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—— Abstract

We study the classic problem of subgraph counting, where we wish to determine the number of
occurrences of a fixed pattern graph H in an input graph G of n vertices. Our focus is on bounded
degeneracy inputs, a rich family of graph classes that also characterizes real-world massive networks.
Building on the seminal techniques introduced by Chiba-Nishizeki (SICOMP 1985), a recent line of
work has built subgraph counting algorithms for bounded degeneracy graphs. Assuming fine-grained
complexity conjectures, there is a complete characterization of patterns H for which linear time
subgraph counting is possible. For every r > 6, there exists an H with r vertices that cannot be
counted in linear time.

In this paper, we initiate a study of subquadratic algorithms for subgraph counting on bounded
degeneracy graphs. We prove that when H has at most 9 vertices, subgraph counting can be done
in ON(nS/ 3) time. As a secondary result, we give improved algorithms for counting cycles of length at
most 10. Previously, no subquadratic algorithms were known for the above problems on bounded
degeneracy graphs.

Our main conceptual contribution is a framework that reduces subgraph counting in bounded
degeneracy graphs to counting smaller hypergraphs in arbitrary graphs. We believe that our results
will help build a general theory of subgraph counting for bounded degeneracy graphs.
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1 Introduction

The fundamental algorithmic problem of subgraph counting in a large input graph has a
long and rich history [37, 24, 28, 22, 38, 2, 20, 42, 49]. There are applications in logic,
properties of graph products, partition functions in statistical physics, database theory,
machine learning, and network science [18, 16, 26, 11, 42, 23, 41]. We are given a pattern
graph H = (V(H), E(H)), and an input graph G = (V(G), E(G)). All graphs are assumed
to be simple. We use Subgy(G) to denote the problem of computing the number of (not
necessarily induced) subgraphs of H in G, that is, the number of subgraphs of G isomorphic
to H.

If the pattern is part of the input, this problem becomes NP-hard, as it subsumes
subgraph isomorphism. Often, one thinks of the pattern H as fixed, and running times are
parameterized in terms of the properties (like the size) of H. Let us set n = |V(G)| and
k = |V (H)|. There is a trivial brute-force O(n*) algorithm, but we do not expect O(n*~¢)
algorithms for general H for some constant ¢ > 0 [22].
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The rich field of subgraph counting focuses on restrictions on the pattern or the input,
under which non-trivial algorithms and running times are possible [33, 4, 16, 25, 24, 22, 11,
20, 12, 47]. Given the practical importance of subgraph counting, there is a special focus on
linear time (or small polynomial running times).

Inspired by seminal work of Chiba-Nishizeki [19], a recent line of work has focused
on building a theory of subgraph counting for bounded degeneracy graphs [12, 7, 8, 15, 6].
These are classes of graphs where all subgraphs have a constant average degree. This
work culminated in results of Bera-Pashanasangi-Seshadhri and Bera-Gishboliner-Levanzov-
Seshadhri-Shapira [8, 6]. We now have precise dichotomy theorems characterizing linear
time subgraph counting in bounded degeneracy graph. When H has at most 5 vertices,
then Suby(G) can be determined in linear time (if G has bounded degeneracy). For all
k > 6, there is a pattern H on k vertices that cannot be counted in linear time, assuming
fine-grained complexity conjectures. The following question is the next step from this line of
work.

When can we get subquadratic algorithms for subgraph counting (when G has bounded
degeneracy)? Are there non-trivial algorithms that work for all H with 6 (or more) vertices?

Before stating our main results, we offer some justification for this problem.

Bounded degeneracy graphs: This is an extremely rich family of graph classes,
containing all non-trivial minor-closed families, bounded expansion families, and preferential
attachment graphs [48]. Most massive real-world graphs, like social networks, the Internet,
communication networks, etc., have low degeneracy ([30, 34, 51, 5, 9], also Table 2 in [5]).
The degeneracy has a special significance in the analysis of real-world graphs, since it is
intimately tied to the technique of “core decompositions” [48]. Most of the state-of-the-art
practical subgraph counting algorithms use algorithmic techniques for bounded degeneracy
graphs [2, 35, 42, 40, 34, 41].

Subquadratic time: From a theoretical perspective, the orientation techniques of
Chiba-Nishizeki and further results [19, 7, 8, 6] are designed for linear time algorithms. The
primary technical tool is the use of DAG-Tree decompositions, introduced in a landmark
result of Bressan [12, 13]. Bressan’s algorithm yields running times of the form n", where
r € N and is the DAG-treewidth of H. It is known that linear time algorithms are possible
iff the DAG-treewidth is one [6]. It is natural to ask if the DAG-treewidth being two is a
natural barrier. Subquadratic algorithms would necessarily require a new technique, other
than DAG-treewidth. It would also show situations where the DAG-treewidth can be beaten.

