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Abstract—Dynamic urban development and natural disasters
often lead to discrepancies between maps and satellite images,
posing challenges for autonomous navigation and smart city
planning. Automatic map generation from satellite imagery is
crucial for addressing these discrepancies and ensuring accurate
geospatial data. While Generative Adversarial Networks (GANs)
favored with contrastive learning have been used for this task,
limitations such as randomness in feature selection result in
suboptimal performance, and MLP-based projection heads lack
the expressiveness needed for effective feature generation. To
address these limitations, we propose a novel model, KAN-
Attn, which incorporates an attention-based query selection
mechanism for selecting relevant features in contrastive learning.
Also, KAN-Attn is the first application of Kolmogorov-Arnold
Network (KAN) to improve feature generation with enhanced
expressiveness in map generation. Our innovations allow KAN-
Attn to achieve optimal performance in map generation, with
experiments on publicly available datasets demonstrating state-
of-the-art results based on relevant metrics on perceptual quality.

Index Terms—Kolmogorov-Arnold Network (KAN), Genera-
tive Adversarial Networks (GANs), Map Generation, Contrastive
Learning, Query Selection, Attention Mechanism

I. INTRODUCTION

Satellite images capture a variety of underlying objects such
as roads, green areas, water bodies, and buildings. Trans-
forming satellite images into human-readable formats, such
as maps, is crucial for improving accessibility and supporting
a wide range of applications. Typically, these transformed
map images are considered vector images, offering a clearer
representation of key features. Historically, the conversion
from raster to vector images has been a manual, labor-intensive
process, prone to human error.

To automate this process, generative AI techniques have
gained considerable attention in recent years. The focus has
shifted from manually constructing maps to automatically
generating them using generative models [15], [3]. However,
the scarcity of paired satellite and map images presents a
major challenge, making supervised learning approaches im-
practical. Generative Adversarial Networks (GANs) [8] have
emerged as a leading solution for this challenge, particularly
for unsupervised map generation. Several studies [7], [27],
[3], [28], and [21] have demonstrated the success of GANs

Fig. 1: Example Satellite and Corresponding Map Images.
Green arrow shows satellite to map translation from [15], and
red arrow depicts styled maps to simple maps from [16].

in generating map images from satellite data. However, the
inherent complexity of satellite imagery introduces significant
limitations, such as obstacles like shadows, trees, or buildings
obscuring key features.

While GANs enhanced with contrastive learning [26], [21]
outperform traditional GANs in map generation, they still suf-
fer from key limitations, including the randomness in feature
selection and the use of MLP projection heads [13], which
lack sufficient expressiveness. Furthermore, although MLPs
are prevalent in various domains for system development, they
may face security challenges [24], [11], [32], [10].

To address these challenges, we explore the potential of
Kolmogorov-Arnold Networks (KANs) [20], a recent develop-
ment in deep learning proposed as a powerful alternative to the
conventional MLP. KANs have demonstrated strong expres-
siveness and achieved success in satellite image classification
tasks [5]. Despite this, their application in generative tasks,
particularly in map generation, remains unexplored.

Recognizing both the limitations of GANs and the potential
of KANs, we hypothesize that KAN can significantly improve
map generation from satellite images. Our study presents the
following key innovations:

• First application of KAN as a projection head in map
generation, enhancing feature generation.
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• Incorporation of an attention-based query selection mech-
anism to identify and select important features, boosting
the contrastive learning process.

• Development of a novel model, KAN-Attn, achieving
state-of-the-art performance in map generation, as evi-
denced by FID and KID metrics.

II. RELATED WORK

Several studies have explored the automatic generation of
maps from satellite images using generative models. The
success of map construction using generative mechanisms was
advanced with CycleGAN [34], which enabled image transla-
tion between two domains without requiring paired datasets.
GeoGAN [7] extended adversarial learning by integrating re-
construction and style transfer losses, successfully generating
standard layer maps. Despite its advances, GeoGAN struggled
with the coarse resolution of satellite images, limiting the
quality of the generated maps. Similarly, SMAPGAN [3]
incorporated a semi-supervised strategy, allowing the model to
be pretrained on unpaired satellite and map images and fine-
tuned with a small set of paired images. This model introduced
gradient-based L1 loss and gradient structure loss, preserving
topological coherence and edge details.

