
DECENTRALIZED LOW RANK MATRIX RECOVERY FROM COLUMN-WISE
PROJECTIONS BY ALTERNATING GD AND MINIMIZATION

Shana Moothedath and Namrata Vaswani

Iowa State University, Ames, IA, USA

ABSTRACT
This work studies our recently developed algorithm, decentralized
alternating projected gradient descent algorithm (Dec-AltGDmin),
for recovering a low rank (LR) matrix from independent column-
wise linear projections in a decentralized setting. This means that
the observed data is spread across L agents and there is no central
coordinating node. Since this problem is non-convex and since it in-
volves a subspace recovery step, most existing literature from decen-
tralized optimization is not useful. We demonstrate using extensive
numerical simulations and communication, time, and sample com-
plexity comparisons that (i) existing decentralized gradient descent
(GD) approaches fail, and (ii) other common solution approaches
on LR recovery literature – projected GD, alternating GD and alter-
nating minimization (AltMin) – either have a higher communication
(and time) complexity or a higher sample complexity. Communica-
tion complexity is often the most important concern in decentralized
learning.

Index Terms— Low Rank matrix recovery, compressed sens-
ing, decentralized algorithms

1. INTRODUCTION
In this work we perform an extensive comparison of our recently de-
veloped decentralized algorithm, decentralized alternating projected
gradient descent algorithm (Dec-AltGDmin) [7], for solving the fol-
lowing LR matrix recovery problem: recover an LR matrix from
independent column-wise linear projections (LR column-wise Com-
pressive Sensing (LRcCS)) [8, 5, 1]. We consider a decentralized
setting, where the signals are spread across L agents and there is
no central coordinating node; instead, agents exchange information
through a communication network depicted by an undirected graph
G . Our setting finds application in federated sketching, where the
objective is to restore data such as images or videos from their com-
pressed signals collected at various geographically dispersed nodes,
including mobile phones or IoT devices. Often, in such scenarios,
a central coordinating node cannot communicate directly with all
nodes due to spatial constraints, necessitating the adoption of a de-
centralized approach. Another application is in dynamic MRI or
MRI, where a set of similar images from multiple patients across
multiple decentralized sites with each site being a node [9].

In recent works [6, 10], we proposed a decentralized algorithm,
Dec-AltGDmin, for solving the LRcCS problem. We presented
convergence guarantee for Dec-AltGDmin under simple assump-
tions. In this paper, our goal is to compare the performance of
Dec-AltGDmin with the standard LR matrix recovery algorithms in
the literature. Since all of the existing LR algorithms are centralized,
in principle a potential method to compare the decentralization side
of our algorithm is by modifying the Decentralized Gradient Descent
algorithms (DGD) introduced in [11] and [12]. DGD was proposed
for decentralized convex optimization, hence a direct comparison
with ours is not feasible since our problem is non-convex. To this
end, we adapt DGD [11, 12] as discussed in Section 3.

1.1. Problem setting and notation
LRcCS problem aims to recover a set of q n-dimensional vec-
tors/signals XXX? := [xxx?1,xxx

?
2, . . . ,xxx

?
q] such that the n× q matrix XXX? has

rank r�min(n,q), from m-length projections yyyk given by
yyyk := AAAk xxx?k , k = 1,2, . . . ,q. (1)

The m×n matrices AAAk are known and mutually independent for dif-
ferent k. We consider yyyk’s are low-dimensional signals and hence
m < n and the goal is to have to use as few number of samples m as
possible. The total sample complexity is given by mq.

We consider a decentralized setting where there is no central
coordinating node, each node of the network can only communi-
cate with its neighboring nodes. We assume that there is a set of
L distributed nodes/sensors, each of which obtains sketches (linear
projections) of a disjoint subset of columns of XXX?. We denote the
set of columns sketched at node g by Sg. The sets Sg form a
partition of [q] := {1,2, . . . ,q}, i.e., they are mutually disjoint and
∪L

g=1Sg = [q]. The communication network is specified by an undi-
rected graph G = (V,E), where V denotes the set of nodes, with
|V |= L, and E denotes the set of undirected edges. The neighbor set
of the gth node (sensor) is defined as by Ng := { j : (g, j) ∈ E}.

