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Abstract
This paper proposes kernel-type estimators of a regression function, with possibly
unobservable response variables in a functional covariate setting, alongwith their rates
of convergence in general L p norms. Here, the mechanism that causes the absence of
information (in the sense of having unobservable responses) is allowed to depend on
both predictors and the response variables; this makes the problem particularly more
challenging in those cases where model identifiability is an issue. As an immediate
byproduct of these results, we propose asymptotically optimal classification rules for
the challenging problemof semi-supervised learning based on the proposed estimators.
Our proposed approach involves two steps: in the first step, we construct a family
of models (possibly infinite dimensional) indexed by the unknown parameter of the
missing probability mechanism. In the second step, a search is carried out to find the
empirically optimal member of an appropriate cover (or subclass) of the underlying
family in the sense of minimizing a weighted mean squared prediction error. The
main focus of the paper is to look into the rates of almost complete convergence
of the L p norms of these estimators. The issue of identifiability is also addressed.
As an application of our findings, we consider the classical problem of statistical
classification based on the proposed regression estimators when there are a large
number of missing labels in the data.
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1 Introduction

This paper deals with the problem of kernel regression estimation with possibly unob-
servable response variables, Y , for the setup where the mechanism that causes the
absence of information (i.e., causes Y to be possibly unobservable) is allowed to
depend on both the predictor χ , which may be infinite dimensional, and the real-
valued response variable Y . This is generally considered to be a challenging problem
in incomplete data literature and is very different from the simpler popular missing at
random model where the absence of Y depends on χ only (but not Y itself).

More specifically, let (χ ,Y ) ∈ X × R be a random pair, where X may be an
abstract space, and consider the problem of estimating the regression functionm(χ) =
E(Y |χ = χ), based on a sample of n independent and identically distributed (iid)
data points (χ i ,Yi ), i = 1, . . . , n, drawn from the distribution of (χ ,Y ). Let d(·, ·)
be a semi-metric on X and observe that when the data is fully observable, the popular
Nadaraya–Watson kernel estimator of m(χ) (Nadaraya 1964; Watson 1964) is given
by

m̂n(χ) =
∑n

i=1 Yi K(d(χ,χ i )/h)
∑n

i=1K(d(χ,χ i )/h)
, (1)

where the functionK : R+ → R+ is the kernel usedwith the bandwidthh ≡ h(n) > 0.
For detailed studies of some theoretical properties (point-wise and uniform) of the
estimator in (1), one can refer to Ferraty and Vieu (2006) and Ferraty et al. (2010).

The focus of this paper is on the setup where the response variable Y could be
unobservable for some cases.Butmore importantly, the probability thatY is observable
is allowed to depend onY itself, aswell asχ (and not justχ alone). It is straightforward
to see that under this setup the nonparametric estimator m̂n(χ) in (1) is no longer
available. This is a challenging case, yet some progress has beenmade in the literature.
For example, in the case of linear regressionmodels, one can refer to the developments
and results of Niu et al. (2014), Guo et al. (2019), and Li et al. (2018) . Unlike the
results of these three paper, here we do not assume a linear model. Mojirsheibani
(2022) derives the limiting distribution of the maximal deviation of a particular kernel
regression estimator based on auxiliary random variables where Y is missing NMAR
and, unlike the current seup, the covariate χ is in R. However, in the cited paper, it is
assumed that one already has available an estimator γ̂ of γ [corresponding to ϕ(y) =
exp{γ y}] satisfying certain consistency properties. To the best of our knowledge, the
nonparametric case with functional covariates was first studied in Kim and Yu (2011)
and then by Ling et al. (2015), under the assumption that Yi ’s were missing at random.

In passing, we also note that the estimator based on the complete cases only, i.e.,
the estimator

mcc
n (χ) =

∑n
i=1 Yi�i K(d(χ,χ i )/h)
∑n

i=1 �iK(d(χ,χ i )/h)
, (2)

where �i =1 if Yi is observable (�i =0 otherwise), turns out to be the “wrong” esti-
mator in the sense that it estimates the quantity E(�Y |χ = χ)/E(�|χ = χ) which
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Strong optimality of kernel functional... 5617

is not in general equal to the regression function m(χ) =E(Y |χ = χ) for the current
setup where the probability that Y is observable could depend on both Y and χ . Let
π(χ, y) = P

{

� = 1
∣

∣χ = χ,Y = y
} = E

[

�
∣

∣χ = χ,Y = y
]

, be the selection
probability, also called the nonresponse propensity, where the random variable �=1
if Y is observable (and �=0 otherwise). For the important case of predictive models
(as in regression or classification), we consider the following versatile logistic-type
selection probability model, which is a generalization of the popular model proposed
by Kim and Yu (2011),

πϕ(χ, y) := E
[

�
∣

∣χ = χ,Y = y
] = 1

1 + exp
{

g(χ)
} · ϕ(y)

, (3)

where ϕ > 0 is a given function that could depend on unknown parameter(s) and g
is an unknown function; both ϕ and g are real-valued. In what follows, the true but
unknown function ϕ will be denoted by ϕ∗.

The generalization ϕ(y) in (3) and its estimation is not new and has been considered
in the literature before. For example, Wang et al. (2021) replace exp(γ y) by a general
function q(y, γ ) and propose estimators based on the generalizedmethod ofmoments.
Similarly, Mojirsheibani (2021) considers the generalization ϕ(y) for the problem of
classification when identifiability is not an issue.

We observe that when ϕ(y) = eγ y for an unknown parameter γ , then (3) reduces
to the model proposed by Kim and Yu (2011), which has been studied and used
extensively in the literature; see, for example, Zhao and Shao (2015), Shao and Wang
(2016), Morikawa et al. (2017), Uehara et al. (2018), Morikawa and Kim (2018), Fang
et al. (2018), O’Brien et al. (2018), Maity et al. (2019), Sadinle and Reiter (2019),
Zhao et al. (2019), Yuan et al. (2020), Chen et al. (2020), Mojirsheibani (2021), and
Liu and Yau (2021), and Wang et al. (2014, 2021).

Of course, one may decide to consider more general nonparametric models instead
of (3), but the estimation of such general models will become a difficult (if not impos-
sible) issue. In fact, in view of the recent widespread use of the model proposed by
Kim and Yu (2011) in the literature, the model in (3) is versatile enough to be used
in predictive models such as regression and classification, and this will also be the
direction of the current paper.

One aim of this paper is to explore the construction of counterparts of the kernel
estimator in (1) for the case where the response variable Y can be missing, but not
necessarily at random (NMAR). Another aim is to apply our results to the problem of
classification where we construct asymptotically optimal nonparametric classification
rules in the presence of NMAR response variables. Our contributions here may be
summarized as follows. (i) We develop an easy-to-implement estimators of the regres-
sion curvem(χ), with functional covariates, in the presence ofNMARdata. (ii)Wewill
carefully explore and study the global properties of the proposed regression estimators
in general L p norms. More specifically, we study the rates of convergence (in L p) of
the proposed estimator under the NMAR setups. (iii) We look into the applications of
our proposed regression estimator to the problem of nonparametric classification in
the presence of partially observed data.
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5618 M. Mojirsheibani

As an important application of our results to the field of machine learning and
statistical classification, we note that in the so-called semi-supervised learning, one
usually has to deal with large amounts ofmissing responses (ormissing labels). In such
setups, researchers in machine learning have made efforts to develop procedures for
utilizing the unlabeled cases (i.e., the data pointswithmissingYi ’s) in order to construct
more effective classification rules; see, for example, Wang and Shen (2007). But most
such results assume that the response variable is missing completely at random; see,
for example, Azizyan et al. (2013). Our results in Sect. 3 make it possible to develop
asymptotically correct classification rules in the presence ofNMAR response variables
for the semi-supervised setup, where we also study the rates of convergence of such
classifiers.

The rest of the paper is organized as follows. Section 2.1 presents the main results
of the paper. Theorem 1 gives the rates of convergence (in L p) of the proposed esti-
mators. Section 3 explores the applications of the results of Sect. 2.1 to the problem
of statistical classification with incomplete covariates (also known as semi-supervised
classification). Strong optimality of the proposed classifiers is addressed in Theorem 2.
Numerical examples are presented in Sect. 4; our numerical findings confirm the good
finite-sample performance of our estimators. All proofs are deferred to Sect. 5.

2 Main results

2.1 The estimator

To present our results, let Dn represent n independent and identically distributed (iid)
data values,

Dn = {(χ1,Y1,�1), . . . , (χn,Yn,�n)},
where �i = 0 if Yi is missing (and �i = 1 otherwise). Next, randomly split the data
into a training sample Dm of size m and a validation sequence D� of size � = n − m,
where Dm ∪ D� = Dn and Dm ∩ D� = ∅. It is assumed that � (and m) → ∞, as
n → ∞. Here, one can of course take m = ⌊ n

2

⌋

, but more general choices of m and
� will be discussed later in our main results. Let F be the class of functions to which
the unknown function ϕ of (3) belongs. For each ϕ ∈ F , put

ψk(χ;ϕ) := E
[

�Y 2−kϕ(Y )

∣

∣

∣χ = χ

]

and

ηk(χ) := E
[

�Y 2−k
∣

∣χ = χ

]

, for k = 1, 2, (4)

and define

m(χ;ϕ) = η1(χ) + ψ1(χ;ϕ)

ψ2(χ;ϕ)
· (1 − η2(χ)) . (5)

It will be noted in Lemma 1 that the true underlying regression function m(χ) is equal
to m(χ;ϕ∗), where ϕ∗ is the true (but unknown) function ϕ in (3). Also, define the
index sets
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Strong optimality of kernel functional... 5619

Im =
{

i ∈ {1, . . . , n}
∣

∣

∣ (χ i ,Yi ,�i ) ∈ Dm

}

and

I� =
{

i ∈ {1, . . . , n}
∣

∣

∣ (χ i ,Yi ,�i ) ∈ D�

}

.

Now, for each fixed ϕ ∈ F , consider the kernel-type estimator of m(χ;ϕ) constructed
based on the training set Dm alone, given by

m̂m(χ;ϕ) = η̂m,1(χ) + ̂ψm,1(χ;ϕ)

̂ψm,2(χ;ϕ)

(

1 − η̂m,2(χ)
)

, (6)

where ̂ψm,k(χ;ϕ) and η̂m,k(χ), k = 1, 2, are the kernel estimators of ψk(χ;ϕ) and
ηk(χ) in (4), i.e.,

̂ψm,k(χ;ϕ) =
∑

i∈Im
�i Y

2−k
i ϕ(Yi )K

(

h−1d(χ, χ i )
)

∑

i∈Im
K(h−1d(χ, χ i )

) , k = 1, 2, ϕ ∈ F , (7)

η̂m,k(χ) =
∑

i∈Im
�i Y

2−k
i K(h−1d(χ, χ i )

)

∑

i∈Im
K(h−1d(χ, χ i )

) , k = 1, 2. (8)

Clearly (6) is not quite an estimator of the regression function m(χ) because one
still needs to replace ϕ by an estimator of the unknown function ϕ∗. Our approach
to estimate the function ϕ∗ is based on the approximation theory of totally bounded
function spaces. More specifically, consider the situation where ϕ∗ belongs to a totally
bounded class of functions in the following sense: let F be a given class of function
ϕ : [−L, L] → (0, B], for some B < ∞. Fix ε > 0 and suppose that the finite
collection of functions Fε = {ϕ1, . . . , ϕN (ε)}, ϕi : [−L, L] → (0, B], is an ε-cover
of F , i.e., for each ϕ ∈ F , there is a ϕ̄ ∈ Fε such that ‖ϕ − ϕ̄‖∞ < ε; here,
‖‖∞ is the usual supnorm. The cardinality of the smallest ε-cover of F is called the
covering number of the family F and will be denoted by Nε(F). If Nε(F) < ∞
holds for every ε > 0, then the family F is said to be totally bounded (with respect to
‖‖∞). The quantity log(Nε(F)) is called Kolmogorov’s ε-entropy of the set F . The
monograph by van der Vaart and Wellner (1996, p. 83) provides more details on such
concepts.

