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Abstract

Many diagnostic errors occur because clini-
cians cannot easily access relevant information
in patient Electronic Health Records (EHRs).
In this work we propose a method to use LLMs
to identify pieces of evidence in patient EHR
data that indicate increased or decreased risk
of specific diagnoses; our ultimate aim is to
increase access to evidence and reduce diagnos-
tic errors. In particular, we propose a Neural
Additive Model to make predictions backed by
evidence with individualized risk estimates at
time-points where clinicians are still uncertain,
aiming to specifically mitigate delays in diag-
nosis and errors stemming from an incomplete
differential. To train such a model, it is neces-
sary to infer temporally fine-grained retrospec-
tive labels of eventual “true” diagnoses. We do
so with LLMs, to ensure that the input text is
from before a confident diagnosis can be made.
We use an LLM to retrieve an initial pool of
evidence, but then refine this set of evidence
according to correlations learned by the model.
We conduct an in-depth evaluation of the use-
fulness of our approach by simulating how it
might be used by a clinician to decide between
a pre-defined list of differential diagnoses.'

1 Introduction

A major source of poor patient outcomes and un-
necessary costs in healthcare are missed or de-
layed diagnoses. A recent report estimated that
diagnostic errors result in around 795,000 serious

'We make our code publicly available for: 1) retrieving ev-
idence and target diagnoses from EHR text in the form of
a gym environment—https://github.com/dmcinerney/
ehr-diagnosis-env, 2) training agents—https://github.
com/dmcinerney/ehr-diagnosis-agent, and 3) visual-
izing and annotating predictions—https://github.com/
dmcinerney/ehr-diagnosis-env-interface.
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Figure 1: Inherently “interpretable’ approaches to
prediction. Typically, ‘interpretable’ models trade off
between the expressiveness of intermediate representa-
tions and the faithfulness of the resulting interpretability
to the models’ true mechanisms. Our approach (D) man-
ages to use very expressive intermediate representations
in the form of abstractive natural language evidence
while still maintaining true transparency during aggre-
gation of this evidence. See Table 1 for more details.

harms annually (Newman-Toker et al., 2023). Fur-
thermore, many diagnostic errors result from in-
formation transfer problems (Zwaan et al., 2010).
This is unsurprising given “note bloat”, i.e., the
widespread problem of information overload in
EHR notes, often due to copied or irrelevant infor-
mation which obfuscates relevant information. All
of this motivates the potential of providing more ef-
ficient mechanisms to access relevant information
in EHRSs as a means to reduce these errors.

One approach to helping practitioners make use
of EHR is to train NLP models to provide predic-
tions about patient risk for various illnesses (Rasmy
etal., 2021; Li et al., 2021; Yang et al., 2023), but
these systems are often lack transparency. Even
when systems have high accuracy, clinicians may
still prefer simple linear models as clinical deci-
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Figure 2: Explainable Risk Prediction and Training. An overview of our approach. Left: We retrieve evidence
snippets from past notes with an LLM for predefined queries posed by a clinician. Then we use our risk prediction
model to estimate risk of various diagnoses given each piece of evidence individually, and aggregate these scores.
Right: We automatically extract diagnosis ‘labels’ from future reports with an LLM to use to train the risk predictor.

sion support tools (Goldstein et al., 2016). Prior
work has focused on developing inherently inter-
pretable’ models with minimal tradeoff in predic-
tive performance, e.g., in the general domain with
Neural Additive Models (Agarwal et al., 2020) and
in healthcare with GAZMs (Caruana et al., 2015).
Recently, zero-shot instruction-tuned LLMs have
been shown capable of extracting information from
clinical text (Agrawal et al., 2022), which in turn fa-
cilitates interpretable predictions (McInerney et al.,
2023; Alsentzer et al., 2023).

In this work, we combine the power and flex-
ibility of zero-shot instruction-tuned LLMs with
the transparency and modeling ability of Neural
Additive Models (NAMS) to train a risk-prediction
model that can also surface evidence to support pre-
dictions. We use an LLM (FLAN-T5-XXL; Chung
et al. 2022) to generate abstractive “evidence” from
EHR, which is then processed by a simpler model
(Clinical BERT; Alsentzer et al. 2019) to produce
features for a Neural Additive Model (Figure 2).
This provides flexibility—the model can make in-
ferences and condense information into fluent text
snippets—but brings risk of “hallucinations”.

This approach is “interpretable” insofar as
it produces ‘“evidence” in the form of human-
understandable intermediate variables: Abstrac-
tive text with associated risks, providing insight
into factors that informed predictions. Related ap-

*Interpretability is a famously ambiguous term; we are
focused on having explicit measure of the contribution of
individual pieces of evidence to an output.

proaches to “interpretability” (Figure 1) include
using relevance scores to weight and combine in-
formation from different sentences (B), and those
that use LLM prompts to infer feature values (C).
Our approach permits greater flexibility than (C),
while maintaining a more faithful interpretability
in comparison to (B); see Table 1.

One complication is that we would like fine-
grained, accurate labels to train our predictor (see
section 4.1); ICD codes do not meet these criteria
(Searle et al., 2020). Instead of ICD codes, which
are noisy and temporally coarse (observed at the
end of an encounter with discharge summaries),
we propose to synthetically extract diagnosis labels
from each report using an LLM. In some cases,
this has been shown to be more aligned with true
diagnoses (Alsentzer et al., 2023).

We focus our evaluation on how this system im-
pacts clinical decision-making. Specifically, we
examine settings where risk of misdiagnosis is high
and the consequences severe. Our methods work
within the confines of data present in electronic
health record, which allows the model to be trained
on any EHR. LLMs can be run locally and are
only used for inference, so privacy and compute
resources are not an issue.

