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Abstract

LLMs process text as sequences of tokens
that roughly correspond to words, where less
common words are represented by multiple
tokens. However, individual tokens are of-
ten semantically unrelated to the meanings of
the words/concepts they comprise. For exam-
ple, Llama-2-7b’s tokenizer splits the word
“northeastern” into the tokens [_n, ort, he,
astern], none of which correspond to seman-
tically meaningful units like “north” or “east.”
Similarly, the overall meanings of named enti-
ties like “Neil Young” and multi-word expres-
sions like “break a leg” cannot be directly in-
ferred from their constituent tokens. Mecha-
nistically, how do LLMs convert such arbitrary
groups of tokens into useful higher-level rep-
resentations? In this work, we find that last
token representations of named entities and
multi-token words exhibit a pronounced “era-
sure” effect, where information about previous
and current tokens is rapidly forgotten in early
layers. Using this observation, we propose a
method to “read out” the implicit vocabulary
of an autoregressive LLM by examining dif-
ferences in token representations across layers,
and present results of this method for Llama-2-
7b and Llama-3-8b. To our knowledge, this is
the first attempt to probe the implicit vocabu-
lary of an LLM.!

1 Introduction

Despite their widespread use, the specific mech-
anisms by which LLMs are able to “understand”
and generate coherent text are not well understood.
One mystery is the process by which groups of
subword tokens are converted into meaningful rep-
resentations, a process described by Elhage et al.,
2022 and Gurnee et al., 2023 as detokenization.
Current language models process text as a se-
ries of tokens drawn from a set token vocabulary:
One token can correspond to a single word (_fish),
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Figure 1: We observe “erasure” of token-level informa-
tion in later layers of LLMs for multi-token words and
entities (top). We hypothesize that this is a result of
a process that converts token embeddings into useful
lexical representations, and introduce a new method for
enumerating these lexical items (bottom).

or to a piece of a larger word (mon in “salmon”).
The vocabulary of tokens available to a model is
typically determined before training with byte-pair
encoding (Sennrich et al., 2016), which is based on
a specific dataset and can lead to unintuitive results.
For example, Llama-2-7b’s (Touvron et al., 2023)
tokenizer breaks the word “northeastern” into the
tokens [_n, ort, he, astern], none of which corre-
spond to semantically meaningful units like “north”
or “east.” Capitalization also creates unexpected
issues: for example, the word “Hawaii” is split into
two tokens if the first letter is capitalized [_Hawai,
i], but four if the first letter is lowercase [_ha, w, ai,
i]. In spite of these challenges, large models are ap-
parently able to “understand” such idiosyncratic to-
kenizations of multi-token words with few observ-
able effects on downstream performance (Gutiérrez
et al., 2023), unless these weaknesses are directly
targeted (Wang et al., 2024; Batsuren et al., 2024).
How is this possible?

We hypothesize that during pretraining, LLMs
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develop an implicit vocabulary that maps from
groups of arbitrary tokens to semantically meaning-
ful units. These lexical units may be multi-token
words (“northeastern’”), named entities (“Neil
Young”), or idiomatic multi-word expressions
(“break a leg”) and can be understood as “item][s]
that function as single unit[s] of meaning” in a
model’s vocabulary (Simpson, 2011). Lexical
items are also non-compositional: Just as the mean-
ing of “break a leg” cannot be predicted from the in-
dividual meanings of “break” and “leg,” the mean-
ing of “patrolling” cannot be predicted from its
constituent tokens pat and rolling. This arbi-
trariness necessitates some kind of storage system,
implicit or otherwise (Murphy, 2010).

How exactly do LLMs deal with these cases
mechanistically? In this paper, we begin to answer
this question by investigating token-level informa-
tion stored in LLM representations.

* We find that last token positions of multi-
token words and named entities “erase” token-
level information in early layers for both
Llama-2-7b (Touvron et al., 2023) and Llama-
3-8b (Meta, 2024).

* We develop a heuristic for scoring the “lexical-
ity” of a given sequence of tokens, and use it
to “read out” a list of an LLM’s lexical items
given a large dataset of natural text.

L3

We interpret this erasure effect as a “footprint
of a mechanism in early layers that orchestrates the
formation of meaningful lexical items.

