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The relationship between the dynamics and structure of amorphous thin films and nanocomposites near
their glass transition is an important problem in soft-matter physics. Here, we develop a simple
theoretical approach to describe the density profile and the a-relaxation time of a glycerol-silica
nanocomposite (S. Cheng et al., J. Chem. Phys., 2015, 143, 194704). We begin by applying the Derjaguin
approximation, where we replace the curved surface of the particle with the planar one; thus, modeling
the nanocomposite is reduced to that of a confined thin film. Subsequently, by employing the molecular
dynamics (MD) simulation data of Cheng et al., we approximate the density profile of a supported liquid
thin film as a stationary solution of a fourth-order partial differential equation (PDE). We then construct
an appropriate density functional, from which the density profile emerges through the minimization of
free energy. Our final assumption is that of a consistent, temperature-independent scaled density
profile, ensuring that the free volume throughout the entire nanocomposite increases with temperature
in a smooth, monotonic fashion. Considering the established relationship between glycerol relaxation
time and temperature, we can employ Doolittle-type analysis (“naive” free-volume model), to calculate
the relaxation time based on temperature and film thickness. We then convert the film thickness into the
interparticle distance and subsequently the filler volume fraction for the nanocomposites and compare
our model predictions with experimental data, resulting in a good agreement. The proposed approach
can be easily extended to other nanocomposite and film systems.

quite narrow and allows the definition of a T, (glass transition
temperature) as the temperature at which the viscosity reaches
a certain value, or at which the relaxation time becomes longer

Glasses (metallic, ceramic, low-molecular-weight organic, and
polymer) play an important role in the modern world."™ Glassy
materials are usually, though not always, obtained by a rapid
cooling from melt state so that the system does not have
enough time to crystallize. The transition from melt to glass
is called ‘““glass transition”. It is an intriguing and still poorly
understood phenomenon, characterized by many features
(rapid change in viscosity, nearly-singular jumps in the coeffi-
cient of thermal expansion and the heat capacity, etc.)’ The
temperature range around which glass transition occurs is
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than a certain timescale (generally 100 s).**°

Of particular interest is the glass transition in thin films, as
thin films have important applications (coatings, electronics,
etc.) Due to the thickness of the film, the thermodynamic and
dynamic properties of the material are often different from
those in the bulk, and consequently understanding these
changes becomes important.'®*° In particular, the glass transi-
tion temperature depends strongly on the film thickness and
the film type. In free standing films, T, of an amorphous
material is depressed with respect to the bulk value as the film
thickness decreases.>>*' In supported films, however, the
dependence of T, on film thickness is determined by a variety
of factors, but generally a weak depression of T, is observed as
the film gets thinner.""** In some exceptional cases where the
interaction between the glass-former and the substrate is very
strong, the dependence can be reversed and T, can increase in
thin films relative to the bulk.??

The inhomogeneous glassy dynamics typical of supported
thin films are also present in nanocomposites.>*> In these
systems, the nanofiller volume fraction can be related to the
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average distance between nanofiller particles. This allows for
comparing a nanocomposite to a supported thin film with a
thickness equal to the interparticle distance. By varying the
filler volume fraction, one effectively varies the ‘“‘equivalent
film thickness”. As the filler volume fraction is increased,
this equivalent film thickness decreases, leading to a slight
increase in the glass transition temperature (AT, ~ 0-10 K,**™**
although significantly larger shifts were reported by Wang et al.
for PS-in-SiO, films*®). The underlying reasons for this rela-
tively small magnitude of the T, shift in nanocomposites - as
compared to thin films - still remain unclear.*?

To better understand the experimental data on the glassy
dynamics of thin films and nanocomposites, multiple compu-
ter simulations have been performed***%67% and several
theoretical approaches have been proposed.*®***° Many of
those approaches start from a “bulk” theory of the glass
transition and then introduce additional gradient terms captur-
ing the distribution of relaxation times in an inhomogeneous
system like nanocomposite or thin film. Thus, Lipson, White,
and co-workers utilize their combined “LCM-CFV” (“lattice
cluster model” and “cooperative free volume” theory),>>>”>%60:61
grounded in the “free volume” concept originally proposed by
Doolittle.”® Schweizer and co-workers use the elastic collective
nonlinear Langevin equation (ECNLE) theory,”***>°>%% in which
the glassy dynamics are the result of collective elastic modes.
Ginzburg® modeled the dynamics of free-standing thin films
using the “TS2” (“two-state, two (time)scales’”) approach, in which
the sharp increase in the relaxation time near Ty is ascribed to the
rapid increase in the fraction of “solid” elements in the
material.**®” In all these studies, the main emphasis is on the
details of the relaxation time gradients near the surfaces, empha-
sizing the role of the “interphase”. Other approaches consider the
system as a whole, aiming to elucidate the relationships between
the Ty-shift, nanofiller loading, filler-matrix interaction, and filler
size.*»*%2 These relationships often agree well with experimental
trends, such as smaller nanoparticles having a stronger influence
on system dynamics than larger ones due to their higher surface
area-to-volume ratio, greater interfacial effects, more uniform
distribution, enhanced nanoconfinement effects, and stronger
interactions with the matrix. However, molecular simulations are
limited to short times (tens to hundreds of nanoseconds), relying
on extrapolations for the glass transition predictions. Thus, simple
theories are still needed to bridge the gaps between simulations
and experiments.

