to the closure of P= , i.e. the set P̄= of = × = positive
semi-definite (PSD) matrices.

2.3 Fréchet Mean Algorithm
Given a collection of matrices �1, . . . , �< ∈ S= , their centroid can
be estimated using the Fréchet mean with manifold based distance,
e.g., 3�, and 3�� :

�̄ (�1, . . . , �<) = arg min
"∈P̄=

<∑
8=1

32◦ (�8 , ") (9)

The Fréchet mean is also known as the Karcher mean and the
barycenter in the literature (e.g. [32, 36]). [35] proposed three
methods, i.e., the inductive algorithm, the projection algorithm,
and the cheap mean algorithm to estimate the Fréchet mean of
PSD matrices. They suggested using BW distance along with the
projection mean algorithm for the analysis of high-dimensional
data, such as BCI data. Hence, in this study, we utilize the projection
mean algorithm to estimate the Fréchet mean and propose SVM
algorithm on the manifold equipped with BW metric.

The projection mean algorithm is constructed based on the idea
that the arithmetic center of the projections of �1, . . . , �< onto the
tangent space at the barycenter � is exactly the projection of � .
Suppose the error tolerance in the stopping criteria is denoted as
n , the process of the algorithm on the manifold equipped with BW
metric is described below.

In practice, the iteration process stops when3�, (( (; ) , ( (;−1) ) ≤
n , and ( (; ) is the estimated Fréchet mean. The projection mean
algorithm process on the AI manifold is similar, with the logarithm
and exponential functions replaced by (2.2) and (2.3) respectively.

Algorithm 1 Fréchet Mean Algorithm

1) Set ( (0) ≔ 1
<

∑<
9=1� 9

2) Given ( (; ) for some ; ∈ N, update ( (;+1) as follows:
(a) Project {�1, . . . , �<} onto the tangent space at ( (; ) using (2.7):
-

(; )
9

≔ (( (; )� 9 )
1/2 + (� 9(

(; ) )1/2 − 2( (; ) .
(b) Compute the arithmetic mean of the projection vectors:

- (; ) ≔ 1
<

<∑
9=1

-
(; )
9

= 1
<

<∑
9=1

[(( (; )� 9 )
1/2 + (� 9(

(; ) )1/2] − 2( (; ) .

(c) Update ( (;+1) as the exponential of - (; ) at ( (; ) using (2.11)
( (;+1) ≔ ( (; ) +- (; ) +* (; ) [(, (; ) ◦ - (; )

*
)Λ (; ) (, (; ) ◦ - (; )

*
)]* ∗(; ) ,

where ( (; ) = * (; )Λ (; )* ∗(; ) , * (; ) ∈ Un, Λ (; ) =
diag(_ (; )1 , _

(2)
2 , . . . , _

(; )
= ), , (; ) ≔ ( 1

_
(; )
8

+_ (; )
9

)
=×=

,

-
(; )
*

= * ∗(; )- (; )* (; ) .

3) The limit of {( (; ) };∈N serves as the approximation of the
Fréchet mean with 3�, :
lim
;→∞

( (; ) = �̄(�1, . . . , �<) .(2.10)

3 Proposed Algorithms
The Support Vector Machine (SVM) [37] is a popular supervised
machine learning algorithm used in BCI applications for classifi-
cation, especially for its robust performance in high-dimensional
feature spaces. SVM aims to find a hyperplane that best separates
data points into different classes, maximizing the margin between
classes. Support vectors are data points that are closest to the
hyperplane. SVM can handle linear relationships which makes it
particularly effective in scenarios where the data can be linearly
separable.

Random Forest (RF) is a versatile machine learning algorithm
widely used for classification. It builds multiple decision trees on
random subsets of the data, reducing overfitting and enhancing ac-
curacy. RF is effective in capturing nonlinear relationships, making
it well-suited for complex patterns in various datasets.

In this study, we utilize both SVM and RF and propose two
algorithms for PSD matrices classification using BW distance and
BW projection maps.