Let us denote the reduced (rank r) Singular Value Decomposi-

tion (SVD) of the rank-r matrix XXX? as XXX? SVD
= UUU?

Σ? VVV ?>. Let κ

be the condition number of Σ?. We define BBB := VVV> and B̃BB := ΣVVV>.
Thus XXX? SVD

= UUU?
Σ? BBB? = UUU? B̃BB?. For a matrix Z̃, we use Z to de-

note orthonormal basis. When computed using QR decomposition,

Z̃
QR
= ZRRR. We denote the Frobenius norm as ‖·‖F and the induced `2

norm as ‖·‖. We use ek to denote the kth canonical basis vector and
h ∈ [d] for h ∈ {1,2, . . . ,d} for some integer d. We define the Sub-
space Distance (SD) measure between two matrices UUU1 and UUU2 as
SD(UUU1,UUU2) :=

∥∥∥(I−UUU1UUU>1)UUU2

∥∥∥
F

, where I is the identity matrix.

Further, > denotes matrix or vector transpose and |zzz| for a vector zzz
denotes element-wise absolute values. We use 1statement to denote
an indicator function that takes the value 1 if statement is true and
zero otherwise. We use ◦ to denote component-wise multiplication
(Hadamard product). We reuse c,C to denote different numerical
constants in each use with c < 1 and C > 1. We make the following
simple and commonly used assumptions.
Assumption 1 (Right singular vectors’ incoherence). Assume that
maxk ‖xxx?k‖ = maxk ‖bbb?k‖ ≤ σ?

maxµ
√

r/q for a constant µ ≥ 1 (µ
does not grow with n,q,r). This further implies that maxk ‖xxx?k‖ ≤
κµ‖XXX?‖F/

√
q.

Assumption 2. The matrices AAAk are independent and identically
distributed (i.i.d.) random Gaussian (each matrix entry is i.i.d. stan-
dard Gaussian). The graph, G , of the network topology is connected.

1.2. Related work
The LRcCS problem has been studied in the centralized setting in
three recent works. The first is an Alternating Minimization solution

12936979-8-3503-4485-1/24/$31.00 ©2024 IEEE ICASSP 2024

IC
A

SS
P

20
24

 -
20

24
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
co

us
tic

s,
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g
(I

C
A

SS
P)

 |
97

9-
8-

35
03

-4
48

5-
1/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

SS
P4

84
85

.2
02

4.
10

44
74

12

Authorized licensed use limited to: Iowa State University. Downloaded on July 21,2025 at 21:29:57 UTC from IEEE Xplore. Restrictions apply.

Sample Comp. Time Comp. Comm. Comp. Private
mq & per iter per iter per node

Altmin [1, 2] nr2 log(1
ε
) mqnr · log(1

ε
) nr log(1

ε
) Yes

AltGD [3] unknown mqnr nr No

ProjGD [4] unknown mqnr · log(1
ε
) nq No

AltGDmin [5] (n+q)r2 log(1
ε
) mnqr nr Yes

Dec-Altmin nr2 log(1
ε
) mqnr ·L3 log2(1

ε
) nr log(1

ε
) Yes

Dec-AltGDmin (n+q)r2 log(1
ε
) mqnr ·L3 log 1

ε
nr Yes

(this paper, proposed in [6])

Table 1: The time costs are calculated assuming zero cost for addition/subtraction operations.

(Altmin) that solves the harder magnitude only generalization of LR-
cCS, referred to as LRPR (LR Phase Retrieval) [1, 2]. The second,
parallel work, studies a convex relaxation called mixed norm min
[8]. The third [5] is a gradient descent (GD) based provable solution
to LRcCS, that we called AltGDmin. The convex solution exhibits
very slow performance, with notably poor experimental results and
an even higher sample complexity compared to AltGDmin [5] in
scenarios demanding precise recovery. The AltMin approach [1, 2]
also demonstrates significantly slower performance than AltGDmin.
Furthermore, due to its focus towards a more challenging problem
(LRPR), its sample complexity guarantee for LRcCS falls short in
comparison to that of AltGDmin, resulting in inferior recovery per-
formance with fewer samples [5]. Other existing algorithms in LR
literature that can have been theoretically studied only for LR matrix
completion include projected GD (ProjGD) introduced in [4, 13] and
alternating GD (AltGD) introduced in [3]. Both of these works were
for LR matrix completion problem, however, is extendable to the
LRcCS problem. The major bottleneck of these algorithms is that
both of them are not private. Recently, LRcCS has been studied in
the decentralized setting in our prior works [6, 7, 10, 14]. In [7] we
presented the Dec-AltGDmin algorithm and an empirical validation
using generated data. In [6, 10], we presented the theoretical guar-
antee and and its proof. In [14], we compared Dec-AltGDmin with
the DGD approach in [11] and [12], both theorems and experiments.