From a practical standpoint, the best exact subgraph counting codes (the ESCAPE
package [1]) use methods similar to the above results. Algorithms for bounded degeneracy
graphs have been remarkably successful in dealing with modern large networks. Subquadratic
algorithms could provide new practical tools for subgraph counting.

The focus on 6 vertices and the importance of cycle patterns: The problem of
counting all patterns of a fixed size is called graphlet analysis in bioinformatics and machine
learning [43, 50]. Current scalable exact counting codes go to 5 vertex patterns [1], which
is precisely the theoretical barrier seen in [7]. Part of our motivation is to understand the
complexity of counting all 6 vertex patterns (in bounded degeneracy graphs).

The seminal cycle detection work of Alon-Yuster-Zwick also gave algorithms parameterized
by the graph degeneracy [4]. But most of their results are for cycle detection, whereas counting
is arguably the more relevant problem. It is natural to ask if counting is also feasible with
similar running times.
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1.1 Main Results

Our main result shows that patterns with at most 9 vertices can be counted in subquadratic
time. Let n be the number of vertices and x be the degeneracy of the input graph G. The
degeneracy k is the maximum value, over all subgraphs of G, of the minimum degree of the
subgraph. In what follows, f : N — N denote some explicit function.

» Theorem 1.1. (Main Theorem) There is an algorithm that computes' Suby (G) for all
patterns H with at most 9 vertices in time f(r)O(n/?).?

Recall that previous works gave (near) linear time algorithms when H had at most
5 vertices [7]. The best subgraph counting algorithm for bounded degeneracy graphs is
Bressan’s algorithm, which runs in at least quadratic (if not cubic) time for many patterns
with 6 to 9 vertices.

Additionally, we construct an explicit 10-vertex pattern that we conjecture cannot be
counted in subquadratic time in the bounded degeneracy setting. We are able to relate the
complexity of counting that pattern to counting a specific hypergraph in general graphs,
which we believe can not be done in subquadratic time. (More in §1.2.6)

1.1.1 Counting cycles

As a secondary result, we are able to show that cycle counting in bounded degeneracy graphs
can be done even faster. These results are tight, in the sense that any improvement will
imply beating long standing cycle detection algorithms for sparse graphs. Let Cj denote
the k-cycle and dj, be the exponent (in terms of edges) of the current fastest algorithm
for k-cycle detection in general graphs (see (3) and [29]). Gishboliner-Levanzov-Shapira-
Yuster (henceforth GLSY) recently showed that homomorphism counting of Cay in bounded
degeneracy graphs can be done in time O(n) [29]. We prove that this complexity can be
matched for the problem of subgraph counting. Cycle counting is more challenging, since
it involves compute linear combinations of homomorphisms of non-cyclic patterns (which
requires other techniques).

» Theorem 1.2. Let k denote the degeneracy of the input graph G.

There is an algorithm that computes Sube,(G) and Sube, (G) in time f(r)O(n%),
where d3 < 1.41. Moreover, unless there is an O(mdra/)-time algorithm for counting
triangles for some &' > 0, there is no f(k)O(n®~¢)-time algorithm for any € > 0.

There is an algorithm that computes Sube, (G) and Sube, (G) in time f(r)O(n®),
where dy < 1.48. Moreover, unless there is an O(mdrsl)—time algorithm for counting
4-cycles for some €' > 0, there is no f(k)O(n%=%)-time algorithm for any € > 0.

There is an algorithm that computes Sube,,(G) in time f(k)O(n%), where ds < 1.63.
Moreover, unless there is an O(md5—5/)—time algorithm for counting 5-cycles for some &' > 0,
there is no f(k)O(n%~¢)-time algorithm for any € > 0.

Previously, for bounded degeneracy graphs, subquadratic results were only known for
detecting cycles, by a result of Alon, Yuster and Zwick [4]. Theorem 1.2 improves or matches
their bounds in all cases, despite solving the harder problem of counting. The lower bounds

L We can obtain a similar result for the problem of counting only induced subgraphs IndSub (@), as it
can be expressed as a linear combination of Subg- (G) for some patterns H' with V(H') = V(H).

2 We express our results parameterizing by the degeneracy of the input graph G. Note that if G is from a
class with bounded degeneracy, then f(x) is constant and we can ignore that term.
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relating to cycle counting in general graphs follow directly from the techniques of GLSY [29)].
We note that the exponents dy have not been improved for twenty years [4, 53]. As a side
corollary of our methods, we also get a better algorithm for counting 5-cycles in arbitrary
graphs (Corollary 1.7).

