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A B S T R A C T

Robots have the potential to enhance safety on construction job sites by assuming hazardous tasks. While
existing safety research on physical human-robot interaction (pHRI) primarily addresses collision risks,
ensuring inherently safe collaborative workflows is equally important. For example, ergonomic optimization
in co-manipulation is an important safety consideration in pHRI. While frameworks such as Rapid Entire
Body Assessment (REBA) have been an industry standard for these interventions, their lack of a rigorous
mathematical structure poses challenges for using them with optimization algorithms. Previous works have
tackled this gap by developing approximations or statistical approaches that are error-prone or data-dependent.
This paper presents a framework using Reinforcement Learning for precise ergonomic optimization that
generalizes to different types of tasks. To ensure practicality and safe experimentations, the training leverages
Inverse Kinematics in virtual reality to simulate human movement mechanics. Results of a comparison between
the developed framework and ergonomically naive approaches are presented.
1. Introduction

Production and assembly work in industries such as construction
still relies heavily on human workers, causing a decrease in productiv-
ity and safety, in part due to physical stress and ergonomic tension [1].
Robotics development and research in construction has been a heavily
evolving field in recent years, focusing on improving productivity,
quality, and safety. However, physical human–robot interaction (pHRI)
in construction, particularly with robots having a manipulator robotic
arm has received very little attention in such contexts [2]. This is while
other industries such as manufacturing have made significant strides
in safe pHRI recently [3]. Methods such as the Rapid Entire Body
Assessment (REBA) [4], Rapid Upper Limb Assessment (RULA) [5],
and Ovako Working Posture Analysis (OWAS) [6] are industry stan-
dards for measuring and assessing the ergonomic safety of tasks to
prevent Work-related Musculoskeletal Disorders (WMSDs) in fieldwork
contexts. Much pHRI research also uses these industrial frameworks as
a means to account for human safety in collaborative tasks [7].

Ergonomic optimization is a critically important safety research
topic in pHRI. With the widespread adoption of sensors and computers,
many researchers have attempted to create a safer work process and
pHRI using algorithmic approaches that benefit from this enhanced
connectivity and computational power. Studies have shown that collab-
orative robots have the ability to significantly enhance workplace safety
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and efficiency by supporting physically demanding tasks and reducing
biomechanical stress on workers [8]. Furthermore, these ergonomic
pHRI collaborations not only help with operator safety but also improve
production efficiency [9]. Moreover, ergonomic optimizations are in-
creasingly being applied to the development of exoskeletons to enhance
human comfort and efficiency. This approach aims to reduce residual
forces and improve usability [10]. These developments underscore
the importance and potential of ergonomic optimization in HRI for
improving worker safety and productivity.

REBA and RULA work based on a scoring system using prede-
fined body angles and postures to determine the ergonomic risk to
the participant given the activity. The range for these scores typi-
cally spans discrete positive integers. This scoring regimen creates an
easy, fast, and transparent method of manually gauging the ergonomic
safety of a task. However, this discreteness makes the scores non-
differentiable, making mathematical optimization a difficult task for
automated approaches in pHRI tasks. Another challenge in optimiza-
tion for ergonomics in pHRI is the dependency of the approach on
specific physical tasks. Traditional analytical and approximate solu-
tions must account for the varying dynamics of the object and task,
requiring frequent reevaluation and adjustments as tasks change. To
overcome this, model-free approaches such as Reinforcement Learning
(RL) are attractive options. However, even though this approach offers
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task-independent optimization through statistical methods, its need
for unique calibration for each task and participant poses practical
challenges for real-world application.

1.1. Previous approaches

To overcome this obstacle, previous works have developed a wide
array of techniques. Some researchers tackle this issue by collecting
data from a pHRI task and then augmenting the dataset using methods
such as regression, which closely smoothens the distribution while still
maintaining the raw score reading [11]. This differentiable method
can then be used to optimize ergonomic safety in tasks such as object
co-manipulation in HRI by defining and optimizing the dynamics of
the task. Other studies aim to create predictive techniques such as
quadratic approximations [12]. Non-gradient-based optimization algo-
rithms such as genetic algorithms have also proved to help improve
ergonomic scores in HRI object handover tasks [13]. However, most
current research has been focused on small and light objects through
one-handed handover tasks. Many of these works also focus on isolated
aspects of object handover, such as release time or correction during co-
manipulation. These approaches mainly require human data collection
and the use of previous task-specific data to model and optimize, while
not being focused on practical applicability for the fieldworkers in a
cluttered environment such as those seen in construction sites. The
existing challenges for RL training stem from two main issues:

1. Designing accurate reward functions for REBA scores is challeng-
ing due to their discrete and bounded nature, making it difficult
to account for small differences.

2. Real-world training with RL is impractical because it requires a
robot and live readings of human limb and body angles for state
iterations and reward function calculations.

Additionally, rapidly advancing in safety training and evaluation
nd robotics research, Virtual Reality (VR) tools offer innovative ways
o study and optimize pHRI without the constraints of the physi-
al world [14]. Current Inverse Kinematics (IK) developments have
reated high-fidelity pose and shape estimation of a parametric hu-
anoid model [15]. Unity is a versatile game engine that supports
obotics simulation and integration through the ROS# plugin [16].
dditionally, packages like Unity ML-Agents [17] provide a robust
framework for conducting robotics simulations within Unity, which
could be extended to pHRI testing and workforce training. There have
been several previous works that use Unity as a tool for pHRI ergonomic
optimization [18] and worker ergonomic evaluation in VR settings has
already been a widely researched topic in the field of construction [19].