Now, to estimate the function ϕ∗, we first observe that in view of the results of Kim
and Yu (2011), the term exp{g(χ)} that appears in (3) can also be expressed as

exp{g(χ)} = E
[

1 − �
∣

∣χ = χ

]

E
[

�ϕ(Y )
∣

∣χ = χ

]

via (4)= 1 − η2(χ)

ψ2(χ;ϕ)
. (9)

However, estimating the right side of (9) can be challenging due to identifiability
problems. The issue ofmodel identifiability arises when different sets of parameters do
no yield distinct models. In the context of this paper on regression function estimation,
we follow Shao and Wang (2016) and consider a population P to be identifiable if
for two sets of distince parameters, the corresponding versions of P , say P1 and
P2, do not give the same πϕ(χ, y) f (y|χ), where πϕ is as in (3) and f (y|χ) is the
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5620 M. Mojirsheibani

conditional density of the random variable Y given χ. As an example, let f (y|χ) be a
the normal distribution N (μ(χ), σ 2(χ)), where both μ(χ) and σ 2(χ) are unspecified.
Additionally, consider the special case of ϕ(y) = exp(γ y) as in Kim and Yu (2011),
and let {g1(χ), μ1(χ), σ1(χ), γ1} and {g2(χ), μ2(χ), σ2(χ), γ2} be two distinct sets of
parameters corresponding to populations P1 and P2. Then, it follows from the work
of Shao and Wang (2016) that both P1 and P2 will have the same πϕ(χ, y) f (y|χ)

whenever γ1 = −γ2, g1(χ) = −g2(χ), μ1(χ) = μ2(χ) − γ1σ
2
2 (χ) and g2(χ) =

γ 2
2 σ 2

2 (χ)/2−γ2μ2(χ). At the same time, in view of (refexpgx), one also needs g2(χ) =
log

{

E
[

1−�
∣

∣χ = χ

]÷E
[

� exp(γ2Y )
∣

∣χ = χ

]}

,whichmakes it virtually impossible
to check all the above conditions in practice.

To deal with identifiability in the current setup where χ is a functional predictor,
let (�,A,P) be the underlying probability space. We take X (see the introduction for
the notation) to be the space of square-integrable functions defined on an interval of
the real line, i.e., χ is a random function on (�,A,P) with values (sample paths) in
L2(I), where I is an interval on the real line; in fact, we take I = [a, b], for some
finite a < b. A sufficient condition for identifiability is that there is a segment of χ ,
say ζ = χ

∣

∣

s , which is independent of �, given Y and χ
∣

∣

sc , where s = [a, to] for
some to ∈ (a, b), and χ

∣

∣

s represents the restriction of χ(t) to t ∈ s.
To justify this identifiability condition [which also appears under Assumption (A1)

later in this section], observe that since χ ∈ L2([a, b]), i.e., a separable Hilbert space,
one can write χ(t)

∣

∣

t∈s = ∑∞
j=1Uj ψ j (t), t ∈ s = [a, to], where {ψ1, ψ2, . . .} is

a complete orthonormal basis for L2(s) and Uj = ∫

s χ(t)ψ j (t) dt , j = 1, 2, . . .
Here, the infinite sum

∑∞
j=1Ujψ j (t) converges in L2(s). Similarly, one can write

χ(t)
∣

∣

t∈sc = ∑∞
j=1 Vj φ j (t), t ∈ sc = (t0, b], for any complete orthonormal basis

{φ1, φ2, . . .} of L2(sc), where Vj = ∫

sc χ(t)φ j (t) dt , j =1, 2, . . . Since any infinite
dimensionalHilbert space is isomorphic to the space �2 = {

(x1, x2, . . .)
∣

∣

∑∞
i=1 |xi |2 <

∞}

the segments χ(t)
∣

∣

t∈s and χ(t)
∣

∣

t∈sc of the covariate curve χ can be represented
by the surrogate vectors U = (U1,U2, . . .) and V = (V1, V2, . . .) in the sense that
knowing U (respectively V) is the same as knowing the curve χ(t)

∣

∣

t∈s (respectively
χ(t)

∣

∣

t∈sc ). Therefore, the assumption that the curve segmentζ (:= χ
∣

∣

s) is independent
of �, given Y and χ

∣

∣

sc , is equivalent to U being independent of �, given Y and V,
which is a sufficient condition for model identification; see, for example, Uehara et al.
(2018) or Shao and Wang (2016). Under this assumption, the selection probability in
(3) becomes

πϕ(ζ, y) := E
[

�
∣

∣ζ = ζ,Y = y
] = 1

1 + exp{g(ζ)} · ϕ(y)
, (10)

where the true ϕ is denoted by ϕ∗ (as before), and therefore (9) reduces to

exp{g(ζ)} = 1 − ηo(ζ)

ψo(ζ;ϕ)
, where ψo(ζ;ϕ) = E

[

�ϕ(Y )
∣

∣ζ = ζ

]

and

ηo(ζ) = E
[

�
∣

∣ζ = ζ

]

. (11)

Also, for each given ϕ ∈ F , consider the following estimators of ψo(ζ;ϕ) and ηo(ζ)
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{

̂ψm,o(ζ; ϕ) = ∑

j∈Im
� jϕ(Y j )K

(

h−1do(ζ, ζ j )
)÷∑

j∈Im
K(h−1do(ζ, ζ j )

)

,

η̂m,o(ζ) = ∑

j∈Im
� j K

(

h−1do(ζ, ζ j )
)

÷∑

j∈Im
K
(

h−1do(ζ, ζ j )
)

,
(12)

where do is the usual metric induced by the L2(s) norm with s = [a, to]. Finally, our
proposed estimator of the unknown function ϕ∗ is obtained in the following two
steps. Let εm > 0 be a decreasing sequence εm ↓ 0, as m → ∞, and let Fεm =
{ϕ1, . . . , ϕN (εm )} ⊂ F be any εm-cover of F ; the choice of εm will be discussed later
in Theorem 1. Then
Step 1. For each fixed (given) ϕ ∈ Fεm , use the training sample Dm to compute
m̂m(χ;ϕ), which is given by (6), and also to estimate the selection probability πϕ(ζ, y)
in (10) by

π̂ϕ (ζ , y) =
[

1 + ̂exp{g(ζ )} · ϕ(y)
]−1

, (13)

where in view of (11), ̂exp{g(ζ )} is given by

̂exp{g(ζ )} = 1 − η̂m,o(ζ )

̂ψm,o(ζ ;ϕ)
. (14)

Step 2. The proposed estimator of ϕ∗ is then defined by

ϕ̂n := argmin
ϕ ∈Fεm

�−1
∑

i∈I�

�i

π̂ϕ(ζ i ,Yi )

∣

∣m̂m(χ i ;ϕ) − Yi
∣

∣

2
, (15)

where m̂m(χ;ϕ) is as in (6). The subscript n at ϕ̂n reflects the fact that the entire data
of size n has been used here. Finally, the corresponding estimator of the regression
function m(χ) is given by

m̂(χ; ϕ̂n) := m̂m(χ;ϕ)
∣

∣

ϕ=ϕ̂n
, with m̂m(χ;ϕ) as in (6). (16)

Remark 1 The estimator in (15) may be viewed as the empirical version of the mini-
mizer of the mean squared error, i.e., the empirical version of

ϕεm := argmin
ϕ∈Fεm

E
∣

∣m(χ ;ϕ) − Y
∣

∣

2
, (17)

wherem(χ ;ϕ) is the regression functionm(χ ;ϕ∗) evaluated at an arbitrary ϕ ∈ Fεm .
To appreciate this, observe that upon conditioning on Y and χ , for each ϕ ∈ Fεm

one finds E
{

�
πϕ∗ (ζ , Y )

∣

∣m(χ ;ϕ) −Y
∣

∣

2} = E
[

E
{

�
πϕ∗ (χ |s , Y )

∣

∣m(χ ;ϕ) − Y
∣

∣

2∣
∣χ ,Y

}] =
E
[∣

∣m(χ ;ϕ)−Y
∣

∣

2 1
πϕ∗ (χ |s ,Y )

·E{�∣∣χ ,Y }] = E|m(χ ;ϕ)−Y |2,where the last equality
follows from the definition of πϕ(ζ, y) in (10) with ϕ∗ being the true value of ϕ, and
the fact that ζ = χ|s . We also note that ϕεm in (17) is an approximation to the true
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5622 M. Mojirsheibani

function ϕ∗ based on the cover Fεm of F . In fact, with L as in Assumption (A9), we
have

ϕ∗ := argmin
ϕ: [−L,L]→R+

E
∣

∣m(χ ;ϕ) − Y
∣

∣

2
. (18)

How good is the regression estimator m̂(χ; ϕ̂n) in (16)? To answer this question,
we first state a number of assumptions. In what follows, X is the space L2([a, b]),
−∞ < a < b < ∞ as before, and d (respectively d0) is the metric induced by
the usual L2([a, b])-norm (respectively L2([a, to])-norm). Furthermore, ∀χ ∈ X, we
define B(χ, h) = {

χ
′ ∈ X

∣

∣ d(χ
′, χ) < h

}

. Similarly, ∀ζ ∈ X|s , where s = [a, to] for
any to ∈ (a, b), we define Bo(ζ, h) = {

ζ
′ ∈ X|s

∣

∣ d0(ζ
′, ζ) < h

}

.

Assumption (A0) There is a subset S
X

⊂ X satisfying P
{

χ ∈ S
X

} = 1.

Assumption (A1) (Identifiability) There is a segment of χ , say ζ = χ
∣

∣

s , which is
independent of �, given Y and χ

∣

∣

sc , where χ
∣

∣

s is the restriction of χ(t) to t ∈ s :=
[a, to], for some to ∈ (a, b).

Assumption (A2) Let So

X

= {

ζ

∣

∣ ζ = χ|s, χ ∈ S
X
, s = [a, to]

}

. There exist functions
φ1 and φ0 such that ∀χ ∈ S

X
, and ∀ζ ∈ So

X

, and for all h > 0,

0 < Cφ1(h) ≤ P
{

χ ∈ B(χ, h)
} ≤ C ′φ1(h) and

0 < C0 φ0(h) ≤ P
{

ζ ∈ Bo(ζ, h)
} ≤ C ′

0φ0(h)

for positive constants C,C ′,C0,C ′
0.

Assumption (A3) (Lipschitz conditions on ψk) Let ψk be as in (4) and ψo as in (11).
There are constants β0, β1, β2 > 0 such that ∀ χ1, χ2 ∈ S

X
, ∀ ζ1, ζ2 ∈ So

X

, and
∀ϕ ∈ F ∪ {1}

∣

∣ψk(χ1;ϕ) − ψk(χ2;ϕ)
∣

∣ ≤ Ck d
βk

(χ1, χ2), k = 1, 2, and
∣

∣ψo(ζ1;ϕ) − ψo(ζ2;ϕ)
∣

∣ ≤ C0 d
β0
0 (ζ1, ζ2),

where C0, C1, C2 are positive constants.

Assumption (A4) The kernel K is nonnegative, bounded and Lipschitz on its support
[0, 1), and with K(1) = 0 satisfying −∞ < C < K′(t) < C ′ < ∞, for all t ∈ [0, 1),
for constants C and C ′.

Assumption (A5)

(A5a) The function φ1 in Assumption (A1) is such that ∃C > 0, ∃η0 > 0 such that
∀η < η0, φ′

1(η) < C . Furthermore, with K(1) = 0, ∃C > 0, ∃η0 > 0 such
that ∀0 < η < η0, the function φ1 satisfies

∫ η

0 φ1(t) dt > Cηφ1(η).
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(A5b) Similarly, the function φ0 in Assumption (A1) satisfies the same requirements
with possibly different constants C and η0.

Assumption (A6) (Assumptions on φ1, φ0, and the covering number of S
X
) For any

τ > 0, let Nτ (SX
) be the τ -covering number of S

X
, i.e., the smallest number of open

balls of d-radius equal to τ needed to cover S
X
.

(i) Let τm := logm/m. For n (and thus m) large enough, (logm)2/
(

mφ1(h)
)

<

log[Nτm (S
X
)] < mφ1(h)/ logm, and also (logm)2/

(

mφ0(h)
)

< log[Nτm (So

X

)] <

mφ0(h)/ logm, where So

X

is as in Assumption (A2). Furthermore, for k = 0, 1,
mh

√
φk(h) → 0 as m → ∞.

(ii) The Kolmogorov’s τm-entropy of SX
and εn-entropy of F satisfy the summability

condition
∑∞

m=1 exp{(1 − β) log
[Nεm (F) ∨ Nτm (S

X
)
]

< ∞, for some β > 1.