2 Background

Previous work has shown that knowledge about a
multi-token entity is often stored in the last token of
that entity. For example, Meng et al. (2022) found
that factual information about a subject like “The
Space Needle” would be concentrated in the repre-
sentation for le. Geva et al. (2023) find evidence
for a subject enrichment stage during factual recall,
where information about an entity is collected at
its last token in early layers, which is also seen in
other work on factual recall using the same dataset
(Katz et al., 2024), and corroborated by research
on athlete — sport lookups (Nanda et al., 2023).
This phenomenon may be due to the autoregressive
nature of decoder transformer models: models can-
not enrich “Space” with information about Seattle
until after “Needle” is seen, as “Space” could refer

s

to a number of unrelated concepts (“Space Jam,
“Space Station”).?

Other work in interpretability has also started
to uncover evidence of models encoding lexical
items. Elhage et al. (2022) observe neurons in
early layers that fire on the last tokens of multi-
token words, names of famous people, generic
nouns, compound words, and LaTeX commands.
They also find late-layer neurons that seem to be
relevant to retokenization, i.e., conversion from
internal representations back into tokens. For ex-
ample, a retokenization neuron might fire on _st
and promote rag in order to facilitate the output
of the word “straggler.” Gurnee et al. (2023) also
find examples of polysemantic neurons in Pythia
models (Mallen and Belrose, 2023) that activate for
a number of multi-token constructions like “apple
developer,” “Bloom.ington,” and “research.gate.”

3 Linear Probing of Hidden States
3.1 Method

If last token positions are so important (Section 2),
then what do these representations encode? Per-
haps the last hidden state directly stores informa-
tion about other subject tokens (e.g., _Wars might
contain some encoding for _Star in its hidden
state). To test this hypothesis, we investigate hid-
den states for both Llama-2-7b and Llama-3-8b, as
they have significantly different token vocabulary
sizes | V| (32k and 128k tokens, respectively).

Let d denote the hidden dimension of the model.
We train linear probes pgé) : R4 — RV to take a

hidden state hy) € R? at layer £ and token position
t and predict the value of a nearby token ¢ + ¢. For
example, a probe trained to predict the previous
token for hidden states at layer 5 would be denoted

by p%).

We train probes for all layer indexes 0 < ¢ < 32
and offsets i € {—3,—2,—1,0,1}. We also train
probes in the same manner on the embedding layer
(¢ = —1) and on the final outputs of the network
before the language modelling head (¢ = 32). We
trained probes on a random sample of 428k tokens
from the Pile (Gao et al., 2020) using AdamW for
16 epochs with a batch size of 4 and a learning rate
of 0.1. Hyperparameters were selected based on
validation performance on a separate Pile sample

“This is not a hard-and-fast rule; it depends on entity fre-
quency and context cues. For example, if a model sees _The,
_E, and iff, it may already know that these tokens refer to
“The Eiffel Tower” without needing to see el and Tower.
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Figure 2: Top-1 test accuracy on COUNTERFACT subject last tokens versus other tokens in the dataset for probes
trained on Llama-2-7b hidden states (n = 5063). 4 represents the position being predicted (e.g., 7 = —1 is previous
token prediction; 7 = 1 is next-token prediction). We observe an “erasure” effect in last subject tokens that is
not present for other types of tokens: these last subject tokens consistently “forget” about preceding tokens and
themselves. Appendix A shows Llama-3-8b results and in-distribution performance on Pile tokens.

(279k tokens) after a random sweep. Each probe
takes 6-8 hours to train on an RTX-A6000.