1.2 Main ldeas

The theorems above are obtained from a new reduction technique that converts homomorph-
ism counting in bounded degeneracy graphs to subgraph counting in arbitrary graphs for
some specific patterns.

The starting point for most subgraph counting algorithms for bounded degeneracy graphs
is to use graph orientations [48]. A graph G has bounded degeneracy iff there exists an
acyclic orientation G such that all vertices have bounded outdegree. (An acyclic orientation
is obtained by directing the edges of G into a DAG.) Moreover, this orientation can be found
in linear time [39]. To count H-subgraphs in G, we consider all possible orientations Hof H
and compute (the sum of) all Subﬁ(é).

The approach formalized by Bressan [13] and Bera-Pashanasangi-Seshadhri [7] is to break
H into a collection of (out)directed trees rooted at the sources of H. The copies of each tree
in G can be enumerated in linear time, since outdegrees are bounded. We need to figure out
how to "assemble" these trees into copies of H.

Bressan’s DAG-tree decomposition gives a systematic method to perform this assembly,
and the running time is O(n7), where 7 is the “DAG-treewidth” of H. The definition is
technical, so we do not give details here. Also, this method only gives the homomorphism
count (edge-preserving maps from H to (), and we require further techniques to get subgraph
counts [20]. The main contribution of the linear time dichotomy theorems is to completely
characterize patterns H such that all orientations H have DAG-treewidth one 8, 6].

Since 7 is a natural number, to get subquadratic time algorithms, we need new ideas.

1.2.1 The 6-cycle

It is well-known (from [4]) that linear-time orientation based methods hit an obstruction
at 6-cycles. Consider the oriented 6-cycle in the left of Fig.1. It is basically a “triangle”
of out-out wedges (as given by the red lines); indeed, one can show that 6-cycle counting
in bounded degeneracy graphs is essentially equivalent to triangle counting in arbitrary
graphs [7, 8, 6]. This observation can be converted into an algorithm, as was shown by
GLSY [29]. Starting with é, we create a new graph with edges (the red lines) corresponding
to the endpoints of out-out wedges. Since G has bounded outdegree, the number of edges in
the new graph is O(n). Every triangle in the new graph corresponds to a (directed) 6-cycle

homomorphism in G. Triangle counting in the new graph can be done in O(n!41)

time (or
n3/2 time using a combinatorial algorithm) [4]. Getting the subgraph count is more involved,
but we can use existing methods that reduce to homomorphism counting [20].

One can extend this idea more generally as follows. Let H be a directed pattern, a source
is any vertex with no incoming arcs, and we define an intersection vertex as any vertex that
can be “reached” by two different sources.

Suppose there are k sources and k intersection vertices. Suppose further that there is
an ordering of the sources {so, ..., sx—1} and the intersection vertices {ig, ..., x—1} of H such
that, for all j, only the sources s; and s;41 (taking modulo % in the indexes) can both reach
the vertex 7;. This is the case of the oriented Cg and Cg in Fig. 1 or of any acyclic orientation
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Figure 1 (a) The 6-cycle obstruction, this orientation has three sources intersecting with each
other, this oriented pattern can not be counted in linear time in bounded degeneracy graphs. Adding
an edge connecting the end-points of every out-out wedge gives a triangle. (b) An example of how
the oriented Cg reduces to a C4, the four sources become edges connecting the intersection vertices.

of any cycle. One can then construct a new graph G’ such that Subg, (G') is the same as
Hom (G) (where Hom ;3(G) denotes the homomorphism count).

1.2.2 Generalizing to non-cyclic patterns

So far, the algorithmic approach only makes sense for cycle patterns. Our main contribution
is a framework that generalizes this approach to count homomorphisms and subgraphs of
more complex patterns.

The first part of our framework is the concept of P-reducible patterns. Let P be a
hypergraph, a directed pattern is P-reducible if we can reduce counting homomorphisms of
it to counting P subgraphs in a sparse hypergraph. The formal definition is technical and
can be seen in §3. We provide a simplified exposition in this section.

Consider a directed pattern H, for example the left image in Fig. 2. We can replace every
source with a hyperedge connecting the intersection vertices reachable from the source. The
result is a graph (or hypergraph) P such that H is P-reducible.

However, our framework allows for even more freedom: instead of looking at individual
sources, we partition sources into sets of sources S.. See the rightmost figure in Fig. 2 for an
example, where the 6 sources are divided into 4 sets of sources. The sub-patterns induced by

the vertices reachable from every set of sources are “easy” to count using existing techniques.