Assumption (A7) There is a constant πmin > 0 such that πϕ(ζ, y) > πmin, for all ζ ∈ So

X

and all y, where πϕ is the selection probability in (10). Furthermore, E[�ϕ(Y )|χ =
χ] ≥ �0, for all χ ∈ S

X
and each ϕ ∈ F , for some constant �0 > 0.

Assumption (A8) The deviation Am,�(ϕ) = |̂Lm,�(ϕ) − E[|m̂m(χ;ϕ) − Y |2|Dm]|,
ϕ ∈ Fεm , where ̂Lm,�(ϕ) and m̂m(χ;ϕ) are as in (27) and (6), satisfies P{Am,�(ϕ) >

t} ≤ supϕ∈F Pϕ{Am,�(ϕ) > t}, ∀ t > 0, wherePϕ denotes the probability computed
when ϕ is the true function, and P means Pϕ∗ .

Assumption (A9) The function ϕ∗ belongs to a totally bounded class F of functions
ϕ : [−L, L] → (0, B], for some B < ∞ and L < ∞, where ϕ∗ is the true ϕ in (10).

Assumption (A0) is not new and has already been considered in the literature; see,
for example, Ferraty et al. (2013).As an example, a particularly interesting subsetS

X
of

X is the class of functions in L2([a, b]) satisfying the following classical Kolmogorov–
Riesz sufficient conditions for S

X
to be totally bounded: (i) S

X
is bounded, and (ii)

for every ε > 0 there is a ρ >0 such that, for every χ ∈ S
X
and |y| < ρ, one

has
∫ ∣

∣χ
[a,b]

(t + y) − χ
[a,b]

(t)
∣

∣

2
dt < ε2, where χ

[a,b]
(t) := χ(t) · 1{a≤t≤b} ∈ L2(R).

Assumption (A1) deals with the identifiability issue (as discussed earlier in Sect. 2.1).
Assumptions (A2)–(A6) are standard in functional kernel regression; see, for example,
Ferraty et al. (2010). The first part of assumption (A7) is common in missing data
literature (as in Cheng andChu 1996 or Ferraty et al. 2013); this assumption essentially
states that Y can be observed (i.e., �=1) with a non-zero probability for all value
of (ζ , y). The second part of Assumption (A7) is rather mild and can be justified
by noticing that E[�ϕ(Y )|χ ] = E[ϕ(Y )E(� |χ ,Y ) |χ ] ≥ πminE[ϕ(Y )|χ ] together
with the fact that ϕ(y) > 0 for all y. The last two assumptions are technical.

The following result explores the almost complete (a. co.) convergence of the L p

norm of m̂(χ; ϕ̂n). In passing, we recall (see, for example, Ferraty et al. 2010) that a
sequence of real-valued random variables Zn is said to converge a. co. to a constant c
if for every t > 0,

∑

n≥1 P{|Zn − c| > t} < ∞.

Theorem 1 Let m̂(χ; ϕ̂n) be the estimator in (16) and suppose that Assumptions (A0)–
(A9)hold.Also let the selectionprobabilityπϕ beas in (10). Let εm ↓ 0beany sequence
of positive constants satisfying �−1 log[Nεm (F)] → 0, as n (thus m and �) → ∞.
Then, for any p ∈ [2,∞), one has
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E
[

∣

∣m̂(χ ; ϕ̂n) − m(χ)
∣

∣

p
∣

∣

∣Dn

]

= O(hα)

+Oa. co.

(
√

log[Nεm (F)]
�

)

+ Oa. co.

⎛

⎝

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

m · φ(h)

⎞

⎠+ √
εm,

where α > 0 is a constant not depending on n, τm = log(m)/m, and φ(h) =
φ0(h) ∧ φ1(h) with φ0 and φ1 as in Assumption (A2).

It is also desirable to find the limiting distribution of the L2 norm of the proposed
estimator as it can provide a tool to perform inferences for the unknown regression
curve in a global sense. However, such results are quite difficult (if not impossible) to
establish when χ is functional and Y may be missing NMAR. In fact, to the best of
our knowledge, such results are not available even for the simpler case of missing at
random (MAR) response values with Euclidean χ ’s. The only related result we are
aware of is that of Mojirsheibani (2022) which derives the limiting distribution of the
maximal deviation of a very particular kernel-type regression estimator (under some
rather stringent conditions).

Remark 2 Consider the class F of functions ϕ of the form:

ϕ(y) = exp{γ y}, |γ | ≤ M, |y| ≤ L, for any M, L < ∞, (19)

which is similar to the function used by Kim and Yu (2011) in their version of the
selection probability model (10).

It is straightforward to see that for every ε > 0, the finite collection of functions

Fε =
{

exp{γ y}, |y| ≤ L

∣

∣

∣

∣

γ ∈
{ {

2 iε/
(

L exp(ML)
)

∣

∣

∣ |i | ≤ �ML exp{ML}/ε�
}

∪ {−M} ∪ {M}
}

}

is an ε-cover ofF and the covering number ofF is bounded by (2ML exp{ML}ε−1+
3). Since this bound grows like ε−1 (as ε ↓ 0), one obtains the strong L p, p ∈
[2,∞), convergence results for the regression estimator (16), under the conditions of
Theorem 1, for any sequence εm ↓ 0 (as m → ∞) that satisfies �−1 log(1/εm) → 0.

2.2 Estimation of s

The methodology proposed in the previous section assumes that s, the interval related
to identifiability Assumption (A1), was known from prior information. In practice s is
often unknown and estimating it is particularly complicated. In fact, it is complicated
even for the simpler case where χ ∈ R

d ; see Wang et al. (2021) for three methods of
finding the subset U of χ , where χ = (U,Z), such that P(� = 1

∣

∣χ ,Y ) = P(� =
1|U,Y ). Our proposed approach to estimate s is more in the spirit of the third method
discussed in the cited paper. To motivate our approach, let m(χ) be the regression
function and observe that in view of (5) (and Lemma 1), m(χ) = m(χ;ϕ∗), where ϕ∗
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is the true function ϕ. Furthermore, by the definition of the regression function,

min
T : L2([a,b])→R

E
[

Y − T (χ)
]2 def= E[Y − m(χ)]2 = E

[

Y − m(χ ;ϕ∗)
]2

= E

[

� · [Y − m(χ ;ϕ∗)
]2

πϕ∗(χ |s,Y )

]

, (20)

where s is of the form [a, t0] for some unknown t0, one can consider estimating s by
minimizing an empirical version of the far right side of (20). Since ϕ∗ is also unknown,
we consider the following joint estimation of s and ϕ∗ in our actual numerical studies

(ϕ̂n, ŝ) = argmin
s ∈{s1,...,sq }, ϕ ∈Fεn

�−1
∑

i∈I�

�i

π̂ϕ (χ i |s,Yi )
∣

∣m̂m(χ i ;ϕ) − Yi
∣

∣

2
, (21)

where s j = [a, t j0 ], j = 1, . . . , q, for a grid of values of a < t10 < t20 < · · · < tq0 = b.
Of course, the finer the grid is, the more accurate the estimator of s will be. Although
this is a rough estimate of s, we believe that it can still provide good results for
numerical work.

3 Applications to classification with partially labeled data

Here, we consider the following standard two-group classification problem. Let
(χ ,Y ) ∈ X × {0, 1} be a random pair, where X may be an abstract space and Y ,
called the class label (or class variable), has to be predicted based on χ . More pre-
cisely, the aim of classification is to find a function g : X → {0, 1} for which the
misclassification error probability,

L(g) := P{g(χ) �= Y }, (22)

is as small as possible. The best classifier, also referred to as the Bayes classifier, is
given by

gB(χ) =
{

1 if m(χ) := E
(

Y |χ = χ

)

> 1
2 ,

0 otherwise,
(23)

i.e., gB has the smallest error probability given by L(gB) = infg:X→{0,1} P{g(χ) �= Y };
see, for example, Cérou and Guyader (2006), Abraham et al. (2006), and Devroye et
al. (1996, Chap. 2). Since the distribution of (χ ,Y ) is almost always unknown, finding
the classifier gB is virtually impossible. However, suppose that one has access to a
random sample (the data) Dn = {(χ1,Y1,�1), . . . , (χn,Yn,�n)}, where �i = 0 if
Yi is missing (and �i = 1 otherwise); here, Yi ’s may be missing but not necessarily at
random. Now, consider the regression estimator m̂(χ; ϕ̂n) defined in (16), and denote
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the corresponding plug-in type version of (23) by

ĝn(χ ; ϕ̂n) :=
{

1 if m̂(χ; ϕ̂n) > 1
2 ,

0 otherwise.
(24)

The following result shows that the classifier defined via (24) is almost completely
(and thus strongly) optimal in the usual sense that its misclassification error converges,
almost completely, to that of the best classifier.

Theorem 2 Consider the classifier ĝn(χ; ϕ̂n) given by (24). Then, under the conditions
of Theorem 1, we have

P
{

ĝn(χ ; ϕ̂n) �= Y
∣

∣

∣Dn

}

a.co.−→ P{gB(χ) �= Y }, as n → ∞.

4 Numerical examples

In this section, we present some numerical examples in order to study and assess the
finite-sample performance of our proposed regression estimators and their correspond-
ing plug-in-type classification rules.

4.1 Example 1: regression

In what follows, we consider the proposed estimator m̂(χ; ϕ̂n) in (16), the complete-
case regression estimator mcc

n (χ) in (2) that only uses the fully observed part of the
data, as well as the estimator mn(χ) in (1) based on the full data. The estimator mn(χ)

is included merely to see howmuch better the results would have been, had we not had
any missing values. To perform the numerical studies, random samples of curves were
generated according to χ i (t) = (t − 0.5)2Ai + Bi , i = 1, . . . , n, where t ∈ [0, 1],
Ai ∼ N (5, 22) and Bi ∼ N (1, 0.52). For the purpose of simulations, each initial
discretized curve was generated from 500 equispaced points t ∈[0, 1]. A sample of 20
of these curves is provided in Fig. 1.

The response variableYi corresponding toχ i , is taken to follow twopossiblemodels
Model A: Yi = log

( ∫ 1
0 χ2

i (t) dt
)+ ei , where ei ∼ N (0, 1).

Model B: Yi = log
( ∫ 1

0 χ2
i (t) dt

)+ ei , where ei ∼ N (0, 22), (High noise).
With respect to the choice of the functions ϕ and g in the missing probability mech-
anism (10), we considered ϕ(y) = exp(γ y), which is in the spirit of Kim and Yu
(2011), and

g(ζ) =
{

γ0 + γ1 log
(

∫ 0.6

0
ζ
2(t) dt

)}

, where ζ = χ
∣

∣[0,0.6] = χ(t) · 1{0≤t≤0.6},

(25)

see Remark 3 at the end of this example for more on the choice of g. As for the
choice of the coefficients (γ0, γ1, γ ) we considered (−4.9, 0.05, 0.98) to produce
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Fig. 1 A sample of covariate curves χ i for Example 4.1

Table 1 Empirical L2 errors for models A and B with 50% missing response

Estimator Model A Model B (High Noise)
n = 50 n = 100 n = 300 n = 50 n = 100 n = 300

Complete-case 1.297 1.283 1.280 6.072 5.833 5.921

estimator: mcc
n (χ) (0.0090) (0.0061) (0.0041) (0.0494) (0.0326) (0.0189)

Proposed m̂(χ; ϕ̂n) 1.090 1.058 1.039 4.598 4.516 4.395

estimator: m̂(χ; ϕ̂n) (0.0058) (0.0037) (0.0024) (0.0248) (0.0202) (0.0173)

No missing data 1.019 1.018 1.003 4.113 4.044 4.025

estimator: mn(χ) (0.0025) (0.0022) (0.0020) (0.0124) (0.0097) (0.0088)

The numbers in parentheses are the standard errors computed over 400 Monte Carlo runs

approximately 25%missing response values, (−6, 0.2, 1.5) that results in 50%miss-
ing vales, and (−5, 0.14, 1.9) to produce 80% missing values. For each of the three
sample sizes n =50,100, 300, the three regression estimators m̂(χ; ϕ̂n), mcc

n (χ), and
mn(χ) were constructed using a data-splitting ratio of 0.7n for the training sample
and 0.30n for the testing sequence. Next, these three regression estimators were used
to predict the response Y for a validation set of 1000 additional observations from
the underlying distribution of the data. Here, we used the Epanechnikov-type kernel
K(s) = 3