Our contributions are summarized as follows:

Interpretable Risk Prediction with LLMs. We
propose an approach to risk prediction that offers a
particular form of interpretability in that it can ex-
pose faithful relationships between specific pieces
of retrieved evidence and an output prediction.



Extracting Future Targets with LLMs. We
present a method to extract target diagnoses for
use in training from the unstructured text in the
future of a patient’s medical record that are more
granular than ICD codes in the time dimension,
and we validate with clinician annotations that the
extracted labels are accurate.

In-depth Annotation of Usefulness. We validate
how much evidence-wise interpretability can pos-
itively impact a clinician’s expert judgement in
high-impact settings which feature the greatest risk
of misdiagnosis.

2 Dataset

We use MIMIC-III (Johnson et al., 2016a,b), an
open-source dataset of EHRs from ICU patients.
The ICU is one of the hospital settings (along with,
e.g., the ER and Radiology) where misdiagnosis or
delayed diagnosis are often caused by incomplete
information, since clinicians typically do not have
enough time to fully examine a patient’s EHR.

In healthcare, cancer, infection, and vascular dys-
function (termed the “big three”) account for about
75% of all mis-diagnosis-related harms (Newman-
Toker et al., 2023). Within the ICU, the latter two
categories mostly manifest as pneumonia, and pul-
monary edema (which in this paper we treat as
interchangeable with congestive heart failure). For
this reason, we will focus on predicting the risk
of ICU patients for cancer, pneumonia, and pul-
monary edema. These are also conditions for which
clinical correlation with notes from the past EHR
is important for diagnosis. We use all patients in
the MIMIC dataset so that we have both negative
and positive examples of the conditions. We in-
clude additional details regarding the dataset and
preprocessing in appendix section A.

3 An Interpretable Risk Prediction Model

We propose a multi-stage approach to risk predic-
tion, capitalizing on a modern LLM, FLAN-T5-
XXL (Chung et al., 2022; Wei et al., 2022) in this
case, to implement each of the following steps.

Retrieval (Section 3.1). We generate abstractive
evidence from free text notes by prompting an LLM
with appropriate queries. The evidence snippets
provide a form of interpretability, in that they can
be inspected directly to verify predictions.

Risk Prediction (Section 3.2). We input the ev-
idence into the risk predictor, which models rela-

tionships between the evidence and each of the
potential diagnoses and outputs multi-label classifi-
cation probabilities, i.e. the predicted risk that the
patient will be diagnosed with each condition.

Evidence Re-ranking (Section 3.3). The retrieved
evidence may still be too large a pool to review
given the time constraints of the clinician. There-
fore, we re-rank the evidence so as to only show
that which promotes risk predictions that most de-
viate from the baseline risks of each condition.

To train risk prediction models we use use syn-
thetic labels extracted from future notes in a pa-
tient’s record (Section 4). Figure 2 provides an
overview of our model and training approach.

3.1 Evidence Retrieval

Following prior work (Ahsan et al., 2023), we use a
sequential prompting strategy to retrieve evidence
that is relevant to a queried diagnosis or a risk fac-
tor. Specifically, we first ask the LLM for a binary
response as to whether evidence for a condition
exists; if the answer is affirmative, we then issue a
second prompt tasking the LLM to generate sup-
porting evidence. Formally, we define the evidence
retrieved for report n and query ¢; as follows:

GetEvidence(ry,, ;)

eng = if EvidenceExists(ry,, ¢;) = “yes”
null otherwise

ey
where “GetEvidence” and “EvidenceExists” rep-
resent the corresponding prompt functions.

This approach does have limitations. For ex-
ample, it cannot produce more than one snippet
of evidence per report/query pair. Retrieved evi-
dence may also be abstractive rather than extrac-
tive, which introduces the risk of model “halluci-
nations”, but permits flexibility and interpretability
(Ahsan et al., 2023). It also significantly reduces
the amount of text (therefore requiring a relatively
small context window) by going from all reports
to sentence-length snippets for some reports. The
resulting “summarization” in the form of evidence
snippets is also controllable through the querying
process and works zero-shot, i.e., it requires no spe-
cialized or in-domain training. Queries, in the form
of the 3 diagnoses considered and risk factors writ-
ten by a clinician co-author, are shown in appendix
Table 5. We present further details regarding the
evidence retrieval prompts in Appendix B.



Modeling Approach

Intermediate representation(s)

Aggregation

Interpretability

(A) Direct Black-box Pre-
diction (e.g., zero/few-shot,
fine-tuned LLM)

(B) Aggregating chunked in-
put with relevance weights
(C) Logistic regression
with LLM-inferred features

(D) Log odds voting with
LLM-inferred text snippets
(ours)

None

Extractive text snippets

Inferred, real-valued numbers
relating to predefined natural
language queries
Inferred/abstractive text snip-
pets relating to predefined natu-
ral language queries

CLS or last token embed-
ding + classification or LM
head

Weighted avg. of CLS em-
beddings + class. head

Logistic regression

Neural Additive
(conditioned on
query/condition vector)

Model
the

No inherent interpretability

Positive, real-valued rele-
vance scores per query
Negative and positive real-
valued static model coeffi-
cients

Negative and  positive
real-valued dynamic impact
scores

Table 1: Types of interpretability afforded by the different modeling approaches for EHR data visualized in Figure 1.
Red and green denote negative and positive aspects of each model.