Furthermore, MapGen-GAN [28] built on CycleGAN’s
cycle-consistency principle, adding circularity-consistency and
geometrical-consistency constraints to improve semantic and
geometric precision. However, its dependence on geometric
transformations limits flexibility in diverse tasks. CscGAN
[19] employed multi-scale generators and discriminators to
generate tile maps at different resolutions, but its reliance
on scale-specific generators restricts adaptability in tasks
needing uniform resolution. MapCUT [21] introduced con-
trastive learning into the map generation process, replacing
CycleGAN’s cyclic nature with a unidirectional approach. Its
use of patch-based contrastive learning (PatchNCE) improved
alignment between satellite images and maps, yet the two-
layer MLP limited feature expressiveness. Subsequently, HPix
[31] proposed a hierarchical GAN architecture for generating
vector maps, using a global GAN for overall layout and a
local GAN for refining details. While effective, its reliance
on two distinct generators posed challenges for scalability and
generalization

Despite these advancements, current methods still struggle
with feature expressiveness, accuracy and scalability. To ad-
dress these gaps, we propose the KAN-Attn model, which
leverages KAN and attention-based query selection for more
accurate and robust map generation.

III. METHOD

This section begins by outlining the general use of con-
trastive learning in GANs, followed by the application of
query-selection attention and the integration of KAN to in-
troduce the KAN-Attn model.
A. Map generation setup

Consider a scenario where we have satellite images, denoted
as X (raster images), and corresponding map images, denoted

as Y (vector images), collected from specific geographic
locations L. These satellite images, X , contain multiple layers
such as roads, buildings, and water bodies, and may change
over time due to factors like natural disasters. Our goal is to
generate a map, y, that accurately reflects these altered layers
in the satellite image x ∈ X at location l ∈ L. The objective
is to train a generator G, utilizing GANs and contrastive
learning, to effectively capture and generalize the features of
these layers from domain X and translate them into accurate
map representations in domain Y .

The main challenge is the lack of paired satellite and
map images, as well as labeled object layers, making this an
unsupervised learning task. To address this, we aim to train
G to learn these features in a self-supervised manner through
one-directional training, drawing on both GAN and contrastive
learning principles.

B. Generator of GAN with Contrastive Learning
The generative model consists of two neural networks: a

generator and a discriminator, forming the core of the GAN
architecture. We adopt a one-directional GAN, implemented
with a single generator and discriminator, following the archi-
tectures presented in [26] and [21]. For the generator, we uti-
lize an encoder-decoder design based on ResNet as depicted in
Fig. 2. The generator utilizes a ResNet-based encoder-decoder
structure, with the encoder extracting enriched features from
the satellite images, which the decoder translates into detailed
map images, capturing the key object layers.

As mentioned earlier, our work is unsupervised, meaning
there are no specific labels or paired images. Since the model is
unsupervised, we work without labeled data or paired images.
The challenge lies in generating map images that accurately
reflect the underlying object layers in the satellite images.
These object layers refer to physical entities such as roads,
buildings, and water bodies, rather than neural network layers.
To achieve this, we employ patch-level contrastive learning,
maximizing the shared information between aligned patches
in satellite and map images, minimizing the distance between
similar patches in the embedding space. This approach is
adapted from [2], [26], and [21].

We utilize the technique of future prediction as proposed in
[25], where representation learning can help to predict positive
features for the given queries and maximize mutual infor-
mation between corresponding patches. Maximizing mutual
information allows us to generate the corresponding object
layer from the satellite image. The NT-Xent loss (normalized
temperature-scaled cross-entropy loss) is used to correctly
select the positive feature among a pool of N − 1 negatives,
further maximizing mutual information. The loss is formulated
as:
L(q, v+, v−) = − log

exp(sim(q, v+)/τ)

exp(sim(q, v+)/τ) +
∑N

i=1 exp(sim(q, v−i )/τ)
(1)

where sim(q, v+) represents the cosine similarity between
q and v+, calculated as sim(q, v+) = q⊤v+