Projected GD is a GD-based solution approach for solving con-
strained optimization problems, involving the projection of each GD
step’s output onto a given constraint set. Over the last decade, the
formulation of decentralized GD and projected GD algorithms has
garnered significant interest [11, 15, 16, 17, 18, 19, 20, 12], start-
ing with the seminal work of Nedić et al. [11]. Recent advance-
ments also explore the application of projected GD in constrained
optimization problems [15, 18, 19] or for establishing the consensus
constraints [18]. However, all existing approaches that come with
guarantees assume convex cost functions and either no constraints
or convex constraint sets. While there exist some works that consid-
ered non-convex functions [21], they impose additional assumptions.

1.3. Contributions
There are two broad classes of approaches for obtaining a decen-
tralized solution for LRcCS. The first involves considering the Alt-
GDmin solution [5], which is known to be sample, communica-
tion and time efficient for the centralized federated setting, and us-
ing decentralized GD approaches to modify its GD step. The two

most well-known decentralized GD algorithms are those of Nedic et
al.[11] and Yuan et al. [12].

The second approach is to consider modifications of other fast
approaches from LR matrix recovery literature. Convex relaxation
solutions, studied in [8] for LRcCS, are known to be very slow and
hence we do not consider these. Direct iterative approaches in-
volve three types of solutions - AltMin, AltGD, and ProjGD. Fac-
torize the unknown matrix XXX as XXX = UUUBBB with UUU ,BBB being matri-
ces with r columns and rows respectively, and consider f (XXX) =
f (UUUBBB) = ∑k ||yyyk−AAAkxxxk||2 = ||yyyk−AAAkUUUbbbk||2. After initializing UUU
using spectral initialization, AltMin alternatively updates BBB by min-
imizing f (UUUBBB) over it keeping UUU fixed, and vice versa. After each
update, it orthonormalizes the columns of UUU . This is one way to pre-
vent the norm of one of UUU or BBB from growing in an unbounded fash-
ion. AltGD, which was studied in [3] for solving the (robust) LR ma-
trix completion problem, replaces minimization in AltMin by a GD
step for both, and it does not orthonormalize UUU : the reason is once
we orthonormalize UUU , the previous estimate of BBB becomes useless.
Instead, it implements AltGD for f (UUUBBB)+ ||UUU>UUU −BBBBBB>||F . This
second term helps balance the norms of UUU and BBB. ProjGD, which
was studied in [4, 13] for solving the (robust) LR matrix completion
problem, uses projected GD on XXX : one GD step for XXX followed by
projection onto the space of rank r matrices.

In this work, we demonstrate the following using simulations:
1. DGD applied to the GD step of AltGDmin fail to converge.

The reason is the GD step updates UUU . DGD applied to
this involves one local GD step at each node followed by
taking the numerical average of the updated UUU’s. How-
ever, for subspaces, numerical averaging does not improve
estimation accuracy. For example, given SD(UUU1,UUU?) ≤ ε

and SD(UUU2,UUU?) ≤ ε , we can only argue that SD((UUU1 +
UUU2)/2,UUU?) ≤ ε , we cannot argue that this is less than ε/2.
We considered two versions of DGD, (i) DGD with a single
consensus loop (average aggregation of neighbors’ estimates)
as in [11, 12] and (ii) DGD with multiple consensus iterations
(Figure 1).

2. Even centralized (easier) version of AltGD and projected GD
do not converge for small values of m. In past work we ex-
plained why it is not clear if it is possible to obtain conver-
gence guarantees for these approaches under the small sam-
ple complexity that works for AltGDmin. In this work, we
demonstrate this fact numerically (Figure 2).