Here, we attempt to formulate a new simple theoretical
approach based on the classical (“naive”) free-volume analysis.
(The “naive” or Doolittle free volume model breaks down at
temperatures below the glass transition but can be a reasonable
approximation in a narrow temperature range close to and
slightly above T,). Our starting point is the glycerol-silica
nanocomposite density and o-relaxation time data from a
2015 study by Cheng et al® (Other groups have modeled
nanoconfined glycerol in cylindrical silica pores®® and in
9 with
qualitatively similar results.) This specific model system is
chosen because it represents a unique case where a stable

the vicinity of rutile TiO, and graphene nanofillers,®
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nanocomposite can be prepared using a low-molecular-weight
liquid matrix. (While several authors’®”> have suggested that
glycerol should be regarded as an exceptional material because
of the prevalence of hydrogen bonding over van der Waals
interactions, recent studies suggest that its dynamics are not as
anomalous and can be effectively described using advanced
free-volume-type theories.®”””>""%) Thus, we can expect the den-
sity profile to be described by a relatively simple model.
Generalization to polymer-based nanocomposites would
require a detailed knowledge of the polymer conformations at
the filler-matrix interface and would be the subject of future
work.”®

We start by analyzing the molecular dynamics (MD) simu-
lated density profile of glycerol near a silica surface and
reconstructing a free energy density functional minimized by
this density profile. Next, we compute the locally-averaged free
volume and use the “naive” free-volume theory to calculate the
relaxation time as a function of temperature and film thick-
ness. After converting from the “effective” film thickness back
to the nanofiller volume fraction, we compare our model
prediction to the experimental data. Finally, we discuss the
advantages and limitations of the proposed approach, and its
possible extensions and generalizations to other systems.

2. The model

2.1. The equilibrium density profile and the free energy
density functional

The density profiles of liquids and polymers near hard surfaces
are typically complex and non-monotonic, with several minima
and maxima corresponding to ‘“‘atomic” or ‘“molecular’”’ layers.
This non-monotonic behavior persists for several nanometers
away from the filler surface; eventually, the density reaches its
equilibrium, “bulk” limit. In general, the density profiles
depend on the filler-matrix (in this case, silica-glycerol) inter-
actions, as well as the filler radius. For sufficiently ‘large”
nanofillers (R > 10 nm), one can simplify the problem by
invoking the Derjaguin®® approximation and representing the
particles as planar surfaces. (For more details on the Derjaguin
approximation, see the ESIt). The interparticle distance, H, can
be related to the particle volume fraction, f, as will be discussed
below. As shown in Fig. 1, the density profile in the space
between two nearby spherical particles can be modeled as a
“decaying exponential” function,

p(x) = pp[1 + aexp(—bx)cos(cx — d)] (1)

Eqn (1) is used for 0 < x < H/2; for H/2 < x < H, we replace
x with (H — x). The coefficients in eqn (1) are determined so that
the model density profile (orange line) closely matches the
results from molecular dynamics (MD) simulations (blue line).
The details of the parameterization will be discussed below in
Section 3.1.

The density profile described by eqn (1) can be thought of
as a solution of a fourth-order linear ordinary differential

This journal is © The Royal Society of Chemistry 2024
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Glycerol density near silica surface and its
analytical approximation

Glycerol

Silica

2 06 Glycerol density
between silica
04 surfaces 0

P/Pun

Tt % % s w o w P(x)= Pl + aexp(~bx) cos(cx—d)]

Fig. 1 Schematic representation of the density profile modeling. The bottom left panel shows the “normalized” density of glycerol between two
adjacent silica particles in a gap of size H. Zooming in on the region close to the silica surface, one can see several density minima and maxima, as
computed in molecular dynamics (MD) simulation (blue curve, right panel). The analytical fit to the simulated density is shown by the orange curve and

the equation at the bottom of the figure.

equation (ODE),

B = 1)=0 (2)

where we defined the dimensionless density, u = p/p,. The
coefficients o and f can be uniquely determined from the
parameters b and ¢ in eqn (1). For more details, see the ESL{
While other differential equations might have solutions similar
to eqn (1), there are strong reasons to prefer an ODE in the form
of eqn (2). The near-substrate density oscillations, driven by
strong glycerol-silica attraction and leading to near-crystalline
local structure, defy conventional ‘“square gradient” density
functional theory (DFT) approaches® ®* and suggest the impor-
tant role of higher-order spatial derivatives. The Euler-
Lagrange minimization of such functionals will lead to the
proposed fourth-order ODE as the simplest one satisfying the
underlying symmetries of the problem. Note that phenomen-
ologically, it resembles the concepts like elastic beam bending
in mechanics and mathematics.®*