3.2 Risk Prediction

Because a patient can have more than one diagno-
sis, we treat risk prediction as a multi-label clas-
sification problem where each label corresponds
to a diagnosis. To realize interpretability, we use
a Neural Additive Model (Agarwal et al., 2020).
Specifically, we do not model interactions between
evidence snippets. Instead, we predict scores indi-
vidually for each piece of evidence, and average
these® to obtain a logit for risk prediction:

E
(i = Llers) = ol wie (3> PP (e,))
j=1

2)
where w; € R? is the embedding of diagnosis 1,
e1.g 18 the flattened list of evidence snippets4 with
null evidence omitted, PR is the ClinicalBERT
(Alsentzer et al., 2019) [CLS] embedding function
(which yields a d-dimensional vector), and b; € R
is the bias for diagnosis 7. The prior over conditions
can be defined as the same equation excluding the
evidence term: p(y;) = o(b;), and the relative risk
follows as p(gile1.r) /p(i)-

While the bias could be learned, we instead sim-
ply set it to the inverse sigmoid of the observed
prevalence of the disease in the training sample dis-
tribution: b; = o~ !(prevalence{™™). This means
that if we wanted to transfer the model to a new
population, where the prevalence differed but the
contributions of different evidence were assumed
to remain, we could simply update the b; term.

3Neural Additive Models typically use a sum instead of an
average, but we found that given varying amount of evidence
retrieved, it worked better to use an average.

“We add the query term used to retrieve the evidence and
relative date of the evidence before serving it as input, which
we describe in greater detail in Appendix C. Also note that we
use evidence surfaced by all queries for all predictions.

Excluding interactions between evidence snip-
pets is a sacrifice in model complexity, but it also
allows us to compute an interpretable “vote” for
any individual piece of evidence as

p(Gile;) = o (b +wi - fFFE¥ (e;))

3)
and compute an individualized relative risk for each
piece of evidence using this value.

Conveniently, forcing the bias term to be the
inverse sigmoid of the training prevalence, by def-
inition, also means we can interpret the evidence
term in Equations 2 and 3 as the log odds ratio,
i.e., the difference between the logits when condi-
tioning vs. not conditioning on the evidence. The
model is effectively estimating this log odds ratio
directly. This variable’s expected value does not
change if we sample conditions for training with a
frequency different from the the natural prevalence
of the conditions (Simon, 2001). Because of this,
we can estimate the likelihood and the relative risk
during inference on a differently sampled popula-
tion by simply changing the bias term in the prior
and in equations 2 and 3 to reflect the estimate of
the natural prevalence of the conditions (Zhang and
Kai, 1998), which we can get from the training set
before sampling: b, = o~ ! (prevalence{™™).

3.3 Evidence Re-ranking

Because of the simplicity of the risk prediction, we
can use the internal variables it exposes to re-rank
evidence. The intuition behind the re-ranking is
that the most important evidence will be that which
most changes our risk assessment from the prior
over the diagnoses, and we would like the chosen
metric to capture this across all of the potential
diagnoses. We use Mean Squared Error (MSE) of
the predicted logits with the logits of the prior p(y).



This makes the formulation of the MSE metric sim-
ple as the mean (over () conditions) of the squares
of the log odds ratio for a piece of evidence:

MSE(J_lp(Q\ej),U_lp@)) =

Q
1 Z 4)
Q (wl : éSERT(ej))z'

i=1

It is necessary to use the log odds ratio term in
this score function because we care not only about
increasing but also about decreasing the probability
of a condition, so it makes most sense to compare
and sum these two different effects in log space.
The reason to choose MSE over other scores (e.g.
the absolute distance) comes from the intuition that
it is more important to see the evidence that is “very
opinionated” about one condition rather than to see
evidence that is “slightly opinionated” about many.
Therefore, it is necessary to square this log odds
ratio before averaging across conditions to reflect
this idea when sorting evidence.

4 Certain Diagnosis Extraction

We make an assumption about the EHR of patients
that eventually receive a diagnosis that there is
some period of time in the record where a diagnosis
18 “uncertain” before it becomes “certain”, and the
eventual “certain” diagnosis is correct. Of course
just because a diagnosis is definitive as noted by
clinician in the record does not necessarily mean
that it is correct—sometimes clinicians are wrong.

However, it is hard to detect such cases, so here
we focus on reducing delayed diagnosis errors
where we assume some evidence in the medical
record from that “uncertain” period could have in-
fluenced a clinician to make a diagnosis or order a
certain kind of test sooner than they did, or keep
a diagnosis in the running list of differentials for
longer. If notes are incorporated into the input
where the diagnosis is already certain, the predic-
tion problem becomes too easy, which is why a
time-wise fine-grained label is necessary—such a
label could more accurately weed out all of this ob-
vious evidence. To extract these certain diagnoses
with an LLM, we use three sequential prompts and
a normalization step.

4.1 3-Stage Extraction with LLMs

In this section we describe the prompts for certain
diagnosis extraction, which are shown in full in
Appendix D. Following prior work (Ahsan et al.,

2023), we first prompt the LLM with a binary ques-
tion asking if there exists a confident diagnosis for
a patient. If the answer is “yes”, we then ask the
model for the diagnoses. Unfortunately, creating
a list of diagnosis terms from the answer to this
prompt is not just a matter of parsing because we
found that the model will often return extended
phrases that are not easily mapped to diagnoses.
Therefore, we issue one more prompt that only
takes in the output of the previous prompt to create
a structured list of diagnostic terms. We then parse
this final output of the LLM into a list of strings.

4.2 Normalization

To normalize produced diagnostic terms, we take
a two-step apporach. First we use string matching
heuristics to handle easy cases. Then we embed
sentences with SentenceTransformers (Wang
et al. 2020; Reimers and Gurevych 2019; specif-
ically, all-MinilM-L6-v2) and calculate cosine
similarities, matching a term in the parsed list to
the most similar term (with similarity >.85) in the
predefined set (“‘cancer”, “pneumonia”, and “pul-

monary edema”). We ignore terms with no match.

