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Abstract—The hippocampus is a disease-prone area of the
brain that can be used as an important biomarker for neu-
rodegenerative diseases like Alzheimer’s. In recent years, deep
neural networks have been applied to segment the hippocampus.
However, accurately segmenting the hippocampus using magnetic
resonance imaging (MRI) remains a challenging task. To explore
a more effective segmentation strategy, this study proposes a new
model by integrating the Vision Transformer (ViT) architecture
with the UNet++ architecture, which is validated by using manual
tracing of the hippocampus performed by clinical experts. The
proposed ViT-based model achieved a dice score of 0.885,
surpassing similar models by 2.82% in the Dice coefficient score.

Index Terms—Manual tracing, UNet++, Hippocampus, Seg-
mentation, Dice Score

I. INTRODUCTION

The hippocampus is a region of interest (ROI) for various
research studies, including memory function analysis and for
observing and predicting neurological and neurodegenerative
disorders [1]–[3]. Tracking hippocampal atrophy through ac-
curate volumetric calculations could help classify and predict
AD via deep learning models. In medical imaging, the standard
practice for disease-prone regions, such as the hippocampus, is
manual tracing performed by clinical experts [4]. This manual
process is time-consuming and ultimately highly subjective,
making it error-prone. These errors can be due to the resolution
of the Magnetic Resonance Imaging (MRI) scans and the
difficulty in delineating a given region in different scans while
considering all the possible variations in its structural form.
This variation is expressed in a study by Boccardi where
when four expert tracers approved of each other’s structural
accuracy, their volumetric measurements still revealed a mean
difference of 9% with a variation of 7% from the estimated
actual volumes [5]. Supplementing deep learning models with
manual tracings such as these could potentially increase the
preciseness of volumetric measurements.

MRI hippocampal segmentation is an essential procedure
for prognosis, providing volumetric and structural data [6], [7].
With this information, a medical provider can diagnose various
diseases, including Alzheimer’s Disease and Dementia [8].
Contemporary hippocampal segmentation often includes three
main methods: manual, semi-automated, and fully automated.

The U-net architecture is a leading deep-learning model
for segmentation tasks [9] and is frequently implemented for

medical image segmentation. Various iterations of the U-net
emerged to improve its architecture and performance. Among
them is the UNet++ that improves upon the standard U-net
architecture by re-designing the skip path connections, en-
abling information flow across multiple layers [10]. Although
these models are exceptional, the foundation of the models
is convolutional neural networks (CNN) that typically exhibit
limitations in information retention due to their depth and
reliance on numerous convolutional layers known as the van-
ishing gradient problem [11]. In some studies, a self-attention
mechanism was implemented into CNN-based architecture to
address the problem [12], [13].

Transformers have become increasingly popular among re-
searchers for visual tasks. Recently, a new type of architecture
has emerged that demonstrates a comparable performance
with state-of-the-art techniques for image tasks called Vision
Transformer (ViT) [14]. This paper presents an architecture
implementing ViT architecture into the UNet++ model and
explores the viability of using ViT architecture within U-
Net base models for Hippocampus image segmentation. This
combined architecture will be called TransUNet++.

II. RELATED WORK

There have been various studies using ViT with U-Net
based architecture. Jieneng et al. first introduced TransUnet
for semantic segmentation and proposed implementing the
ViT architecture in the U-Net architecture bottleneck section,
showing that, on average, it outperformed other base models
by about 6.36% in dice scores, such as U-Net and attention-
based U-Net [15]. Hatamizadeh used the final output from ViT
model with no encoding layers and then used intermediate out-
puts generated within the ViT architecture. These intermediate
outputs were then used as the data for the skip connection
in the decoding section of their model [16]. This technique
mimicked the behavior of the U-Net architecture by facilitating
information flow across the model.

Studies have also been conducted on the impact of small
sample data and deep networks. Xu et al. created FedSM
to solve the generalization gap from insufficient data due
to strict medical imaging data sharing rules [17]. Amin et
al. implemented their own ViT U-net architecture to address
Catastrophic Forgetting [13] in CNNs and using transfer20
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learning for their ViT architecture to prove that Transformer
can be used with U-Net and not jeopardize its effectiveness
and prevent the model from not retaining information as it
goes through the architecture [18].