12937

Authorized licensed use limited to: Iowa State University. Downloaded on July 21,2025 at 21:29:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 AvgCons: Equal-neighbor average consensus

Input: Z(g)
in , for all g ∈ [L] (Z(g)

in is a matrix)
Parameters: Tcon, G (graph connectivity)

1: Initialize Z(g)
0 ← Z(g)

in , for all g ∈ [L]
2: for t = 1 to Tcon do
3: Z(g)

t+1← Z(g)
t + ∑

j∈Ng

1
dg

(
Z(j)

t −Z(g)
t

)
, for g ∈ [L]

4: end for
5: Output: Z(g)

out← L ·Z(g)
Tcon

3. Moreover even when AltGD and projected GD do converge,
we demonstrate numerically that both take much longer (Pro-
jGD is slow per iteration while AltGD needs many more iter-
ations to converge). We also demonstrate by simulations that
Altmin is much slower (per iteration cost of Altmin is very
high (Figure 2).

In addition, we also provide a detailed communication and time
per iteration, sample complexity, and privacy comparison of all ap-
proaches in Table 1. ProjGD is very inefficient because the partial
gradients from the different nodes will be of size n×q. AltGD uses
factorization, but because its cost function contains a norm balancing
term, the update of a column of BBB depends on entries of all columns
of BBB. For this reason it requires two data exchanges per iteration.
Also, due to this, AltGD is not private. Projected GD is also not
private because the center estimates XXX . Only AltGDmin and Alt-
min (with GD used for updating UUU) are private: the center cannot
estimate the entire XXX , it can only estimate UUU .

2. THE PROPOSED ALGORITHM AND GUARANTEE
We present the Dec-AltGDmin algorithm in Algorithm 3. There are
two key steps. We decompose XXX =UUUBBB and define

f (UUU ,BBB) =
L

∑
g=1

fg(UUU ,BBB), where fg(UUU ,BBB) = ∑
k∈Sg

‖yyyk−AAAkUUUbbbk‖2. (2)

At each GD iteration, for each new estimate of UUU , we first solve for
BBB by minimizing f (UUU ,BBB) over it while keeping UUU fixed at its current
value. Then we compute ŨUU = UUU −η∇U f (UUU ,BBB) and orthonormal-
ize it using QR decomposition as UUU = QR(ŨUU). Here ∇U f (UUU ,BBB) =
∑

q
k=1 AAA>k (AAAkUUUbbbk− yyyk)bbb

>
k .

To initialize, we compute UUU0 as the top r left singular vec-
tors of XXX0 = (1/m)∑k∈[q] AAA

>
k yyyk,trunc(α)e>k with α := C̃ ∑ki(yyyki)

2

mq and
yyyk,trunc(α) := yyyk ◦1{yyy2

ki6α}. This is yyyk with large magnitude entries
zeroed out. To compute XXX0, we use an average consensus algorithm
given in Algorithm 1. [22]. Let Tcon denote the number of iterations
of the consensus algorithm and Z(g)

in , for g ∈ [L], be the input. For
Z(g)

0 := Z(g)
in average consensus updates as

Z(g)
t+1 = Z(g)

t + ∑
j∈Ng

Wg j

(
Z(j)

t −Z(g)
t

)
, for g ∈ [L] (3)

and outputs AvgCon(g)({Z
(g)
in }

L
g=1,G ,Tcon) := Z(g)

out = L ·Z(g)
Tcon

, for all
g∈ [L]. Here the mixing matrix W is symmetric and doubly stochas-
tic. During initialization and the main algorithm, we use average
consensus at three places. In the initialization step, to approximate
the threshold α and the top r singular vectors of XXX0 (which are equal
to those of XXX0XXX>0) computed using the PM, and in the ProjGD iter-
ations to approximate the sum of the individual gradients at all the
nodes, i.e. compute ∇U f (UUU ,BBB) = ∑k∈[q] AAA

>
k (AAAkUUU(bbbk)− yyyk)(bbbk)

>.