5 [Evaluation

Because our targets are synthetically generated us-
ing an LM, we first evaluate how well our labels
align with the “ground truth” (Section 5.1). Next,
we aim to evaluate how well the model can real-
istically help with risk prediction. Though it is
straightforward to assess the accuracy of the risk
prediction itself—we use the standard metrics of
precision, recall, F1 and AUROC scores to com-
pare to various uninterpretable baselines—it is not
as easy to assess what we really care about: How
helpful is the interpretability offered by the pro-
posed model to clinicians (section 5.2)? For this
we resort to manual evaluation by our clinical co-
authors and develop bespoke interfaces to facilitate
annotation.

5.1 Future Target Extraction

To evaluate how well the LLM extracts targets in
the form of “confident” diagnoses, we enlist our
clinical collaborators to annotate the precision with
which the LLM infers “confident” diagnoses. In
particular, for every report where one of the three
diagnoses—cancer, pneumonia, and pulmonary
edema—was automatically extracted, an ICU clini-
cian is first tasked with answering the question “Is



[diagnosis] a confident diagnosis of the patient ac-
cording to the report?”. If the answer is “yes”, they
are asked: “Is it likely that this confident diagnosis
could be identified in earlier reports?”.

5.2 Risk Prediction Interpretability

To assess the viability of clinicians using this model
in practice, we collect in-depth annotations in-
tended to simulate the real-world use of this tech-
nology. We evaluate a number of baseline models
and model ablations to assess the relative benefits
of different model components.

Interface and Annotations To conduct annota-
tions, we develop an interface that simulates as
closely as possible the envisioned use case: A clin-
ician is seeing an ICU patient’s chart for the first
time and trying diagnose the patient or determine
what they are at risk of. The clinician may not
have much time to spend with the patient’s chart,
so we ask clinician annotators to work quickly—
specifically, to try and keep annotation time to a
few minutes—and we record the amount of time
they take to review the patient’s record. When they
are done, the annotation process starts, and though
they are allowed to access the patient’s notes, they
are encouraged not to.

We first ask if a diagnosis is noted explicitly in
the patient’s record. Given that we are aiming to
evaluated records where the diagnosis is not yet
clear, we skip the rest of the annotations on the
instance if a diagnosis is explicit. If not, we ask for
estimates of the likelihood (“unlikely”, “somewhat
likely”, or “very likely”) of each of the possible
conditions. Note that we explicitly do not show
any model predictions until after this question, to
avoid bias. Then, we show the annotator the model
predictions and ask if the predicted risk for the
conditions aligns with intuition.

Moving onto the evidence (appendix Figure 13),
we allow the annotator to look at the sorted evi-
dence one snippet at a time along with the individ-
ualized risk prediction only based on that snippet.
The annotator notes the usefulness of the evidence
with respect to each condition. If the evidence is
useful, they are asked whether or not the impact of
this evidence on the risk scoring (for the particular
condition) aligns with intuition, and whether the
annotator remembers seeing this piece of evidence
during their initial review of the patient’s notes. Af-
ter two pieces of evidence, if the annotator feels
like more evidence is needed to form a reasonable

opinion of the patient’s risk, they can request more
evidence snippets (up to a maximum of 10), an-
notating each as they go. Finally, the annotator is
asked if any of the evidence presented impacted
their original assessment of likelihood.

Ablations While the task of risk prediction is
standard, there is less work on the task of surfac-
ing relevant evidence (abstracted or extracted) to
support such predictions. Consequently, there is
not a large set of baselines to serve as natural com-
parators to our approach. Therefore, in our anal-
ysis we focus on showing the importance of each
component of our model through ablations. We
can decompose our approach into two evidence re-
trieval components, generating the evidence, which
we refer to as “LLLM Evidence” and reranking it,
which we refer to as “Log Odds Sorting”. The
following ablations show the importance of both of
these components in identifying useful evidence.

We use prior work (Ahsan et al., 2023) as a start-
ing point for generating the evidence, so it is nat-
ural to ask what that component can do by itself
without re-ranking using the risk prediction scores
for each piece of evidence. A natural comparison
is to present the same evidence retrieved but in a
random or reverse chronological order (as recency
is probably important). But we can also use the
model certainty in evidence, given that this has
been shown to correlate with the utility of snippets
(Ahsan et al., 2023). We adopt this approach for
comparison and call it “Confidence Sorting”.

It is also natural to question the importance of
using the language model to abstractively generate
evidence at all. We might instead simply use every
sentence in the report as evidence and train our
prediction model with this retrieved evidence, re-
ranking it in the normal way (“Log Odds Sorting”)
with the prediction model’s scores. We call this the
“All EHR” model.

6 Results and Discussion

The majority of our results are based on annotations
from 4 annotators on 24 instances and 3 models.
Each instance has a maximum of 3 annotators, each
annotating different models (assigned randomly).
Table 2 reports detailed statistics.