3.2 COUNTERFACT Subjects

After training probes in Section 3.1, we test them
on the COUNTERFACT dataset (Meng et al., 2022),
which consists of prompts about subjects that re-
quire factual knowledge to complete correctly (e.g.
“Mount Passel is in Antarctica”). We filter the
dataset to include only prompts that the model an-
swers correctly, yielding 5,063 examples for Llama-
2-7b and 5,495 examples for Llama-3-8b. To aug-
ment this dataset, we also sampled and filtered
down [album/movie/series — creator] pairs from
Wikidata (Vrandeci¢ and Krotzsch, 2014) and em-
bedded them in prompts in the same manner, yield-
ing a total of 12,135 correctly-answered prompts
for Llama-2-7b and 13,995 for Llama-3-8b.
Figure 2 shows probe test results on COUNTER-
FACT last subject tokens (right) versus every other
type of token in the dataset (left). We see a striking
“erasure” effect for last tokens of COUNTERFACT
subjects, where these hidden states consistently
“forget about” preceding and current tokens. Sub-
ject tokens that are not in the last position (e.g.,
_Star) do not exhibit this pattern (Appendix A,
Figure 13). This striking drop in token accuracy
is reminiscent of the subject enrichment stage de-
scribed by Geva et al. (2023), suggesting that the
tokens _Star and _Wars may be overwritten in the
process of representing the concept of Star Wars.
We also observe the same phenomenon when
testing on named entities identified by spaCy in
Wikipedia articles (Appendix A, Figure 12), sug-

gesting that this effect is not an artifact of the short
templates found in the COUNTERFACT dataset. It
also does not seem to be a result of any imbalances
in probe training data (Appendix B).

3.3 Multi-Token Words

Intuitively, the process of converting a multi-token
sequence like [_n, ort, he, astern] into a mean-
ingful representation of the word “northeastern”
resembles the process of converting [_E, iff, el,
Tower] into “Eiffel Tower.” We hypothesize that
models treat multi-token words in the same way
that they treat multi-token entities, and test our
probes from Section 3.1 on multi-token words. Af-
ter sampling 500 articles (~256k tokens) from the
20220301 . en split of the Wikipedia dump (Foun-
dation, 2022), we split by white-space to naively
identify word boundaries. As predicted, we see
the same “erasing” pattern for multi-token words
that we do for multi-token entities (Figure 3). This
suggests that they may be processed in a similar
manner in early layers. Appendix A shows similar
results for Llama-3-8b.

4 Building a Vocabulary

After examination of probe behavior for multi-
token words and entities, we hypothesize that this
“erasure” effect is a result of the implicit formation
of lexical representations in early layers. To char-
acterize this phenomenon, we propose an erasure
score 1 to identify token sequences that follow the
pattern observed in Section 3. We then introduce
an approach to “reading out” a list of implicit vo-
cabulary entries for a given model using this score.
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Figure 3: Top-1 test accuracy of probes on last tokens of Wikipedia multi-token words for Llama-2-7b (n = 80606).
Accuracy on all other tokens shown on the left. We see an erasing effect for multi-token words, similar to the effect

seen for COUNTERFACT subjects in Figure 2.

4.1 An Erasure Score

Given some arbitrary sequence of tokens from in-
dices p through ¢, we want to design an erasure
score that captures intuitions from Section 3. This
score should be higher for sequences exhibiting
token erasure (which we hypothesize to be lexical
items like [_Cal, g, ary]), and lower for other types
of token sequences (e.g., [_go _to, _Cal, g]). We
design a metric v, 4 that uses probe outputs from
Section 3 to look for erasure effects betwen layer 1
and layer L.}

Concretely, Equation 1 defines the score 1, , for
a sequence s, 4 of lengthn = g —p + 1 as:

q —1
(5(q,0) + Z

t=p i=-2

T on Lwithin(t,7) - O(t, z))
)
where d(t, 1) denotes the change in probability of
the predicted token ¢ + ¢ from layer 1 to layer L,
based on probes pgz) from Section 3.1. We take the
softmax of the probe outputs to obtain the probabil-

ity of a specific token ¢ + ¢ in Equation 2.

5(t,1) = Py (t+ilhg)) = P oy (t+il"”) @)
Finally, if ¢ + ¢ lies outside the boundaries of s,
we want the score to decrease. If it is within the
boundaries of s, we want a large drop between
layers 6(t, %) to increase the value of v, 4.

o (—1ift4i<p
Lwithin(t,7) = { )

1 else

In summary, for every token position p <t < ¢
and prediction offset : € {—2, —1}, we measure

3For both Llama-2-7b and Llama-3-8b we set L = 9.

the drop in the predicted probability of the correct
token ¢ + ¢ between layer 1 and layer L. The more
that the probability of the correct answer decreases
in early layers, the higher we score that sequence.
However, if this “forgetting” occurs for tokens out-
side of the boundaries of s, we subtract that value
from the overall score, effectively penalizing the se-
quence. This intuition comes from close inspection
of probe behavior—for example, Figure 13 shows
that there is no “forgetting” effect for ¢ = —1 when
probing the first token of COUNTERFACT subjects.
With this approach, we can also account for cases
where s is a subsequence of a larger lexical item:
if the token g shows a forgetting effect for _Cal in
[_Cal, g, ary], then the sequence [g, ary] would
be penalized. Finally, §(g, 0) additionally rewards
sequences in which the last token “forgets itself,”
as seen in Figures 2 and 3. We then normalize by
the total number of § values considered, in order to
account for differing sequence lengths.