We can also arrange the intersection vertices into sets I,, such that every set of sources will
reach some sets of intersection vertices. We can obtain P by replacing every set of intersection
vertices with a vertex and every set of sources S, with a hyperedge e that contains the
vertices corresponding to the sets of intersection vertices that can be reached by S..

In the second example of Fig. 2, the intersection of the vertices reachable from source sets
forms a “cyclic arrangement”. The intersection vertices reachable from S; are also reachable
from S5 and Sy, and similarly for the other sets of sources, giving that the pattern will be
Cy-reducible.

1.2.3 The reduced graph

The second part of our framework is the reduced graph. If a pattern is P-reducible, then
for any directed input graph é, we can construct a colored weighted graph Gp with the
following property. The number of homomorphisms of the original pattern relates to the
number of colorful copies of P in Gp.

The reduced graph consists of |V (P)| layers of vertices, where each layer is related to
one intersection set of H. Specifically, there is a vertex in the j-th layer for every posmble
image of the corresponding intersection set I; in G, that is, every set of vertices in G such
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Figure 2 Two more complex examples of P-reducibility.
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Figure 3 An example of the construction of Ge¢,, for pattern H and input graph G. The red
vertices correspond with ¢; in H , the green ones with i2 and the blue ones with i3. The weight of
the edges is 1 except when indicated. For example there are two homomorphisms ¢ : ﬁ(sz) e
that map ¢, and 42 to ¢, hence the edge {c-1, -2} has weight 2. One can verify that the number of
homomorphisms from H to G is equal to the sum of products of (colorful) triangles in Ge,.

that I; can be mapped to it. Moreover, the vertices of every layer will have the same color.
For example, for every intersection set I; in H and any map ¢ : [; — G there is a vertex
(¢(I;)-j) in Gp with color j.3

The edges have weights that represent the number of homomorphisms mapping the
intersection sets to the corresponding images. For example, let S be a source set reaching two
intersection sets I; = {i;} and I;; = {i;/}, and let u,v € G. An edge e connecting (u-j) and
(v-j") with weight w = w(e) indicates that there are w different homomorphisms mapping
H (S) (the subgraph of H induced by the vertices reachable from S) to G that map j to
u and j’ to v. Additionally we can show that if G has bounded outdegree, then the new
reduced graph will have O(n) edges.

We give an example in Fig. 3. For simplicity of exposition, the graph G is smaller than
the pattern. Each vertex of G has three copies (each with a different color) in the reduced
graph, denoted G¢,. Since the vertex a cannot be the image of any intersection vertex (it has
zero indegree), copies of this vertex do not appear in G¢,. Observe that there is no mapping
of an out-out wedge where b is one endpoint and d is the other endpoint. Hence, there is no
edge from a copy of b to a copy of d.

Every colorful copy of P in Gp correspond to fixing the positions of the intersection sets

3 There could be O(n!i!) such vertices, however, as we will note later, there will be at most O(n) edges,
so we can ignore vertices with degree 0 and we do not need to even create them.
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in é, and the weight of each hyperedge will correspond to the number of homomorphisms
mapping that portion of the graph. Hence the product of the weights of all hyperedges in
each copy will give the total number of homomorphisms mapping all the intersection sets
to the corresponding vertices in G. Therefore, the total number of homomorphisms will be
equal to the quantity Col-WSubp(Gp), which corresponds to the sum of products of weights
of colorful copies of P. That is:

Col-WSubp(Gp) = > II wee (1)

P’'€Col-8(P,Gp) e€E(P")

Here, Col-S(P,Gp) denotes the set of distinct colorful copies of P in Gp. We are able to
show that solving Col-WSubp(Gp) is equivalent to counting the number of homomorphisms
of H in G.

Therefore, we can count homomorphisms of P-reducible patterns in the same time as
counting colorful copies of P in the reduced graph.

» Lemma 1.3. Let ¢ > 1. If there exists a O(mc)—time algorithm that for any graph G’
computes Col-WSubp(G'), then for any P-reducible pattern H and directed input graph G,
we can compute Homﬁ(é) in time f(d)O(n°), where d is the mazimum outdegree of G.

1.2.4 From directed to undirected: getting homomorphisms counts

To extend our reduction framework to undirected graphs we introduce the concept of P-
computable patterns. Note that different acyclic orientations of the same pattern might
reduce to different graphs. Let P be a set of graphs, we say that a pattern H is P-computable
if all the acyclic orientations of H can be computed in linear time or are P-reducible for
some P € P. If for all the patterns in P we can compute Col-WSubp in time O(m®) then
we can use Lemma 1.3 to get a bound on the complexity of Hom g (G).