3.1 BW-based Projection Classification
Euclidean-based classifiers cannot be performed directly on the
Riemannian manifold. Instead, implementation can be achieved by
utilizing the tangent space located at the Fréchet mean of the entire
set of matrices �1, . . . , �< ∈ P̄= . Each matrix �8 is projected onto
the tangent space that is obtained based on the barycenter �̄ :

-8 = log�,
�̄

(�8 ) =
(
�̄�8

)1/2 + (
�8�̄

)1/2 − 2�̄. (3.1)

After projecting all matrices onto the tangent space, we half-
vectorize the projected symmetric matrices and apply a classifica-
tion algorithm such as SVM or RF on the Euclidean tangent space.
The full algorithm for BW-based Projection Classification is sum-
marized in Algorithm 2.
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Algorithm 2 BW-based Projection Classification
Input: A set of PSD matrices �1, . . . , �< ∈ P̄= , Stopping criteria
n > 0
Output: Predicted class
1) Calculate the barycenter �̄ such that

�̄ = arg min
"∈P̄=

<∑
8=1

32
�,

(�8 , ")

2) Project �1, . . . , �< onto tangent space )�̄P̄=
-8 = log�,

�̄
(�8 ), 8 = 1, . . . ,<

3) Half-vectorize -1, . . . , -< and compile into the matrix
)-

<× =×(=+1)
2

∈ E=

4) Perform classification algorithm on )-

5) Return predicted class

Furthermore, Figure 1 illustrates the pipeline of the proposed
BW-based Projection Classification using SVM. This visual repre-
sentation captures the sequential stages and interactions within
the algorithm.

3.2 BW-based Adaptive Projection Classification
In the context of BCI, it is well known that feature distributions
vary greatly between sessions [38]. This adaptation should be ac-
complished in an unsupervised way and is usually achieved by
spatially whitening [23]. Specifically, each matrix P̄= will be scaled
first by the estimated barycenter and then projected onto the tan-
gent space. The full algorithm of the BW-based Adaptive Projection
Classification can be found in Algorithm 3.

4 Real Data Results
To evaluate the performance of the proposed BW-based algorithms,
we apply them to multiple real datasets and compare results with
those obtained by some existing algorithms. We utilize three pub-
licly accessible BCI datasets [39–41] and four fMRI connectivity
datasets [42–45] to evaluate the improvement in classification per-
formance achieved through the implementation of BW metric.
Moreover, we also compare the results obtained by the proposed
methods with those obtained in the BCI competition [46, 47] and
literature.

Algorithm 3 BW-based Adaptive Projection Classification
Input: A set of PSD matrices �1, . . . , �< ∈ P̄= , Stopping criteria
n > 0
Output: Predicted class
1) Calculate the barycenter �̄ such that

�̄ = arg min
"∈P̄=

<∑
8=1

32
�,

(�8 , ")

2) Scale �1, . . . , �< based on �̄

(8 = �̄−1/2�8�̄
−1/2, 8 = 1, . . . ,<

3) Project (1, . . . , (< onto tangent space )�̄P̄=
-8 = log�,

�̄
((8 ), 8 = 1, . . . ,<

4) Half-vectorize -1, . . . , -< and compile into the matrix
�-

<× =×(=+1)
2

∈ E=

5) Perform classification algorithm on �-

6) Return predicted class

4.1 Data Description
Three publicly available fMRI datasets were used: Autism Brain
Imaging Data Exchange (ABIDE) dataset, Attention Deficit Hyper-
activity Disorder-200 (ADHD-200) dataset, and Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) dataset, and one private fMRI
dataset: Post-Traumatic Stress Disorder (PTSD) dataset. The ABIDE
dataset used consists of 556 healthy control subjects, 339 subjects
with Autism, and 93 with Asperger’s. The ADHD-200 dataset used
composes of 573 controls and three different ADHD subtypes. In
particular, 208 subjects with ADHD-C, 13 with ADHD-H, and 136
with ADHD-I. The ADNI dataset used comprises 35 controls, 29
with Alzheimer’s disease (AD), 34 with early mild cognitive impair-
ment (EMCI), and 34 with late mild cognitive impairment (LMCI).
Finally, the PTSD dataset contains 56 controls, 34 subjects with
PTSD, and 84 subjects with both PTSD and post-concussion syn-
drome (PCS). More information about the datasets used can be
found in [42–45] respectively. The four fMRI datasets contain mul-
tiple classes of functional connectivity (FC) built by computing
Pearson’s correlation connectivity matrices. Additional details re-
garding the processing of the Rs-fMRI data are explained in [45].
The details of the four fMRI datasets are summarized in 1 below.

