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Abstract—Spike detection in epileptic neonates is a challenging
task since the recorded electroencephalography (EEG) data
are often fraught with artifacts and noise. This study aims
to enhance the clarity of epileptic spikes by separating them
from background activity using an integrated method based
on the independent component analysis (ICA). We analyzed
spikes of 12 epileptic neonates as marked in their EEG scalp
recordings by a clinical expert. The proposed method makes
use of the ICA method to isolate the source of the spikes and
then apply a power frequency analysis and template matching
to validate the performance of the ICA. Isolating a spike is
achieved by choosing the component that should correspond
to its defining characteristics, followed by signal reconstruction
using that component. To evaluate the accuracy of our spike
isolation method, we first check if the power spectrum of the
separated spikes aligns with the typical power spectral density
observed in neonates. Subsequently, we measured the degree of
similarity between the extracted spike and a predefined spike
template, comparing it against the original spike segment. With
this integrated method, the results show the successful extraction
of 29 out of the 37 marked spikes (i.e., 79 percent), which signifies
that ICA can serve as a promising approach in the initial isolation
process of spikes in EEG records of neonates. This could lead
to further investigation into those subtle features or changes
missed on those EEG records of the marked spikes that were
not separated. Determining such features and subtle changes,
if indeed inherent to spikes, could lead to the development of
enhanced spike detection methods in neonates. It should be
noted that in 5 out of the 37 epochs, we could not identify
any independent component as a spike source, and 3 out of
32 remaining cases showed unsuccessful separation in validation,
possibly due to the source not being statistically independent or
being Gaussian in nature. In such cases, the expert clinician(s)
could review or reconsider marking such spikes.

Index Terms—Independent component analysis, Spikes, Neona-
tal seizure, Power spectrum analysis, template matching, Dy-
namic time wrapping

I. INTRODUCTION

Neonatal seizures are a critical neurological condition in
newborns. Continuous multi-channel EEG monitoring remains
the only reliable method for detecting all neonatal seizures
[1], including both ictal (seizure) events and interictal (spike)

activities. However, interpreting EEG in neonates is challeng-
ing due to the difficulty in differentiating between normal
brain activity and pathological conditions in the immature
neonatal brain [2]. This complexity requires a precise and
specialized approach to ensure accurate diagnosis and effective
monitoring.

The accurate detection and analysis of spikes in neonatal
EEG recordings are also critical for enhancing seizure predic-
tion and management. Misidentification of these spikes can
lead to either a high rate of false alarms or a low seizure
detection rate [3]. To address this issue, our study focuses on
the application of Independent Component Analysis (ICA) as
a method for isolating spikes from background signals and
the ubiquitous noise in neonatal EEG recordings. We aim to
improve spike detection and gain a deeper understanding of
spike characteristics in neonates. This could potentially lead
to better seizure prediction and more effective management of
neurological conditions in newborns.

In our study on spike separation using Independent Com-
ponent Analysis (ICA), we explore the potential of ICA as a
novel technique for isolating epileptic discharges from scalp
EEG recordings of neonates. Epileptic discharges are often en-
tangled with background brain activity and artifacts, posing a
challenge for accurate detection and analysis. ICA, by design,
separates statistically independent components from mixed
data. Given that interictal epileptic discharges in EEG are
generally infrequent and independent from background activity
[4], we propose that ICA is an ideal method for their isolation.
Through visual analysis of the separated components, we aim
to distinguish epileptic spikes from background activity [5].

To validate the effectiveness of our spike isolation method
in removing noise and artifacts, we used the characteristics
of power spectral density. The power spectrum of neonatal
EEG is distinctively characterized by a dominant frequency
within the delta and theta frequency bands. When analyzing
the neonatal EEG, the full spectrum is considered, based on
the assumption that it follows an inverse power law [7]. This
is highlighted by the fact that the majority of spectral energy20
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in newborn EEG is concentrated in the lower frequency bands
[7]. If the isolation process is successful, the power spectrum
of the isolated spikes should be consistent with the expected
spectral distribution in neonates.