2 (1 − s2)1{0≤s≤1}, however, as in general nonparametric kernel regression
estimation, the shape of the kernel is of little importance here. For our estimators and
their corresponding smoothing parameters we employed the R package “fda.usc”
developed by Febrero-Bande and Oviedo de la Fuente (2012), where the cross-
validation option was used to estimate the smoothing parameters. Finally to assess
the performance of these three regression estimators, we computed the empirical L2

error of each estimator (for each sample size n) committed on the validation set of
size 1000. This entire process was repeated a total of 400 times (each time using a
sample of size n and a validation set of size 1000) and the average empirical L2 error
was computed. The results appear in Table 1.
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Table 2 Empirical L2 errors for models A and B with 80% missing data

Estimator Model A Model B (High Noise)
n = 50 n = 100 n = 300 n = 50 n = 100 n = 300

Complete-case 2.151 2.079 2.041 8.429 8.539 8.392

estimator: mcc
n (χ) (0.0246) (0.0187) (0.0124) (0.0764) (0.0499) (0.0328)

Proposed 1.623 1.396 1.224 5.942 5.724 5.266

estimator: m̂(χ; ϕ̂n) (0.0271) (0.0165) (0.0062) (0.0598) (0.0418) (0.0312)

No missing data 1.019 1.018 1.003 4.113 4.044 4.025

estimator: mn(χ) (0.0025) (0.0022) (0.0020) (0.0124) (0.0097) (0.0088)

The numbers in parentheses are the standard errors computed over 400 Monte Carlo runs

Table 3 Empirical L2 errors for models A and B with 25% missing data

Estimator Model A Model B (High Noise)
n = 50 n = 100 n = 300 n = 50 n = 100 n = 300

Complete-case 1.061 1.078 1.053 4.605 4.592 4.622

estimator: mcc
n (χ) (0.0043) (0.0032) (0.0026) (0.0229) (0.0197) (0.0141)

Proposed 1.030 1.036 1.006 4.203 4.089 4.058

estimator: m̂(χ; ϕ̂n) (0.0030) (0.0026) (0.0022) (0.0199) (0.0108) (0.0102)

No missing data 1.019 1.018 1.003 4.113 4.044 4.025

estimator: mn(χ) (0.0025) (0.0022) (0.0020) (0.0124) (0.0097) (0.0088)

The numbers in parentheses are the standard errors computed over 400 Monte Carlo runs

The numbers appearing in parentheses are the standard errors computed over 400
Monte Carlo runs. The last row of this table gives the errors for the estimatormn(χ) in
(1) that involves no missing data. The second row of Table 1 shows that the proposed
regression estimator m̂(χ; ϕ̂n) performs quite well as its error rates follow closely those
of the optimal case in the third row (with no missing values) under both models A and
B, regardless of the sample size, and despite the fact that the data suffer from a 50%
missing rate. The performance of the complete-case regression estimatormcc

n (χ) in the
first row of the table is rather poor; this should not be surprising because, as discussed
earlier [immediately after Eq. (2)], this estimator is in general the “wrong” estimator.

Table 2 gives the same results for the case with 80% missing data. Once again the
proposed estimator m̂(χ; ϕ̂n) performs well in terms of its error being relatively close
to the one with no missing values (the third row of the table) despite the 80% missing
rate.
Next, Table 3 gives the same results for the case with 25% missing data. As this table
shows, the performance of the proposed regression estimator m̂(χ; ϕ̂n) for this case
comes quite close to that of the one based on no missing data, i.e., mn(χ).

Remark 3 The function g in (25) is clearly free of the portion χ|[0,0.4] of the curve
χ(t), t ∈ [0, 1], which ensures that the missing probability mechanism (10) does not
depend on χ|[0,0.4]. That is, the missingness of Y is not influenced by the portion
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Fig. 2 A sample of curves χ i from each of the two classes for Example 4.2

χ|[0,0.4] of the covariate curve. Although requiring g to be free of a portion of the
curve χ(t), t ∈ [0, 1], is part of the identifiability Assumption (A1), our additional
numerical work (not reported here) shows that the final numerical results are not much
influenced by the choice of to =0.4 in the interval [0, to]; in fact, our numerical results
(i.e., the reported empirical error rates) remain virtually the same for other choices of
to ∈ (0, 1). This is particularly important from an applied point of view where the true
value of to may not be exactly known in advance.

4.2 Example 2: semi-supervised classification (partially observed labels)

In this example we consider the prediction of the class membership, Y =1 or Y =0,
of any entity based on the functional predictor χ(t), t ∈ [0, 1], where χ(t) = (t −
0.5)2A + B, with A ∼ N (5, 22) and B ∼ N (1, 0.52) for class 1 (i.e., Y =1), and
A ∼ Unif(0, 4) and B ∼ Unif(0, 2.1) for class 0 (i.e., Y =0). These distributions are
similar to those in Rachdi and Vieu (2007). The parameters of the distributions of A
and B are deliberately chosen in such a way that would make the task of classification
rather difficult in this case; in fact, a sample of these curves and their classmemberships
in Fig. 2 reveals a significant overlap in large segments of the two sets of curves, thus
making classification more challenging here.
Here, the class probabilities are taken to be P(Y =1)= P(Y =0)=0.5. Furthermore, the
function g in themissing probabilitymechanism (10) is the same as that in Example 4.1
given by (25), and the function ϕ(y) = exp(exp(y

√
γ )). Regarding the choice of the

coefficients (γ0, γ1, γ ), we considered (−1.3, 0.10, 0.5) and (−3.3, 0.15, 0.95) to
produce 60% and 30% missing rates, respectively. Next, using two different sample
sizes, n =100 and n =300, we constructed the classifier ĝn(χ ; ϕ̂n) that appears in (24).
Additionally, we constructed the complete cases classifier, denoted by gcc

n (χ), that
replaces m̂(χ; ϕ̂n) with (2) in (24), as well as the classifier based on no missing data,
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Table 4 Misclassification errors of the three classifiers

Classifier 60% Missing rate 30% Missing rate
n = 100 n = 300 n = 100 n = 300

Complete-case 0.448 0.495 0.352 0.462

classifier: gcc
n (χ) (0.0063) (0.0015) (0.0094) (0.0046)

Proposed 0.216 0.206 0.209 0.197

classifier: ĝn(χ; ϕ̂n) (0.0090) (0.0085) (0.0086) (0.0080)

No missing data 0.196 0.185 0.196 0.185

classifier: gn(χ) (0.0025) (0.0013) (0.0025) (0.0013)

The numbers in parentheses are the standard errors computed over 400 Monte Carlo runs

denoted by gn(χ), which replaces m̂(χ; ϕ̂n) by (1) in (24); the reason for including the
classifier based on no missing data [i.e., gn(χ)] is to see (i) how far off the other two
classifiers are in terms of their error rates, and (ii) what the results would have been,
had we not had any missing Yi ’s in the data. As in Example 4.1, here we used the
Epanechnikov kernel, where once again the cross-validation option of the R package
“fda.usc” of Febrero-Bande and Oviedo de la Fuente (2012) was used to estimate the
smoothing parameter of the kernel.
Next, these three classifierswere used to classify a validation data set of 1000 additional
observations generated from the underlying distribution of the data (with 500 from
each class); this was done for each of the two sample sizes. The entire above process
was repeated a total of 400 times (each time using a sample of size n and a validation
set of size 1000) and the average misclassification errors were computed. The results
appear in Table 4 along with their standard errors in parentheses. Table 4 shows that
the classifier ĝn(χ ; ϕ̂n) has the ability to perform well, as compared to the classifier
with no missing data, gn(χ), despite the fact that it suffers from huge missing rates.
In passing, we note that the complete-case classifier is performing quite poorly; as
noted after Eq. (2), this is because mcc

n (χ) in (2) is actually the “wrong” estimator of
m(χ)=P

{

Y =1|χ = χ

}

in the sense that mcc
n (χ) estimates the quantity E(�Y |χ =

χ)/E(�|χ = χ) which is not in general equal to the regression function m(χ) and
can, in fact, be larger that 1 for a probability! As a result, as n increases from 100 to
300, the error of the complete-case classifier tends to get worse (with larger standard
errors), as it tends to get closer to the error of a completely incorrect classifier.

4.3 Example 3: spectrometric data

In the previous two examples we assumed that s, the interval related to identifiability
Assumption (A1), was known from prior information or studies; see (25) where we
had s = [0, 0.6]. Here, we consider estimating s based on the method discussed in
Sect. 2.2.

This data set consists of pairs of measurements (χ i ,Yi ), i = 1, . . . , 215, on 215
pieces of finely chopped meat, where χ i is the spectrometric curve corresponding to
the absorbance measured at 100 wavelengths (thus χ i = (χi (t1), . . . , χi (t100)) for
the i th meat sample. Here, Yi is a measure of the fat content of the i th meat sample.
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Fig. 3 A sample of 20 data curves χ i from Example 4.3

This real data set and information about its origin can be found at https://www.math.
univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/ under Datasets. A sample of 20 of
these curves appears in Fig. 3.
The question of interest is to predict Y based on χ . To proceed, we randomly select
n =170 of the measurement pairs (χ i ,Yi ) to be used as the data while the remaining
45 pairs are used as the validation set. For missing values, we generated �i ’s using
(10) with

g(ζ) = γ0 + γ1

∫ t50

0
ζ
2(t) dt, where ζ = χ

∣

∣[0,t50] = χ(t) · 1{0≤t≤t50}, (26)

and ϕ(y) = exp(γ y). Thus the true s for ζ = χ
∣

∣

s is [0, t50] in (10). We took γ0 = 4,
γ1 = 0.16, and γ = −0.5 corresponding to approximately 50% missing data. For the
purpose of presentation, we re-scaled the frequencies to fall in the interval [0, 1], thus
t1 = [0, 0.01], t2 = [0, 0.02], . . . , t100 = [0, 1]. Therefore, s = [0, t50] = [0, 0.50]
in (26). Finally, the three regression estimators m̂(χ; ϕ̂n), mcc

n (χ), and mn(χ) were
constructed using the Epanechnikov-type kernel and a data-splitting ratio of 0.7n to
0.3n as in the previous examples. These three regression estimators were used to
predict the response Y in the validation set of size 45, and the empirical L2 error was
computed. Repeating this process 400 times, each time dividing the 215 observations
randomly into a data set of size n =170 and a validation set of size 45, we computed
the average empirical L2 error (over 400 runs). The results appear in the top row of
Table 5 where t =0.50. Once again, the proposed regression estimator m̂(χ; ϕ̂n) tends
to perform relatively well. Representing the estimate of s by ŝ = [0, t̂ ], the table also
gives the average value of t̂ , over 400 runs, where in each run ŝ was selected from the
set {s1, . . . , s20} to minimize (21); here s1 = [0, 0.05], s2 = [0, 0.10], . . . , s19 =
[0, 0.95], s20 = [0, 1]. In passing, we observe that the average value of t̂ (= 0.48)
over 400 runs is relatively close to the true t = 0.50. The bottom row of the table
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Table 5 Empirical L2 errors for
the data in Example 4.3

s = [0, t] m̂(χ; ϕ̂n) t̂ mcc
n (χ) mn(χ)

t = 0.50 136.65 0.48 182.89 101.90

(1.600) (0.015) (2.118) (1.681)

t = 0.20 140.08 0.27 177.12 101.90

(2.262) (0.011) (2.408) (1.681)

The numbers in parentheses are the standard errors computed over 400
Monte Carlo runs

gives the same result for the case where s = [0, 0.20] with γ0 = 4.84, γ1 = 0.18, and
γ = −0.5 for 50% missing data. In this case, the average value of t̂ over 400 runs is
about 0.27. The values appearing in parentheses are the standard errors.