III. MODEL

A. UNet++

UNet++ architecture re-designed the skip pathway from
the original U-Net architecture. Instead of collecting features
directly from the encoder at the same pyramid level, UNet++
undergoes different convolutional operations with other feature
maps from lower levels through up-sampling operations [10].
With this approach, the dense convolutional operation yields
improved feature maps once it reaches the decoders. Through
this method, the architecture’s optimizer can outperform the
standard skip-connection approach from the U-Net architec-
ture.

The UNet++ skip pathway is formulated as follows: let
xi,j be the output node of Xi,j where i is the index for the
down-sampling layer along the encoder path and j index the
convolution layers along the skip-connection pathways. The
way to compute the xi,j for the stack of feature maps will be
as follows [10]:

xi,j =

{
C
(
xi−1,j

)
, j = 0

C
([[

xi,k
]j−1

k=0
,U

(
xi+1,j−1

)])
, j > 0

(1)

The function C(∗) is a convolutional block operation fol-
lowed by an activation function. U(∗) is an up-sampling
operation to then concatenate with layers above denoted by[
∗
]
.

B. Vision Transformer

The ViT architecture is implemented after the encoding
pathway of the UNet++ architecture following the methodol-
ogy proposed by [19]. It begins by tokenizing the last encoding
output, denoted as x, into a sequence of flattened 2D patches,
each with a P × P dimension. The total number of patches
is N = H × W/P 2. Where H and W represent the height
and width of the feature maps. This sequence of patches will
serve as the input for the ViT model. Next, patch embedding
is performed, mapping each patch xp into a D-dimensional
embedding space using trainable linear projections. To retain
information, positional embeddings are added to the patch
embeddings, following the approach introduced by Chen [15].
The resulting equation for this process is as follows:”

z0 =
[
x1
pE;x2

pE; · · · ;xN
p E

]
+Epos (2)

The transformer encoder consists of multiple layers denoted
as L, incorporating multi-headed self-attention (MSA), Mul-
tilayer Perceptrons (MLP), and Layernorm (LN). The output
of the ℓ layer is expressed as follows:

z′ℓ = MSA(LN (zℓ−1)) + zℓ−1 (3)

zℓ = MLP (LN (z′ℓ)) + z′ℓ (4)

C. TransUNet++

The TransUNet++ architecture combines the strengths of
two models: UNet++ and ViT. UNet++ has effectively cap-
tured multi-scale features through its re-designed skip connec-
tions [10], while ViT captures long-range dependencies and
global context. This integration aims to create a model that
can retain information as it flows through the network, leading
to better image segmentation. One essential part of the Tran-
sUNet++ model is the output of the ViT architecture, which
leads to the bottleneck section of the architecture. To revert
to the decoding layers’ spatial resolution, the output embed-
ding features (N,D) will be reshaped to (D,H/16,W/16).
Afterwards, a 1x1 convolution kernel convolution operation is
implemented to create feature maps for the decoding layers.
The architecture can be seen in Fig. 1.

IV. METHOD

The first objective is pre-processing data by extracting the
left and right hippocampus. Random K-fold cross-validation
is then utilized to generate K different datasets that have
been randomly split into train, testing, and validation sets.
These training and validation datasets will be used to train the
TransUNet++ model, and the testing dataset will be utilized
to evaluate the model’s performance.

A. Dataset

The Harmonized Hippocampal Protocol (HarP) dataset [20]
consist of 135 subjects categorized into three clinical groups:
Cognitively Normal (CN), Mild Cognitive Impairment (MCI),
and Alzheimer’s Disease (AD). Tab. I presents the number of
subjects for each class of this dataset. From the 135 scans,
68 are 1.5T, and 67 are 3T volumetric structural scans from
different subjects. Five qualified HarP tracers were tasked to
manually segment the hippocampus from these 135 scans [21].
This resulted in absolute interrater intraclass correlation coef-
ficients of 0.953 and 0.975 for the left and right hippocampus,
respectively [5].