Theorem 2.1. Assume that Assumptions 1 and 2 hold. Consider

Algorithm 2 Initialization

1: Let yyyk ≡ yyy(00)
k ,AAAk ≡ AAA(00)

k for all k ∈ [q].

2: α
(g)
in ← 9κ2µ2 1

mq ∑
k∈Sg

m

∑
i=1

yyy2
ki ∀g ∈ [L]

3: α (g)← AvgConsg(α
(g′)
in ,g′ ∈ [L],G ,Tcon)

4: Let yyyk ≡ yyy(0)k ,AAAk ≡ AAA(0)
k

5: yyyk,trunc := yyyk ◦1{|yyyki| ≤
√

α (g)} ∀k ∈Sg, g ∈ [L]

6: Compute XXX (g)
0 =

[
1
m AAA>k yyyk,trunc, k ∈Sg

]
, ∀g ∈ [L]

7: Generate ŨUU init with each entry i.i.d. standard Gaussian (use the
same random seed at all nodes) for all g ∈ [L]

8: Orthonormalize ŨUU init using QR to get UUU init for all g ∈ [L]
9: UUU (g)←UUU init

10: for τ = 1 to Tpm do
11: ŨUU (g)

in ← XXX (g)
0 XXX (g)

0
>UUU (g), for all g ∈ [L]

12: ŨUU (g)← AvgConsg(ŨUU
(g′)
in ,g′ ∈ [L],G ,Tcon)

13: QR on ŨUU (1) QR
= UUU (1)RRR(1) to get UUU (1)

14: UUU (1)
in =UUU (1),UUU (g)

in = 000,g 6= 1

15: UUU (g)← AvgConsg(UUU
(g′)
in ,g′ ∈ [L],G ,Tcon) for g 6= 1

16: end for
17: Output UUU (g)

0 ←UUU (g)

Algorithm 3 initialized using Algorithm 2. Let η = 0.4/mσ?
max

2,
Tpm = Cκ2(logn + logκ), T = Cκ2 log(1/ε), Tcon = CL3(T +

log(1/ε) + logn + logL + logκ). Assume that mq ≥ Cκ6µ2(n +
q)r
(
κ2r+ log(1/ε)

)
. Then, w.p. at least 1−1/n,

SD2(UUU
(g)
T ,UUU?)≤ ε, and ‖xxxk− xxx?k‖ ≤ ε‖xxx?k‖ for all k ∈Sg,g ∈ [L].

3. SIMULATIONS
The data was generated as follows. We note that, XXX? =UUU?BBB?, where
UUU? is an n× r orthonormal matrix. We generate the entries of UUU? by
orthonormalizing an i.i.d standard Gaussian matrix. The entries of
BBB? ∈ Rr×q are generated from an i.i.d Gaussian distribution. The
matrices AAAks were i.i.d. standard Gaussian.
Experiment 1: Comparison with existing decentralized ap-
proach. In this experiment, we compared the performance of our
Dec-AltGDmin algorithm with the AltGDmin algorithm in [5] for
a specific node, node g, utilizing the information available only at
node g. We note that Dec-AltGDmin is the only algorithm with per-
formance guarantees that addresses the non-convex LRcCS problem
using a decentralized approach. A primary method for comparing
our algorithm with the existing algorithms in the literature involves
adapting the existing Decentralized Gradient Descent algorithms
(DGD) introduced in references [11] and [12], initially designed
for convex problems. For this, we modified the centralized Alt-
GDmin algorithm using the DGD [11, 12] algorithm as follows.
We replaced the centralized projected GD step for UUU by the DGD
approach: UUU (g)

+ ← QR(1
dg

∑g′∈Ng
UUU (g′) −η∇UUU fg(UUU (g),BBB(g))). While

references [11] and [12] primarily focused on convex functions, the
need for a specially designed initialization was not as crucial in
those cases. However, for our non-convex problem, a meticulous
initialization, known as spectral initialization, is essential. For our
comparative study, we ensured that all three algorithms were initial-
ized in a consistent manner using the spectral initialization. All data
points in the figures are averaged over are 100 Monte-Carlo trials.

We evaluated and compared the three algorithms by considering
networks of varying sizes and datasets with different dimensions.