Our main goal is to understand if our approach
can retrieve better evidence. To this end, we plot
the percentage of evidence annotated in each cat-
egory of usefulness for each model in Figure 3.0

>Sometimes annotators noticed nearly duplicate evidence,



LLM Evidence+Confidence Sorting Raw EHR+Log Odds Sorting LLM Evidence+Log Odds Sorting
Annotator | Inst. Evid. Rep. Percent Useful | Inst. Evid. Rep. PercentUseful | Inst. Evid. Rep. Percent Useful
1 8 20 195 5.0 5 14 81 7.1 6 13 154 30.8
2 2 6 26 50.0 2 5 72 40.0 5 14 162 357
3 4 13 105 23.1 6 17 224 353 5 14 119 429
4 5 16 132 18.8 6 20 127 20.0 4 12 85 41.7
Aggregated 19 55 458 242 19 56 504 25.6 20 53 520 37.8

Table 2: Annotations. We report the statistics for the number instances annotated, the amount of evidence snippets
annotated, the total number of reports in the annotated instances, and the percent of evidence annotated as “Useful”
and “Very Useful”. Aggregated statistics are computed by summing over the annotators except in the case of
“Percent Useful”, where scores are macro-averaged over annotators. (This is slightly different from Figure 3 where
percentages are macro-averaged, i.e., we combine all annotated evidence).
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+Confidence Sorting
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Figure 3: Evidence Usefulness (the maximum score
across conditions) for our approach and two ablations.
“LLM Evidence+Confidence Sorting” uses model evi-
dence, but sorts by (length-normalized) log probability
instead of the log odds. “All EHR+Log Odds Sorting”
does not use LLM evidence and instead takes the last
1000 sentences in the record as evidence.

Though we record usefulness for each condition
individually, here we combine these annotations by
taking the maximum score across the conditions
for each piece of evidence. To identify halluci-
nated evidence, we conducted post-hoc annotations
with only the annotated LLM-generated evidence
that was abstractive (42 of 108).% The results high-
light the necessity of both the “LLM Evidence”
retrieval component and the “Log Odds Sorting”
method, as both other variants retrieve significantly
less “Useful” and “Very Useful” evidence and more
“Weakly Correlated” and “Not Relevant” evidence.
We also find a relatively small number of hallucina-
tions (5) and note where the hallucinated evidence
was originally ranked in Table 3.

How much of the relevant retrieved evidence is

so we kept track of this evidence (a total of 21 snippets) and
omitted it from the results.

%To annotate hallucinations, we provided a clinician the
generated evidence alongside the report from which it was gen-
erated and asked if the evidence was hallucinated or partially
hallucinated. Full results are in appendix Table 8.
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Figure 4: Seen vs. unseen evidence counts for all
evidence that at least weakly correlates with a condition.
Curiously, the LLM Evidence with Log Odds Sorting
model has some hallucinated evidence that was seen by
annotators. See section 6 for a discussion.

Not Weakly Very
Relevant  Correlated Useful  Useful
LLM Conf. 0 1 0 0
Log Odds 0 1 3 0

Table 3: The original evidence ratings of hallucinations.

redundant with the information already uncovered
during the annotator’s initial review of the patient?
We plot evidence counts separately for seen vs un-
seen evidence in Figure 4 and find that there is a
significant amount of unseen evidence that is useful
and very useful in all models. It is interesting to
note that some hallucinated evidence was “seen”
by annotators. We believe this is most likely due
to some hallucinated evidence having been poten-
tially true of the patient at some point but not with
respect to the specific report used to generate it
(e.g. the generated evidence says the patient has a
bleeding colon lesion, but the report says that the
patient no longer has this; see Table 8 for more
examples).

The rated usefulness of evidence does not nec-
essarily matter if it does not affect the clinician’s
decision. An example of how these models might
work in practice is when our LLM Evidence model
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Figure 5: Synthetic label precision. For each confi-
dent diagnosis label extracted by the system, annotators
check whether the diagnosis actually appears in the re-
port (and is definitive), and subsequently if subjectively
they believe that report is likely the first time the diag-
nosis was definitive based on the report language.

with Confidence Sorting surfaced the following:
“Atrial fibrillation with rapid ventricular response.
Compared to the previous tracing atrial fibrillation
is seen. Other findings are similar. The patient
is at risk of pulmonary edema.” In this case the
annotator changed their estimate of the likelihood
of pulmonary edema from unlikely to somewhat
likely, and it turns out that pulmonary edema did
appear in a future report.

We show all 7 instances where annotators
changed their mind after viewing evidence in Ap-
pendix Table 7. Of these we find 2 instances (in-
cluding the example above) where annotators’ in-
creased their likelihood of conditions that were
extracted from future records, and 5 where con-
dition(s) other than the synthetically labeled con-
dition(s) were affected (mostly by increasing the
annotators’ risk assessments). Though more data
should be collected, this indicates the model might
improve annotator recall (though at some cost in
precision); recall is arguably more important here.

Given that we are using synthetic labels of future
diagnoses for both training and evaluation for risk
prediction (discussed next), it is important to eval-
uate how well our labels align with ground truth.
Given that ICD codes are not fine-grained enough
and are not always accurate, we turn to manual an-
notations of precision for this evaluation. In Figure
5, we report the precision of these labels for being
correct or for being “correct and on time”. This
second category is a stronger correctness in which
the annotator also noted that the note where the
label was detected subjectively seems to be the first

Evidence-Wise Prediction
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Figure 6: Intuitiveness of predictions macro-averaged
across annotators.

note where that label should have been given as
judged using the phrasing in the note.”

We see reasonable precision when using auto-
matic labeling with the LLM pipeline (about 80
percent and above for all conditions). We also
compute inter-annotator agreement for these an-
notations of precision across the 4 annotators by
enforcing that 8 annotated predictions overlap for
all the annotators. The Fleiss’ Kappa score for
these synthetic label annotations was .68 for the
3-category classification shown in Figure 5 and .86
for the 2-category classification obtained by simpli-
fying the labels into just “Correct” or “Incorrect”.