4.2 Segmenting Documents

We develop an algorithm built around our erasure
score ¢ that breaks any given document d € D into
high-scoring, non-overlapping segments covering
all of d (Algorithm 1). Figure 1 shows the top-
scoring sequences sy, 4 calculated in this manner
from a Wikipedia excerpt about Thelonious Monk,
where unigram scores are excluded for clarity. Not
all multi-token words are scored highly via our
approach, but the highest-scoring sequences are
plausible lexical items that are non-compositional
in nature (“dram.atic”, “sil.ences”, “tw.ists”). We
share examples of more documents with complete
segmentations in Appendix D.
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Algorithm 1 Document Segmentation

Require: document d € D of length [
1: forn=1to!l do > all ngram lengths

2 forp=0tol —ndo

3 forg=p+n—1tol—1do

4: assign score 1, 4 to sequence s, 4
5: end for

6 end for

7: end for

8: sort s in descending order of v

9: segms < 0

10: for s, 4 in sorted s do
11: if Vs, , € segms, (r > ¢V y < p) then

12: segms < segms U {sp 4}
13: end if
14: end for

15: return segms > non-overlapping segments

Token Sequence n ct

lower case 3 2 0.736012
storm 2 4 0.716379
excursion 4 2 0.713134
====... (72 ‘equals’ signs) 8 2 0.712982
Mom 3 2 0.706778
acre 3 2 0.629213
Subject 3 2 0.607172
ninth 3 2 0.606669
processing elements 3 2 0.599549
CVC 3 2 0.596735

Table 1: Top ten highest-scoring sequences for Llama-
2-7b using a Pile subsample (1658 sequences recovered
total). n is the number of tokens in the sequence, and ‘ct’
represents occurrences of this segment. v is averaged
over all occurrences.

4.3 Model Vocabularies

Finally, we propose a method to “read out” the
implicit vocabulary of a model M given a dataset
D. For each document d € D, we segment d using
Algorithm 1. We then average scores ) for every
multi-token sequence that appears more than once
in D. As this process is very data-dependent, we
show results for both Pile and Wikipedia text. The
top 50 sequences for each dataset and model are
provided in Appendix E.

With this approach, we are able to recover
~1800 sequences for Llama-2-7b and ~900 for
Llama-3-8b using the same five hundred Wikipedia
articles. Although recall is quite low (Table 2),

MTW MTE
llama data prec. recall prec. recall
2-7b wiki 0306 0.016 0.143 0.016

pile 0296 0.017 0.080 0.018
3-3b wiki 0.044 0.001 0.010 0.000
pile 0.023 0.001 0.012 0.001

Table 2: Precision and recall for aggregated results of
Algorithm 1 run on Llama-2-7b and Llama-3-8b, using
either Wikipedia or Pile documents (|D| = 500). MTW
refers to all multi-token words in the dataset when split
by whitespace; MTE refers to all spaCy named entities.

we find that 44.9% of sequences recovered for
Llama-2-7b on Wikipedia text are either multi-
token words or multi-token entities (29.68% for
Pile text). For Llama-3-8b, only 5% and 3% of
retrieved sequences are multi-token words or enti-
ties. However, looking at examples of Llama-3-8b
sequences in Appendix E, we can observe other in-
teresting cases, like multi-token expressions (“gold
medalists,” “by per capita income,” “thank you
for your understanding”) and LaTeX commands (as
similarly observed by Elhage et al. (2022)). Be-
cause Llama-3-8b’s foken vocabulary is four times
larger than Llama-2-7b’s, its implicit vocabulary
also seems to consist of larger multi-word expres-
sions and chunks of code rather than multi-token
words (Appendix E, Table 7).