5 Proofs of themain results

We start by stating a number of lemmas. In what follows, we use the notation of
Sect. 2.1 and let Fε be any ε-cover of F (as defined in Sect. 2.1). Next, for each
ϕ ∈ F , define

̂Lm,�(ϕ) := 1

�

∑

i∈I�

�i

π̂ϕ(ζ i ,Yi )

∣

∣

∣m̂m(χ i ;ϕ) − Yi
∣

∣

∣

2
, (27)

where π̂ϕ(ζ, y) is as in (13) and m̂m(χ;ϕ) is given by (6). Also, let m(χ;ϕ) be as in
(5) and put

ϕε := argmin
ϕ∈Fε

E
∣

∣m(χ ;ϕ) − Y
∣

∣

2 and ϕ̂ε := argmin
ϕ∈Fε

̂Lm,�(ϕ). (28)

Lemma 1 Let ϕ∗ be the true (unknown) version of the function ϕ in (10). Also, let
m(χ;ϕ) be as in (5). Then the regression function m(χ) = E[Y |χ = χ] can be
represented as

m(χ) := m(χ;ϕ∗) = η1(χ) + ψ1(χ;ϕ∗)
ψ2(χ;ϕ∗)

· (1 − η2(χ)) . (29)

where the functions ψk and ηk, k = 1, 2, are given by (4).

Proof of Lemma 1. The proof of this lemma is straightforward and therefore omitted.
��

Lemma 2 Let m(χ;ϕ j ), j = 1, 2, be defined as in (5), where ϕ j : [−L, L] → (0, B]
for some positive number B. Then, under Assumptions (A7) and (A9), one has

E

∣

∣

∣m(χ ;ϕ1) − m(χ ;ϕ2)

∣

∣

∣ ≤ C · sup
−L≤y ≤L

∣

∣ϕ1(y) − ϕ2(y)
∣

∣,
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where the constant C > 0 can be taken to be C = 2L/�0, with �0 as in Assumption
(A7).

Proof of Lemma 2. Let S j (χ) = E[�Y ϕ j (Y )|χ = χ] and Tj (χ) = E[�ϕ j (Y )|χ =
χ], j = 1, 2, and observe that

∣

∣

∣m(χ; ϕ1) − m(χ;ϕ2)

∣

∣

∣ =
∣

∣

∣

∣

−S1(χ)

T1(χ)
· T1(χ) − T2(χ)

T2(χ)
+ S1(χ) − S2(χ)

T2(χ)

∣

∣

∣

∣

· E[1 − δ|χ = χ
]

≤ 1

T2(χ)

{

L
∣

∣T1(χ) − T2(χ)
∣

∣+ ∣

∣S1(χ) − S2(χ)
∣

∣

}

.

But, |S1(χ)− S2(χ)| ≤ E
[|� Y | · ∣∣ϕ1(Y ) − ϕ2(Y )

∣

∣

∣

∣χ = χ

] ≤ L sup−L≤y ≤L

∣

∣ϕ1(y)
− ϕ2(y)

∣

∣. Similarly, |T1(χ) − T2(x)| ≤ sup−L≤y ≤L

∣

∣ϕ1(y) − ϕ2(y)
∣

∣. On the other
hand, by the second part of Assumption (A7), we have T2(χ) ≥ �0 > 0. Therefore

∣

∣

∣m(χ;ϕ1) − m(χ;ϕ2)

∣

∣

∣ ≤ (2L/�0) sup
−L≤y ≤L

∣

∣ϕ1(y) − ϕ2(y)
∣

∣

The lemma follows now by integrating both sides of this inequality with respect to
μ(dx). ��
Lemma 3 Let m(χ;ϕ), ̂Lm,�(ϕ), ϕε, and ϕ̂ε be as in (5), (27), and (28), respectively.
Then, under the conditions of Theorem 1, we have

E

[

∣

∣

∣m̂m(χ ; ϕ̂ε) − m(χ ;ϕε)

∣

∣

∣

2
∣

∣

∣

∣

Dn

]

≤ sup
ϕ∈Fε

∣

∣

∣

∣

E

[

∣

∣

∣m̂m(χ ;ϕ) − Y
∣

∣

∣

2∣
∣

∣Dm

]

− ̂Lm,�(ϕ)

∣

∣

∣

∣

+ sup
ϕ∈Fε

∣

∣

∣

∣

̂Lm,�(ϕ) − E

∣

∣

∣m(χ ;ϕ) − Y
∣

∣

∣

2
∣

∣

∣

∣

+ C1 ε1/2, (30)

where C1 is a positive constant not depending on n or ε, and m̂m(χ ;ϕ) is as in (6).

Proof of Lemma 3. Start with the simple decomposition E
[|m̂m(χ ; ϕ̂ε) − Y |2∣∣Dn

] =
E
[|m̂m(χ ; ϕ̂ε)−m(χ ;ϕε)|2

∣

∣Dn
]+E|m(χ ;ϕε)−Y |2 + 2E

[(

m̂m(χ ; ϕ̂ε)−m(χ ;ϕε)
)

(

m(χ ;ϕε) − Y
)∣

∣Dn
]

. Also, let ϕ∗ be as in (18) and observe that

E

[

(

m̂m(χ ; ϕ̂ε) − m(χ ;ϕε)
)(

m(χ ;ϕε) − Y
)

∣

∣

∣

∣

Dn

]

= E

[

(

m̂m(χ ; ϕ̂ε) − m(χ ;ϕε)
)(

m(χ ;ϕε) − m(χ ;ϕ∗) + m(χ ;ϕ∗) − Y
)

∣

∣

∣

∣

Dn

]

= E

[

(

m̂m(χ ; ϕ̂ε) − m(χ ;ϕε)
)(

m(χ ;ϕε) − m(χ ;ϕ∗)
)

∣

∣

∣

∣

Dn

]

,

where we have used the fact that in view of (29), E[Y |χ = χ] := m(χ) = m(χ;ϕ∗).
Therefore

E

[

∣

∣

∣m̂m(χ ; ϕ̂ε) − m(χ ;ϕε)

∣

∣

∣

2
∣

∣

∣

∣

Dn

]

=
{

E

[

∣

∣

∣m̂m(χ ; ϕ̂ε) − Y
∣

∣

∣

2
∣

∣

∣

∣

Dn

]

− E

∣

∣

∣m(χ ;ϕε) − Y
∣

∣

∣

2
}
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−2E

[

(

m̂m(χ ; ϕ̂ε) − m(χ ;ϕε)
)(

m(χ ;ϕε) − m(χ ;ϕ∗)
)

∣

∣

∣

∣

Dn

]

:= In + IIn . (31)

Now, observe that

In = E

[

∣

∣

∣m̂m(χ ; ϕ̂ε) − Y
∣

∣

∣

2
∣

∣

∣

∣

Dn

]

− inf
ϕ∈Fε

E
∣

∣m(χ ; ϕ) − Y
∣

∣

2

= sup
ϕ∈Fε

{

E

[

∣

∣

∣m̂m(χ ; ϕ̂ε) − Y
∣

∣

∣

2
∣

∣

∣

∣

Dn

]

− ̂Lm,�(ϕ) + ̂Lm,�(ϕ) − ̂Lm,�(ϕ̂ε)

+̂Lm,�(ϕ̂ε) − E
∣

∣m(χ ;ϕ) − Y
∣

∣

2
}

, (wherêLm,�(ϕ) is as in (27))

≤
(

E

[

∣

∣

∣m̂m(χ ; ϕ̂ε) − Y
∣

∣

∣

2
∣

∣

∣

∣

Dn

]

− ̂Lm,�(ϕ̂ε)

)

+ sup
ϕ∈Fε

∣

∣

∣

̂Lm,�(ϕ) − E
∣

∣m(χ ;ϕ) − Y
∣

∣

2
∣

∣

∣ ,

where the last line follows since ̂Lm,�(ϕ̂ε) ≤ ̂Lm,�(ϕ) holds for all ϕ ∈ Fε [because
of the definition of ϕ̂ε in (28)]. Therefore,

∣

∣In
∣

∣ ≤ sup
ϕ∈Fε

∣

∣

∣

∣

E

[

∣

∣

∣m̂m(χ ; ϕ) − Y
∣

∣

∣

2
∣

∣

∣

∣

Dm

]

− ̂Lm,�(ϕ)

∣

∣

∣

∣

+ sup
ϕ∈Fε

∣

∣

∣

∣

̂Lm,�(ϕ) − E
∣

∣m(χ ; ϕ) − Y
∣

∣

2
∣

∣

∣

∣

,

(32)

where the conditioning on Dm in the above expression reflects the fact that m̂m(χ ;ϕ)

depends on Dm only (and not the entire data Dn). Furthermore, the term IIn in (31)
can be bounded as follows.

∣

∣IIn
∣

∣ ≤ 2E

[

∣

∣

∣m̂m(χ ; ϕ̂ε) − m(χ ;ϕε)

∣

∣

∣ ·
∣

∣

∣m(χ ;ϕε) − m(χ ;ϕ∗)
∣

∣

∣

∣

∣

∣

∣

Dn

]

≤ 6L · E
∣

∣

∣m(χ ;ϕε) − m(χ ;ϕ∗)
∣

∣

∣ ≤ 6L
√

E
∣

∣m(χ ;ϕε) − m(χ ;ϕ∗)
∣

∣

2
. (33)

But, using the identity E
∣

∣m(χ ;ϕε) − Y
∣

∣

2 = E
∣

∣m(χ ;ϕ∗) − Y
∣

∣

2 + E
∣

∣m(χ ;ϕε) −
m(χ ;ϕ∗)

∣

∣

2, we have

E
∣

∣m(χ ;ϕε) − m(χ ;ϕ∗)
∣

∣

2 = inf
ϕ∈Fε

E
∣

∣m(χ ;ϕ) − Y
∣

∣

2 − E
∣

∣m(χ ;ϕ∗) − Y
∣

∣

2

= inf
ϕ∈Fε

E
∣

∣m(χ ;ϕ) − m(χ ;ϕ∗)
∣

∣

2

≤ 2L inf
ϕ∈Fε

E
∣

∣m(χ ;ϕ) − m(χ ;ϕ∗)
∣

∣. (34)

Now let ϕ† ∈ Fε be such that ϕ∗ ∈ B(ϕ†, ε); such a ϕ† ∈ Fε exists because ϕ∗ ∈ F
and Fε is an ε-cover of F . Then, in view of Lemma 2 and the fact that the right side
of (34) is an infimum, one finds

(Rght side of (34)) ≤ 2L · E∣∣m(χ ; ϕ†) − m(χ ;ϕ∗)
∣

∣ ≤ 2LC sup
−L≤y≤L

∣

∣ϕ†(y) − ϕ∗(y)
∣

∣
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≤ 2LC · ε
(

becauseϕ∗ ∈ B(ϕ†, ε)
)

, (35)

where C is as in Lemma 2. Therefore, by (33) and (34), we have

∣

∣IIn
∣

∣ ≤ 6L
√
2LC · ε =: C1

√
ε . (36)

Now Lemma 3 follows from (31), (32), and (36). ��
Lemma 4 Let Nτ (SX

) and Nτ (So

X

) be the τ -covering numbers of S
X
and So

X

, τ > 0,
where So

X

is as in Assumption (A2). Then for all τ > 0, we haveNτ (So

X

) ≤ Nτ (SX
).

Proof of Lemma 4. Letχ1 , . . . , χNτ (S
X

)
be a τ -cover forS

X
, i.e.,S

X
⊂ ⋃Nτ (S

X
)

j=1 B(χ j , τ ).

Now, observe that, withX = L2([a, b]),∞ < a < b < ∞ and s = [a, to], to ∈ [a, b],
for any χ ∈ S

X
, we have

min
1≤ j≤Nτ (S

X
)

∥

∥(χ j − χ)|s
∥

∥

L2(s) = min
1≤ j≤Nτ (S

X
)

[∫

s

∣

∣(χ j − χ)|s
∣

∣

2
]1/2

= min
1≤ j≤Nτ (S

X
)

[

∫

[a,b]

∣

∣χ j − χ
∣

∣

2 · 1s

]1/2

≤ τ,

where 1s is the indicator function of the set s; thus the restrictions, χ j

∣

∣

s , j =
1, . . . ,Nτ (SX

), form a τ -cover of So

X

, and this completes the proof of the lemma.
��

Lemma 5 Suppose that Assumptions (A0) and (A2)–(A9) hold, and let τm = logm/m.
(i) Let ψk and ηk be as in (4). Also, let ̂ψk and η̂k be as in (7) and (8). Then, for
k = 1, 2,

sup
ϕ∈Fεm

sup
χ∈S

X

∣

∣

∣

̂ψm,k(χ; ϕ) − ψk(χ;ϕ)

∣

∣

∣ = O(hβk
)+ Oa.co.