We would also like to assess how well our mod-
els’ risk estimates aligns with the intuitions of clin-
icians with respect to the aggregated and individual
predictions. Though for the aggregated prediction
for an instance, we ask annotators to take the magni-
tude of the risk, not just the direction (i.e. increased
compared to baseline or decreased compared to
baseline) into account, for evidence-level predic-
tions, we ask annotators to take the magnitude with
a grain of salt and mostly judge based on the direc-
tion. This is because the magnitudes appeared to
be somewhat artificially inflated potentially either
due to the strong evidence trying to “compensate”
for the evidence that does not actively contribute
to the log odds (see Figure 12) or because of the
sorting method.® Figure 6 shows that both models
do reasonably well with respect to the aggregated
and evidence-wise predictions, and both do slightly
better on evidence-wise as opposed to aggregated
predictions.

Finally, it is important to evaluate the actual pre-
diction performance of our models on our synthetic

"It would be time-consuming to annotate this directly be-
cuase it involves looking at a lot of prior notes.

8Future work might investigate how to bring make this
magnitude more interpretable.
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Figure 7: Macro-averaged risk prediction performance
evaluated on synthetic labels and averaged over 5 ran-
dom seeds for choosing the which time-point in the
EHR to use prior to the diagnosis label. Error bars rep-
resent the standard deviation of the random seeds. Here,
BERT and Longformer refer to Clinical BERT and Clin-
ical Longformer.

labels. Here we also compare against baseline mod-
els that are not interpretable: BERT and Long-
former. These black-box models are trained on
both the All EHR and the concatenated retrieved
LLM evidence. Figure 7 shows that including all
evidence usually helps prediction performance, but
using the blackbox vs interpretable models on the
same input does not effect performance.

7 Conclusions

Clinicians should have access to all the pertinent in-
formation to make well-grounded decisions for di-
agnosing a patient, but currently they are inundated
with (unstructured) information from the EHR.
This is exacerbated by the time constraints faced
by practitioners. We have proposed an approach
that aims to facilitate efficient access to potentially
important data within EHR; our method capitalizes
on the capabilities of LLMs to produce digestable,
abstractively generated text evidence, which is then
consumed by a Neural Additive Model (NAM) to
yield a prediction.

We find that using NAMs does not sacrifice pre-
dictive quality, but does enable models to surface
useful evidence to clinicians. Using the LLM to
create the starting set of evidence to feed into the
NAM does sacrifice some performance, but it also
significantly increases the usefulness of the evi-
dence in comparison with using the raw sentences
from EHR notes as evidence.

Further, we find that in some cases the surfaced
evidence is able to change a clinician’s mind, in-
creasing the clinician’s recall though decreasing

precision, which warrants future work to improve
on this system. One major concern is that this
type of system could increase clinician’s workload
rather than decrease it. Future work should assess
exactly how and when it might be beneficial to
show snippets to clinicians.

8 Limitations

The proposed approach of combining abstractive
LLM evidence with Neural Additive Models shows
promise, but there are still many concerns that need
to be addressed in future work. One of the biggest
concerns is about the use of abstractive “evidence”
produced by LLMs. Though our analysis does not
find many hallucinations, their existence certainly
poses risks and should be studied further in future
work. Any hallucinated evidence could at best neg-
atively impact trust of clinicians in the system and
at worst mislead clinicians and negatively affect pa-
tient outcomes. We also did not experiment much
with different prompts or models for producing
this evidence given that our main focus was on
validating the system-level approach rather than
individual components.

Another limitation concerns the lack of a signifi-
cant number of baseline models. Though not many
baselines exist for a task that involves retrieving
evidence supporting predictions in EHR, there are
still potential baselines that use relevance weights
or cosine similarity with clinical BERT that we
could have included. However, due to the extensive
amount of time needed for just one annotation on
one model, we chose to focus on ablating over the
LLM evidence retrieval and sorting method com-
ponents of the model.

Finally, our analysis mostly relies on a relatively
small amount of annotations from one dataset. This
again stems from the time cost of annotations. Each
annotator must first look through a whole patient’s
record to get a sense of the patient before even
getting to any annotations. On average, this took
almost 3 minutes, which is all before annotators
even see any of the questions. Then, because the
study focuses on just the top evidence presented
for each instance, each annotator only annotates
3.2 evidence snippets on average per instance. This
time-consuming process did limit the number of
annotations we could obtain.
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A Dataset and Preprocessing

We treat each patient as an instance and split the
instances randomly into a training split for training
the risk prediction model, a validation split for pick-
ing the best checkpoint and other hyperparmeter
tuning, a test split for automatically evaluating the
risk prediction, and an annotation split for annota-
tions. After the first round of annotations, because
we changed our model (see section E), we throw
out all patients annotated in the first round so that
the second and final round of annotations, which
were used to compute all results, were conducted
on a held-out set of instances. Instance order was
randomized, so no bias resulted from throwing out
the first set of instances annotated.

Each instance is randomly separated into a past
and future. During training, repeated examples
might have different samples time-points, but dur-
ing evaluation and annotation, the same randomly-
picked time-point is used across all evaluations and
annotations. We also ignore examples longer than
200 reports for computational purposes. Given that
this application’s use case is for lengthy records, for
annotations we restricted to instances with greater
than 10 records for all but 3 annotated instances,
which had already been completed.

During training, to overcome problems caused
by data imbalance and for computational reasons,
we randomly sub-sample 20% of the negative
examples—i.e., examples that have none of the
three considered conditions. For annotations, we
sub-sample negatives such that each annotation has
a 50% chance of having at least one positive condi-
tion of the three considered.