For the second validation of the separated spikes, the
similarity between a spike template and the isolated spike is
measured using the dynamic time wrapping method and then
compared to the similarity between the template and the whole
spike segment. If the isolation were performed effectively, the
similarity between the extracted spike should be considerably
higher when compared with the entire spike epoch.

II. METHODOLOGY

A. Data

The EEG data was acquired at Nicklaus Children’s Hospi-
tal, Miami, Florida, using the 10-20 system. The electrodes
considered are C3, C4, O1, O2, CZ, F3, F4, F7, F8, FZ,
FP1, FP2, FPZ, P3, P4, Pz, T3, T4, T5, T6, and the ground
electrode was FPz, and the sampling frequency is 256 Hz.
The power noise line is removed from the EEG signal using
a bandpass filter with cut-off frequencies of 0.5 and 40 Hz.
This filtering range is based on the standard of newborn EEG
analysis [7], as the spectral areas of interest in neonates in
the power spectrum are delta (0.5-4Hz), theta (4-8Hz), alpha
(8-13Hz), Beta (13-30Hz) and gamma (30-40Hz). The data
consisted of EEG scalp recordings of 12 newborn patients,
in which the spikes were marked by a neurologist. A total
of 37 epochs (3 sec) containing spikes were extracted from
all patients for implementing and testing the proposed spike
isolation method. The spatial distribution of all epochs is
baseline-corrected by subtracting the mean value which has
a similar outcome as using the average reference [6]. This
helps in isolating true brain activity from common noise or
bias present in the recorded EEG signals.

B. Independent Component Analysis

The EEG scalp recording is a linear mixture of electrical
activity from various parts of the brain. Given that epileptic
discharges are likely independent of background activity, we
employ ICA to decompose EEG segments into independent
components [4]. It is worth noting that before applying ICA
to the EEG signal, we do not have access to its sources to
inspect if there are any Gaussian sources or to test if they are
statistically independent. So, among the various implementa-
tions of ICA, we chose an algorithm based on self-organizing
learning, the Infomax algorithm, which operates without prior
knowledge of the signal sources [8].

It is important to note that ICA is effective in separating
non-Gaussian sources, so it cannot distinguish perfectly Gaus-
sian sources. Even when the sources are not independent,
ICA finds a space where they are maximally independent.
This algorithm is implemented in runICA function which we
used via EEGlab 2023.0 toolbox in MATLAB. To have an
insight into how the ICA algorithm works on multichannel
data, consider that our data is X, and components are a set
of vectors that project the original data (X) onto new axes

found by ICA. The weight matrix W transforms data from the
original space to the source space. So ICA algorithm tries to
find W that will give Y which is the best estimation of S. With
S representing the source activity, the relationship is given by:

Y = W.X≈S (1)

The Infomax algorithm computes W, the unmixing matrix,
using the following steps [9]:
1. Initialize W (0) a random value.
2.

W (t+ 1) = W (t)η(t)(I − f(Y )Y T )W (t) (2)

Where η(t) is a function that specifies the step size and F (Y )
is a general function chosen based on the type of distribution.
3. If convergence has not been achieved, return to the second
step [9].
Once the W matrix is computed, we have our source com-
ponents. However, the activity of the brain source is unitless
unless it is projected onto the electrodes. Each source creates
a contribution at each electrode site, to reverse the projection
of one component to the electrode space we use W−1 as the
inverse of the weight matrix to go from the source space S to
the data space X as follows:

X = W−1.S (3)

C. Spike separation from background signal

The ICA algorithm is deployed over all 37 spike segments
marked by the expert clinician. Since we have 19 channels,
ICA gives us 19 components and each one potentially rep-
resents a unique source of the recorded EEG. These sources
could come from neural and artifact sources. We could recog-
nize the epileptic discharge in the decomposed components by
visual inspection [6]. A component corresponding to the spike
source should replicate the spike’s shape at the exact same time
when the spike happens in the EEG segment. In other words,
their peaks in the time domain should be aligned. “Fig. 1”
illustrates a sample of the spike epoch, and “Fig. 2” displays
the components of that segment in which the spike component
is highlighted.