∥q∥∥v+∥ . The parameter
τ represents a temperature factor that scales the distances
between vectors. This procedure helps to identify the right
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Fig. 2: Generator Architecture for KAN-Attn. The encoder-decoder generator integrates a two-layer KAN for feature
enrichment and an attention mechanism for query selection to enhance contrastive learning. Satellite and map images are
reproduced from [15] under the Creative Commons Attribution-NonCommercial 4.0 International License.
positive feature for a given query point, but the selection of
the query point is random.
As the generator is a neural network model, the encoder
processes images through multiple layers. When performing
contrastive learning for mutual information maximization, [2]
demonstrated that applying contrastive learning directly to
the features extracted is less effective. Instead, an external
projection head, denoted as H , is used to process these
features. Typically, H is a two-layer MLP, which enriches
feature understanding and improves results during inference.
This concept of enriching features before contrastive learning
has been explored in various studies in generative AI [26], [9],
and [21].
While these previous methods can successfully generate maps
from satellite images, we identify two key limitations in the
feature learning process: 1. Contrastive learning randomly
selects a query point, which can lead to suboptimal results if
the query originates from a region without meaningful objects
(e.g., empty fields or oceans). In such cases, the contrastive
learning process may attempt to maximize information for
irrelevant queries, negatively impacting the quality of the
generated maps. 2. The two-layer MLP used as the projection
head H , though effective, lacks the expressiveness needed for
more robust feature generation. To address these limitations,
we propose two improvements. First, we apply an attention
mechanism to select relevant anchor points, denoted as R, by
measuring the relationship between a query and its surround-
ing keys. This addresses the issue of random query selection.
Second, we replace the two-layer MLP with a two-layer KAN
(Kolmogorov-Arnold Network) to generate richer features,
improving the feature extraction process. These innovations
form the basis of our proposed KAN-Attn model.

C. KAN-Attn model

As demonstrated in [22], the KAN has shown its potential in
improving generative AI tasks. We extend this approach to the

task of map generation by replacing the two-layer MLP with a
two-layer KAN (see Fig 2, where the section showing the two-
layer KAN is highlighted), which provides more expressive
feature generation for the decoder. For a detailed explanation
of KAN’s formulation, readers are referred to the original
works [20], [22].

KAN is based on the Kolmogorov-Arnold Representation
Theorem [18], which states that which states that any mul-
tivariate continuous function can be represented as a finite
composition of continuous single-variable functions. In our
application, KAN models map generation by simplifying com-
plex transformations into continuous operations, represented
by learnable B-spline curves. A key advantage of KAN over
traditional MLPs is the use of learnable activation functions,
which adaptively enhance feature expressiveness.

Following [22], we reformulate KAN for map generation,
applying learnable B-splines to the input tensors without ad-
ditional entropy regularization during L1 normalization. This
two-layer KAN, replacing the MLP, acts as a projection head,
which we denote it as K that enhances feature representation
before contrastive learning is applied.

a) Query-Selection Attention Mechanism: To address the
random query selection in contrastive learning, we incorporate
a query-selection attention mechanism, following the approach
in [14]. This mechanism computes an attention matrix by
evaluating the similarity between a query and its neighboring
keys within a fixed window of size s×s. First, we calculate the
attention matrix Matt by multiplying the reshaped query matrix
Q ∈ RHW×C with the key matrix K ∈ RHW×s2×C , followed
by applying the softmax function, resulting in attention matrix
Matt ∈ RHW×s2 .

Next, we compute the entropy E of each query as:

E(a) = −
s2∑
b=1

Matt(a, b) logMatt(a, b)

Here, a and b represent the indices of the query and key,
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respectively. We select the top N rows of Matt by sorting E
in ascending order to form the query-selected attention matrix
Mq-att. Using these selected N indices, we route values through
the value matrix V ∈ RHW×s2×C , obtaining a final matrix
of relevant queries R ∈ RN×s2×C . This process ensures the
attention mechanism focuses on spatially relevant features,
improving map generation quality.

For training, we use the PatchNCE loss from [26], which is
applied at the patch level in a contrastive learning framework.
This loss function can be written as:

LPatchNCE(G,K,X) = Ex∼X

[
L∑

l=1

Sl∑
s=1

ℓ
(
ẑsl , z

s
l , z

S\s
l

)]
(2)

where X denotes the domain of satellite images, ẑsl is the
query point, zsl is the positive point, and z

S\s
l are the negative

points. L is the total number of layers from which the features
are extracted and passed to the projection head K, and Sl is
the total number of spatial locations in the l-th layer.