For each k > 6, we find a set of hypergraphs Py such that all patterns with &k vertices are
‘Pr-computable. These sets grow with £ and we have Py, C Py1. We give a definition of
these sets in Section §5 and prove the following lemma.

» Lemma 1.4. Let k > 6, every connected pattern H with k vertices is Py-computable.

For k =9 we are able to show that there exists a subset Pg of Py such that every 9-vertex
pattern is also Pg-computable and for every pattern P € Pg we can compute Col-WSubp in
O(m®/3) time. Allowing us to show that for all patterns with 9 vertices or less we can count
the number of homomorphisms in subquadratic time.

We can also show similar results for cycles. All orientations of cycle patterns can be
reduced to cycles of half their length. This means that any 2k-cycle and 2k + 1-cycle are
{Cr U ...UCs}-computable (in these cases we will simply write Ci-computable).

We can also show that for all cycles we can compute Col-WSubg, (G) in O(mf) time,
the fastest time for detecting k-cycles in general graphs.

» Lemma 1.5. For all k > 3, there is an algorithm that computes Col-WSube, (G) in time
O(m).

This means that we can compute the number of homomorphisms of Cy; and Co41 in
time O(m), similar result to the one obtained in GLSY [29].
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1.2.5 Getting subgraph counts

At this point, we have algorithms for computing various pattern homomorphisms. To get
subgraph counts, we need the inclusion-exclusion techniques of [20]. One can express the H-
subgraph count as a linear combination of H’-homomorphism counts, where H' is a pattern
in Spasm(H). The Spasm(H) consists of all patterns H' such that H has a surjective
homomorphism to H’. Thus, every pattern in the spasm has at most as many vertices as H.

Hence for any pattern H with k vertices, all the patterns in Spasm(H) will have at most
k vertices and hence they will also be Pg-computable, giving Theorem 1.1.

In the case of the cycles, to be able to extend the results from last section to the Sub
problem, we analyze the spasm of the different cycles. For k < 10 we are able to show that
the patterns in the spasms of Cy are also C|j/2)-computable. That combined with Lemma 1.5
implies the upper bound of Theorem 1.2.

1.2.6 Inverting the reduction for conditional hardness

We show that in some cases our reduction procedure is optimal. For example, counting small
cycles in general graphs can be reduced to counting cycles of twice the length in graphs of
degeneracy k = 2. The reduction is quite simple and just involves subdividing the edges.
With a slight modification, the subdivision approach can be used to show lower bounds for
odd cycles too, which gives the lower bound of Theorem 1.2. We note that an analogous
result for counting homomorphisms was shown in GLSY [29].

» Lemma 1.6. Let 6 < k < 10. For any ¢ > 0, the ewistence of an f(k)O(ndr/217¢)-
time algorithm for counting k-cycles implies an O(m@1x/2) *El)—tz'me algorithm for counting
|k/2]-cycles in general graphs, for some &' > 0.

This inversion of the reduction procedure also gives us an algorithm for counting undirected
5-cycles in general graphs which improves on the current state of the art, and matches the
complexity for 5-cycle detection.

» Corollary 1.7. There is an algorithm that, for any graph G, computes Sube, (G) in time
O (m%) < O (m"53).

The approach of subdividing edges can be used to prove a relation between other patterns
too. In the case of hypergraphs, we can replace hyperedges of arity r by r-stars. We are able
to show a strong relation between the hypergraph Ha depicted in Fig. 4, and a 10-vertex
pattern. We conjecture that for this pattern we can not count the number of subgraphs in
subquadratic time.

» Conjecture 1.8. For any ¢ > 0, there is no O(m?~¢)-time algorithm for computing
Suby, (G).

This conjecture implies that there are no subquadratic algorithms for computing the number
of subgraphs of all 10-vertex patterns.

» Lemma 1.9. If Conjecture 1.8 holds, then for any e > 0 there is no algorithm that computes
Subg (G) in time f(k)O(n*=¢) for all patterns H with 10 vertices.

We consider it an interesting open problem to relate our conjecture with existing fine-
grained complexity assumptions. Some previous works prove barriers for subquadratic listing
in general graphs [17], but no similar results exist for counting hypergraphs.
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Figure 4 The hypergraph Ha.

1.3 Related Work

Subgraph counting is closely tied to homomorphism counting; in some cases, it is more
convenient to talk about the latter. Seminal work of Curticepean-Dell-Marx showed that the
optimal algorithms for subgraph counting can be designed from homomorphism counting
algorithms and vice versa [20].