Figure 1: Graph pipeline of the BW-based projection SVM (EEG-based BCI dataset as example)
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Table 1: fMRI Data Description

ABIDE ADHD-200 ADNI PTSD

Number of subjects Control 556 Control 573 Control 55 Control 56
Autism 339 ADHD-C 208 AD 29 PTSD 34
Asperger 93 ADHD-H 13 EMCI 34 PTSD/PCS 84

ADHD-I 136 LMCI 34
Total 988 Total 930 Total 132 Total 174

Connectivity matrix size (200, 200) (190, 190) (200, 200) (125, 125)

Table 2: Configurations of BCI Competition

BCI III BCI IV
Dataset IIIa Dataset IVa Dataset IIa

Number of subjects 3 5 9
Number of channels 60 118 22
Number of classes 4 2 4
Trials per class 30/45 28-224 72
Sampling rate 250Hz 1000Hz 250Hz
Filter Band 8-60Hz 8-30Hz 8-30Hz

Table 3: BCI III Dataset IVa Train and Test Trials

Subject aa al av aw ay

Train 168 224 84 56 28
Test 112 56 196 224 252

Moreover, to encompass a broad range of scenarios commonly
encountered in EEG-based BCI applications, we additionally select
two datasets from BCI competition III [46] and one from BCI com-
petition IV [47]. In BCI III, dataset IIIa [39] comprises 60-channel
EEG recordings from three subjects who performed motor imagery
tasks involving four classes (left hand, right hand, foot, and tongue).
Dataset IVa [40] consists of 118-channel EEG recordings from five
subjects engaged in two motor imagery tasks (right hand and foot).
In BCI IV, dataset IIa [41] includes 22-channel EEG recordings from
nine subjects performing four motor imagery tasks (left hand, right
hand, feet, and tongue).

Details regarding the BCI datasets are summarized in Table 2.
In general, the matrix dimensions within these three datasets span
from 22 to 264, and the number of matrices varies from 10 to 200.
This diverse range ensures a comprehensive and inclusive repre-
sentation of scenarios commonly encountered in the analysis of
neuroscience data.

4.2 Cross-Validation
Firstly, we employ a 5-fold cross-validation with 10 repetitions to
compare algorithms. The comparison results for the BCI III dataset
IVa are presented below as an illustrative example, showcasing
cases with varying sizes of training and testing datasets (see Table
3).

Notably, this dataset presents the challenge of effectively work-
ing with a limited amount of training data. For this dataset, Support

Vector Machine (SVM) classifier was employed to facilitate predic-
tion in the projection algorithms. Subsequently, parameter tuning
is carried out for each SVM algorithm through cross-validation of
all relevant parameters, including the regularization parameter � ,
aiming to achieve the highest classification accuracy.

Table 4 provides a comprehensive summary of results obtained
from five SVM algorithms across the BCI III dataset IVa. Both
projection-based methods exhibit superior classification perfor-
mance compared to the Euclidean-based method. This underscores
the advantages of incorporating manifold analysis for the analysis
of PSD matrices. Next, we compare BW-based projection SVM algo-
rithms with AI-based projection SVM [23]. Almost all of the results
obtained by the BW-based projection SVM algorithm are better
than those obtained by the AI-based projection SVM algorithm,
which could be attributed to the higher accuracy of barycenter
estimation by the BW projection method [35]. Moreover, we com-
pare BW-based adaptive projection SVM algorithms with AI-based
adaptive projection SVM [23]. Similarly, our findings indicate su-
perior performance from the BW-based adaptive projection SVM
algorithm. Notably, we observe an enhanced accuracy achieved
by the BW-based adaptive projection SVM in comparison to the
BW-based projection SVM.