TABLE I: HarP dataset class distribution

Dataset Name CN MCI AD Total
HarP 44 46 45 135

Hippocampal volume is calculated using the corresponding
hippocampus segmentation made by the clinical experts to
compare the volumetric data for each clinical group (CN,
MCI, AD). As each pixel represents a 1mm cubic voxel size,
calculating the total number of pixels per hippocampus will
give the volumetric result of the left and right hippocampus.
Fig. 2 illustrates a trend in which the average hippocampus
volume declines as the disease progresses through its different
stages.

B. Pre-Processing

The hippocampus is extracted from each subject using the
labeled data. This is done by identifying the center point
between the left and right hippocampus and then cropping the
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Fig. 1: TransUNet++ architecture overview.

Fig. 2: Manual hippocampus volumes for each classification

image to the size of 96×64×64 around the calculated center

point. The cropped dataset is then normalized per subject. The

output of this pre-processing is depicted in Fig. 3. This study

focuses only on segmenting the hippocampus for the sagittal

axis of the brain scan.

(a) MRI Slice (b) Cropped MRI Slice

Fig. 3: (a) a MRI slice of a patient retrieved from the HarP

dataset. (b) The cropped data was retrieved from the same

patient. The red pixels are the label data for the hippocampus.

Viewed using Mango.

C. Cross Validation

K-fold random cross-validation is a strategic approach to

assess the proposed model’s stability and robustness that is

applied to the dataset. Resulting in five randomly split datasets

with a ratio split of 60, 20, and 20 for training, testing, and

validating, respectively. This is done for the following rea-

sons:(1) To explore the stability of the model with randomized

distribution of data classes. (2) To assess if the model would

generalize well across all five randomized datasets. (3) to

evaluate if the hyperparameters are viable across all dataset

splits. In this experiment, 5-fold random cross-validation is

performed on the dataset.

D. Loss Function

The loss function used for this experiment is a fusion of

the Binary Cross-Entropy (BCE) loss and the dice loss, which

will be referred to as BCE Dice Loss [12]. The BCE Loss

is a standard loss function for binary classification, and it

measures the dissimilarity between predicted probabilities and

the ground truth. The dice loss addresses class imbalance

regarding pixel-wise classification. Due to the fact that the

label mask is mostly black pixels, the model will be biased

toward that class. The dice loss evaluates overlaps between

the predicted and ground truth, rewarding high overlaps and

penalizing low overlaps. The integration of both loss functions

is as follows:

LBCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)) (5)

LDL(y, ŷ) = 1− 2yŷ + 1

y + ŷ + 1
(6)

LBCEDICE(y, ŷ) = LBCE(y, ŷ) + LDL(y, ŷ) (7)



E. Metric

This experiment employs a key performance metric, the
Dice coefficient. The significance of this metric lies in its
ability to provide comprehensive insights into various aspects
of our model’s performance, thereby enabling a thorough
evaluation. The Dice Coefficient measures the overlap between
two samples. The equation is as follows:

Dice Coefficient =
2× |A ∩B|
|A|+ |B| (8)

V. TRAINING

A. Model’s hyperparamters

For this experiment, the convolutional blocks are designed
with a sequence of operations: a bias-free convolution, fol-
lowed by a batch normalization and the use of the ReLU
activation function. This process is iterated twice to form a
convolutional block. Transpose Convolution is used to facili-
tate up-sampling for the decoding section of the model. For
the ViT architecture, the hyperparameter is based on the ViT-
Base from [14], where there are 12 Encoding layers with a
Hidden size of D 768, an MLP size of 3072, and a Heads size
of 12. The model is trained using the NAdam [22] optimizer
β1 = 0.9 and β2 = 0.999 and a learning rate value of 1e−3
with an early stop mechanism to prevent overfitting to the
training dataset.

B. Data Augmentation

Data augmentation improves model performance by creat-
ing dataset variation, improving the model’s robustness and
generalization ability. For this experiment, a random affine
transformation was applied to an MRI slice that scales the
image between 0.85 and 1.15, rotates it by 5 degrees, and can
randomly flip horizontally.

VI. RESULTS

After training the model, the testing dataset is used to see
the model’s performance. Since 5-fold random cross-validation
is utilized, five distinct models are generated, each with their
unique dice score value. All five were tabulated, and the mean
and standard deviation were calculated. The overall dice score
results can be observed in Tab. II, alongside results from
similar models for comparison.