Much of the study of subgraph/homomorphism counting comes from paramterized
complexity theory. Diaz et al [24] gave a O(2Fnt(F)+1) algorithm for determining the
H-homomorphism count, where tw(H) is the treewidth of H. Dalmau and Jonsson [22]
proved that Homy (G) is polynomial time solvable iff H has bounded treewidth. Otherwise
it is #W[1]-complete. Roth and Wellnitz [47] consider restrictions of both H and G, and
focus of #W[1]-completeness.

Tree decompositions have played an important role in subgraph counting. We give a brief
review of the graph parameters treewidth and degeneracy. The notion of tree decomposition
and treewidth were introduced in a seminal work by Robertson and Seymour [44, 45, 46],
although the concept was known earlier [10, 31].

Degeneracy is a measure of sparsity and has been known since the early work of Szekeres-
Wilf [52]. We refer the reader to the short survey of Seshadhri [48] about degeneracy and
algorithms. The degeneracy has been exploited for subgraph counting problems in many
algorithmic results [19, 27, 2, 35, 42, 40, 34, 41].

Bressan connected degeneracy to treewidth-like notation and introduced the concept
of DAG treewidth [12, 13]. The main result is the following. For a pattern H with
|[V(H)| = k and an input graph G with |E(G)| = m and degeneracy k, one can count
Homp (G) in f(k, k)O(m™ ) logm) time, where 7(H) is the DAG treewidth of H. Assuming
the exponential time hypothesis [32], the subgraph counting problem does not admit any
f(r, k)yme(H)/Inr(H))_time algorithm, for any positive function f: N x N — N.

Bera-Pashanasangi-Seshadhri introduced the first theory of linear time homomorphism
counting [7], showing that all patterns with at most 5 vertices could be counted in linear
time. It was later shown that for every pattern with no induced cycles of length 6 or more,
the number of homomorphisms could also be counted in linear time [8, 6].

A recent work of Komarath et al. [36] gave quadratic and cubic algorithms for counting
cycles in sparse graphs. Gishboliner et al. gave subquadratic algorithms for homomorphism
counting of cycles in bounded degeneracy graphs [29]. Bressan, Lanziger and Roth have also
studied counting algorithms for directed patterns [14].

1.4 Paper Organization

In Section 3, we define our reduction framework formally and prove the equivalence between
the bounded degeneracy and the general setting. In Section 4, we prove that many patterns
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are cycle-reducible. In Section 5, we define the sets P; and complete the proof of the main
theorem. Finally, in Section 6, we show how to compute Col-WSub for cycle patterns. Due
to space limitations most proofs have been deferred to the Full Version, including the proofs
of Lemma 1.6 and Lemma 1.9.

2 Preliminaries

Graphs, subgraphs and homomorphisms

We use H = (V(H), E(H)) to denote the pattern graph and G = (V(G), E(G)) to denote
the input graph. We will use n = |[V(G)| and m = |E(G)| for the number of vertices and
edges of G respectively.

A homomorphism from H to G is a mapping ¢ : V(H) — V(G) such that V{u,v} € E(H)
we have {¢(u), p(v)} € E(G). We use ®(H, G) to denote the set of all homomorphisms from
H to G. We use Hompg (G) to denote the problem of counting the number of homomorphisms
from H to G, that is, computing |®(H, G)|. Similarly we use Suby(G) to denote the problem
of counting the number of subgraphs (not necessarily induced) of G isomorphic to H.

We say that two homomorphisms ¢ : V — G and ¢’ : V' — G agree if for any vertex
v € VNV’ we have ¢(v) = ¢'(v).

The spasm of a graph is the set of all possible graphs obtained by recursively combining
two vertices that are not connected by an edge, removing any duplicated edge. Using
inclusion-exclusion arguments one can express the value of Subgy(G) as a weighted sum
of homomorphism counts of the graphs in the spasm of H. Hence, computing Homp (G)
for all H' € Spasm(H), allows to compute Subgy (G), as given by the following equation:
SubH(G) = ZH’ESpasm(H) f(H/)HOHlH/(G)

Here f(H') are a series of non-zero coefficients that can be computed for each H. See
[11] for more details. Curticapean, Dell and Marx showed that this process is optimal [20],
that is, the complexity of Subg (G) is exactly the hardest complexity of Hompg. (G) for the
graphs in Spasm(H).