We now stipulate that eqn (2) is the result of the free energy
minimization with respect to the density and attempt to
reconstruct the free energy functional, F(x). Assuming that
the free energy solely depends on u and its spatial derivatives,
we can express it as follows,

~
Il

H du d*u
U()JO 0] {u,a,@7 .o :| dx

H 2 2,0\ 2
UOJ dx g(u)—Q—g(jZ) +%(%) }

0
Here, the prefactor U, has the units of energy per unit length,

RT . .
Uy =2 —, where T is temperature, R is the gas constant, and

¢

¢ is the correlation length (see below). For our current analysis,

This journal is © The Royal Society of Chemistry 2024

the exact value of U, plays no role, unlike in the case of free-
du d?

standing films. The dimensionless functional ¢ u,—u, —u, e
dx’ dx?

is the free energy density.

The free energy minimization condition is,
00 _d (00 & (00) @
Ou dx\ou dx2\ow')

The boundary conditions are specified as follows. At the
silica surface, x = 0, the density and the density gradients are
prescribed, u(0) = us, and u,(0) = vs. At the mid-point, x = H/2,
the density equals the bulk density, u(H/2) = 1, and the density
profile is symmetric, i.e., u,(H/2) = 0.

The local energy term, g(u), is given by,

() = 3l 1P 6

The above analysis assumes that the density variations are
small and thus, linear treatment is sufficient. We note that this
is not the case for, say, free-standing films where the density
transitions from the “bulk liquid” value to the near-zero
“vapor” value over the course of 1-2 nm interface.”® Thus,
the function g(x) must be thought of as a local expansion of the
“true” function around the potential energy minimum u = 1.
The true function should include two minima corresponding to
both liquid and vapor phases and a maximum corresponding to
a barrier between them. One such function could be a cosine

potential, g(u) = [1 — cos(2mu)]; in that case, the density

1
(2n)?
profile across a film/air surface would be described by a sine-
Gordon kink. We will address this topic and explore the
integration of free energy expressions for supported and free
surfaces in future publications.

Soft Matter
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2.2. The spatial averaging of the density profile

To understand the dynamics of the nanocomposite material
near the matrix T, we need to consider the effects of coopera-
tivity. It is well-known that molecular motions are correlated
with the correlation length, ¢, usually on the order of 1-4
molecular (or monomer) size; the volume Vo = £ is known
as the cooperatively rearranging region (CRR). Thus, as one
prepares to calculate the relaxation time distribution within the
nanocomposite, it is necessary to first coarse-grain the density
profiles to smooth the variations within the CRRs.

Here, we make the simplest possible assumption - one CRR
consists of two neighboring layers, as shown in Fig. 2. (For a
brief analysis of how the results would differ when considering
alternative models, where one CRR consisted of three or four
layers, see the ESIt). Thus, the first layer (density maximum) and
the second layer (density minimum) are averaged to form the first
CRR; likewise, the third and fourth layer combine into the second
CRR (the middle panel of Fig. 2). The new, coarse-grained density
profile becomes smooth and monotonically decreases as a func-
tion of the distance from the filler surface (the right panel of
Fig. 2). This coarse-grained density profile is then used to calculate
the relaxation times, as discussed in the next section.

2.3. The calculation of the relaxation times

We proceed to model the relaxation time distribution in the
material. This analysis is restricted to temperatures above the
glass transition of the matrix (glycerol), where the material is in
equilibrium. The coarse-grained density profile describes the
distribution of the free volume and thus can be related to
the local relaxation time based on the Doolittle®” model (the
“naive” free volume theory). To begin with, we use the Vogel-
Fulcher-Tammann-Hesse (VFTH)**"®” parameterization for the
a-relaxation time of pure glycerol,

o T\ B
) T T=1,

where T is the so-called Vogel temperature corresponding to
the disappearance of the free volume and the divergence of the
relaxation time (at least within the “naive” free-volume theory);
B and 7., are two other Vogel parameters. We can re-write
eqn (6) by taking T = T, as the reference point,

oo(Z) B B B \T-T,
o) " T-7, T,-T, \T,-T,)T-T,

(6)

(7a)
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and re-cast in the form of a Doolittle equation,

(’E> A A
log| —
Tg

S
Here, f, is the fractional free volume (FFV) at temperature 7,
Jfvg is the fractional free volume (FFV) at T = Ty, and 7, is
the o-relaxation time at T = T, (set to be equal to 100 s).

(7b)

(The relationship between 11, and 1, is simple,
e B . Lo
log (T—) = ————). Eqn (7a) and (7b) are identical if, and
Tg Tg — To
only if|
X T-T
L =A
f 3 (8)

Eqn (8) holds within a limited temperature range where f, «
1, yet this range is broad enough for practical purposes, given
the smallness of the A/B ratio, as will be illustrated below.