This step requires careful observation of the spike segment
and its components. For all 37 spike segments, components
and spike segments have been compared in the same time span
to examine if any components match the spike. However, in
some cases, it might not be immediately evident if a compo-
nent matches the spike’s shape, or the spike’s form may not be
distinctly observable in the EEG segment. So in these cases,
first we removed some obvious non-spike components and
then reconstructed the signal with the remaining components.
Then, with a clearer version of the spike segment and the
remaining components, we do a visual examination to find
the spike’s component.

Typically, we can ascertain if one of these components
occurs simultaneously with the spike and have a similar shape,
such a component can be considered a candidate for the
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spike source. After selecting the spike source among various
alternatives, including background signals and noise, we use
that single component to reconstruct the segment. This process
results in a signal comprising solely of the spike source. The
reconstructed segment, which could potentially represent the
isolated spike, is shown in “Fig. 3”. The next step involves
analyzing the effectiveness of this method in isolating spikes.

Fig. 1: A sample of a spike segment where the spike is pointed
in the figure.

Fig. 2: All the components that are obtained by applying the
ICA algorithm on the spike segment

Fig. 3: Separated spike by reconstructing segment using the
spike’s source component

D. Validation

To evaluate the precision of the chosen component, and
to investigate if the spike is separable by ICA, we consider

two methods to analyze the isolated spikes. The first method
involves analyzing the power spectrum, assuming the spectral
power of neonatal EEG to be usually concentrated in lower
frequency bands such as delta and theta. It follows the inverse
power law, which means that as the frequency increases, the
power decreases [7]. We use this characteristic of the power
spectrum as a criterion for the successful isolation of spikes.

To compute the power in all frequency bands, considering
the sampling frequency is 256 Hz, we employ Welch’s method
via MATLAB’s Pwelsh function to calculate the power spectral
density (PSD) of the signal. Then, the power within each
frequency band is computed using the band-power function,
which integrates the PSD over the specified frequency range.
By comparing the spectral power of both the original and
reconstructed spike epochs, we observed that in some patients
with high amplitude and high-frequency signals in their EEG
recording, the power in beta and gamma range is as high as
delta and even higher, which is not consistent with the neonate
expected spectral density.

Successful isolation of the spike source should result in
a spectrum dominated by lower frequencies, particularly in
the delta range, indicating correct separation from background
signals and noise. “Fig. 4a”. Also, in the cases with normal
spectral power, spike separation results in a more distinct re-
duction in high frequency rather than low frequency “Fig. 4b”.
Power distribution also varies comparing spike source and
other components, for spikes power spikes tended to be
localized to one or a few electrodes, whereas power for other
components was more distributed “Fig. 5”.

(a) noisy spike segment (b) normal spike segment

Fig. 4: Comparison of power spectrum between original spike
segment and the isolated spike of 2 cases. The first sample
shown in part (a) represents a spike segment containing high-
frequency and high-amplitude signals, resulting in higher spec-
tral power in the beta and gamma bands. The second sample
shown in part (b) corresponds to a normal spike segment. In
both cases, spike isolation leads to a reduction in power at
higher frequencies, and the spike source exhibits descending
power as the frequency increases.

In the second step, we involved template matching to evalu-
ate the clarity of the spike isolated by ICA. To create a general
template, we used a data set of 103 epileptic patients obtained
from Baptist Hospital, Miami, Florida, from which the spike
segments had already been marked and extracted by a clinical
expert. After aligning and averaging these spikes, we formed
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our template. Now, for measuring the similarity between this
template with the original spike segment and the reconstructed
spike segment, we use dynamic time warping (DTW). The
DTW method is often used to calculate the similarity between
two sequences, which may vary in length or speed. The
process of DTW involves mapping points from one sequence
to another such that the sum of the distances between these
matched points (usually Euclidean distances) is minimized. A
higher similarity between the isolated spike segment and the
spike template, as compared to the original spike segment and
the template, would indicate correct component selection and
successful spike isolation. For illustrative purposes, “Fig. 6”
shows how the template and the spike segment are overlayed
on each other.