Additionally, we use the four fMRI datasets: PTSD, ADNI, ABIDE,
and ADHD-200 to compare the results utilizing AI-based projection
and BW-based projection employing 6-fold cross-validation with

14
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Table 4: Summary of Cross-Validation Accuracy Results for BCI III IVa

Method Euclidean Projection Adaptive Projection
AI BW AI BW

Mean Accuracy 0.8432 0.8641 0.8923 0.9032 0.9184
aa 0.7440 0.8989 0.9405 0.9882 0.9941
al 0.9153 0.9065 0.9197 0.9643 0.9599
av 0.7507 0.9404 0.9882 0.7743 0.7806
aw 0.8394 0.7879 0.7864 0.8561 0.8909
ay 0.9667 0.7867 0.8267 0.9333 0.9667

Table 5: Classification Accuracy Results of fMRI datasets

Binary Multi-class

Method SVM Random Forest SVM Random Forest
AI BW AI BW AI BW AI BW

ABIDE 0.6314 0.8964 0.6688 0.7128 0.5628 0.7748 0.6254 0.6631
ADHD-200 0.6944 0.8737 0.7010 0.7039 0.6249 0.6249 0.6626 0.6548
ADNI 0.9511 1.0000 0.9886 0.8654 0.5528 0.5641 0.7582 0.7068
PTSD 1.0000 1.0000 0.9900 0.9754 0.9758 0.9754 0.8724 0.9211

10 repetitions. We conducted both binary and multi-class classi-
fication using Random Forest and SVM classifiers ensuring com-
prehensive evaluation. Parameter tuning was carried out through
cross-validation for optimization. For SVM, the regularization pa-
rameter � was adjusted, and for random forest we optimized the
number of features to consider at each split, the minimum size of
leaf nodes, and the number of trees in the forest.

Feature selection was performed to enhance performance and
boost accuracy. For SVM, feature selection was based on the coef-
ficients of the trained model, while for random forest importance
scores were used to select the most relevant features.

For the ABIDE dataset, the binary classification classes were
Control and a combined Autism/Asperger class, while the multi-
class classification included Control, Autism, and Asperger. For
the ADHD-200 dataset, the binary classification involved Control
and a combined ADHD class consisting of all three subtypes, with
the multi-class classification featuring Control, ADHD-I, ADHD-C
(excluding ADHD-H due to a low number of subjects). In the ADNI
dataset, the binary classes were Control and AD, with the multi-
class classification comprising Control, AD, EMCI, and LMCI. The
PTSD dataset’s binary classes were Control and PTSD, while the
multi-class classification involved Control, PTSD, and PTSD/PCS.

Table 5 summarizes results from four projection-based algo-
rithms for binary and multi-class classification across fMRI datasets.
It compares BW-based and AI-based projection algorithms. For the
binary case, the BW-based projection SVM outperforms the AI-
based projection SVM. The BW-based projection random forest
shows improvements over the AI-based version for the ABIDE and
ADHD-200 datasets. For multi-class classification, BW-based pro-
jection results generally do better than the AI-based results. Specifi-
cally, SVM excels with the ABIDE and PTSD datasets, while random
forest performs better with the ADHD-200 and ADNI datasets.

4.3 BCI Competition
We extend our comparison by evaluating the results obtained from
the proposed methods against the BCI competition winner [46, 47].
To ensure a meaningful performance evaluation aligned with the
competition winners, we strictly follow the identical signal pre-
processing steps as specified in the guidelines for each competition
dataset.

Table 6 displays the results in terms of kappa value, as it was
done for the BCI competition III dataset IIIa. In this competition,
the proposed BW-based algorithm achieves the mean performance
of 0.7506 which ranks this method to the second place of the com-
petition.

As shown in Table 7, the results are presented in terms of accu-
racy, same as the format used for the BCI competition III dataset
IVa. In this competition, the mean performance of the proposed
BW-based algorithm is 0.8734, securing the method a third-place
ranking, just 0.0006 lower than the second one.

As depicted in Table 8, the results are presented in terms of kappa
values, akin to the format used for the BCI competition IV dataset
IIa. In this competition, the proposed BW-based algorithm attains
a mean performance of 0.4789, securing a third-place ranking. No-
tably, for four subjects, the accuracy achieved by the proposed
BW-based SVM surpasses the score of the competition winner.

Additionally, it is essential to note that our reported results are
obtained without leveraging frequency information in contrast to
the approach employed by the winner in the competition. There
is potential for achieving higher performances by optimizing fre-
quency filters.