Within the “naive” free volume approach, one can evaluate
the parameter A by assuming that the slope of the temperature
dependence of the FFV is equal to the coefficient of thermal
expansion (CTE) of the material in the liquid state (i.e., above
the glass transition temperature), o;. (Note that more elaborate
free volume theories sometimes question whether all or part of
the change in the specific volume can be ascribed to the change
in the free volume,®™®” but here we use the simplest possible
approach; for justification of this assumption, see the ESIf).
In that case,

(92)
(9b)

So=ou[T — T

A=oB

Typically, a;, ~ (4-6) x 10~* K *,%® so the restriction f, < 1 is
satisfied for T — T, < 200 K, or T — T, < 150 K.

We now need to express free volume in terms of density,
rather than temperature. This is fairly straightforward, given
that the density is the inverse of the specific volume which
(above Tp) is given by,°**’

V=Vl + T (10)

Substituting eqn (10) into eqn (9a), eliminating 7, and
replacing V = 1/p, we obtain,
1

"o

= [1 4+ oL To] (11)
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Fig. 2 Coarse-graining the density profiles. See the text for more details.
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Obviously, eqn (11) is applicable only for T > T,. Since we
are concerned with T > Ty, and Ty is significantly larger than T,
(usually, T, — T, is roughly 40-50 K),”* this requirement is
satisfied automatically.

Next, we need to calculate the relaxation time profiles and
the averaged relaxation time. The former is done by substitut-
ing the coarse-grained density, p(x), into eqn (11), and then
substituting the calculated f,(x) into eqn (7), with A given by
eqn (9b), and the VFTH parameters B and 7., determined from
the dielectric measurements performed on the pure glycerol
(no fillers). The averaged relaxation time is then calculated as,

H/¢

1 H
mmwzﬁhwmmm: logle, ()] (12a)

where ¢ is the size of one CRR, and

-1
log[t,(x)] = log[te] + aLB[m —(1+ ocLTo)] (12b)

In writing eqn (12a), we re-defined x from a continuous to a
discrete variable with the increment equal to the CRR dimen-
sion ¢.

Finally, to compute the temperature dependence of 3%, we
need to prescribe how p(x) depends on T. We make an assump-
tion that the dimensionless density profile, u(x) = p(x)/pp, does
not depend on the temperature, at least in the relatively narrow
temperature range considered here. Obviously, the bulk density
depends on the temperature as described in eqn (10), pp(T) =
(Vo[ + 2, T])". Consequently, we can express the temperature
dependence of eqn (12b) explicitly as follows,

-1
gl (9] = loglew ] + 8| AT - (14 a T 13)

where
u(x) = 1 + a{exp(—bx)cos(cx — d)) (14)

1 yse . . .
Here, (f(x)) = ngégf(z)dz, and x is restricted to locations

at the centers of CRRS, Le., x/& = 0.5, 1.5, 2.5 etc. Note that

2
f:—n. It can be shown that u(x) = 1 + Aexp(—bx), where
¢

%Jrizcos(d)sinh {né] In practical applications,
A is small and positive. The exponential decay of the density
as a function of the distance from the surface will be utilized
later in deriving the expressions for the relaxation time and
Ty-shift.

Before proceeding to compare the model predictions with
experimental data, we again recap two main assumptions and
limitations of our model. First, the model is only applicable at
temperatures close to and slightly above T, (approximately T,
to T, + 50 K) where the density of the nanocomposite is close
to equilibrium and the fractional free volume changes are
expected to be linear in temperature and thus proportional to
the overall specific volume changes. Second, the model is
limited to low-to-medium nanofiller loadings where the “inter-
phases” around different particles do not overlap and there

A=2a

This journal is © The Royal Society of Chemistry 2024
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exists a “bulk” region with the properties of the pure glycerol.
These conditions were satisfied in the experiments discussed
below.

3. Results and discussion

3.1. Glycerol-silica nanocomposite density profiles

The glycerol density profile was simulated by Cheng et al.*®

Glycerol liquid in contact with an amorphous silica (SiO,)
surface was modeled using atomistic molecular dynamics
(MD) with generalized amber force field (GAFF) for temperature
T =293 K. Their simulation results, depicted by the blue curve
in Fig. 3, are spaced at intervals of 0.025 nm (0.25 A).

The orange line corresponds to the best fit using eqn (1),
with the fit parameters and their uncertainties summarized in
Table 1. In the fitting analysis, the coefficient ¢ was obtained
from the average period between the first and last visible peaks
(in this case, the fourth), while the coefficient b was derived
from the amplitude ratio, indicating the decay rate. Following
this, the parameters d and a were calculated. Additionally, the
coefficients o and f in eqn (2) and (3) and the boundary
conditions us and vs were determined, assuming their con-
stancy within the temperature range 200 K < T < 260 K. (Given
that the parameters «, f5, us and v, are uniquely determined
by the parameters a, b, ¢, and d, we do not provide their
uncertainties in the table).

The density of glycerol as a function of temperature was
computed based on the literature data””®®°' parameterized
according to eqn (10), with @, = 4.0 x 107* K, and V, =
0.678 cm® g~ .