B Evidence Retrieval Details

We use the same prompts as in (Ahsan et al., 2023)
for retrieving evidence of risks and signs. We also
add an additional set of two prompts for retrieving
evidence relating to a particular queried risk factor.
The exact prompts used are as follows:

Evidence of Risk

Prompt 1:

Read the following clinical note of a pa-
tient:

<input>

Question: Is the patient at risk of
<query>? Choice: -Yes -No

Answer:

Prompt 2:

Read the following clinical note of a pa-
tient:

<input>

Based on the note, why is the patient at
risk of <query>?

Answer step by step:

Evidence of Signs
Prompt 1:

Read the following clinical note of a pa-
tient:

<input>

Question:  Does the patient have
<query>? Choice: -Yes -No

Answer:

Prompt 2:

Read the following clinical note of a pa-
tient:

<input>

Question: Extract signs of <query> from
the note.

Answer:

Evidence of a Queried Risk Factor
Prompt 1:

Read the following clinical note of a pa-
tient:

<input>

Question:  Does the patient have
<query>? Choice: -Yes -No

Answer:

Prompt 2:

Read the following clinical note of a pa-
tient:

<input>

What evidence is there that the patient
has <query>?

Answer:

C Risk Prediction Inputs

To provide some context of the evidence for the risk
prediction model, we decided to add some meta-
data to the evidence when it was presented to the
model with the hope that the model could use this
context to make better predictions. In particular,
we decided to include the query that was used to
retrieve a piece of evidence, and the relative day of
the report from which the evidence was retrieved
in the following format:



<query> (<query_type>): “<evidence>"
(day <relative_day>)

For example, if querying a diagnosis of “pneumo-
nia” retrieved the evidence “the patient has a cough.”
from a report 5 days prior to the current time-step,
the evidence would be be presented to the model
as:

pneumonia (diagnosis): “the patient has
a cough.” (day -5)

D Certain Diagnosis Extraction Prompts
Prompt 1:

Read the following report:
<input>

Question: Is there a confident diagnosis
of the patient’s condition? Choice: -Yes
-No

Answer:

Prompt 2:

Read the following report:
<input>

Answer step by step: What is the correct
diagnosis of the patient’s condition?
Answer:

We use Chain of Thought (CoT) prompting here
because—similar to the evidence retrieval step—
we want the model first to extract the parts of the
report that refer to a diagnosis, as this seems to
work better than going straight to the list of diag-
noses. In initial experiments, using the CoT prompt
appeared to more easily elicit these verbose extrac-
tions.

Prompt 3:

Here is a diagnosis of a patient:
<confident diagnosis>

Question: Provide a list of diagnostic
terms or write none.
Answer:

E Prompting Problems

In our 3-stage prompting process, we initially had
some problems with false positives in scenarios
where pneumonia was negated (Figure 8). We dis-
covered that this was because our 3rd prompt was
originally:

Correct and On Time BN Incorrect

Correct but Late

Cancer _
(n=4.0)

Pneumonia _
(n=6.0)

Pulmonary Edema _
(n=3.0)
I 1 1 1 1

1
0 20 40 60 80 100
percent

Figure 8: Synthetic labels on validation examples before
correcting the prompting problem.

Here is a diagnosis of a patient:
<confident diagnosis>

Question: Based on this diagnosis, pro-
vide a list of diagnostic terms.
Answer:

This particular prompt sometimes produced posi-
tive synthetic labels for pneumonia when pneumo-
nia was actually negated in the confident diagnosis
generated by the previous prompt. We realized this
when starting to annotate validation examples, so
we changed our prompt (see section 4.1).

We also noticed that some false positives might
be caused by the model treating the admitting di-
agnosis as true, even though it can often be wrong
according to the report text. To combat this, we
added a preprocessing step before inserting the re-
port into the confident diagnosis extraction prompts
that removed the admitting diagnosis from the text.
All of the test annotations used for the results do
not include or overlap patients with the annotated
examples which were used in this phase (chosen
from the randomly shuffled annotation split) and
precipitated these modifications.

F Description of Terms for Models and
Settings

Table 4 shows all of the terms used to describe
different models and settings.

G Experiments

We use Clinical BERT for the NAM prediction
model. For all models, we train for up to 10
epochs on one Quadro RTX 8000 GPU and pick
the best checkpoint (where checkpoints occur ev-
ery 5 percent of an epoch). For the LLLM for both



LLM Evidence

Models that use the evidence retrieved with an LLM.
Models that use the all of the text in the EHR. For Interpretable Neural Additive Model, this text

Blackbox models that take either All EHR or LLM Evidence (concatenated) as input. BERT

refers to Clinical BERT (Alsentzer et al., 2019) and Longformer refers to Clinical-Longformer

All EHR

is split at the sentence level.
BERT or Longformer

(Li et al., 2023).
Interpretable

or All EHR inputs.
Confidence Sorting
Log Odds Sorting

odds (equation 4).

The proposed Interpretable Neural Additive Model, which can operate either on LLM Evidence

Sorting LLM Evidence by the length-normalized log-likelihood of the evidence under the LLM.
Sorting either LLM Evidence or All EHR inputs by the mean squared error of the predicted log

Table 4: Description of terms.

evidence retrieval and synthetic label extraction we
use FLAN-T5-XXL (Chung et al., 2022; Wei et al.,
2022). In the case of All EHR used as input to the
interpretable NAM, we split sentences with NLTK.

H Usefulness of Queries

Unlike (Ahsan et al., 2023), we do not directly
evaluate how relevant the retrieved evidence is to
the query used to retrieve it; we instead focus on
how relevant the evidence is to the risk predictions.
However, we would like to examine which queries
produce useful evidence. Figure 9 shows counts of
evidence in each category separated across which
query was used to retrieve that evidence. It seems
as though the most useful evidence came from the
three queries that directly ask about the condition
for which we are predicting risk (the three left-most
queries), but a few additional queries sometimes
did prove useful.