D. Total Loss Functions

To obtain map generation from satellite images with correct
depiction of object layers in maps in corresponding location,
we used above mention PatchNCE loss, LPatchNCE(G, K, X).
Along this, to obtain high quality generation based on human
perception, we used Adversarial Loss as presented in [23] con-
structed under Least Squares Generative Adversarial Networks
(LSGANs) principle, initially proposed in [8]. Substantially,
we used another PatchNCE loss LPatchNCE(G, K, Y), similar to
the previous PatchNCE loss, except that the input domain is Y ,
instead of X . Hence, the final loss function is the combination
of these three loss functions, which we represent as:

Lfinal =LLSGAN(G,D,X, Y )+ λXLPatchNCE(G,K,X)+

λYLPatchNCE(G,K, Y )
(3)

IV. EXPERIMENTS AND RESULTS

A. Datasets

a) Aerial Photograph ↔ Maps [15]: This dataset
comprises 2,194 unpaired aerial images and map tiles sourced
from Google Maps for the training set, all covering regions in
and around New York City. The test set includes 2,196 aerial
images and corresponding styled map tiles.

b) Styled Maps ↔ Simple Maps [16]: This dataset con-
sists of styled maps and their corresponding simple maps
obtained from OpenStreetMap (OSM) vector data at zoom
level 15. We used the styled maps as input images and simple,
human-readable maps as target images. For the unsupervised
task, we utilized 1,740 images for training and 436 for testing.
This dataset is included to demonstrate the adaptability and
generalizability of our proposed model in generating maps
from various input types.
B. Evaluation Metrics

a) Fréchet Inception Distance (FID): We selected the
Fréchet Inception Distance (FID) [12] score to evaluate the
generative performance of all models. FID is widely used to

assess the performance of GANs by calculating the divergence
between the distributions of real and generated images in
a feature space. This is done by extracting feature vectors
using a pre-trained Inception v3 network [29]. FID has proven
effective in capturing perceptual differences that align well
with human judgment. It is noteworthy that lower FID score
equivalents to better generated quality of images.

b) Kernel Inception Distance (KID): The Kernel In-
ception Distance (KID) is another metric used to evaluate
the similarity between real and generated images, based on
their feature representations in our setup. Like FID, KID
utilizes a pre-trained Inception network to extract feature
embeddings from both sets of images. However, instead of
assuming a Gaussian distribution as FID does, KID computes
the squared Maximum Mean Discrepancy (MMD) between
these embeddings using polynomial kernels. This approach
makes KID more robust to smaller sample sizes and less prone
to bias in comparison to FID. A lower KID score indicates that
the generated images are closer in quality to the real images,
with better alignment of distributions in the feature space.

c) Peak Signal-to-Noise Ratio (PSNR): PSNR measures
image quality by comparing the highest possible pixel value
to the noise affecting image fidelity. It is defined as:

PSNR = 10 · log10
(
Max2

s/MSE
)

where Maxs is the maximum pixel value and MSE is the
mean squared error between the original and generated images.
Higher PSNR indicates better image quality.

d) Structural Similarity Index (SSIM): SSIM evaluates
image quality by comparing luminance, contrast, and structure
between original and generated images. It is defined as:

SSIM(s, s′) =
(2µsµs′ + C)(2σss′ + C)

(µ2
s + µ2

s′ + C)(σ2
s + σ2

s′ + C)

where µs and µs′ are the average luminance values, σ2
s

and σ2
s′ are their variances, and σss′ is the covariance. C

is a constant to avoid division by zero. Higher SSIM values
indicate better image quality.

C. Experimental Environment and Baselines

Our experiments were conducted using Python 3.6.8 and
the PyTorch framework for both training and testing. All
computations were carried out on a system facilitated with
NVIDIA A100-PCI GPUs, each offering 80 GB of HBM2
memory. We utilized CUDA version 12.3 and NVIDIA driver
version 545.23.08. The training was carried out over 400
epochs with an initial learning rate of 0.0001, which decayed
after the first 200 epochs, using the Adam optimizer. The
coefficients were set to λX = 1 and λY = 1.