Fig. 5: In this figure, the power distribution of a recon-
structed segment with the spike’s source component and a
reconstructed segment with a non-spike source component are
compared. The spike’s component power is centered in one or
a few electrodes, but for the non-spike component, the power
is spread over multiple electrodes.

Fig. 6: Spike template and a spike segment overlaid on each
other to illustrate the similarity measurement using DTW
method.

III. RESULTS AND DISCUSSION

It is important to acknowledge that not all spikes can be
separated using this method; only those spike sources that
are statistically independent can be effectively isolated from
other signal sources. This is why the component must closely
resemble the exact shape of the spike. In some cases, a spike
may result from the aggregation of multiple sources, not just
one. After applying ICA to all spike epochs, power frequency
analysis and similarity measurements were conducted on the
isolated spikes. Out of the 37 spike segments analyzed 29
spikes appeared to be separable by a single component.

In approximately 5 out of the 37 epochs, we could not
identify any component as a spike source, possibly due to the
source not being statistically independent or being Gaussian
in nature. For the 32 spikes that were isolated, spectrum
analysis was performed, and appeared consistent with the
inverse power law, showing dominance in the delta frequency
range. For the second validation of 32 spikes, the similarity
between this template and both the reconstructed spike and the
original spike segment has been measured using the Dynamic
Time Wrapping method (DTW). The DTW hence enables the
measurement of pattern similarity in two signals. A lower
distance indicates higher similarity. The Distance measurement
is shown in “Fig. 7”.

Fig. 7: Distances between the template and original spike
segment vs distance between the template isolated spikes for
all 32 spikes. We can observe that the first 3 isolated spikes,
despite other spikes, have higher distances with the template
compared to their original format, indicating unsuccessful
spike separation for these 3 cases. However significant distance
reduction was achieved by spike separation for other cases,
which means better similarity with the template and successful
spike isolation.

As observed from the chart, the noisy segments exhibit
limited similarity to the template due to the presence of high-
frequency signals, resulting in a significant distance between
the template and the spike segment. However, upon separating
the spike’s source, the distance decreases to a range of
[18.0412 - 30.6194], with an average of 22.9140 ± 3.3188,
indicating a notable increase in similarity between the isolated
spikes and the template in most cases. This suggests that
the selected component effectively isolates the spike patterns
from other signals within the EEG segment. Out of 32 spikes,
for 3 spikes, we can see spike separation was not effective
even though the original segment has more similarity with
the template. So by excluding those 3 spikes, for 29 spikes,
approximately on average this method increases the similarity
3 times, which indicates how this extraction enhances spike
analysis in future studies.
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IV. CONCLUSION

We investigate the capability of independent component
analysis in isolating spikes from background signals in EEG
recordings of epileptic neonates. We analyzed 37 spikes of
12 patients, 29 of them appeared separable using indepen-
dent component analysis. Power spectrum analysis revealed
that the separated spikes predominantly exhibited power in
the lower frequency ranges, which is consistent with the
expected power distribution in neonates. This suggests that
the power associated with high-frequency artifacts and noise
was effectively eliminated from the signal. Furthermore, to
have secondary evidence of correct isolation of the spike,
the similarity between a spike’s template and the extracted
spike is compared with the similarity between the template and
the EEG segment containing the spike by the Dynamic Time
Wrapping method. The results show that the distance between
the template and the isolated spike was significantly less than
the difference between the template and the original EEG
segment, which implies that ICA could be an effective way to
extract spikes from background signals or any inherent noises.
This method is particularly valuable in the context of neonatal
EEG, which is fraught with artifacts and noise, making spike
detection challenging. As this method improves the quality
of spikes that are detected, it will enhance the precision of
feature extraction of spikes and as a result, it will improve
spike detection methods and help seizure prediction algorithms
in the future. The focus could be placed on those features
deemed relevant, and to search for other subtle features that
were missed with those EEG segments with the few spikes
that were not separated successfully.
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