I Full Prediction Performance

We report the full prediction performance in Table
6.

J Annotators Changing Their Minds

Table 7 presents all the occurrences of annotators
changing their mind.

K Ablation over amount of evidence used

Figure 10 shows performance if we limit to a set
amount of evidence that can be used in the Neu-
ral Additive Model’s final aggregated score. This
shows that the model performance is not affected
until it is limited to using less than 20 snippets for
predictions.

L Evidence Histograms

Figure 11 shows a histogram of the amount of evi-
dence per each instance, and Figure 12 shows what
the distribution over the log odds votes looks like.

M Annotation Interface

Figure 13 shows a screenshot of what the part of
the interface dedicated to annotating evidence looks
like.

N Hallucinations

Table 8 shows all of the annotated evidence that
was subsequently marked as a hallucination along
with an explanation of why it is a hallucination and
other information about the evidence.
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Figure 9: Usefulness per Query.

Diagnosis Risk Factors
Pneumonia a stroke, trouble swallowing, a compromised immune system, a high white
blood cell count, a fever
Pulmonary Edema a low ejection fraction, a heart attack, steroid use
Cancer back pain, neuralogical problems, a history of smoking, night sweats, unex-
plained weight loss, a chronic cough with blood, large neck lymph nodes, a loss
of appetite, jaundice, chest pain, hoarseness, tiredness, wheezing

Table 5: A non-exhaustive list of risk factors proposed by a clinician for use in queries.

| AUROC Precision Recall F1
BERT (All EHR) 75,6 £.19 65.6+1.38 168+ .38 26.8+ .43
Longformer (All EHR) 79.6 + .22 55.5 + .32 288+ .43 379+ .38
Interpretable (All EHR) 79.5 + .23 56.5 + .57 20.5 + .58 30.1 £.60
BERT (LLM Evidence) 740+ 27 516132 2274+.27 315+ .42

Interpretable (LLM Evidence) | 73.3 £.27 53.6£1.09 15.0+.36 234+ 48

Table 6: Macro-averaged risk prediction performance on the synthetic labels averaged over 5 different random
seeds used for choosing the time-point in each patient that separates the past from the future.



Annotator Model Sorting Changes Best Evidence Usefulness Synthetic La-
bel
2 LLM Evidence Confidence Sorting Pneumonia:  There is a small right pneumothorax. Useful for Pneumonia Pneumonia
Unlikely —  There is extensive consolidation of the
Somewhat right upper lobe. Consolidation in the
likely right lower lobe is mostly located in
the superior segment. The left lung is
grossly clear. There. Signs: There is ex-
tensive consolidation of the right upper
lobe. Consolidation in the right lower
lobe is mostly located in the superior
segment. The left lung is grossly clear.
There is no left pleural effusion. There
is
4 LLM Evidence Confidence Sorting Pulmonary Atrial fibrillation with rapid ventricu- Useful for Pulmonary Pulmonary
Edema: lar response. Compared to the previous Edema Edema
Unlikely — tracing atrial fibrillation is seen. Other
Somewhat findings are similar. The patient is at
likely risk of pulmonary edema.
3 All EHR Log Odds Sorting  Cancer: Basal cell skin ca. [¥#27%*]. Useful for Cancer Pulmonary
Unlikely — Edema
Very likely
4 All EHR Log Odds Sorting ~ Cancer: o.b.resident to see pt., pt.waiting for a  Useful for Cancer Pulmonary
Unlikely —  "biopsy". Edema
Somewhat
likely
4 All EHR Log Odds Sorting ~ Pulmonary There is increased opacity in the. retro- Very Useful for Pneumo-
Edema: cardiac left lower lobe, as well as the nia
Somewhat right lower lobe, which could be. due to
likely —  atelectasis, aspiration, or possibly pneu-
Unlikely, monia.
Pneumonia:
Somewhat
likely —
Very likely
1 LLM Evidence  Log Odds Sorting ~ Pneumonia: ~ CXR showed L middle/lower lobe PNA, Very Useful for Pneumo-
Somewhat prob asp PNA. nia
likely —
Very likely
4 LLM Evidence  Log Odds Sorting  Cancer: CLL. Signs: id: pmh of CLL Very Useful for Cancer
Unlikely —
Very likely

Table 7: Examples of the 5 instances where annotators changed their mind based on evidence shown.

Evidence Hallucination Explanation Query Sorting Seen Rating
The patient has a Yes The report indicates that cancer Log Odds Yes Useful
bleeding colon lesion. the patient used to have a Sorting

bleeding colon lesion but no

longer does.
The patient has a his-  Yes The report looks likeitiscut  a low Log Odds Yes Useful
tory of heart failure. off, and the only thing men- ejection Sorting

tioned is a Coronary artery  fraction

bypass graft (CABG).
The patient has a his-  Yes Report says “R/O” meaning  pneumonia  LLM Confi- No Weakly
tory of sepsis. rule out sepsis. dence Correlated
The patient has a Partially The report header says that  cancer Log Odds Yes Weakly
mass in her breast. the patient has a mass, but Sorting Correlated

the body of the report does

not indicate this.
The patient had a Partially Clinicians do not usually re- neuralogical Log Odds Yes Useful
brain tumor removed. fer to pituitary adenomas problems Sorting

(which the report indicates)
as brain tumors.

Table 8: Clinician-annotated hallucinations.
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Figure 12: Histogram of the log odds of each individual
piece of evidence.
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Figure 13: An example part of the evidence annotation interface. The plots on the left indicate the predicted
likelihood (top) and the odds ratio (bottom).
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