5 Conclusion
In this paper, we introduce two innovative machine learning algo-
rithms tailored for the classification of PSD matrices. Initially, we

15



Towards Classification of Covariance Matrices via Bures-Wasserstein-Based Machine Learning AICCC 2024, December 14–16, 2024, Tokyo, Japan

Table 6: Results of the BCI Competition in BCI III Dataset IIIa

Mean Kappa K3b K6b L1b

1st 0.7926 0.8222 0.7556 0.8000
BW-based SVM 0.7506 0.9185 0.5889 0.7444
2nd 0.6872 0.9037 0.4333 0.7111
3rd 0.6272 0.9481 0.4111 0.5222

Table 7: Results of the BCI Competition in BCI III Dataset IVa

Mean Accuracy aa al av aw ay

1st 0.9474 0.9550 1.0000 0.8060 1.0000 0.9760
2nd 0.8740 0.8930 0.9820 0.7650 0.9240 0.8060
BW-based SVM 0.8734 0.8750 0.9821 0.8214 0.9107 0.7778
3rd 0.8454 0.8210 0.9460 0.7040 0.8750 0.8810
Literature
Selim et al. [48] 0.85 0.866 1 0.668 0.906 0.81
Park and Chung [49] 0.845 0.741 1 0.678 0.901 0.893
Dai et al. [50] 0.792 0.681 0.939 0.685 0.884 0.749
Selim et al. [51] 0.788 0.696 0.893 0.592 0.888 0.869
Lotte and Guan [52] 0.786 0.723 0.964 0.602 0.777 0.865
Arvaneh et al. [53] 0.735 0.723 0.964 0.541 0.705 0.734
Belwafi et al. [54] 0.673 0.668 0.961 0.521 0.714 0.50

Table 8: Results of the BCI Competition in BCI IV Dataset IIa

Mean Kappa A01 A02 A03 A04 A05 A06 A07 A08 A09

1st 0.57 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61
2nd 0.52 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69
BW-based SVM 0.479 0.722 0.463 0.829 0.347 0.315 0.282 0.319 0.528 0.505
3rd 0.31 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44

propose the BW-based projection algorithm, where all PSD matri-
ces undergo projection onto the tangent space computed using the
BW metric. To address feature distribution variability between BCI
sessions, we introduce the BW-based adaptive algorithm, incorpo-
rating a scalar during projection, termed BW adaptive projection.
The performance of these proposed algorithms is evaluated, validat-
ing the superiority of the BW metric across multiple real datasets
with varying dimensions and numbers of matrices.

Specifically, comparative analysis against Euclidean-based algo-
rithms highlights the superior outcomes achieved by the proposed
BW-based algorithms, underscoring the significance of Riemann-
ian manifold analysis. Moreover, contrasting AI-based algorithms
with the proposed BW-based algorithms emphasizes the enhanced
accuracy provided by the BW metric. Furthermore, the consistent
top-tier ranking of our proposed methods compared to winners
from BCI competitions signifies their potential as state-of-the-art
solutions in the field. This demonstrates not only the effective-
ness of the BW-based analysis but also the broader impact and
relevance of our contributions to advancing the capabilities of BCI
systems. It is noteworthy that our methods’ competitive perfor-
mance, even without incorporating spatial and frequency filtering

considerations, underscores the robustness and generalizability of
the proposed algorithms across diverse BCI datasets. This resilience
to variations in input data conditions further supports the adapt-
ability and effectiveness of the BW-based approaches for real-world
applications where data preprocessing challenges may arise.

Moreover, investigating spatial filtering with Common Spatial
Patterns (CSP) in conjunction with our BW-based methods holds
promise for synergistic performance enhancement. Subject-specific
frequency filtering is another avenue to explore for personalized
and effective classification outcomes. Additionally, exploring the ap-
plication of alternative supervised or unsupervised machine learn-
ing algorithms on the manifold coupled with BW metric, such as
K-Means, may yield valuable insights. In summary, delving into
spatial and frequency filtering enhancements and diversifying ma-
chine learning algorithms applied to the manifold equipped with
BW metric presents exciting possibilities for advancing BCI appli-
cations and refining the current framework.
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