TABLE II: Dice score from models on the HarP dataset

Architecture Dice ±σ
nnUnet [18] 85.72± (0.77)

TransUNet [18] 85.74± (0.99)
UNet++ 86.59± (0.016)

TransUNet++ 88.56 ± (0.012)

Different subjects were observed to thoroughly assess the
model’s performance on the testing dataset. The model demon-
strates a strong dice score when predicting the hippocampus
volume in the central region of the hippocampus. However,
it encounters challenges when the boundaries between the
hippocampus and its surrounding tissues become ambiguous.
In Fig. 4, a side-by-side comparison of the manual tracing

(represented as the True segmentation) and the model’s pre-
dicted segmentation can be seen. For this MRI scan, the dice
score was 0.95, but the dice scores decreased at the borderline
of the hippocampus.

Fig. 4: Example output from the TransUNet++ model. The
input image is shown on the left, the manual tracing is in the
middle, and the predicted segmentation is on the right.

Further analysis was done using the top-performing Tran-
sUNet++ model to determine its accuracy in segmenting the
hippocampus for certain cases. This was done using Tran-
sUNet++ to generate predictions on the test dataset. Tab. III
displays the class distribution within the test dataset, along
with the mean and standard deviation of the dice score.

TABLE III: HarP test dataset class sizes and mean dice scores

Classification Quantity Dice Score
CN 10 0.839± 0.146

MCI 6 0.890± 0.013
AD 11 0.884± 0.019

CN subjects had a larger standard deviation than the other
clinical groups in the dice score. In one specific case, when
observing the hippocampus frame by frame, it was apparent
that it was not well segmented in some instances, as shown in
Fig. 5. This discrepancy is what led to a lower dice score and
higher standard deviation. In Tab. IV, the volumetric data of
the hippocampus from the HarP dataset is compared with the
prediction that is generated by the TransUNet++ model. The
model predictions result in a higher volumetric value than the
HarP segmentation across all clinical groups, which suggests
that the model is more inclusive in predicting the extent of the
hippocampus area, thus leading to a higher volume estimation
of the hippocampus.

VII. CONCLUSION

This study proposes an automated approach to segmenting
the hippocampus to overcome the tediousness of manual
tracing and the inordinate amount of time it takes to trace the
hippocampus. It should be noted that even with manual tracers,
the difference between their tracing can vary up to 9% with
a standard deviation of 7% [5] [20], which only confirms that
segmentation of brain regions without any visible boundaries
in MRI scans is a challenging task. The objective was to
leverage these manual tracings to train a deep-learning model
capable of mitigating the tracing variations among clinical
experts. This is demonstrated in the architecture’s performance
when there was a small variation in the dice score when
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HarP Segmentation TransUNet++ Prediction
Classification CN MCI AD CN MCI AD
Hemisphere LH RH LH RH LH RH LH RH LH RH LH RH

Mean 3108 3185 2645 2732 2339 2486 3183 3255 2739 2821 2402 2542
std 532.00 497.82 463.65 479.75 497.32 548.46 505.43 467.66 471.77 480.68 500.05 548.46

TABLE IV: Hippocampal volumes of HarP dataset and TransUNet++ prediction

Fig. 5: Top three images are the input image, the true label
mask, and the true label mask superimposed on the input
image. The bottom three images are the input image, the pre-
dicted label mask, and the predicted label mask superimposed
on the input image.

random k-fold cross-validation was implemented. However, a
more extensive dataset will be needed to see the model’s full
potential. Despite employing data augmentation, the model’s
performance is still constrained by the limited dataset size.

This study explores the integration of the ViT within the
UNet++ architecture and evaluates its performance for image
segmentation tasks. By combining UNet++’s ability to capture
multi-scale features with its redesigned skip connections and
the ViT architecture excelling in long-range dependency and
global context, the culminated architecture led to more accu-
rate segmentation in the hippocampus. The results achieved
by this architecture are encouraging, with a dice score of
0.885 ± 0.012. This score showed an improvement of 2.82%
compared to other similar models.
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