Degeneracy and directed graphs

A graph G is k-degenerate if every subgraph has a minimum degree of at most k. The
degeneracy x(G) of a graph is the minimum nonnegative value k such that G is k-degenerate.
There exists an acyclic orientation of a graph, called the degeneracy orientation, which has
the property that the maximum outdegree of the graph is at most « [39]. Additionally, this
orientation can be computed in O(n +m) time. We will use G to denote the directed input
graph. For a pattern H, we use ¥(H) to denote the set of acyclic orientations of H. When
orienting the input graph, every occurrence of H will now appear as exactly one of its acyclic
orientations, that is, Hompy(G) = ZﬁeE(H) Homﬁ(é).

We say that v € V(H) is a source if its in-degree is 0. We use S(H) to denote the set of
sources of H. We say a vertex u is reachable from v if there is a directed path connecting v
to u and use Reach (s) to denote the set of vertices reachable from the source s. Abusing
notation, for a set S’ C S(H) we use Reach(S") (or Reach(S') if H is clear from the
context) to denote the set of vertices reachable from at least one vertex in S’. We use H(S)
and H (s) for the subgraphs of H induced by Reach(S) and Reach g(s).

We say that a vertex v of H is an intersection vertex if there are at least two distinct
sources s, s’ € S(H) such that v is reachable from both of them, that is, v € H(s) N H(s).
We use I(H) to denote the set of intersection vertices. Note that S(H) N I(H) = 0.
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The DAG-treewidth

Bressan introduced the concept of DAG-tree decomposition of a directed acyclic graph [12]:

» Definition 2.1 (DAG-tree decomposition [12]). For a given directed acyclic graph H =
(V(H), E(H)), a DAG-tree decomposition of H is a rooted tree T = (B,E) such that:

Each node B € B, is a subset of the sources of H, B C S(H).

Every source of H is in at least one node of T, Upes B = S(ﬁ)

VB, By, By € B, if B is in the unique path between By and By in T, then Reachg(B1) N
Reach (Bz) C Reach(B).

The DAG-treewidth of a DAG-tree decomposition T', 7(T'), is the maximum size of all
the bags in T'. The DAG-treewidth of a directed acyclic graph H is the minimum value of
7(T) across all valid DAG-tree decomposition T of H. For an undirected graph H, we will
have that 7(H) = max gy, T(H).

Using DAG-tree decomposition to compute homomorphisms

Bressan gave an algorithm that computes Homy (G) making use of the DAG-tree decom-
position of a directed pattern [12, 13]. The algorithm decomposes the pattern into smaller
subgraphs, computes the number of homomorphisms of every subgraph and then combines
the counts using dynamic programming.

» Theorem 2.2. [12] For any pattern H with k vertices there is an algorithm that computes
Hompy (G) in time f(k,)O(n™H)).

For the patterns with 7(H) = 1 we obtain an algorithm that runs in near-linear time for
graphs of constant degeneracy. Bera et al. showed an exact characterization of which patterns
have 7(H) = 1, which depends only on the length of the largest induced cycle of the pattern
(LICL(H)).

» Lemma 2.3. [8/ LICL(H) <6< 7(H) =1.

If we analyze the algorithm from Bressan in more detail, we can see that it can be used
as a black box to obtain some more fine-grained counts. In order to understand this we need
to introduce the following definition:

A homomorphism ¢’ extends ¢ if for every vertex v mapped by ¢ we have ¢(u) = ¢'(u).

Let ¢ be a homomorphism from a subgraph H’ of H to G. We define ext (I;T, é; (;5) as the
number of homomorphisms ¢’ from H to G that extend o.

» Lemma 2.4 ( Lemma 5 in [13] (restated)). There exists an algorithm that, given a directed
pattern H with k vertices and a DAG-tree decomposition T rooted in s with 7(T) =1, and a
directed graph G with n vertices and maximum outdegree d; returns, for every homomorphism

o ﬁ(s) — G, the quantity ext (ﬁ, G: (b). The algorithm runs in time f(k,d)O(n).

Hypergraphs

A hypergraph is a generalization of a graph where each edge (or hyperedge) is a subset of
the vertices. The arity of a hyperedge is the number of vertices that it contains. We will
only consider hypergraphs where every hyperedge has arity at least 2. We use E(G) for the
set of hyperedges of G, where for each e € F(G) we have e C V(G). We will also consider
weighted hypergraphs, for a hypergraph G, the function w : E(G) — N gives the weight of
each hyperedge e in G. We use S to denote the simplex hypergraph of arity k, that is, the
hypergraph on k + 1 vertices with all possible hyperedges of arity k.
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3  The reduction procedure

In this section, we explain the reduction procedure underlying the notion of P-reducibility.
The idea is to organize the structure of the directed pattern H based on the hypergraph P.
First, we partition the set of sources of the directed pattern H into |E(P)| disjoint
subsets S., one for each hyperedge e in E(P). Every source belongs to exactly one subset Se.
This partition allows us to decompose H into smaller subgraphs, each corresponding to a
hyperedge, where the subgraphs can be efficiently counted using Bressan’s algorithm.