Spatially averaged density profiles smooth out the short-
range oscillations, resulting in a monotonic decrease in density
as a function of the distance from the substrate. The spatially
averaged profile for T = 224 K (about 35 K above the glass
transition) is shown in Fig. 4. The symbols denote succes-
sive “bilayer-CRRs”, where the density of the first CRR is
1.309 g cm >, the second 1.3065 g cm >, the third 1.305 g cm >,

2.5

0.5

0
0.3 0.5 0.7 0.9 11 13 15 17 1.9 21 23

X, nm
Fig. 3 Molecular dynamics (MD) simulation (blue) and model fit (orange)

glycerol density profiles for T = 293 K. The MD simulation data are from
Cheng et al.?°
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Table 1 Model parameters for the density fit (eqn (1)) and the corres-
ponding governing equation (egn (2))

Parameter Value Units
a 0.28 (40.02)
b 1.4 (£0.4) nm !
c 13.8 (40.5) nm™*
d 0.9 (£0.2)
o 2.57 x 10°° nm—*
B 1.0 x 1072 nm™2
us 1.13
Vg 3.35 nm !
1310
1.309
1.308
1307
w 1306
£
L 1305
oo
d 1304
1.303
1302
1.301
1.300
0 0.5 1 15 2 25 3

X, nm

Fig. 4 Coarse-grained glycerol density profile for T = 224 K.

and so forth. Overall, the density difference between the first CRR
and the bulk is about 0.5%. The approximate expression for this

function is an exponential, u(x) & g exp {—ﬂ , with g = 0.066 and

£ =0.88 nm. We can now determine how this difference influences
the relaxation time behavior.

3.2. Glycerol-silica nanocomposite relaxation times

We begin by fitting the dielectric relaxation time of glycerol as
measured by Cheng et al?® to the VFTH functional form
(eqn (6)), thereby obtaining parameters shown in Table 2. The
fitting was performed in Excel using the generalized reduced
gradient (GRG) solver. The minimization (with respect to B and
T,) was repeated for multiple values of log(z..,s) in the range
between —12.5 and —15, and the averages and uncertainties
were then computed for both B and 7.

Once the VFTH parameters are known, we can calculate the
Doolittle parameter A (eqn (9b)) and then compute the relaxa-
tion time profiles for each individual temperature. In Fig. 5a,

Table 2 VFTH parameters (average values and uncertainties) for glycerol

Parameter Value Units
log(t,s) —13.275 (£1.3)

B 759 (+213) K

T, 141.5 (£11) K

Soft Matter
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Fig. 5 (a) Coarse-grained relaxation time profile for T = 224 K. (b)

Normalized relaxation time profiles for T = 222 K — the current FV theory
(grey), MD simulations (blue circles), and ECNLE theory (orange). MD and
ECNLE results are from Cheng et al.°

the relaxation time profile is shown for T = 224 K. The relaxa-
tion time corresponding to the first CRR is approximately 1-1.5
orders of magnitude (10-30 times) larger than the bulk value,
indicating a significant slowing down of all molecular mobility
near the substrate, as compared to the bulk. The relaxation
time decay as a function of position is consistent with a
“double-exponential” form, 10g[7,(x)/ty pun] = kexp(—x/&), with
k=1.84 and ¢ = 0.88 nm. This behavior is consistent with other
models, such as the ECNLE theory developed by Schweizer and
co-workers.”

To compare our results with the ECNLE theory in greater
detail, in Fig. 5b we plot the normalized relaxation time as a
function of position at T = 222 K (grey line). This is compared
with the MD simulations (blue circles) and the ECNLE calcula-
tions (orange line), with both MD and ECNLE data taken from
Fig. 7b of ref. 29. The agreement between the two theories and
the simulations is quite reasonable. The free-volume approach
seems to over-estimate the apparent correlation length com-
pared to the ECNLE theory. Both theories estimate the relaxa-
tion time increase near the surface to be about 20-30, which is
slightly higher than the values suggested by MD simulations.

This journal is © The Royal Society of Chemistry 2024
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—Hyp. Model 33.5% Filler

—Model 23.6% Filler

—Model 8.8% Filler

2.0
Model 0% Filler
_. 0.0 O Data 23.6% Filler
3
£ O Data 8.8% Filler
g
=220 Data 0% Filler
-4.0
-6.0 \;\
o=
-8.0
190 200 210 220 230 240 250 260

T K

Fig. 6 Temperature dependence of the nanocomposite relaxation times.
Lines are model predictions; symbols are the dielectric spectroscopy data
from Cheng et al.>® "Hyp. model” refers to a hypothetical nanocomposite
with very high filler loading.

We can now use eqn (12a) to compute the average relaxation
times of silica-glycerol nanocomposites and compare them
with experimental data from Cheng et al.?® Using their calcu-
lated interparticle distances, we modeled the glycerol-silica
nanocomposites with silica volume fractions of 8.8% and
23.6%, corresponding to distances of 20.3 nm and 7.61 nm,
respectively. The relaxation time dependence on temperature
for these nanocomposites and pure glycerol are illustrated in
Fig. 6. The model predictions (lines) match well with the
experimental data (symbols). As expected, the largest discre-
pancy between model and experiment is seen at low tempera-
tures for the highest filler loading (the smallest effective film
thickness), as the two separate “interphases” of neighboring
particles can no longer be treated as fully independent.