1.2. The developed solutions and contributions

RL operates by assessing the current state to determine an action,
with the action’s quality judged by a reward function. The learner
iteratively selects actions based on a predefined action-selection policy,
guided by the reward system. To address the challenges identified
above, we propose the implementation of an RL algorithm designed
to pinpoint the optimal location for bimanual object handover tasks.
A high-fidelity 3D VR environment has been developed to simulate the
dynamics of pHRI in human–robot object handover scenarios with great
detail. With an RL approach, we create a task-agnostic collaborative
robot training routine that as long as human kinematics are repre-
sentative of real-life actions, the model can find optimal locations for
personalized object handover. Another advantage of this methodology
is that the need for differentiable scores has been eliminated; the RL
algorithm will get the live REBA scores from the worker’s digital twin
inside the simulation and optimize for the ideal configuration. Once the
learner has converged to the optimal position, the framework is ready
to apply this in real-time with a simple transformation of dimensions

and coordinates. Towards accomplishing the goals of this work, the
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main difficulties were to accurately simulate human kinematics, speed-
ing conversion times and augmenting REBA in order to suit the needs
of pHRI optimization. As such, the main contributions of this paper are
as follows:

1. Designing a novel task-independent method of finding the best
ergonomic location for object placement in bi-manual pHRI ob-
ject handover in an industrial setting utilizing a fast-converging
RL routine.

2. Presenting a VR framework to train a model for any given task
tailored to the physical attributes of the worker collaborator
before the model’s deployment.

3. Introducing alternative approaches and circumventions towards
ergonomic optimization derived from currently established
frameworks for further validity.

2. Methodology

2.1. Q-learning

Q-Learning is a model-free RL algorithm for any finite Markov
Decision Process (MDP) [20]. The independence of Q-Learning from
mathematical models of the environment or the specific problem at
hand makes it particularly suitable for HRI object handover ergonomic
optimization. This eliminates the need for modeling dynamics or ap-
proximations that can have the potential for inaccuracies. The founda-
tion of the model is based on the Bellman Equation [21], as expressed
by Eq. (1). Where 𝑠 is the state, 𝑎 is the action, 𝑅(𝑠, 𝑎) is the reward, 𝛾
is the discount factor, 𝑃 (𝑠′ ∣ 𝑠, 𝑎) represents the transition probabilities
and 𝑉 (𝑠′) is the value of the next state.

𝑉 (𝑠) = max
𝑎

(

𝑅(𝑠, 𝑎) + 𝛾
∑

𝑠′
𝑃 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′)

)

(1)

The Q-Learning equation is as follows:

𝑄new(𝑠, 𝑎) = (1 − 𝛼)𝑄Current(𝑠, 𝑎) + 𝛼
(

𝑟 + 𝛾 max
𝑎′

𝑄(𝑠′, 𝑎′)
)

(2)

where 𝛼 is the learning rate and 𝑄(𝑠, 𝑎) represents the Q-value of the
state. The Q-value illustrates the quality of the action that is taken given
the current state. The action is defined by a previously defined action
policy such as epsilon-greedy [22] or softmax [23] action policies.

The softmax action policy chooses an action using Boltzmann dis-
tribution and explores all possible actions in every visited state. The
alternative candidate actions to be chosen are ranked according to
their value estimation. It chooses action 𝑎 on the 𝑡th iteration with the
probability given by:

𝜉(𝑡) = 𝑒
𝑄𝑖 (𝑡)
𝜏

∑

𝑘 𝑒
𝑄𝑘 (𝑡)
𝜏

(3)

where 𝜏 is the temperature [24]. As 𝜏 → 0, the policy chooses exploita-
tion over exploration, since the actions with lower values have a higher
opportunity to be selected, and a higher 𝜏 tends to pick actions with a
higher value. We chose to keep a high 𝜏 since the reward mechanism
is based on a discrete score and it is harder to differentiate action
qualities to a significant extent. We decrease the temperature as the
score decreases past the score threshold of 5 in a step-wise fashion by
0.1 units, and increase 𝜏 by 0.1 in the case that the score worsens.

Since our goal is to find the most ergonomically ideal final position
for the object, we choose to apply actions directly to the object’s
position. The IK of the humanoid model then responds to this change
in position. The ergonomic score of the position is calculated and used
as a variable in the reward function. This technique circumvents the
need to apply actions to the body itself. Instead, we rely on sufficiently
developed and customizable IK solutions to simulate the required mo-
tions. The fidelity of these limb and body adjustments will depend on

the specific IK configuration and object geometry that is used.
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Fig. 1. Depiction of the Set of Actions Being Performed on The Object.

In the case of this study, the learner’s action set has 6 DOF with an
action step size value of 𝛿 = 0.003 (the equivalent of 0.3 cm), moving
in a 3D space governed by Eq. (4) as shown in Fig. 1. The step size can
also determine the speed and the quality of the convergence, depending
on the nature of the distribution. The larger the step size the greater the
agent moves towards the minimum. However, the global minimum can
be inaccessible if the step size is not small enough to reach the desired
position. Conversely, if the step size is small, the speed of convergence
can be slow. However, there is a higher probability of reaching a global
minimum depending on the nature of the distribution. In this particular
scenario given body lengths and object dynamics, the step size of 0.3 cm
provides us a great balance between speed and precision.