⎛

⎝

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

m · φ1(h)

⎞

⎠

(37)

sup
χ ∈S

X

∣

∣

∣̂ηm,k(χ) − ηk(χ)

∣

∣

∣ = O(hβk
)+ Oa.co.

⎛

⎝

√

log
[Nτm (S

X
)
]

m · φ1(h)

⎞

⎠ , (38)

where β1 and β2 are the positive constants in Assumption (A3) and Nτ is as in
Assumption (A6).
(ii) Let ψo and ηo be as in (11); also, let ̂ψm,o and η̂m,o be as in (12). Then

sup
ϕ∈Fεm

sup
ζ∈So

X

∣

∣

∣

̂ψm,o(ζ;ϕ) − ψo(ζ;ϕ)

∣

∣

∣ = O(hβo
)
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+Oa.co.

⎛

⎝

√

log
[Nεm (F) ∨ Nτm (So

X

)
]

m · φ0(h)

⎞

⎠ , (39)

sup
ζ ∈So

X

∣

∣

∣̂ηm,o(ζ) − ηo(ζ)

∣

∣

∣ = O(hβo
)+ Oa.co.

⎛

⎝

√

log
[Nτm (So

X

)
]

m · φ0(h)

⎞

⎠ , (40)

where βo is as in Assumption (A3) and So

X

is as in Assumption (A2).

Proof of Lemma 5 We start with the proof of (37). Here, we employ some of the argu-
ments used in Ferraty et al. (2010). Le ψk and ̂ψk be as in (4) and (7), respectively,
and observe that

̂ψm,1(χ;ϕ) − ψ1(χ;ϕ) = 1
̂fm(χ)

{

[

ĝm(χ;ϕ) − E
(

ĝm(χ;ϕ)
)

]

+
[

E
(

ĝm(χ;ϕ)
)− ψ1(χ;ϕ)

]

+
[

1 − ̂fm(χ)
]

· ψ1(χ;ϕ)

}

,

(41)

where

̂fm(χ) =
∑

i∈Im
K(h−1d(χ, χ i )

)

mE
[K(h−1d(χ, χ1)

)] and

ĝm(χ;ϕ) =
∑

i∈Im
�i Yiϕ(Yi )K

(

h−1d(χ, χ i )
)

mE
[K(h−1d(χ, χ1)

)] .

Let χ̃
j
, j = 1, . . . ,Nτm (S

X
) be a τm-cover for SX

, i.e., S
X
⊂ ⋃Nτ (S

X
)

j=1 B
(

χ̃ j , τm

)

, where
τm = logm/m as before, and start with the basic decomposition

sup
ϕ∈Fεm

sup
χ∈S

X

∣

∣

∣̂gm(χ;ϕ) − E
(

ĝm(χ;ϕ)
)

∣

∣

∣ ≤ sup
ϕ∈Fεm

max
1≤ j≤Nτm (S

X
)

sup
χ∈B(χ̃ j ,τm )

∣

∣

∣̂gm(χ;ϕ) − ĝm(χ̃ j ;ϕ)

∣

∣

∣

+ sup
ϕ∈Fεm

max
1≤ j≤Nτm (S

X
)

sup
χ∈B(χ̃ j ,τm )

∣

∣

∣E [̂gm(χ;ϕ)] − E
[

ĝm(χ̃ j ;ϕ)
]

∣

∣

∣

+ sup
ϕ∈Fεm

max
1≤ j≤Nτm (S

X
)

∣

∣

∣̂gm(χ̃ j ;ϕ) − E
[

ĝm(χ̃ j ;ϕ)
]

∣

∣

∣

:= Im + IIm + IIIm . (42)

It can be shown (see Ferraty and Vieu 2006, Lemma 4.4) that in view of Assumptions
(A2) and (A5a) there are constants 0 < C ′ < C ′′ < ∞ such that

∀ χ ∈ S
X
, C ′φ1(h) < E

[K(h−1d(χ, χ1)
)]

< C ′′φ1(h).
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Now, this observation together with the fact that |�i Yiϕ(Yi )| ≤ LB for all i =
1, . . . , n, implies that

sup
χ∈B(χ̃ j , τm )

∣

∣

∣̂gm(χ;ϕ) − ĝm(χ̃ j ;ϕ)

∣

∣

∣

= sup
χ∈B(χ̃ j , τm )

1

m

∣

∣

∣

∣

∣

∑

i∈Im
�i Yiϕ(Yi )K

(

h−1d(χ, χ i )
)

E
[K(h−1d(χ, χ1)

)]

−
∑

i∈Im
�i Yiϕ(Yi )K

(

h−1d(χ̃ j , χ i )
)

E
[K(h−1d(χ̃ j , χ1)

)]

∣

∣

∣

∣

∣

≤ sup
χ∈B(χ̃ j , τm )

CLB

φ1(h)
· 1

m

∑

i∈Im

∣

∣

∣K(h−1d(χ, χ i )
)− K(h−1d(χ̃ j , χ i )

)

∣

∣

∣

·1{χ i∈
[

B(χ, h) ∪B(χ̃ j , h)
]}

≤ sup
χ∈B(χ̃ j , τm )

CLB

φ1(h)
· 1

m
· τm

h

∑

i∈Im

1{χ i∈
[

B(χ, h) ∪B(χ̃ j , h)
]},

(43)

where the last line follows because K is Lipschitz on [0, 1] which implies that

∣

∣K(h−1d(χ, χ i )
)− K(h−1d(χ̃ j , χ i )

)∣

∣ ≤ 1

h
d(χ , χ̃ j ) ≤ τm

h
, ∀ χ ∈ B(χ̃ j , τm).

However, if χ ∈ B(χ̃ j , τm), where τm := logm/m ≤ h, then one finds
B(χ, h)∪B(χ̃ j , h) ⊂ B(χ̃ j , 2h). Consequently

(Right side of (43)) ≤ CLB

φ1(h)
· 1

m
· τm

h

∑

i∈Im

1{χ i ∈ B(χ̃ j , 2h)
}

︸ ︷︷ ︸

free ofχ

:= C1

m

∑

i∈Im

Zi j ,

(44)

where

Zi j = τm

h · φ1(h)
1{χ i ∈ B(χ̃ j , 2h)

}. (45)

Furthermore, using Assumption (A2), one immediately finds

E(Zi j ) = C2τmφ1(2h)/[hφ1(h)] and E(Z2
i j ) = C2τ

2
mφ1(2h)/[h2φ2

1(h)],

where C2 is a positive constant not depending on n. Also, one finds Var(Zi j ) =
E(Z2

i j ) − [E(Zi j )]2 = C2τ
2
mφ1(2h) · [1 − C2φ1(2h)]/[h2φ2

1(h)]. Therefore, in view
of (43) and (44) (and upon replacing Zi j by Zi j − E(Zi j ) + E(Zi j ) in (44)), one
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arrives at

sup
χ∈B(χ̃ j , τm )

∣

∣

∣̂gm(χ;ϕ) − ĝm(χ̃ j ;ϕ)

∣

∣

∣ ≤ 1

m

∣

∣

∣

∣

∣

∣

∑

i∈Im

Z ′
i j

∣

∣

∣

∣

∣

∣

+ O
(

τmφ1(2h)

hφ1(h)

)

, (46)

where Z ′
i j = C1[Zi j − E(Zi j )] and where the big-O term does not depend on χ, χ̃ j ,

or ϕ. Furthermore, in view of the last part of Assumption (A6)(ii), it is not hard to see
that for m large enough,

E
∣

∣Z ′
i j

∣

∣

k ≤ Ck

(

τm
√

φ1(2h)

h φ1(h)

)2(k−1)

, for all k ≥ 2.

Therefore, by Corollary A.8 of Ferraty and Vieu (2006), for any t > 0

P

⎧

⎨

⎩

sup
ϕ∈Fεm

max
1≤ j≤Nτm (S

X
)

1

m

∣

∣

∣

∣

∑

i∈Im

Z ′
i j

∣

∣

∣

∣

≥ t

⎫

⎬

⎭

≤ Nτm (S
X
) max
1≤ j≤Nτm (S

X
)
P

⎧

⎨

⎩

1

m

∣

∣

∣

∣

∑

i∈Im

Z ′
i j

∣

∣

∣

∣

> t

⎫

⎬

⎭

(because Z ′
i j does not depend onϕ)

≤ 2Nτm (S
X
) exp

{

−mh2φ2
1(h) t2

2(1 + t)τ 2mφ1(2h)

}

. (47)

Now, for any constant t0 > 0, take t = t0
√

τ 2mφ1(2h) log[Nτm (S
X
)]/(mh2φ2

1(h)
)

and
observe that in view of (47),

P(m) := P

⎧

⎨

⎩

sup
ϕ∈Fεm

max
1≤ j≤Nτm (S

X
)

1

m

∣

∣

∣

∣

∑

i∈Im

Z ′
i j

∣

∣

∣

∣

≥ t0

√

τ 2mφ1(2h) log[Nτm (S
X
)]

mh2φ2
1(h)

⎫

⎬

⎭

≤ 2Nτm (S
X
) · exp

⎧

⎪

⎨

⎪

⎩

−t20 log[Nτm (S
X
)]

2
(

1 + t0
√

τ 2mφ1(2h) log[Nτm (S
X
)]/(mh2φ2

1(h)
)

)

⎫

⎪

⎬

⎪

⎭

≤ 2Nτm (S
X
) · [Nτm (S

X
)
]−ct0 = 2

[Nτm (S
X
)
]1−ct0 , (48)

form large enough, where P(m) is as in (48) and c is a positive constant not depending
on n (or m). Consequently, choosing t0 suitably, one finds

∞
∑

m=1

P(m) ≤ 2
∞
∑

m=1

[Nτm (S
X
)]1−Ct20 < ∞,
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which holds due to Assumption (A6)(ii). Therefore, in view of (46), Assumption
(A6)(ii), and the fact that φ1(2h)/φ1(h) = O(1), one finds

Im = Oa.co.

(√

τ 2mφ1(2h) log[Nτm (S
X
)]

mh2φ2
1(h)

)

+ O
(

τmφ1(2h)

hφ1(h)

)

. (49)

As for the term IIm in (42), first observe that by (43), (44), and (46)

IIm ≤ E

[

sup
ϕ∈Fεm

max
1≤ j≤Nτm (S

X
)

sup
χ∈B(χ̃ j ,τm )

∣

∣

∣̂gm(χ;ϕ) − ĝm(χ̃ j ;ϕ)

∣

∣

∣

]

≤ E

⎡

⎣ max
1≤ j≤Nτm (S

X
)

1

m

∣

∣

∣

∣

∣

∣

∑

i∈Im

Z ′
i j

∣

∣

∣

∣

∣

∣

⎤

⎦+ O
(

τmφ1(2h)

hφ1(h)

)

, (50)

where as before, Z ′
i j = C1[Zi j −E(Zi j )]with Zi j as in (45). On the other hand, since

∣

∣Z ′
i j

∣

∣ ≤ C1[1 + C2φ1(2h)] τm/
(

hφ1(h)
) =: A(m), (51)

one can proceed as follows

E

⎡

⎣ max
1≤ j≤Nτm (S

X
)

1

m

∣

∣

∣

∣

∣

∣

∑

i∈Im

Z ′
i j

∣

∣

∣

∣

∣

∣

⎤

⎦ =
∫ ∞
0

P

{

max
1≤ j≤Nτm (S

X
)

1

m

∣

∣

∣

∣

∑

i∈Im

Z ′
i j

∣

∣

∣

∣

> t

}

dt

≤
∫ u

0
dt +

∫ A(m)

u
P

{

max
1≤ j≤Nτm (S

X
)

1

m

∣

∣

∣

∣

∑

i∈Im

Z ′
i j

∣

∣

∣

∣

> t

}

dt

(becuase |Z ′
i j | ≤ A(m),where A(m) is as in (51))

≤ u + 2Nτm (S
X
)

∫ A(m)

u
exp

{

−mh2φ2
1(h) t2/

(

2(1 + A(m))τ2mφ1(2h)
)

}

dt,

(via the exponential bound in (47) and the fact thatm−1∣
∣

∑

i∈Im

Z ′
i j | ≤ A(m))

≤ u + 2Nτm (S
X
)

√

mh2φ2
1(h)/

(

(1 + A(m))τ2mφ1(2h)
)

∫ ∞
u
√

mh2φ2
1 (h)/((1+A(m))τ 2mφ1(2h))

e−v2/2 dv

(

by the change of variable, v = t
√

mh2φ2
1(h)/

((

1 + A(m))τ2mφ1(2h)
) )

≤ u +
2Nτm (S

X
) · exp {− [

mh2φ2
1(h)/

(

(1 + A(m))τ2mφ1(2h)
)]

u2/2
}

[

mh2φ2
1(h)/

(

(1 + A(m))τ2mφ1(2h)
)] · u

(

via the upper bound in Mills ratio (see Mitrinovic 1970, p. 177)
)

=: u + 2Nτm (S
X
)

4Nu
e−2Nu2 , where N = mh2φ2

1(h)/
[

4(1 + A(m))τ2mφ1(2h)
]

. (52)
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But the expression u + [

2Nτm (S
X
)/(4Nu)

]

e−2Nu2 in (52) is approximately min-
imized by taking u = √

log(2Nτm (S
X
))/(2N ), and the corresponding value of the

right side of (52) becomes

√

log(2Nτm (S
X
))

2N
+
√

1

8N log(2Nτm (S
X
))

=
√

log(2Nτm (S
X
))[2(1 + A(m))τ 2mφ1(2h)]
mh2φ2

1(h)
+
√

(1 + A(m))τ 2mφ1(2h)

2mh2φ2
1(h) · log(2Nτm (S

X
))

= O
⎛

⎝

√

τ 2m log(Nτm (S
X
))

mh2φ1(h)

⎞

⎠ .