We can quantify our model predictions further by comput-
ing the dependence of the glass transition temperature on the
nanocomposite composition. Let us define T, as the tempera-
ture for which log(z,) = 2.0 (i.e., relaxation time is equal to
100 s). The dependences of T, on H and on the silica volume
fraction, f, are shown in Fig. 7a and b. As anticipated, decreas-
ing H or increasing f leads to an increase in Ty, although the
extent of change is fairly small as compared to, for instance,
free-standing thin films. The dependence of AT, on fis weakly
nonlinear and can be modeled by a second-order (quadratic)
polynomial (Fig. 7b).

3.3. Model generalization and master curves

Let us generalize the model in the following way. Based on the
functional form of the density profile in eqn (1), we can
stipulate that the coarse-grained dimensionless density, u(x)
can be approximated as a double-exponential function,

u(x) = up {1 + gexp (%)} A uj €Xp {qem<%)] (15)

This is based on the approximate equality e ~ 1 + z in the
limit of small z. Thus, fractional free volume as a function of

This journal is © The Royal Society of Chemistry 2024
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interparticle distance H, and (b) the silica filler volume percentage, f. The
line in (b) is the quadratic fit to the four calculated points, and the equation
in the box describes the fit and its R%. See the text for more details.

location is given by,

Jo(x) = frpexp {—q exp (—f)} (16)

In eqn (15) and (16), the subscript “b” refers to the bulk
value of the density or fractional free volume in the bulk at the
temperature of interest. Substituting eqn (16) into eqn (7b), we
can compute the dependence of the relaxation time on the
distance from the surface, x,

g{ra(x)] _ 4 4

Tab Tx)_ﬁ_,b
=yl (aew 1)) 1] = oo
b PLaexp ¢ va,bq P ¢
(17)

eqn (17) describes the so-called ‘“double-exponential” decay of
the relaxation time away from the surface. This behavior has
been predicted by the ECNLE theory®* and hypothesized based
on general physical arguments.”® The parameters g and ¢ are
computed based on simulated density profiles; alternatively,
they could be used as fitting parameters.
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For the relaxation time vs. temperature, we can analytically
integrate eqn (17) to obtain,

w(T, )] 28"{& 2% A4 1
kg{fb } ;;ﬁ Tq“p[ﬂ H (1) T =T
(18)
Since 4 _ log[t,s(T)] —log[ts], we can re-write
Soo(T)
eqn (18) as,
log[t,(T,H)] = (1 + x)log[t, 5(T)] — xlog[t,] (19a)
where
2
X = m (19b)

The bulk relaxation time, 7,,(7) = I}i_lgo[rl(T, H)], is given
by the VFTH expression (eqn (6)). The dimensionless parameter
x combines two factors — the ratio of the correlation length, ¢, to
the equivalent thickness, H, and the density enhancement
factor, g. Thus, stronger bonding between the filler and the
matrix leads to a larger g and larger relaxation time increase if
everything else is kept constant. Hydrogen-bonding glass-

P

formers, such as glycerol, typically exhibit lower ¢ values
(1-2 nm), while many other glass formers—such as van der
Waals liquids, covalent and ionic glasses, rigid molecules, and
polymers—can reach significantly higher ¢ values (3-5 nm).”*%°
Again, these results are qualitatively consistent with the pre-
dictions of the ECNLE theory, but are based on slightly differ-
ent frameworks.

Before discussing the model predictions, we re-cast the

VFTH equation in the form proposed by Rossler et al.®**
Ko

is the dynamic fragility, and K, =

log(t,[T]) = log(t) + (20)

dlog(z,[T])

T,
(7)
r T=T,

2 — log(t ., ). Using this form will enable us to describe the shifts
in relaxation time and glass transition in terms of reduced
temperature, 7/T.

Fig. 8a shows relaxation time versus reduced temperature for
a glycerol-like material (fragility m = 58.9) with fairly strong
filler surface attraction (¢ = 0.15), varying the “equivalent

Here, m =

reduced thickness, Th:g, from 1000 (bulk-like) to 6 (the

smallest separation), where the two “interphases” can still be
treated as independent. The curves shift upwards as Th
decreases. By recording the intersections of the curves with
the horizontal line log(r,[T]) = 2, we determine the glass
transition temperature of the shifts. Those shifts are plotted
in Fig. 8b for three different values of ¢: 0.15 (strong matrix-
filler attraction), 0.1 (intermediate attraction), and 0.05 (rela-
tively weak attraction). In all cases, the T, shift linearly depends
on the inverse effective thickness.
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Fig. 8 (a) Logarithm of the a-relaxation time as a function of reduced
temperature for nanocomposites with varying “equivalent reduced thick-
ness”, Th. Model parameters: log(t.,) = —13.25, m = 58.9, and g = 0.15.
(b) Glass transition temperature as a function of inverse thickness for
various values of g.