𝑓action(𝑥, 𝑦, 𝑧, 𝛿, action) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(𝑥 + 𝛿, 𝑦, 𝑧) if action = 0
(𝑥 − 𝛿, 𝑦, 𝑧) if action = 1
(𝑥, 𝑦 + 𝛿, 𝑧) if action = 2
(𝑥, 𝑦 − 𝛿, 𝑧) if action = 3
(𝑥, 𝑦, 𝑧 + 𝛿) if action = 4
(𝑥, 𝑦, 𝑧 − 𝛿) if action = 5

(4)

As the object moves in the direction that the chosen action is
ssigned, the humanoid model uses its hands in an attempt to receive
he object for handover. At each state, the REBA score of the humanoid
odel is calculated and it is recorded. The current state’s REBA reading
s then used to calculate the reward of that state given that action and
he RL model continues its process. In order to simulate the kinematics
f the humanoid model in this scheme, we have developed a custom IK
odule.

.2. VR and inverse kinematics

Calculating REBA scores and ergonomic assessment inside a VR
nvironment has been the subject of previous studies [25]. Rigging is
procedure used in skeletal animation for representing a 3D character
odel using a series of interconnected digital bones [26]. This tech-
ique enables us to reproduce human kinematics at a high level. This
ramework will take the body measurements such as limb proportions,
eight, and width to generate a humanoid 3D model. While there
s software that generates 3D models automatically, the model can
e created manually using modeling software such as 3D Max and
lender. Once the model is created, we can rig the model to ensure
ccurate kinematics and mechanics to represent the worker in a virtual

nvironment.

3 
Fig. 2. Rigging of the 3D worker humanoid model.

Previous works have also used Unity as a robotics engine as a means
to develop robotic control and perception [27]. Our framework also
uses the same philosophy in using Unity as a tool for both robotic
control and visual representation of pHRI collaboration for increased
transparency and multi-disciplinary accessibility. The most recent up-
dates and developments have made this technique viable for seamlessly
integrating robotics and game engines [28]. For our purposes, we
utilize the Navigation heuristics, IK solvers, and Animation Rigging
features provided by Unity (see Fig. 2).

IK is one of the main techniques for granular control over robotic
effector manipulation [29]. Even though animating human biomechan-
ics through IK is a difficult task [30], there have been promising
results in determining pose and ergonomic evaluation in pHRI using 3D
simulators and IK [31]. For a generalized postural ergonomic analysis,
an accurate humanoid skeletal IK framework will suffice, and other
dynamics such as muscular mechanics can be ignored.

Unity offers basic IK functionalities within the software; however,
these functions are not readily available for simulation purposes. These
basic functionalities are the building blocks to allow the developers to
create the IK framework that they need. We created our own full-body
IK specifically designed for object handover simulations using a series
of scripts and functions. We used the ‘‘Two-Bone IK’’ and the ‘‘Multi-
Aim’’ constraints offered in Unity. The Two-Bone IK function simulates
the kinematics of two bones and the target. This makes it a great tool
to simulate limb behavior such as arms and legs. The Multi-Aim tool
is used to simulate the upper body motion in object handovers. Three
Multi-Aim tools were applied to the head, chest, and spine, each with
varying speeds and thresholds in order to get a smooth and realistic
motion. A Raycast gravity script was used to simulate the effects of
gravity on the model. In this technique, a Raycast is projected from
the feet of the model onto the terrain to solve the IK problem between
the geometry of the surface and the feet. This method grants smooth
movement and alignment of the model with moving and stationary
environments. The entire system is controlled by a rig controller script
in order to be able to generalize it to different tasks, body types,
and functions. One advantage of this setup is that it can be extended
and expanded to any other handover tasks and objects. The setup is
specifically designed to simulate different handover scenarios tuning
the hyper-parameters to the new conditions. The arrangement of the

IK framework on each body part can be seen in Fig. 3.
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Fig. 3. Configuration of IK functions on the model.

.3. REBA

Rapid Ergonomic Body Assessment or REBA is a standard industry-
ide metric for overall posture assessment for industrial tasks. REBA
s a reliable quantifiable method to evaluate work-related MSDs in the
onstruction industry [32]. The framework defines a from 1–15 for the
cores. However, this distribution does not apply to every task. The
ature of the task and how a human engages with it will affect the
core distribution [33]. Because REBA is a step-wise linear function,
t is non-differentiable. Previous works have overcome this obstacle
y introducing methods such as regression neural networks [11], as a
um of weighted polynomials [34] or a continuous linear function [35].
pproximation by nature will introduce uncertainty and errors to the
rocess. These discrepancies, as opposed to using raw scores, can cause
ssues for the scientific validity in applied settings [11].
REBA scores are calculated based on joint and body angle ranges

hich are associated with a score depending on the ergonomic risk.
he current state of the art mainly uses image processing as a means of
alculating scores for HRI and ergonomic intervention purposes. Other
ethods such as using inertial measurements [36] and motion capture
echnologies [37] have also gained traction. In this framework, the
oint angles are directly calculated through the digital bones embedded
nto the 3D model using the established calculation regimen. This
eature gives us exact measurements of joint angles based on the REBA
ramework as an extension. The proposed framework at this point does
ot utilize live REBA reading since the relatively optimal position for
he specific task is acquired in advance. Once the optimal ergonomic
osition relative to the worker is acquired, the robot is equipped with
robust policy to ergonomically handover the object at the desired
ocation provided the global position is known. However, during a
eal-world implementation, it would be prudent to calculate real-time
rgonomic metrics and fail-safes to ensure worker safety.