5 Conclusion

In this work, we present preliminary evidence for
the existence of an implicit vocabulary that allows
models to convert from byte-pair encoded tokens
to useful lexical items. We posit that the “erasure”
effect we observe for Llama-2-7b and Llama-3-
8b is a result of model processes that deal with
multi-token expressions, and use this insight to pro-
pose a new method for “reading out” an LLM’s
implicit vocabulary. This is a first step towards
understanding the formation of lexical representa-
tions in LLMs, and may serve as a useful tool for
elucidation of words that a given model “knows.”

Limitations

Evaluation of implicit vocabulary-building meth-
ods (Section 4) is challenging due to the lack of
a known ground-truth. Our approach is motivated
by the desire to understand the inner workings of
the model being studied, but we have no authorita-
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tive reference that distinguishes between situations
where a given sequence gets a high 1 value because
it is truly treated as a lexical unit by the model, or
where it may be due to an error in our methodol-
ogy. To quantify our results, we have compared
the extracted vocbulary to sequences that we as-
sume to be likely lexical items: multi-token words
and spaCy named entities. However, this likely
does not cover all cases for which “token grouping”
occurs in LLMs.

Another limitation of this work is that we have
restricted our analysis to known entities. There is
also the question of what happens for intermediate
cases such as plausible-sounding fictional towns or
names of people who are not famous. If v corre-
lates with sequence presence in training data, these
results could be useful for understanding how fa-
miliar an LLM is with a given word or entity.

Finally, our measurements have been run only on
the Llama family of models and do not yet extend
to non-Llama models of comparable size, or Llama
models of larger sizes.

Ethics Statement

In this work, we restrict our analysis to English
words, due to our biases as native speakers of En-
glish. We hope that this work can also provide valu-
able insights for other languages, especially low-
resource languages, where understanding “what
words an LLM knows” may be especially useful.
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A Additional Probing Results

A.1 Llama-3-8b Results

COUNTERFACT Accuracy We share results
analogous to Figure 2 for Llama-3-8b, which shows
a similar “erasure” pattern (Figure 9). Probes are
tested only on prompts that Llama-3-8b answers
correctly.

Multi-Token Word Accuracy Figure 10 shows
results for Llama-3-8b probes tested on the last to-
ken positions of multi-token words from Wikipedia
(where “words” are determined by whitespace sep-
aration).

Multi-Token Entity Accuracy Figure 11 shows
results for probes tested on the last token posi-
tions of multi-token entities identified by spaCy,
using the same dataset that we do for multi-
token words. We use spaCy’s named entity recog-
nition pipeline to identify named entities. Be-
cause digits 0-9 are added to Llama-2-7b’s vo-
cabulary, we filter out all classes relating to num-
bers (PERCENT, DATE, CARDINAL, TIME, ORDINAL,
MONEY, QUANTITY), with the thought that these se-
quences may be treated differently at the detok-
enization stage.

A.2 Llama-2-7b Results

Multi-Token Entity Accuracy Figure 12 shows
results for Llama-2-7b probes tested on multi-token
entities from Wikipedia, using the same dataset
from Section 3.3 and also filtering out number-
based entity classes as in Section A.1.

Pile Accuracy While Figure 2 shows test accu-
racy of linear probes on model hidden states, Fig-
ure 4 shows in-distribution test accuracy on Pile
tokens. We can observe a smoother trajectory of
gradual “forgetting” of previous and current token-
level information throughout layers.

Comparison of Token Positions Figure 13
shows the breakdown of probe performance on dif-
ferent types of subject tokens: first subject tokens,
middle subject tokens, and last subject tokens. We
see that the observed drop in previous and current
token representation observed in last subject tokens
still exists, but is not as drastic for first and middle
subject tokens.

Comparison of Subject Lengths We also show
previous token representation broken down by

Llama-2-7b Probe Accuracy on Entire Dataset
—— i=-3
—— =2
—— i=-1
H e i=0
i=1
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o
(=2}

o
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|

0.0

0 5 10 15 20 25 30
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Figure 4: Overall test accuracy on unseen Pile tokens
(n = 273k) for probes trained on Llama-2-7b hidden
states. Next token prediction becomes more accurate
throughout model layers as current and previous token
accuracy decreases.

COUNTERFACT subject length for last token repre-
sentations in Figure 14. Unigram subjects represent
previous token information at a rate even higher
than non-subject tokens. For bigrams and trigrams,
we see a pattern similar to Figure 2.