The results in Fig. 8b can be simplified by examining the

( [H] gb) (
(q Tgl})

that log(t..) is constant, the normalized T, - change depends

solely on dynamic fragility and form a straight line with zero

intercept. The slope, K, is an inverse function of the fragility

(Fig. 9b),

normalized T, - change, see Fig. 9a). Assuming

A
K==
m

(1)

where /A = 48.0. Combining all the results, the expression for

the T, shift is:
(TelH] = Top) _ A ( 4 )
(qTep) m\ H

n-nf i)

Thus, the Ty -increase is inversely proportional to the equiva-
lent thickness, H, and the matrix fragility, m, while directly

(22a)

(22b)

This journal is © The Royal Society of Chemistry 2024
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Fig. 9 (a) Normalized Ty4-change as a function of normalized inverse
thickness. All parameters are the same as in Fig. 8. (b) Dependence of
the slope K on the dynamic fragility, m.

proportional to the density enhancement, g, and the correlation
length, ¢. As suggested by Torkelson et al.,’® the correlation
length is a strong (roughly quadratic) function of fragility,
making the ratio {/m roughly linear with m.

The above analysis is based on the assumption that the
density profile, manifested here via g and ¢, does not depend
on the temperature, at least in the narrow temperature range
between T, and about 1.27,, where the dynamics shift from
VFTH to Arrhenius.®” In general, the density profile might be
temperature-sensitive, in which case multiple simulations are
needed to incorporate this dependence in the model.

While this model has been applied to nanocomposites, it
could also be relevant for other types of confinement, such as
liquids in nanopores. For confined liquids, both polymeric and
non-polymeric, the glass transition temperature can either
increase or decrease depending on the interaction between
the walls and the liquid. For example, we consider the recent
study of N,N’-bis(3-methylphenyl)-N,N’-bis(phenyl)benzidine
(TPD) confined within the polymer-nanoparticle systems
(capillary-rise infiltration [CaRI]).”® In this study, Wang et al.
used refraction index measurements to observe very large
increases in T, (~10-30 K) as compared to the bulk glass

This journal is © The Royal Society of Chemistry 2024
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Fig. 10 The normalized Tg4-shift for CaRI-confined TPD - data (circles)
and the linear fit. The data are from Fig. 1b of Wang et al.;°® the point
corresponding to the smallest pore (R ~ 1.5 nm) is not included in this
analysis.

transition temperature. They hypothesized that the unique CaRI
geometry leads to substantial changes in molecular conformations
near the surface, making the T, increase mainly due to entropic
factors rather than strong surface interactions with the TPD.
Without going into the molecular details, we can ask
whether the experimentally observed Tg-shift obeys eqn (22b)
and, if yes, what can be hypothesized on that basis. Fig. 10
shows the normalized Ty-shift for CaRI-confined TPD plotted
against the inverse of the average pore radius. The linear
dependence is fairly good, given the model’s approximations.

The slope of the line in Fig. 10, P = fgq, depends on the

correlation length, ¢, fragility, m, and density enhancement, q.
While the fragility of TPD is known, m ~ 98,° estimating the
other two parameters is more difficult. Assuming that & is fully
determined by m and scales as ~m?® (see Torkelson et al.®®), we
obtain ¢ ~ 3-4 nm. Thus, we can estimate the density enhance-

mP o
ment, g, from g = é_/l; substituting P =0.28 nm, m = 98, A = 48,

we have g between 0.19 (for £ = 3 nm) and 0.14 (for ¢ = 4 nm).
These estimates indicate that the reduction in free volume of
TPD near the particle surfaces is substantial. Further analysis
for these and other systems is ongoing.

3.4. Discussion

We have demonstrated that a simple approach combining a
“naive” free-volume theory with the assumption that one
cooperatively rearranging region (CRR) corresponds to two
molecular layers can successfully capture the dynamics of
simple nanocomposites. Note that predicting the relaxation
time does not require any new adjustable parameters. Once
the equilibrium density profile of the matrix near the filler
surface is known (e.g., from MD simulations) and the relaxation
time of the matrix as a function of temperature is also known,
our model can quickly predict the nanocomposite relaxation
time. Although this initial success is promising, several ques-
tions remain to be addressed, as discussed below.
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First - how much do the results depend on the selected
model for the local relaxation time? The use of the “naive” free
volume theory implies that the relaxation time depends only on
the free volume and not, say, on both free volume and tem-
perature. While this question becomes important at tempera-
tures close to Ty, at temperatures above T, a material is in its
equilibrium state. Thus, for a homogeneous material, either
temperature or free volume can serve as an independent
variable, with one being a unique function of the other (see
the ESIt for more details).