. Optimization

We chose to optimize for an auxiliary score based on the actual
EBA calculations which we will call postural scores over the final REBA
cores in the virtual simulation. The calculation of REBA as designed by
4 
Fig. 4. Distribution of Postural Score (x-axis) given a bi-manual HRI Object Handover
in all in-reach positions (y-axis) in the assigned boundary.

its inventors consists of collecting limb and joint angles which then are
processed through a predefined criterion to calculate each score. These
scores are then tallied up and filtered utilizing two separate calculation
tables into two different groups:

Group A: Analysis of the neck, trunk, and legs
Group B: Analysis of the arms and wrists

We use these two scores which already are part of the REBA calculation
as postural scores. Using these two postural scores, we can calculate
the final REBA score using Table C. However, these tables introduce
an additional simplification and discreteness to the distribution. As it
can be seen in Fig. 5, the final REBA score can be unchanged even
when one of the two scores changes. For example, when the score
for group A is 8 and the score for group B is 6, any increase in the
value of score B between 6 and 10 would result in the same final
REBA score. However, the ergonomic tax has increased even though the
actual limb scores for that body group have worsened. This is expected
since REBA was not built for precise and accurate ergonomic analysis,
especially in VR. However, REBA was created to give an easy, fast,
and transparent tool for industry practitioners to measure potential
ergonomic harm in industrial settings [4,38]. The transformation tables
also add discreteness to the distribution. Since our protocol utilizes a
reward mechanism based on the improvement of an ergonomic score,
the less sensitive score will prove as a harder goal to optimize for. With
the postural scores, smaller changes in the positions would result in
better or worse scores, helping guide the RL scheme to converge to
the optimal position faster. We hypothesize that increased granularity
would increase our chances of achieving the true optimal position more
reliably. We also argue that the postural score is representative of the
true REBA score. The postural score is based on the same score defini-
tions given by REBA for its calculations, meaning it does not perform
any different calculation that would be in contradiction with the REBA
framework. Furthermore, the relationship between these scores and
the REBA score is monotonic, meaning REBA will not decrease as the
postural score increases. We further demonstrate that our scheme does
improve ergonomic positions by calculating true REBA scores in our
experiments.

The Unity-based simulation incorporates a 3D humanoid model of
a construction worker, which is sourced from Mixamo—a platform
offered by Adobe that facilitates the creation and rigging of animations
and 3D models. This model’s body proportions and sizes are adjustable
and can be easily rigged with the help of Blender to accurately replicate
individual human movements. Once the 3D model is fully rigged, it is

imported into Unity. Within Unity, we have designed an IK framework
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Fig. 5. REBA assessment worksheet [4].
for the digital twin, specifically designed for bi-manual object han-
dovers. This framework leverages Unity’s native functions and is further
refined with custom C# code written by our team to enhance the IK
system’s precision and adaptability. The lower body and leg movement
is controlled by proprietary code and Unity’s IKFootSolver and two-
bone IK constraints. All components and clashes are then handled by
a rig controller script. For all other body shapes and sizes, the IK
target and IK hint positions and rig weights will need to be aligned
and adjusted according to the dimensions of the model. A postural
score calculator script was created using the joint angles of the model
following the guidelines defined by the framework. Since the only
destination a robot can control and project towards is the position of
its end effectors, each end effector would either need to be averaged to
the theoretical center of mass of the object or solve and optimize for
each effector separately. We chose to optimize for the center of the end
effectors using Eq. (6).

To find the optimal ergonomic score, we utilize a Tabular Q-learning
methodology given by Eq. (2) with a softmax action selection given
by Eq. (3). A solution space for the RL scheme was chosen given by the
body frame of the 3D model. The size and shape of this distribution
set will affect the distribution of the postural scores and by extension
the convergence quality and speed. We chose a boundary given by arm
extension in the 𝑧-axis, from knee height to the top of the head for
the 𝑦-axis and shoulder width for the 𝑥-axis. The reward mechanism
utilizes an inverse quadratic relationship of the ergonomic score given
by Eq. (5). By opting for an action step size of 0.003 units, this solution
space gives us about 3.4 million solutions for the Q-learner to explore.
Per Fig. 4, we can see that most of the distribution belongs to Posture
scores 6–7, and only 0.004% of the solution space belongs to the score
4, which coupled with the discrete nature of the distribution, renders
5 
optimization and RL objectives extremely difficult. Recording every
possible score for every position took approximately 3 h to calculate.
REBA, which the calculated postural score is a subset of, and most
other rapid ergonomic scores do not account for human subjective
preferences. This creates a possibility of obtaining the same minimum
optimal score at multiple different positions, causing the algorithm to
converge and stop exploring different locations at sub-optimal locations
at the global scale. We decided to incorporate a reward value (6) for
the symmetry of the box about the body contact frame given that
humans prefer symmetry [39]. This score is then incorporated back
into the initial reward function given by Eq. (7). Given the discrete
distribution of ergonomic scores, the Q-Learning algorithm is prone to
convergence on local minima. This often occurs because, in instances
where a new position does not yield a change in the ergonomic score,
the algorithm’s reward becomes dependent solely on symmetry changes
within the unchanged score region. As a result, Q-Learning may settle
on suboptimal solutions. To counteract this tendency and promote
exploration within the model, we opted to keep the softmax action
selection temperature relatively high.