This last bound together with (52) and (50) implies that the term IIm in (42) satisfies

IIm = O
⎛

⎝

√

τ 2m log(Nτm (S
X
))

mh2φ1(h)

⎞

⎠+ O
(

τmφ1(2h)

hφ1(h)

)

. (53)

To deal with IIIm , i.e., the last term in (42), define the quantity

Ui j (ϕ) =
�i Yiϕ(Yi )K

(

h−1d(χ̃ j , χ i )
)− E

[

�i Yiϕ(Yi )K
(

h−1d(χ̃ j , χ i )
)

]

E
[K(h−1d(χ̃ j , χ1)

)]

and observe that for every t > 0

P {IIIm ≥ t} > Nεm (F)Nτm (S
X
) · sup

ϕ∈Fεm

max
1≤ j≤Nτm (S

X
)
P

⎧

⎨

⎩

1

m

∣

∣

∣

∣

∣

∣

∑

i∈Im

Ui j (ϕ)

∣

∣

∣

∣

∣

∣

> t

⎫

⎬

⎭

.

(54)

But, for each fixed ϕ, it can be shown that E
∣

∣Ui j (ϕ)
∣

∣

k = O((φ1(h))−k+1
)

, for all
k ≥ 2; see Ferraty et al. (2010, p. 347) as well as Ferraty and Vieu (2006, p. 66).
Therefore, by Corollary A.8 of Ferraty and Vieu (2006), for any arbitrary t0 > 0,

P

⎧

⎨

⎩

1

m

∣

∣

∣

∣

∣

∣

∑

i∈Im

Ui j (ϕ)

∣

∣

∣

∣

∣

∣

> t0

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

mφ1(h)

⎫

⎬

⎭

≤ 2
[Nεm (F) ∨ Nτm (S

X
)
]−c t20 , c > 0.
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Therefore, in view of (54),

P

⎧

⎨

⎩

IIIm > t0

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

mφ1(h)

⎫

⎬

⎭

≤ 2
[Nεm (F) ∨ Nτm (S

X
)
]2−c t20 .

Choosing t0 suitably so that 2 − c t20 ≤ 1 − β, where β > 1 is as in Assumption
(A6)(ii), one finds

∞
∑

m=1

P

⎧

⎨

⎩

IIIm > t0

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

mφ1(h)

⎫

⎬

⎭

≤ 2
∞
∑

m=1

[Nεm (F) ∨ Nτm (S
X
)
]1−β

< ∞,

which then yields

IIIm = Oa.co.

⎛

⎝

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

mφ1(h)

⎞

⎠ . (55)

Putting together (42), (49), (53), and (55), one finds

sup
ϕ∈Fεm

sup
χ∈S

X

∣

∣

∣̂gm(χ;ϕ) − E
(

ĝm(χ;ϕ)
)

∣

∣

∣ = Oa.co.

⎛

⎝

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

mφ1(h)

⎞

⎠ .

(56)

Regarding the term
[

E
(

ĝm(χ;ϕ)
) − ψ1(χ;ϕ)

]

in (41), one can argue as in the proof
of Lemma 10 of Ferraty et al. (2010) and Lemma 4.4 of Ferraty and Vieu (2006) that,
under Assumptions (A2), (A3), (A4), and (A5a),

∣

∣

∣E
(

ĝm(χ;ϕ)
)− ψ1(χ;ϕ)

∣

∣

∣ ≤ 1

E
[K(h−1d(χ, χ1)

)]

E
[

K(h−1d(χ, χ1)
) · ∣∣ψ1(χ1;ϕ) − ψ1(χ;ϕ)

∣

∣

︸ ︷︷ ︸

≤C1d
β1 (χ,χ 1)

]

≤ C1

E
[K(h−1d(χ, χ1)

)]E
[

K(h−1d(χ, χ1)
)

1{
χ1∈ B(χ, h)

} · dβ1
(χ, χ1)

]

≤ C1h
β1 ,

where β1 and C1 are the positive constants in Assumption (A3). Since C1 does not
depend on χ or ϕ, we find

sup
ϕ∈Fεm

sup
χ∈S

X

∣

∣

∣E
(

ĝm(χ;ϕ)
)− ψ1(χ;ϕ)

∣

∣

∣ = O(hβ1
)

. (57)
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Furthermore, Lemma 8 and Corollary 9 of Ferraty et al. (2010) imply that under
Assumptions (A2) and (A4)–(A6), one has

sup
χ∈S

X

∣

∣

∣1 − ̂fm(χ)

∣

∣

∣ = Oa.co.

(√

log[Nτm (S
X
)]

mφ1(h)

)

and P

{

inf
χ∈S

X

̂fm(χ) <
1

2

}

< ∞.

(58)

Putting together (41), (56), (57), and (58), one finds

sup
ϕ∈Fεm

sup
χ∈S

X

∣

∣

∣

̂ψm,1(χ;ϕ) − ψ1(χ;ϕ)

∣

∣

∣ = O(hβ1
)

+Oa.co.

⎛

⎝

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

mφ1(h)

⎞

⎠ .

(59)

This completes the proof of (37) of Lemma 5 for the case of k =1. The case of k =2
is easier since it amounts to using (7) with k =2. The proofs of (38), (39), and (40) of
Lemma 5 are similar (and in fact easier) and will not be given. ��
Lemma 6 Let ψo(ζ;ϕ) and ̂ψm,o(ζ;ϕ) be as in part (ii) of Lemma 5. Then, under the
conditions of Lemma 5,

∞
∑

m=1

P

{

inf
ϕ∈Fεm

inf
ζ∈So

X

̂ψm,o(ζ;ϕ) ≤ �0

2

}

< ∞, (60)

where the constant �0 > 0 is as in Assumption (A7).

Proof of Lemma 6. First observe that

inf
ϕ∈Fεm

inf
ζ∈So

X

̂ψm,o(ζ;ϕ) ≤ �0

2

⇔ ∃ ϕ′ ∈ Fεm and ζ
′ ∈ So

X

such that ̂ψm,o(ζ
′;ϕ′) ≤ �0

2
⇔ ∃ ϕ′ ∈ Fεm and ζ

′ ∈ So

X

such that ψo(ζ
′;ϕ′)

−̂ψm,o(ζ
′;ϕ′) ≥ ψo(ζ

′;ϕ′) − �0

2

⇒ sup
ϕ∈Fεm

sup
ζ∈So

X

∣

∣

∣

̂ψm,o(ζ;ϕ) − ψo(ζ;ϕ)

∣

∣

∣ ≥ �0

2
,

(sinceψo(ζ
′;ϕ′) ≥ �0 by Assumption (A7)). (61)

Now let C > 0 be any arbitrary constant and let m0 > 0 be such that Chβo ≤ �0
4

for all m > m0 [which is possible because h → 0 as n (and m) → ∞],
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where βo is as in Assumption (A3). Then, (61) implies that for m > m0, one has
supϕ ∈Fεm

sup
ζ ∈So

X

∣

∣̂ψm,o(ζ;ϕ) − ψo(ζ;ϕ)
∣

∣− Chβo ≥ �0
4 . Therefore,

∞
∑

m=1

P

{

inf
ϕ∈Fεm

inf
ζ∈So

X

̂ψm,o(ζ;ϕ) ≤ �0

2

}

≤
n0
∑

m=1

P

⎧

⎨

⎩

sup
ϕ ∈Fεm

sup
ζ ∈So

X

∣

∣

∣

̂ψm,o(ζ;ϕ) − ψo(ζ;ϕ)

∣

∣

∣ ≥ �0

2

⎫

⎬

⎭

+
∞
∑

m=n0+1

P

⎧

⎨

⎩

sup
ϕ ∈Fεm

sup
ζ ∈So

X

∣

∣

∣

̂ψm,o(ζ;ϕ) − ψo(ζ;ϕ)

∣

∣

∣− Chβo ≥ �0

4

⎫

⎬

⎭

< ∞, (by(39)).

��
Proof of Theorem 1 It is sufficient to prove the theorem for the case of p=2. To appre-
ciate this, simply observe that in view of the definition of m̂(χ; ϕ̂n) one finds

∣

∣m̂(χ; ϕ̂n) − m(χ)
∣

∣

p ≤
(

∣

∣m̂(χ; ϕ̂n)
∣

∣+ ∣

∣m(χ)
∣

∣

)p−2∣
∣m̂(χ; ϕ̂n) − m(χ)

∣

∣

2

≤ (3L)p−2
∣

∣m̂(χ; ϕ̂n) − m(χ)
∣

∣

2
.

To proceed with the proof of the theorem, we first note that by Lemmas 1, 2, and 3,

E
[

∣

∣m̂(χ ; ϕ̂n) − m(χ)
∣

∣

2
∣

∣

∣Dn

]

≤ 2E
[

∣

∣m̂(χ ; ϕ̂n) − m(χ ;ϕεm )
∣

∣

2
∣

∣

∣Dn

]

+2E
∣

∣m(χ ;ϕεm ) − m(χ ;ϕ∗)
∣

∣

2

≤ 2E
[

∣

∣m̂(χ ; ϕ̂n) − m(χ ;ϕεm )
∣

∣

2
∣

∣

∣Dn

]

+ 4LC εm,

(via (34) and (35),whereC is as in Lemma 2)

≤ 2 sup
ϕ∈Fεm

∣

∣

∣

∣

E

[

∣

∣

∣m̂m(χ ;ϕ) − Y
∣

∣

∣

2∣
∣

∣Dm

]

− ̂Lm,�(ϕ)

∣

∣

∣

∣

+2 sup
ϕ∈Fεm

∣

∣

∣

∣

̂Lm,�(ϕ) − E
∣

∣

∣m(χ ;ϕ) − Y
∣

∣

∣

2
∣

∣

∣

∣

+2C1
√

εm + 8LCεm . (62)

On the other hand, the two supremum terms on the right side of (62) can be bounded
as follows.

sup
ϕ∈Fεm

∣

∣

∣

∣

E

[

∣

∣

∣m̂m(χ ;ϕ) − Y
∣

∣

∣

2∣
∣

∣Dm

]

− ̂Lm,�(ϕ)

∣

∣

∣

∣

≤ sup
ϕ∈Fεm

∣

∣

∣

∣

�−1
∑

i∈I�

�i
∣

∣m̂m(χ i ;ϕ) − Yi
∣

∣

2

πϕ(ζ i ,Yi )
− E

[

∣

∣

∣m̂m(χ ;ϕ) − Y
∣

∣

∣

2∣
∣

∣Dm

] ∣

∣

∣

∣
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+ sup
ϕ∈Fεm

∣

∣

∣

∣

�−1
∑

i∈I�

�i
∣

∣m̂m(χ i ;ϕ) − Yi
∣

∣

2
[

1

πϕ(ζ i ,Yi )
− 1

π̂ϕ(ζ i ,Yi )

] ∣

∣

∣

∣

:= In,1 + In,2. (63)