12938

Authorized licensed use limited to: Iowa State University. Downloaded on July 21,2025 at 21:29:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 The complete Dec-AltGDmin algorithm. It calls the
AvgCons function summarized in Algorithm 1.

1: Input: AAAk,yyyk, k ∈Sg, g ∈ [L] graph G
2: Output: UUU (g), BBB(g) and XXX (g) =UUU (g)BBB(g).
3: Parameters: η , Tcon, T
4: Sample-split: Partition AAAk,yyyk into 2T + 2 equal-sized disjoint

sets: AAA(`)
k ,yyy(`)k , `= 00,0,1,2, . . .2T

5: Initialization: Run Algorithm 2 to get UUU (g)
0 .

6: AltGDmin iterations:
7: for t = 1 to T do
8: UUU (g)←UUU (g)

t−1

9: Let yyyk = yyy(t)k ,AAAk = AAA(t)
k

10: bbbk← (AAAkUUU (g))†yyyk ∀k ∈Sg
11: xxxk←UUU (g)bbbk ∀k ∈Sg

12: Let yyyk = yyy(T+t)
k ,AAAk = AAA(T+t)

k .
13: ∇ fg← ∑k∈Sg

AAA>k (AAAkUUU (g)bbbk− yyyk)bbb
>
k

14: ĝradU
(g)
← AvgConsg(∇ fg′ ,g′ ∈ [L],G ,Tcon)

15: ŨUU
(g)←UUU (g)−η ĝradU

(g)

16: QR decompose ŨUU
(g) QR

= UUU (g)RRR(g) to get UUU (g)

17: UUU (g)
t ←UUU (g)

18: end for
19: Output UUU (g), BBB(g) and XXX (g) =UUU (g)BBB(g)

This comparative analysis allowed us to assess the performance of
the different algorithms across a range of scenarios, providing a more
robust understanding of their capabilities and limitations. In Figure 1
DGD (original) refers to the setting above with DGD [11, 12], DGD
(multiple consensus loops) refers to the DGD idea in [11, 12] with
multiple consensus loops, and One node: AltGDmin refers to Alt-
GDmin running for a single node. Note that, the averaging using
the neighbors’ information in DGD [11, 12] only does one consen-
sus iteration, i.e., Tcon = 1. In DGD (multiple consensus loops), we
modify DGD [11, 12] by performing multiple consensus iterations,
i.e., Tcon = 100. In Figure 1a we set n = 600,m = 50,r = 2,q = 600
and p = 0.5. In Figure 1a L = 20, i.e., the data is distributed across
20 agents, with each agent having access to only 5% of the data, both
DGD (original) and One-node: AltGDmin fail to accurately estimate
the subspace. In contrast, our proposed algorithm demonstrates ac-
curate subspace estimation.

In Figure 1b we set n = 100,m = 90,r = 2,q = 100, p = 0.5, and
L = 100. For a system with n = 100, m = 90 results in a compressed
data size closely resembling the original data size, leading to mini-
mal loss of information in the compressed signal. This characteristic
is anticipated to facilitate an easier recovery process. We conducted
3000 GD iterations and averaged the results over 100 Monte-Carlo
trials. In Figure 1b, it is evident that DGD (original) [11, 12], DGD
(multiple consensus loops), and One node: AltGDmin fail to con-
verge across both scenarios, whereas our proposed algorithm demon-
strates convergence. The primary factor behind this contrast lies in
the context of a larger network with 100 nodes with q/L = 1, each
node has access to only one data point. This limitation renders it
practically impossible for the One-node-AltGDmin algorithm to ac-
curately approximate the true data. In the case of the DGD [11, 12]
algorithm, the act of averaging subspace matrices, as performed in
the GD step of [11] and [12], fails to enhance subspace error re-
duction due to the optimization variables being matrices instead of
vectors. Thus when q/L is small, the DGD [11, 12] algorithm fails
to reconstruct the actual data as the data samples available at a single

0 500 1000 1500 2000 2500 3000 3500
Iteration count

10-15

10-10

10-5

100 n=600, m=50, r=2, q=600, L=20, T=3000

One-node- AltGDmin
Dec-AltGDmin
DGD (original)