𝑟 = 1
𝐸2

(5)

𝑆 = 𝑋LE + (𝑋RE −𝑋LE) (6)

𝑟 = 1
𝐸2

+ 𝑆 (7)

After the model identifies the lowest postural score, the relative
position or positions are saved into a CSV file ready to be used. In a real-
world translation, a simple dimension conversion can be introduced to
be able to deploy this framework to pHRI settings. Each unit used in the
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Fig. 6. Minimum postural score from 10 separate training runs with the Q-learning
algorithm.

Unity game engine translates to 1 meter in the real world. This stan-
dardized approach allows us to be able to convert the optimal locations
that are in the ‘‘Unity unit’’ to real-world dimensions depending on the
deployment and sensor readings from the deployed robot.

4. Training results

To better test the convergence of the model, we ran the algorithm
with a time cap. The reasoning behind this is twofold: to evaluate
the time needed for convergence and to prevent the algorithm from
stopping at a local minimum. To promote exploration and avoid getting
stuck in a local minimum, we used a high 𝜏 value for the Boltzmann
action selection. We tested the algorithm with both a 2-min and a 5-
min cap across 10 iterations. These time caps were chosen for testing
purposes. They can be adjusted at the user’s discretion depending on
scenario and operational factors. While exploring the entire handover
solution space takes about 3 h, the model was able to converge in a
matter of minutes. Both time caps achieved the lowest global postural
score for the bi-manual object handover location. Results can be seen
in Fig. 6. After acquiring the data, we chose the minimum postural
score and the relative position associated with the score. From here we
created a script that moves the box to the optimal location. To contrast
this with a baseline, another script was created to move the object to
the closest distance in the boundary so that the model can reasonably
receive the box. This hand-off location has been previously used in
the literature, albeit in the context of motion planning and handover
approaches [40].

We chose 5 locations with different X, Y, and Z coordinates outside
the model’s reach. We then collected the postural score associated with
each location. The results show that the optimized approach was able to
achieve the minimum postural score at every initial starting coordinate
with no variation. This is to be expected since the destination of the
framework is independent of the starting coordinates. The shortest
distance approach achieved worse REBA at every starting point. The
maximum REBA score was 7 and the minimum REBA score was 5. All
results are depicted in Table 1 and Figs. 6 and 7. Fig. 8 shows a sample
f the results in the virtual environment. The Unity engine was running
n a computer with AMD Ryzen 7 5800 8 Core Processor, 80 GB of
nstalled RAM, and an NVIDIA GeForce RTX 12 GB 3060 GPU.
6 
able 1
omparison of optimized and ergonomically naive methods.
Relative position Optimized location Shortest distance

(x = 0.028, y = 1.122, z = 1.354) 4 5
(x = 0.263, y = 1.122, z = 1.354) 4 6
(x = −0.423, y = 1.122, z = 1.354) 4 5
(x = 0.028, y = 0.472, z = 0.6) 4 7
(x = 0.028, y = 2.292, z = 1.354) 4 5

5. Experiments

To further investigate the efficacy of this optimization regimen, we
conducted within-subject intra-lab experiments (N = 7). A VR scenario
was created to test the improvements attributed to the framework.
In the scenario, the participants are placed in a room with a box
positioned in front of them. We simulated a stationary object handover
scenario. A snapshot of the VR environment is depicted in Fig. 9. While
similar studies used a sample size as small as 4 participants [11,41],
we also conducted a power analysis using Cohen’s d to measure if
the sample size was enough. The power analysis is the calculation
used to estimate the small sample size needed for an experiment given
significance level, power, and effect size. Since this is a within-subject
experiment, we utilize Cohen’s d for our effect size. Cohen’s d acts as
an effect size to conduct the power analysis.

This scenario required the human to be stationary and the robot
to transport the object towards the human for the handover. For this
purpose, the participants were free to move and rotate their bodies as
long as they did not physically move around (with the exception of not
raising their legs off the ground). Two different object starting points
were tested.

1. The box was directly aligned to the center of the participant’s
frame

2. The box was offset by 1 in-game unit to the left on the 𝑥-axis of
the participant

After signaling their readiness, the box in the VR simulation is trans-
ported towards the participant using the two different (optimized and
unoptimized) end locations. After reaching its destination, the box
changes color to signal to the participant that is ready for the handoff.
The participants are instructed to reach out to simulate grabbing and
receiving the box from existing handles on the sides of the object. The
participants were asked to hold the position while we took photos of
their real-world postures to calculate the corresponding REBA score.
This procedure is done for both of the two different end locations and
start locations. An example of this process is shown in Fig. 10.

One shortcoming of assessing ergonomic optimization in VR is the
tunnel-visioned worldview that is a byproduct of the headset [42]. The
field of view of individuals using VR is significantly less as compared
to a natural field of view. The reduced field of view can force the users
to rotate and change neck position considerably more as opposed to
a real-world scenario, which can negatively affect REBA scores due to
the higher injury risk associated with neck angles. For consistency and
simplicity, we assume the lowest risk neck score between both scenarios
to remove the potential confounding factor from our analysis. Fig. 11
shows an example of a recorded data point of the experiment.

As it can be seen in Fig. 12, in both cases, the optimized position
ends up in the same coordinates since that has been predetermined by
the framework.

At x = 0, after optimization, the mean result for the REBA score is
1.57 ± 0.90. In contrast, the unoptimized group recorded a significantly
higher mean of 4.00 ± 1.20 for the REBA score. The statistical analysis
confirms the effectiveness of the optimization with a 𝑝-value of 0.002
and Cohen’s d of 3.20, indicating a statistically significant difference at
95% confidence level.
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Fig. 7. Comparison between the shortest distance in the boundary vs. optimal location heuristic.
Fig. 8. Posture scores based on heuristic and starting location.
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Fig. 9. VR environment included a box positioned in front of the human for a simulated
handover scenario.