B Accounting for Possible Training
Imbalance

One explanation for the observed drop in accuracy
for COUNTERFACT entities across layers is that our
probes have simply not been exposed to as many
entity tokens during training. We do not believe
this is the case for Llama-2-7b for two reasons:
(1) If this effect was due to probes being less sen-
sitive to tokens found in multi-token entities, we
would also see a significant drop for first and mid-
dle tokens, which does not occur (Figure 13). (2)
We measure the frequency of all test n-grams in
the original Pile data used to train our probes, and
find that both subject and non-subject n-grams are
found in the probe training dataset at similar rates,
with the median number of occurrences in the test
set for both types of sequences being zero. After
removing the few non-subject sequences that do
appear often in the probe training set, we still see
the same “erasure” effect.

C Choice of L

We choose L = 9 based on probe behavior for
Llama-2-7b and Llama-3-8b, particularly in Fig-
ures 2 and 3. Table 3 shows an additional ablation
experiment for L € {5,9,13,17,21}.
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MTW MTE
L prec. recall prec. recall
5 0307 0.002 0.143 0.002
9 0306 0.016 0.143 0.016
13 0328 0.003 0.169 0.003
17 0.330 0.003 0.180 0.003
21 0319 0.003 0.172 0.003

Table 3: Precision and recall for different values of L
for Algorithm 1 applied to Llama-2-7b on Wikipedia
text. Recall seems to be best for L = 9, with precision
improving by a few points in mid-late layers.
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Figure 6: Full segmentation of a document from
Wikipedia via Algorithm 1 on Llama-3-8b. Borders
indicate segmentation, with bolded letters indicating
multi-token segments. Darker blue cells have higher
scores, yellow cells have negative scores. The highest-
scoring sequence in this document is “. After the Games
she commented " (vp = 0.443).
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Figure 5: Full segmentation of a document from
Wikipedia via Algorithm 1 on Llama-2-7b. Borders
indicate segmentation, with bolded letters indicating
multi-token segments. Darker blue cells have higher
scores, yellow cells have negative scores. The highest-
scoring sequence in this document is “Australian Insti-
tute” (1 = 0.579).

D Document Segmentation

We provide full document segmentations using Al-
gorithm 1 for a short excerpt from a Wikipedia
article in Figures 5 and 6. Figures 7 and 8 show
segmentations for a Pile document.

E Model Vocabularies

Tables 4 through 7 show the top 50 highest-scoring
multi-token sequences for Llama-2-7b and Llama-
3-8b across either five hundred Wikipedia articles
or five hundred Pile samples. Entries were filtered
to show only sequences that appear more than once.

‘'one Zimplement :MVC in :J. avaScript in a : clean iway :? I'm

in JavaScript
less :ti
solutlon (The code just
gomg about :lt rlght now. It':
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Figure 7: Full segmentation of a document from the
Pile via Algorithm 1 on Llama-2-7b. Borders indicate
segmentation, with bolded letters indicating multi-token
segments. Darker blue cells have higher scores, yel-
low cells have negative scores. The highest-scoring

sequence in this document is “submodel” () = 0.559).