(a) Small network: L = 20

0 500 1000 1500 2000 2500 3000 3500
Iteration count

10-15

10-10

10-5

100 n=100, m=90, r=2, q=100, L=100, T=3000

One node-AltGDmin
Dec-AltGDmin
DGD (original)
DGD (multiple consensus loops)

(b) Large network: L = 100

Fig. 1: Small network: L = 2,20, n = q = 600, r = 2, m = 50. Large
network: n = q = 100, r = 2, m = 40. We compare performance of our algo-
rithm Dec-AltGDmin with the centralized one from [5] for a single node and
with the AltGDmin modified using the DGD approach of [11, 12]. In all fig-
ures, the network was generated as an ER graph with probability p = 0.5. In
Figure 1b DGD (multiple consensus loops) refers to the setting with multiple
consensus iterations for the DGD [11, 12] algorithm. The averaging using the
neighbors’ information in DGD [11, 12] only performs one consensus itera-
tion. As shown even with this approach also DGD [11, 12] fails to converge.

0 20 40 60 80 100
Execution time (in sec)

10-15

10-10

10-5

100 n=600, m=50, r=4, q=600, T=500

Dec-AltGDmin: Tcon=100, p=0.5
ProjGD
AltGDmin
AltGD
Altmin

(a) Error vs. Execution time: m = 50

0 20 40 60 80 100
Execution time (in secs)

10-15

10-10

10-5

100 n=600, m=30, r=4, q=600, T=500

Dec-AltGDmin: Tcon=100, p=0.5
ProjGD
AltGDmin
AltGD
Altmin

(b) Error vs. Execution time: m = 30

Fig. 2: In all cases n = 600, r = 4, q = 600, p = 0.5, and L = 20. We
compared performance of our proposed algorithm (Dec-AltGDmin) with the
centralized counterpart from [5] and with the LR matrix recovery algorithms,
Altmin [1, 2], ProjGD [4], and AltGD [3] algorithms. In all figures, the
network was generated as an ER graph with probability p = 0.5.

node is not enough to learn the complete data, and also the averag-
ing of subspace matrices of the neighboring nodes does not help to
reduce the subspace error. From Figure 1b we notice that even af-
ter running multiple consensus iteration, the DGD [11, 12] algorithm
does not converge. This is because averaging subspace matrices does
not improve the subspace error.
Experiment 2: Comparison with existing centralized algo-
rithms. In this experiment we compared the performance of the
Dec-AltGDmin algorithm with that of three other existing algo-
rithms that are widely studied in the LR literature, AltGDmin [5],
AltMin [1, 2], AltGD [23], and ProjGD [4]. In this comparison,
Dec-AltGDmin is the only decentralized algorithm, while the rest
fall under the category of centralized algorithms. Dec-AltGDmin
represents the decentralized version of AltGDmin, whereas Alt-
min, AltGD, and ProjGD [4] cannot be adapted for decentralized
implementations. We set n = 600, q = 600, and r = 4. We chose
different values of m in our experiments to evaluate the performance
of the different algorithms based on the extend of compression the
data undergoes. The number of agents is set as L = 20 and the
network connectivity probability of the communication graph is set
as p = 0.5 for all the cases. In Figs. 2a, 2b we varied the value of m
as 50,30, respectively. From Figs. 2a and 2b we see that as the rate
of compression increases (i.e., m/n decreases), the ProjGD, AltGD
algorithms no longer converge. The AltGDmin and Dec-AltGDmin
still converges for these highly compressed cases thereby validating
the sample efficiency of these approaches over the other three.

12939

Authorized licensed use limited to: Iowa State University. Downloaded on July 21,2025 at 21:29:57 UTC from IEEE Xplore. Restrictions apply.

4. REFERENCES

[1] S. Nayer and N. Vaswani, “Sample-efficient low rank phase
retrieval,” IEEE Transactions on Information Theory, 2021.

[2] S. Nayer, P. Narayanamurthy, and N. Vaswani, “Provable low
rank phase retrieval,” IEEE Transactions on Information The-
ory, March 2020.

[3] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms
for robust PCA via gradient descent,” in Neural Information
Processing Systems (NeurIPS), 2016.