Similarly, one has

sup
ϕ∈Fεm

∣

∣

∣

∣

̂Lm,�(ϕ) − E

∣

∣

∣m(χ ;ϕ) − Y
∣

∣

∣

2
∣

∣

∣

∣

≤ sup
ϕ∈Fεm

∣

∣

∣

∣

1

�

∑

i∈I�

�i
∣

∣m̂m(χ i ;ϕ) − Yi
∣

∣

2

πϕ(ζ i ,Yi )
− 1

�

∑

i∈I�

�i
∣

∣m(χ i ;ϕ) − Yi
∣

∣

2

πϕ(ζ i ,Yi )

∣

∣

∣

∣

+ sup
ϕ∈Fεm

∣

∣

∣

∣

1

�

∑

i∈I�

�i
∣

∣m(χ i ;ϕ) − Yi
∣

∣

2

πϕ(ζ i ,Yi )
− E

[

�
∣

∣m(χ ;ϕ) − Y
∣

∣

2

πϕ(ζ ,Y )

]

∣

∣

∣

∣

+ In,2 (where In,2 is as in (63))

:= In,3 + In,4 + In,2, (64)

where In,2 is as in (63). Therefore, in view of (62), one finds

E
[

∣

∣m̂(χ ; ϕ̂n) − m(χ)
∣

∣

2
∣

∣

∣Dn

]

≤ 2
{

In,1 + 2In,2 + In,3 + In,4

}

+ 2C1
√

εm + 8LC εm,

(65)

where the terms In,1, In,2, In,3, and In,4 are as in (63), and (64). To deal with the term

In,1, observe that conditional on Dm , the terms �i
∣

∣m̂m(χ i ;ϕ) − Yi
∣

∣

2
/πϕ(ζ i ,Yi ),

i ∈ I�, are independent bounded random variables taking values in the interval
[

0, (3L)2/π min

]

. Therefore, for every t > 0

P
{

In,1 ≥ t
}

≤ Nεm (F) sup
ϕ∈Fεm

P

{∣

∣

∣

∣

1

�

∑

i∈I�

�i
∣

∣m̂m (χ i ; ϕ) − Yi
∣

∣

2

πϕ(ζ i , Yi )
− E

[

∣

∣

∣m̂m (χ ; ϕ) − Y
∣

∣

∣

2∣
∣

∣Dm

] ∣

∣

∣

∣

≥ t

}

≤ Nεm (F) sup
ϕ∈F

Eϕ

[

Pϕ

{∣

∣

∣

∣

1

�

∑

i∈I�

�i
∣

∣m̂m (χ i ; ϕ) − Yi
∣

∣

2

πϕ(ζ i , Yi )
−Eϕ

[

∣

∣

∣m̂m (χ ; ϕ)−Y
∣

∣

∣

2∣
∣

∣Dm

] ∣

∣

∣

∣

≥ t

∣

∣

∣

∣

Dm

}]

≤ 2Nεm (F) · exp
{

−π2
min�t

2/(81L4)
}

,

where the last line follows via Hoeffding’s inequality in conjunction with Assump-
tion (A8). Since the above bound holds for all t >0, taking t = t0 ·√log(Nεm (F))/� ,

for any t0 >0, yields P
{

In,1 ≥ t
} ≤ 2

(Nεm (F)
)1−ct0 , where c > 0 is a con-

stant not depending on n. Choosing t0 large enough, we find
∑∞

n=1P
{

In,1 ≥ t
} ≤

2
∑∞

n=1

(Nεm (F)
)1−ct0 < ∞. Therefore
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In,1 = Oa.co.

(
√

log(Nεm (F))

�

)

. (66)

Next, to handle the term In,2 in (65), let ψo(ζ;ϕ) and ηo(ζ) be as in (11). Also let
̂ψm,o(ζ;ϕ) and η̂m,o(ζ)be as in (12) andobserve that since 0 ≤ �i

∣

∣m̂m(χ i ;ϕ)−Yi
∣

∣

2 ≤
3L , one finds

In,2 ≤ 9L2 sup
ϕ∈Fεm

∣

∣

∣

∣

1

�

∑

i∈I�

[

1

π̂ϕ (ζ i , Yi )
− 1

πϕ(ζ i , Yi )

]

∣

∣

∣

∣

≤ 9L2

�

∑

i∈I�

sup
ϕ∈Fεm

∣

∣

∣

∣

1 − η̂m,o(ζ i )

̂ψm,o(ζ i ;ϕ)
− 1 − ηo(ζ i )

ψo(ζ i ;ϕ)

∣

∣

∣

∣

· ϕ(Yi )

(where the inequality above follows from (10), (11), (13), (14), and (12))

= 9L2

�

∑

i∈I�

sup
ϕ∈Fεm

∣

∣

∣

∣

− 1 − η̂m,o(ζ i )

̂ψm,o(ζ i ;ϕ)
·
̂ψm,o(ζ i ;ϕ) − ψo(ζ i ;ϕ)

ψo(ζ i ;ϕ)
− η̂m,o(ζ i ) − ηo(ζ i )

ψo(ζ i ;ϕ)

∣

∣

∣

∣

· ϕ(Yi )

≤ 9BL2

�0
· 1

�

∑

i∈I�

⎡

⎣

∣

∣1 − η̂m,o(ζ i )
∣

∣

infϕ∈Fεm
̂ψm,o(ζ i ; ϕ)

· sup
ϕ∈Fεm

∣

∣

∣

̂ψm,o(ζ i ;ϕ) − ψo(ζ i ;ϕ)

∣

∣

∣

⎤

⎦

+ 9BL2

�0
· 1

�

∑

i∈I�

∣

∣η̂m,o(ζ i ) − ηo(ζ i )
∣

∣, (where �0 is as in Assumption (A7))

≤ C�

⎡

⎢

⎣

sup
ζ∈So

X

∣

∣1 − η̂m,o(ζ )
∣

∣

infϕ∈Fεm
inf

ζ∈So
X

̂ψm,o(ζ ; ϕ)
sup

ϕ∈Fεm

sup
ζ∈So

X

∣

∣̂ψm,o(ζ ;ϕ) − ψo(ζ ; ϕ)
∣

∣+ sup
ζ∈So

X

∣

∣

∣̂ηm,o(ζ ) − ηo(ζ )

∣

∣

∣

⎤

⎥

⎦

(67)

by Assumption (A0), whereC� =9BL2/�0. But the first term in the square brackets
above satisfies

sup
ζ∈So

X

∣

∣1 − η̂m,o(ζ)
∣

∣

infϕ∈Fεm
inf

ζ∈So
X

̂ψm,o(ζ;ϕ)
= Op(1), (68)

which follows fromLemma6 and the fact that by part (ii) of Lemma5 and the definition
of ηo(ζ) in (11), one has

sup
ζ∈So

X

∣

∣1 − η̂m,o(ζ)
∣

∣ ≤ 2 + sup
ζ∈So

X

∣

∣η̂m,o(ζ) − ηo(ζ)
∣

∣ = 2 + O(hβo
)

+Oa.co.

⎛

⎝

√

log
[Nτm (So

X

)
]

m · φ0(h)

⎞

⎠ . (69)

Therefore by (67), (68), and part (ii) of Lemma 5, one finds

In,2 = O(hβo
)+ Oa.co.

⎛

⎝

√

log
[Nεm (F) ∨ Nτm (So

X

)
]

m · φ0(h)

⎞

⎠ . (70)
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To deal with the term In,3 in (65), first observe that in view of the definitions ofm(χ;ϕ)

and m̂m(χ;ϕ) in (5) and (6), respectively, one has

In,3 ≤ 1

π min

sup
ϕ∈Fεm

1

�

∑

i∈I�

[∣

∣

∣m̂m(χ i ;ϕ) − m(χ i ;ϕ)

∣

∣

∣ ·
∣

∣

∣m̂m(χ i ;ϕ) + m(χ i ;ϕ) − 2Yi
∣

∣

∣

]

≤ 5L

π min

sup
ϕ∈Fεm

1

�

∑

i∈I�

∣

∣

∣m̂m(χ i ;ϕ) − m(χ i ;ϕ)

∣

∣

∣. (71)

Furthermore, for each ϕ ∈ F , and with ̂ψm,k(χ;ϕ) and η̂m,k(χ) as in (7) and (8),
k = 1, 2, it is straightforward to see that

∣

∣

∣m̂m(χ;ϕ) − m(χ;ϕ)

∣

∣

∣ ≤ ∣

∣η̂m,1(χ) − η1(χ)
∣

∣+
∣

∣

∣

∣

̂ψm,1(χ;ϕ)

̂ψm,2(χ;ϕ)
− ψ1(χ;ϕ)

ψ2(χ;ϕ)

∣

∣

∣

∣

+L
∣

∣η̂m,2(χ) − η2(χ)
∣

∣ , (72)

where ψk(χ;ϕ) and η2(χ), k = 1, 2, are as in (4). On the other hand, one finds
∣

∣

∣

∣

̂ψm,1(χ;ϕ)

̂ψm,2(χ;ϕ)
− ψ1(χ;ϕ)

ψ2(χ;ϕ)

∣

∣

∣

∣

= 1

ψ2(χ;ϕ)

∣

∣

∣

∣

̂ψm,1(χ;ϕ)

̂ψm,2(χ;ϕ)

(

̂ψm,2(χ;ϕ) − ψ2(χ;ϕ)
)+ (

̂ψm,1(χ;ϕ) − ψ1(χ;ϕ)
)

∣

∣

∣

∣

≤ 1

�0

[

L · ∣∣̂ψm,2(χ;ϕ) − ψ2(χ;ϕ)
∣

∣+ ∣

∣̂ψm,1(χ;ϕ) − ψ1(χ;ϕ)
∣

∣

]

, (73)

where we used the facts that
∣

∣̂ψm,1(χ;ϕ)/̂ψm,2(χ;ϕ)
∣

∣ ≤ L and ψ2(χ;ϕ) :=
E[�ϕ(Y )|χ = χ] ≥ �0 [by Assumption (A7)]. Therefore, combining (71), (72),
(73), (37), and (38), one arrives at

In,3 ≤ 5L

π min

sup
ϕ∈Fεm

sup
χ∈S

X

∣

∣

∣m̂m(χ;ϕ) − m(χ;ϕ)

∣

∣

∣ = O(hβ
)

+Oa.co.

(

√

log
[Nεm (F) ∨ Nτm (S

X
)
]

m · φ1(h)

)

, (74)

where β = β1 ∧ β2, and βk is as in (37). Finally, to deal with the term In,4 in (65),

we first note that the terms �i
∣

∣m(χ i ;ϕ) − Yi
∣

∣

2
/πϕ(ζ i ,Yi ), i ∈ I�, are iid bounded

randomvariables taking values in the interval [0, 4L2/π min]. Therefore, byHoeffding’s
inequality, for every t > 0,

P{In,4 > t}

≤ Nεm (F) sup
ϕ∈Fεm

P

⎧

⎨

⎩

∣

∣

∣

∣

∣

∣

1

�

∑

i∈I�

�i
∣

∣m(χ i ;ϕ) − Yi
∣

∣

2

πϕ(ζ i ,Yi )
−E

[

�
∣

∣m(χ ;ϕ) − Y
∣

∣

2

πϕ(ζ ,Y )

]

∣

∣

∣

∣

∣

∣

> t

⎫

⎬

⎭

≤ 2Nεm (F) exp
{− π2

min�t
2/(8L4)

}

.
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Therefore, using the arguments that led to (66), one can show

In,4 = Oa.co.

(
√

log[Nεm (F)]
�

)

. (75)

Now, Theorem 1 follows from (65), (66), (70), (74), and (75), where β in this theorem
can be taken to be min(βo, β1, β2). ��
Proof of Theorem 2 Let g B(χ) and ĝn(χ ; ϕ̂n) be as in (23) and (24), respectively. Then,
it is not hard to show that
∣

∣

∣P
{

ĝn(χ ; ϕ̂n) �= Y
∣

∣Dn
}− P

{

g B(χ) �= Y
}

∣

∣

∣ ≤ 2E
[∣

∣

∣m̂(χ ; ϕ̂n) − m(χ)

∣

∣

∣Dn

]

;
(76)

see, for example, Lemma 6.1 of Devroye et al. (1996). The proof of Theorem 2 now
follows from Theorem 1 in conjunction with the Cauchy–Schwarz inequality. ��
Acknowledgements This work was supported by the National Science Foundation Grants DMS-1916161
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