Figure 8: Full segmentation of a document from the
Pile via Algorithm 1 on Llama-3-8b. Borders indicate
segmentation, with bolded letters indicating multi-token
segments. Darker blue cells have higher scores, yel-
low cells have negative scores. The highest-scoring
sequence in this document is “re really brave:” (¢ =
0.634).
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Figure 9: Test accuracy on COUNTERFACT subject last tokens versus other tokens in the dataset for probes trained
on Llama-3-8b (n = 5495). ¢ represents the position being predicted (e.g., ¢ = —1 is previous token prediction;
1 = 1 is next-token prediction). We observe an “erasure” effect similar to Figure 2.
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Figure 10: Test accuracy of probes on last tokens of Wikipedia multi-token words for probes trained on Llama-3-8b
(n = 91935; right). Test accuracy on all other tokens shown on the left. Similarly to Figure 2, we see an erasing
effect that is not present for other types of tokens.
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Figure 11: Test accuracy of probes on last tokens of Wikipedia multi-token entities for probes trained on Llama-3-
8b (n = 36723; right). Test accuracy on all other tokens shown on the left. Entities are identified via spaCy named
entity recognition, excluding entity types that include digits.
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Figure 12: Test accuracy of probes on last tokens of Wikipedia multi-token entities for Llama-2-7b (n = 36723;
right). Test accuracy on all other tokens shown on the left. Entities are identified via spaCy named entity recognition,
excluding entity types that include digits.
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Figure 13: Breakdown for Section 3 probes tested on COUNTERFACT first subject tokens, middle subject tokens,
and last subject tokens. We observe an “erasing” effect only for last subject tokens. Because BOS tokens are
recoverable by ¢ = —1 probes at high rates, and since 55% of prompts tested on had subjects at the beginning, we
filter examples for which BOS tokens are labels from the leftmost plot.
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Figure 14: Probe test results for COUNTERFACT subject last tokens broken down for unigrams, bigrams, and
trigrams. Unigram subjects store previous token information at rates near 100%, even excluding BOS tokens.
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Token Sequence n ct @ Token Sequence n ct P
Gottsche 3 2  0.685220 1992 births 7 2 0573
berth 3 2 0.680793 19th-century 7 3 0569
carries 3 2  0.647844 dehydrogen 5 2 0.553
Eurocop 3 2  0.644104 Swabhili 4 4  0.539052
franchises 3 2 0.642707 Chuck Liddell 6 2 0.537169
0 Women 3 2  0.639162 its population was 5 5 0.534977
rape 3 2 0.632567 by per capita income 6 3 0.518991
Rebell 3 3  0.614295 are brownish 4 2 0515703
intermittently 4 2 0.613479 ate women’s football 7 4 0509384
enn State 4 3 0.607535 Almeida 4 5 0507277
North Dakota 4 10 0.600616 of New South Wales 5 3  0.503120
Sride 3 2 0.600013 2015 deaths 8 2 0.503074
fiction 2 2 0.599339 Pittsburgh 3 3  0.503070
Sox 3 3 0.599043 21st-century 7 4 0.499362
Bazz 3 2 0.598242 (NSW 4 9 0497107
erect 3 2  0.597915 age of the United
borough 3 3  0.596054 Kingdom 6 3 0.487303
encompasses 5 2 0.592084 Presidential 3 2 0.485317
northernmost 3 2  0.591607 Landmark 3 2 0.484965
Madras 3 2  0.590394 Alistair 4 2 0.484930
hull 3 2  0.586968 Tauri 3 8 0.482449
iron 2 2 0.586959 2 km 4 2 0479984
Galaxy 3 2  0.585879 20th-century 7 3 0475703
began operations 3 2 0.584680 East Bay 3 2 0475156
Reddin 3 2  0.584244 game goes in extra
gloss : 3 2  0.576740 time, if the scored 10 2 0472323
cello 3 2 0.573732 Sao Paulo 3 2 0470874
Gators 3 5 0.573675 Atlantic City 3 2 0.470726
senator 3 2 0.572947 Chaluk 3 2 0467165
restructuring 4 2 0570552 Frank Lloyd 3 2 0.462585
supervised 3 3 0.570421 may refer to: 6 4 0.462234
Mediterranean 4 2 0.567790 gold medalists 4 2 0458494
Madera 3 2  0.567563 , 2nd Baron 6 2 0.456996
sequel 3 2  0.563626 people) 4 4  0.454926
scarp 3 3  0.561548 series aired 4 2 0453057
Sout 3 2  0.560640 Srib 3 2 0451708
South Division 3 2  0.558720 with blackish 4 2 0450033
rectangular 3 2 0.557339 World Cup players 4 2 0.448979
Danny 3 2  0.556836 main role 3 2 0.448569
Examiner 4 2 0555797 Bos 4 2 0.448425
Kuwait 4 4  0.554636 Asenath 4 2 0.448259
Bogue 3 6 0.552219 Royal Navy 3 3 0.445617
Lancaster 3 3  0.552166 2. Bundesliga players 7 2 0.445210
Leuven 4 3  0.548806 External links 3 69 0.444921
the Park 3 2 0.548687 an unincorpor 6 2 0.443527
first Baron 3 2 0.547447 Gast 2 4 0.437695
fights 3 2 0547171 Pfor 3 2 0432194
Carpio 3 2 0547116 Elisio de Med 5 2 0431518
Czech Republic 3 2 0.546651 " (2007) "Jad 12 2 0429412
Survive 4 2 0.546255 Elkh 3 2 0.428984
Frith 3 2 0427781
5 2 0.424037