The second question - directly related to the first one - is the
free volume change with temperature accurately captured by
the experimentally measured coefficient of thermal expansion
(CTE)? In other words - should all the volume added as the
temperature is increased count as a “free volume”? For exam-
ple, within the TS2 framework of Ginzburg et al.,*>***>%” the
specific volume change is due to two contributions, the “true”
free volume, (1 — v), and the volume change resulting from the
transition between a low-density “liquid” and a higher-density
“solid” component. However, we expect that within a limited
temperature span ranging between T, and, say, T, + 60 K, the
relationship between the variously defined fractional free
volumes is linear, and therefore, the main results from the
current analysis will remain valid following the adjustment of
certain constants, such as A in eqn (7b). Additional details are
provided in the ESL{

The third question is - how does the current description
compare to alternative models of the glassy dynamics in thin
films and nanocomposites, e.g., the ECNLE theory of Schweizer
et al.,*#>373%531%0 the cooperative free volume (CFV) theory of
Lipson et al.,>®® or the generalized entropy theory (GET) of
Douglas and co-workers.'®*™% One important output of any
theory is the spatial profile of the relaxation time near the
matrix-filler interface. The logarithm of the relaxation time
decays as an exponential function of the distance to the surface
in GET-type models, as a double-exponential function in
ECNLE-type models, and as a more complex and parameter-
dependent function in CFV-type models. Schweizer and
Simmons® presented a broad justification of the double-
exponential form based on general physical principles. Our
result is consistent with this finding, although more analysis is
needed. A recent article by Cheng et al.’®® described a novel
approach (“‘continuous Havriliak-Negami analysis’’) to directly
calculate the relaxation time profiles from the dielectric
measurement data.

The final question is — how universal are the findings of this
analysis and whether they could also be used for polymer-
inorganic nanocomposites. This question itself can be split in
two - the importance of the hydrogen-bonding vs. van-der-Waals
interactions (highly vs. moderately polar vs. non-polar liquids) and
the differences between low-molecular-weight and polymeric
matrices. Based on the arguments of Ferrer et al.,”> Merabia and
Long”®’"'%” suggested that strongly hydrogen-bonding fluids
(such as glycerol) cannot be described by free-volume-type theories.
Casalini, Roland, and co-workers examined the relative influen-
ces of pressure and temperature on the segmental relaxation in
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both hydrogen-bonding and non-hydrogen-bonding glass-
formers;”* 775114 they concluded that strong hydrogen bonding
can disrupt the dynamic “tTV” scaling and make the temperature
and pressure dependence of the relaxation time more complicated;
they also indicated that for systems where the scaling is observed
(including most polymers and many low-molecular glass-formers),
one can use both free-volume-type and free-energy type theoretical
models. Win and Menon'"> demonstrated that glycerol exhibits a
reasonable “tTV” scaling with y ~ 1.4, indicating that relaxation
depends on both temperature and volume (with temperature
dependence more pronounced). Subsequently, Ginzburg, Zaccone,
and Casalini®” used their lattice free-volume-type SL-TS2 theory to
describe relaxation and the equation of state for glycerol in the
same way as several other non-polymeric and polymeric glass-
formers. Recent analysis of the glycerol viscosity data by Ferreira
et al.”® suggested that the data could be interpreted within a free-
volume framework, as well as on the basis of an alternative “bond
strength-coordination number fluctuation” model of Anaya
et al™®'7 Our current approach is based on the SL-TS2 ideas
that can be reduced to the “naive” free volume form in the limit of
equilibrium behavior at temperatures above T = T,. The question
of polymeric vs. low-molecular-weight matrices is equally compli-
cated. Due to low viscosities of most low-molecular-weight glass-
forming fluids (glycerol being an exception), it is difficult to use
them as matrices for stable nanocomposites. Yet, the magnitude of
the Te-change in glycerol-silica nanocomposites is comparable to
those observed for polymer-based nanocomposites.*?>"'&19 we
hypothesized that the magnitude of the T,-change depends on the
fragility, correlation length, and the matrix-filler interaction
strength; it appears that the combined effect of all those factors
generally results in sub-10 K T,-shifts, with few notable exceptions.
Obviously, the impact of factors such as the presence of grafted
chains (if any) and the molecular weight and dispersity of matrix
chains requires further exploration. This research is ongoing.”

4. Conclusions

We proposed a simple model describing the relaxation time as
a function of temperature for nanocomposite materials with
strong filler-matrix interaction. The model starts with the
equilibrium density profile which is coarse-grained with the
“bin” size corresponding to the cooperatively rearranging
region (CRR) size (or the dynamic correlation length). The
density profile is then converted into the fractional free volume
profile, followed by the application of Doolittle’s “naive” free
volume approach to compute the relaxation time as a function
of spatial coordinate and temperature. The results are com-
pared with the experimental data of Cheng et al.,”® and a good
qualitative and semi-quantitative agreement is found.

The proposed approach could be readily extended to other
nanocomposite systems, given the availability of both dielectric
relaxation and density profiles are known (either measured or
simulated). In addition, it can be generalized to free-standing
thin films, supported thin films, and filled thin films. These
areas could be explored further in future research.

This journal is © The Royal Society of Chemistry 2024
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