[4] P. Jain and P. Netrapalli, “Fast exact matrix completion with
finite samples,” in Conference on Learning Theory, 2015, pp.
1007–1034.

[5] S. Nayer and N. Vaswani, “Fast low rank column-wise com-
pressive sensing,” IEEE Transactions on Information Theory,
2022, to appear. Also at arXiv:2102.10217.

[6] Shana Moothedath and Namrata Vaswani, “Fast,
communication-efficient, and provable decentralized low
rank matrix recovery,” Arxiv: 2204.08117, 2023.

[7] Shana Moothedath and Namrata Vaswani, “Fully decentral-
ized and federated low rank compressive sensing,” in American
Control Conference (ACC), 2022.

[8] Rakshith Sharma Srinivasa, Kiryung Lee, Marius Junge, and
Justin Romberg, “Decentralized sketching of low rank matri-
ces,” in Neural Information Processing Systems (NeurIPS),
2019, pp. 10101–10110.

[9] Silpa Babu, Sajan Goud Lingala, and Namrata Vaswani, “Fast
low rank column-wise compressive sensing for accelerated dy-
namic mri,” IEEE transactions on computational imaging,
2023.

[10] Shana Moothedath and Namrata Vaswani, “Dec-AltProjGD:
Fully-decentralized alternating projected gradient descent for
low rank column-wise compressive sensing,” Conference on
Decision and Control (CDC), 2022.

[11] Angelia Nedic and Asuman Ozdaglar, “Distributed subgradi-
ent methods for multi-agent optimization,” IEEE Transactions
on Automatic Control, vol. 54, no. 1, pp. 48–61, 2009.

[12] Kun Yuan, Qing Ling, and Wotao Yin, “On the convergence of
decentralized gradient descent,” SIAM Journal on Optimiza-
tion, vol. 26, no. 3, pp. 1835–1854, 2016.

[13] Y. Cherapanamjeri, K. Gupta, and P. Jain, “Nearly-optimal ro-
bust matrix completion,” International Conference on Machine
Learning, 2016.

[14] Shana Moothedath and Namrata Vaswani, “Comparing decen-
tralized gradient descent approaches and guarantees,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2023, pp. 1–5.

[15] Angelia Nedić, Asuman Ozdaglar, and Pablo A Parrilo, “Con-
strained consensus and optimization in multi-agent networks,”
IEEE Transactions on Automatic Control, vol. 55, no. 4, pp.
922–938, 2010.

[16] Angelia Nedić, “Convergence rate of distributed averaging
dynamics and optimization in networks,” Foundations and
Trends® in Systems and Control, vol. 2, no. 1, pp. 1–100, 2015.

[17] Soomin Lee and Angelia Nedić, “Distributed random projec-
tion algorithm for convex optimization,” IEEE Journal of Se-
lected Topics in Signal Processing, vol. 7, no. 2, pp. 221–229,
2013.

[18] Alexander Rogozin and Alexander Gasnikov, “Projected gra-
dient method for decentralized optimization over time-varying
networks,” ArXiv preprint arXiv:1911.08527, 2019.

[19] Firooz Shahriari-Mehr, David Bosch, and Ashkan Panahi, “De-
centralized constrained optimization: Double averaging and
gradient projection,” arXiv preprint arXiv:2106.11408, 2021.

[20] Ilan Lobel and Asuman Ozdaglar, “Distributed subgradi-
ent methods for convex optimization over random networks,”
IEEE Transactions on Automatic Control, vol. 56, no. 6, pp.
1291–1306, 2010.

[21] Ran Xin, Usman A Khan, and Soummya Kar, “A fast random-
ized incremental gradient method for decentralized non-convex
optimization,” IEEE Transactions on Automatic Control, 2021.

[22] Alex Olshevsky and John N Tsitsiklis, “Convergence speed in
distributed consensus and averaging,” SIAM journal on control
and optimization, vol. 48, no. 1, pp. 33–55, 2009.

[23] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms
for robust pca via gradient descent,” in Advances in neural
information processing systems, 2016, pp. 4152–4160.

12940

Authorized licensed use limited to: Iowa State University. Downloaded on July 21,2025 at 21:29:57 UTC from IEEE Xplore. Restrictions apply.