At 𝑥 = −1, after optimization, the mean REBA score is 1.57 ±
.90. In contrast, the unoptimized group recorded a significantly higher
ean REBA score of 5.71 ± 1.48. The statistical analysis confirms the
ffectiveness of the optimization with a 𝑝-value of < 0.001 and Cohen’s
of 3.87.

.1. Construction object case studies

In this section, we explore ergonomic optimization using construc-
ion objects by replacing the generic object. As long as certain con-
traints such as grabbing point location and object search bounds
re defined, the RL algorithm can optimize for the ideal ergonomic
andover location.
7 
.1.1. Shovel
We used the shovel as a common construction tool that can be
point of interest in bimanual object handovers. This is a proof-of-
oncept example even though in reality shovels may be handed over
ith only one hand. The setup was changed in order to adjust for the
ew grip goals and geometry of the object. An example of the new IK
etup can be seen in Fig. 13.
The entire handover range of REBA scores for this item was calcu-

lated which is depicted in Fig. 14.
As it can be seen in Fig. 14, the minimum constitutes about 0.1%

of the entire distribution. The distribution loosely resembles the distri-
bution of a generic object. This is due to the IK goals depending on
the geometry of the shovel being relatively similar to the goals of the
generic object. We then attempted to search for the ideal ergonomic
position using the Q-Learner. In a 5-min training cap, the Q-learner
achieved the absolute minimum 2 times. The first one was found in
155 s and the last one in 160 s. The configuration of the framework
using the first found position is shown in Fig. 15

5.1.2. Container box
Another common construction equipment example that was used is

a container box. Similar to the shovel, we adjusted the model and the
IK to the new object as seen in Fig. 16.

We calculated the entire handover range of REBA scores for this
item as well, as shown in Fig. 17.

The absolute minimum of this distribution is a score of 5, which
accounts for about 9% of the distribution. This is different from the
previous objects due to the object handles being wider, changing the
handover due to the geometry of the object. This facet highlights the
flexibility of the framework in handling different conditions.
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Fig. 10. Participant attempting to receive the box in the VR simulation and the real-world body posture manifestation.
Fig. 11. Manifested postures of the optimized framework (left) and unoptimized framework (right).
The absolute minimum of this distribution is a score of 5, which
ccounts for about 9% of the distribution. This is different from the
revious objects due to the object handles being wider, changing the
andover due to the geometry of the object. This facet highlights
he flexibility of the framework in handling different conditions. After
pplying the Q-learner to the new setup with a 5-min cap, the absolute
inimum was found 9 times with the first one in 4 s and the last one in
47 s. The configuration of the framework using the first found position
s depicted in Fig. 18.

6. Discussion

This analysis promotes the framework’s versatility. Any 3D ob-
ject can be optimized for ideal placement using this method. This
framework can be leveraged significantly in construction projects. The

existence of rich building information models (BIM) can prove as an

8 
asset since the families used in the BIMs can be exported as 3D files
such as FBX and OBJ files. The extension of this framework is not just
for bimanual handover. Further ergonomic assessments and education
can help developers reduce the risk of WMSDs on job sites by cataloging
high-risk and low-risk items in use through optimization in the virtual
environment.

One of the most prominent obstacles to practical ergonomic opti-
mization for intelligent applications such as pHRI can be attributed to
the existing metrics with mathematical complexities. REBA calculates
the ergonomic risk mainly through ranges of the angle of the specific
joint in a step-wise manner. Most ergonomic metrics have two (usu-
ally contradictory) qualities: generality and accuracy [43]. The former
refers to the metric’s capacity to be applicable across various tasks,
contexts, and rates of operation, signifying its universality. The latter
pertains to the metric’s exactness in quantifying the genuine ergonomic
hazards associated with a particular task as determined by the frame-
work. Recent sensitivity analyses indicate that the REBA methodology
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Fig. 12. Average of REBA scores between unoptimized and optimized schemes
depending on starting positions.

Fig. 13. Alignment of the model with the shovel object.

xhibits limited suitability for material handling tasks [38], which
onstitute a significant aspect of pHRI object handovers. Instead, its
fficacy is more pronounced in interventions targeting overall postural
rgonomics. The speed and ease of use have been the strongest catalyst
o REBA’s popularity in the industry since its inception in the year
000. However, the technological constraints of the past obscured the
nadequacies of REBA for mathematical optimization tasks. Now, with
dvancements in image processing and sensor accuracy, we can gather
nd interpret limb and body angles for real-time ergonomic analysis —

n application perhaps not originally intended by REBA’s creators.

9 
Fig. 14. Distribution of postural score (x-axis) given a bi-manual HRI object handover
in all in-reach positions (y-axis) in the assigned boundary for the shovel object.

Fig. 15. Optimized location for the container box.

Fig. 16. Alignment of the model with the container box object.
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Fig. 17. Distribution of Postural Score (x-axis) given a bi-manual HRI Object Handover
in all in-reach positions (y-axis) in the assigned boundary for the Container Box Object.

Fig. 18. Optimized location for the container box.