Table 4: Llama-2-7b Wikipedia results (1808 sequences order of the NK
total). n is the number of tokens in the sequence, and ‘ct’

represents occurrences of this segment. 1 is averaged ~ 1able 5: Llama-3-8b Wikipedia results (892 sequences
over all occurrences. total). n is the number of tokens in the sequence, and ‘ct’

represents occurrences of this segment. v is averaged
over all occurrences.
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Token Sequence n ct Y Token Sequence n ct Y
lower case 3 2 0.736012 </td>\n<td> 9 2 0.627583
storm 2 4 0716379 {d}x 5 3 0.599395
excursion 4 2 0713134 *\n 4 3 0.587016
====... (72 ‘equals’ signs) 8 2 0.712982 _{nzl}f\in 7 4 0.585434
Mom 3 2 0.706778 </td>\n<td 8 2 0.573310
acre 3 2 0.629213 -2-2007-061 12 3  0.551581
Subject 32 0607172 reticulum 4 3 0.549337
ninth 3 2 0.606669 INSURANCE 5 2 0.548263
processing elements 3 2 0.599549 32:\n internal static 8 2 0.547893
CvC 3 2 0.596735 ‘\n internal static 6 9 0.540374
VPN 3 3 0.596052 - At 4 2 0.538609
Regul 3 2 0.591968 (2,9, 6 4 0.537495
bore 2 2 0590212 Respondent 4 2 0534509
$\dot{G 5 2 0.589714 \t\t }\n\n\t 7 3 0.530669
Rates 3 2 0.589637 (3,0,’ 6 4 0.529493
INSURANCE 5 2 0.584323 “{n-1)\ar 7 92 0527303
Commercial 4 2 0.581543 thank vou for
Barney 3 3 0574872 your u}lllderstanding 6 2 0513979
PTA 3 2 0571932 hydroxyl 4 2 0.510059
penetrated 4 2 0570164 >\n*/private $ 9 2 0.510054
MG 3 2 0.569830 in mukaan 5 2  0.506333
Leigh 3 2 0.567894 (w}{B}_{ 6 2 0.505970
TNS 32 0.567003 ):\nINSERT INTO 6 10 0.501055
JOhl’l Arena 3 2 0565648 0 1L> 8 2 0 495809
wild type 32 0560699 a1 that apply 4 3 0.490469
uws 33 0557799 " true\n 6 2 0486807
ongrel 430554208 4\, 5 2 0485315
liquid cry 3 3 0553408 (oo DSP 5 2 0.484967
Denmark 32 0548702 \pingernal 5 3 0479777
birthday 32 0.548504 100% used 6 2 0475673
atedmes 4 2 0.548171 nongn. 5 3 0.474701
"ENOENT 5 2 0.547169 )7 45 0473720
third-party 42 0546949 o\ 6 2 0473578
ahens 3 2 0.546507 " C0d6=" 4 4 0 473514
Bouncy 4 3 0.545826 is under conversion 4 5 0473355
CHO 320542762 ipyeys 5 3 0471213
l.ll’lJUSt . ) 3 2 0.538813 ();\Il }\n\nprivate
these motivational 4 3 0.537485 boolean isAny 122 0470941
DLS 3 4 0.535933 (2.8 6 4 0470014
\n& 32 0534510 ichea 4 2 0469154
uneven 32 0533137 \seinanautomobile 6 2  0.467788
watt 32 0532243 at org.apache.c 7 5 0.467637
She 32 0531300 world around us 4 2 0.464469
HP 3 3 0.529555 DNeft(14x 8 2 0463555
or Commodore 5 3 0.463106
Table 6: Llama-2-7b Pile results (1658 sequences total). 11-117 7 2 0.459824

n is the number of tokens in the sequence, and ‘ct’

represents occurrences of this segment. ¢ is averaged  Table 7: Llama-3-8b Pile results (819 sequences total).

over all occurrences. n is the number of tokens in the sequence, and ‘ct’
represents occurrences of this segment. v is averaged
over all occurrences.
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