1) Baselines: To evaluate the effectiveness of our proposed
model, KAN-Attn, we compared it against several advanced
GAN-based models for map generation, including CycleGAN
[34], AttentionGAN [30], MapCUT [21], and the state-of-the-
art HPix [31], specifically on the Aerial Photograph ↔ Maps
dataset. These models have demonstrated high performance in
this well-utilized dataset, making them suitable baselines for
evaluating the capabilities of KAN-Attn.
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Input GroundTruth KAN-Attn HPix MapCUT AttentionGAN CycleGAN

Fig. 3: Comparative Results of Image Generation from Aerial Photograph ↔ Maps. Images are reproduced under the
Creative Commons Attribution-NonCommercial 4.0 International License for non-commercial research and educational use.

Input GroundTruth KAN-Attn MapCUT AttentionGAN CycleGAN

Fig. 4: Comparative Results of Map Generation from Styled ↔ Simple Maps. Images reproduced under the MIT License
by GeoDS Lab, UW-Madison.

D. Results

The proposed model, KAN-Attn, achieved state-of-the-
art performance in generating maps from satellite images,
with an FID score of 52.99 and KID of 0.03 on the
Aerial Photograph ↔ Maps dataset, as presented in Table 3.
This surpasses all existing models, including recent advance-
ment like HPix [31] and MapCUT [21]. In addition to the
quantitative evaluation, qualitative results visually demonstrate
the superiority of KAN-Attn in generative quality, as depicted
in Fig. 3. While KAN-Attn did not outperform state-of-the-art
models in SSIM and PSNR, we argue that it maintains state-
of-the-art performance in map generation based on perceptual
quality, as evidenced by the FID and KID metrics. These
metrics, especially FID, are considered the most relevant
and reliable for evaluating the generative quality of GANs,
as supported by several seminal works [1], [17], [6], [26].
Furthermore, qualitative visual comparisons in Fig. 3 validate
the model’s superior map image generation quality.

Similarly, KAN-Attn demonstrated similar performance one
the Styled Maps ↔ Simple Maps dataset, achieving FID and
KID scores of 72.20 and 0.045, respectively, as summarized
in Table II. These results also outperform all baseline models.
Qualitative results further highlight the model’s ability to
generate high-quality map images, as shown in Fig. 4.

V. CONCLUSIONS AND FUTURE WORK

Map generation from satellite imagery presents immense
potential for advancements in autonomous navigation and

TABLE I: Quantitative Observation of Results Obtained from
All Models in Aerial Photograph ↔ Maps

Model SSIM PSNR FID KID
CycleGAN 0.63 24.05 67.51 0.09
AttentionGAN 0.71 25.73 72.99 0.13
MapCUT 0.64 24.32 59.37 0.18
HPix 0.75 26.98 96.71 0.19
KAN-Attn 0.73 25.79 52.99 0.03

TABLE II: Quantitative Observation of Results Obtained from
All Models in Styled Maps ↔ Simple Maps

Model SSIM PSNR FID KID
CycleGAN 0.48 20.09 74.89 0.053
AttentionGAN 0.47 19.96 74.29 0.052
MapCUT 0.58 20.34 73.64 0.048
KAN-Attn 0.56 20.01 72.20 0.045

post-disaster management, though it faces significant chal-
lenges, both in the task itself and in the limitations of genera-
tive models. To address these, we proposed KAN-Attn, a novel
model leveraging Kolmogorov-Arnold Networks (KAN) as a
projection head for generating enriched features, combined
with an attention-based mechanism for optimal query selection
to enhance contrastive learning. Our model has demonstrated
superior performance over advanced baseline models in both
quantitative and qualitative evaluations. Importantly, the goal
of map generation is to produce human-readable maps, making
perceptual quality paramount. We claim state-of-the-art perfor-
mance based on FID and KID scores, which align closely with
human perception, supported by visual results that show better
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generative quality.
The innovative use of KAN as a projection head highlights

its potential for further contributions to map generation. In
future work, we plan to fully integrate KAN into the genera-
tor’s encoder layers. Along this, given the scarcity of diverse
satellite and map datasets, we aim to collect new datasets and
evaluate the model’s broader applicability.
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