We encounter these shortcomings in our experiments. We use the
tables given by Fig. 5 to calculate the REBA score of the participants.
The REBA method has two separate scores that need to be calculated
which then can be used through a series of tables which results in a
final REBA score. In the worksheet, Score A is related to the ‘‘Neck,
Trunk, and Leg Analysis’’, and Score B is related to the ‘‘Arm and Wrist
Analysis’’. For the majority of the cases, at initial position x = 0, we
alculate a score of 2 for Score A and a score of 5 for Score B. By using
able C in the worksheet and accounting for the activity score, we end
p with a REBA score of 4. For initial position x = −1, the framework
eturns a score of 3 for Score A and a Score of 5 for Score B. This
ain difference between the REBA scores of the two initial positions is
ue to the twisted trunk induced by the asymmetry of the final object
lacement concerning the body by the scheme. However given Table C,
e still result in a final REBA score of 4. However, there is a significant
ifference in comfort and physical strain between the two iterations.
his difference is somewhat represented in the simple summation of the
ostural score but not inside the final valuation of the REBA score. This
urther demonstrates the shortcomings of REBA and the benefit of using
ore granule scoring schemes such as the postural scores presented in
his paper which are derived from REBA itself.
Furthermore, REBA’s consideration of weight differences is a linear

ddition to the score. In the REBA framework, first, the angles are
10 
considered, and a score is assigned. After that assignment, only then
is the weight considered. This process has the ideal angles of the
body to be independent of the weight. As the weight increases, the
total ergonomic score increases depending on pre-defined thresholds.
Factors such as center of mass, shape, and size of the object in relation
to the weight are not considered. During the optimization, this does
not greatly impact the final optimization position since the weight
consideration adds scalar scores to the baseline amongst every position.

Moreover, the ideal REBA score is very close to sensitive parts of
the human body such as the neck and trunk area. This can prove as
a hazard given robotic end-effectors will be near those body parts.
This will be true for any optimization metric that uses REBA or similar
scores as their optimization metric. The current standard metric does
not take this fact into account and mainly focuses on pure ergonomic
optimization. These shortcomings can be taken into account in new
pHRI-specific ergonomic metrics or certain handle locations if the
object’s geometry allows it.

One advantage of our framework is its flexibility in using different
optimization metrics. While it currently employs REBA scores, it is not
restricted to this metric alone. As new ergonomic pHRI metrics are de-
veloped, our framework can be easily adjusted to these developments.
This interchangeability is a significant contribution, as it allows the
framework to adapt and remain relevant with advancements in the
field, using the metric as a tool for the RL reward function.

We can see as shown in the results section, that the postural score
serves as an adequate optimization goal for this method. This was to
be expected since the postural score is REBA in a more granule form.
VR and computer simulations have the luxury of being able to calculate
high-precision data with ease. The postural score approach also grants
more flexibility in scoring each limb differently. By not limiting itself
to the table presented in REBA, developers can create personalized
scores and optimizations depending on the specific needs of the worker.
Scores can be assigned with different numbers and values depending
on the nature of the task and the health history of the individual.
However, this approach demands further investigation to ensure its
scientific validity and real-life efficacy. This further demonstrates the
need for mathematical approaches to improve ergonomic optimization
outside the scope of REBA (as demonstrated in this study) for not only
pHRI contexts but also potential applications in VR. Additionally, more
specialized and sensitive frameworks for pHRI applications in industrial
settings could be devised.

Our method optimizes for the most ergonomic location of the end-
effectors for bimanual or unimanual object handover regardless of the
object as opposed to the nuances from the handover itself. Recent
state-of-the-art research has approached the nuances of unimodal pHRI
handover using whole-hand tactile sensors [44]. This RL framework can
work in conjunction with the current handover works by serving as a
planning mechanism for the end goal of the handover agents. Yu et al.
utilized a learning-from-demonstration (LfD) method for implementing
human grip state-reactive behavior norms in robots. Our framework
can be incorporated with such frameworks to create ergonomically
safe and seamless grip and handover scenarios. Furthermore, the LfD
system indirectly encapsulates ergonomic safety to an extent. Through
the demonstrations from workers, the optimal positions will indirectly
have a level of comfort as a part of the features. While this alone
might not be comprehensive of complete ergonomic safety, it presents
future opportunities for the development of comprehensive ergonomic
policies.

Current robotic research has enabled developers to have an ac-
curate visual representation of localization and dimension perception
through LiDAR technology [45], stereo vision [46], and SLAM-based
algorithms [47] for a variety of different applications. Due to this
measurement strategy, it is of paramount importance that the worker
3D humanoid model and its associated IK framework be as represen-
tative as possible of the worker’s true body mechanics to decrease the

potential divergence of the training and interaction optimality.
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7. Conclusion

The implications of the findings are paramount for the pHRI practice
in industries such as construction, manufacturing, and retail ware-
housing with substantial fieldwork. Robots are introduced to industrial
applications to increase the safety of manual work, among others,
through automating and taking over labor-intensive and repetitive
tasks that are often not ergonomic. While their presence in the field
should not pose additional safety hazards (e.g., struck-by accidents),
their operations should also guarantee worker safety. As the only
comprehensive framework to assess ergonomics of body posture, REBA
has features that limit its functionality for real-time, feedback-enabled
mechanisms needed for on-spot robot perception and reaction. As such,
the developed methodology enhances the applicability of REBA for
adaptive, safe, and fast implementation of REBA in bi-manual material
handover situations between robots and field workers.

From a robotic implementation standpoint, this framework would
require the exact knowledge of the global positions of the worker and
the robot. Since the RL scheme returns an optimized position relative
to the worker, it is necessary to know where the person is to transport
the box to the relative position. Previous works have shown that worker
localization via Indoor GPS can be achieved with high accuracy [48].
Such methods can be implemented in potential frameworks in order to
enable the RL scheme in an applied setting.

The VR training method also opens up the groundwork for expedited
framework testing outside of the job site. By testing pHRI frameworks
and interactions in a virtual environment, we reduce the risk of poten-
tially hazardous failure in a setting where humans are present. Many
edge environmental edge cases can be analyzed and simulated which
would pose a potential risk in real deployments.

8. Limitations and future work

While this paper presents an approach towards using ergonomics
safety measures in pHRI, there are a few limitations that can be
addressed in future work. The reward policy can be modified to better
guide the Q-learner to reach the optimal position. Rewarding different
features such as body ratios and joint angles can be able to assist the
Q-learner’s convergence. However, this would discourage the current
model-free nature of the learner, since we are guiding it to the ideal
position of the task by adding task-specific information into the training
regimen. The boundary space can also be further limited to encourage
faster convergence. Exploring the entire boundary space took a sig-
nificantly longer duration compared to the RL algorithm. By further
truncating the possible solution spaces, the odds of converging to a
local minimum decrease, and the higher probability of the RL algorithm
reaching the global optima faster, especially given the fact the softmax
action selector’s temperature has been set to a high value. However
limiting the boundary would decrease the routine’s generalizability due
to the reason that given different tasks, configurations, and worker
demographics, the REBA distribution can be highly variable. More
sophisticated RL algorithms can be implemented for faster convergence.
Additionally, increasing the action subset can prove beneficial. Cur-
rently, we use 6 different actions to navigate all general directions in a
three-dimensional space. However, increasing the action function with
more fine-grained actions can speed up convergence by accessing states
that would need multiple other actions otherwise. We are consider-
ing the introduction of angular motions to our action subset, which
could be particularly advantageous for the ergonomic optimization of
handling complex-shaped objects. However, it is important to note
that increasing the number of actions might also extend the training
duration, as the model will need to explore and learn from a more
complex action space.

For future projects, we plan to incorporate Deep Q-learning meth-
ods [49] which utilize neural networks to represent the Q-function as
opposed to the table of Q-values, and methods such as Soft Actor-Critic
11 
algorithms [50]. However, the biggest challenge to overcome is, once
again, the discrete nature of the ergonomic frameworks.

Although the IK framework does provide an adequate representa-
tion of postural kinematics, a gap between true kinematics and the
simulated ones is to be expected. We selected Unity for simulating
kinematics over other scientific simulators because we aim to utilize
this game engine in future HRI projects. Specifically, we intend to use
Unity for robot logic and to integrate VR and AR for remote work
and worker training applications. The objective of our approach is not
to replicate human postural kinematics with high fidelity but rather
to establish and refine a framework that is informed by ergonomic
principles for use in HRI contexts. Options such as OpenSim would
enable us to model and simulate the biomechanics and ergonomics of
humans to a much more precise scale. However, scientific simulators
and their integration with robotic controls and generalizability in a
virtual environment or a construction job site can prove challenging.

For the experiment, the humanoid model in the game engine was
not tailored to every single participant. We expect that this factor has
reduced the maximum benefits that the regimen has to offer. However,
this decision was deliberate since we were planning to investigate the
generalizability of the scheme. We still were able to improve ergonomic
scores while also achieving similar REBA scores among all participants.
These results show a significant level of generalizability. However, we
predict that these scores are not the true optimal positions for every
participant.

For future work, we plan to present streamlined ways to tailor the
humanoid models to the individuals. This customization enables the
framework to learn personalized traits outside of operating hours. Once
the robot has gained the relative position for a specific task with the
specific worker, it can perform ergonomically optimized pHRI object
handover with or without the Unity game engine. The learner optimizes
using pixel units inside the game engine. These ratios are simply a
change of dimensions relative to the body measurements of the worker
imported into the 3D environment, resulting in a representation of body
area and volume in a digitized setting. Subsequently, the real-world
implementation would just consist of a dimension transformation for
the robot to perform the movement with or without the game engine.

It would be ideal to personalize the humanoid model to every
construction worker in an applied setting for maximum ergonomic
optimization. The discrepancy in real-life manifestations of the human
posture can be seen in Fig. 19. Even though there is a difference
between the qualitative postures, this method still provides significant
benefits as compared to ergonomically agnostic heuristics. Further-
more, such positions outside of the scope of the study can have either
exact or marginally different REBA scores. However, it is not hard to
infer that these postures can have different comfort levels and injury
risks. This is another piece of evidence that points towards the need
for sensitive and mathematical ergonomic and safety frameworks for
pHRI tasks.

Finally, this object handover method is considered a non-adaptive
approach [40]. A non-adaptive approach means that the robot simply
moves the object to a pre-defined path without any adaptation to
the potential changes of the receiver. For future work, we plan to
incorporate adaptive corrections to the object handover for stronger
generalizability in a dynamic environment which is paramount to scal-
able deployment of construction robots. Moreover, we would like to test
this framework in a dynamic construction environment using physical
robots. By defining the task and the human model of the construction
worker. VR has been previously used to assist construction workers in
training for HRC [51]. This work further opens up the possibilities of
utilizing VR to tackle the pressing construction problems. One major
obstacle to the deployment of construction robots can be attributed to
the lack of trust in the feasibility and efficacy of the robots. Pairing

training and ergonomic considerations inside and outside of the job site.
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Fig. 19. Difference in manifested ergonomic posture on human subjects when using the identical RL optimized location.
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