Second, we associate to each vertex v € V(P) a subset of intersection vertices I,, C I(H).
Not all the intersection vertices need to belong to one of the subsets; we let I* denote the
set of intersection vertices that appear in at least one I,. A given intersection vertex may
belong to multiple subsets, but we require that the vertices of P corresponding to all subsets
containing a common intersection vertex induce a connected subgraph.

To connect the sources to the intersection vertices, we define, for each hyperedge e, the
set I(e) as the subset of I* reachable from the sources in S.. We require that the sources in
S. reach all the intersection vertices assigned to the vertices v incident to e. Moreover, for
each vertex v € V(P), the sources associated with any hyperedge containing v must reach
all the vertices in I,,.

These conditions ensure that we can correctly combine the homomorphism counts for
each subgraph H (Se) to compute the homomorphism counts of H. We now present the full
formal definition.

» Definition 3.1 (P-reducible). A connected DAG H is P-reducible if there exist subsets
I, C I(H) for every vertex v € V(P), and subsets S, C S(H) for every hyperedge e € E(P),
satisfying the following conditions:

Let I* =, I,. For every intersection vertexi € I*, the set of vertices {v : i € I,} C V(P)
induces a connected hypergraph in P.

The subsets S, are diijoz'nt, i.e., Se NSy =0 for all e # €', and they cover all sources,
ie., Ueep(p) Se = S(H).

For every hyperedge e € E(P), the subset S, contains a source so such that H(s.) N I* =
H(S.)NI* = I(e), and the subgraph H(S.) admits a 7 = 1 DAG-tree decomposition
rooted at s,.

For every vertex v € V(P) and every hyperedge e containing v, we have I, C I(e).
For every hyperedge e € E(P), we have |, .. I, = I(e).

vEe TV

We now define the reduced graph Gp.

» Definition 3.2 (Reduced graph Gp). Given a P-reducible directed pattern on source sets
{Se : e € E(P)} and intersection sets {I, : v € V(P)}, we define the reduced graph Gp of
the directed input graph G as follows:

For every vertex v € V(P) and every homomorphism ¢ : I, — G we have the vertex
(¢(1)-v) with color v. The vertices with the same color form the “layers” of Gp.

For every hyperedge e € E(P) and for every homomorphism ¢ : I(e) — G, let ¢, be
the restriction of ¢ to I, for each vertex v € e, we will have a hyperedge connecting the
vertices {(¢n(Iy)-v) : v € e} with weight ext (ﬁ(Se)7 G; (b),

We use V(”)(G p) to refer to the vertices of Gp in the v-th layer. The number of vertices
in every layer v can be up to O(n!™!), however we will only consider vertices that are not
isolated, that is, have degree at least 1. We can show that we can construct Gp efficiently
when only considering such vertices.
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» Lemma 3.3. Given a P-reducible pattern H and a directed graph G with mazimum
outdegree d, we can construct Gp in f(d)O(n) time. Additionally, the number of non-isolated
vertices and the total number of hyperedges are bounded by f(d)O(n).

We can now prove the equivalence between homomorphisms of the original pattern and
weighted colorful copies of the reduced hypergraph. This lemma relates the counts between
the original and the reduced graph.

—

» Lemma 3.4. Hom ;(G) = Col-WSubp(Gp)
Finally, we have all the tools to complete our reduction framework, giving us Lemma 1.3.

» Lemma 1.3. Let ¢ > 1. If there exists a O(m®)-time algorithm that for any graph G’
computes Col-WSubp(G'), then for any P-reducible pattern H and directed input graph G,
we can compute Hom 5 (G) in time f(d)O(n), where d is the mazimum outdegree of G.

Proof. For any P-reducible pattern we can use Lemma 3.3 to construct the reduced Gp
graph in time f(d)O(n) for any input graph G. This graph will have f(d)O(n) edges. We
can then use the O(m®) algorithm to compute Col-WSubp(Gp) in time f(d)O(n°). From
Lemma 3.4 we have that Col-WSubp(Gp) will be equal to Homﬁ(é). <

3.1 From directed to undirected

We introduce the concept of P-computable, which will help us give upper bounds in the
complexity of undirected patterns.

» Definition 3.5 (P-computable). Let P be a set of hypergraphs. We say that a pattern H is
P-computable if every acyclic orientation H € X(H) has either DAG-treewidth of 1 or there
exists a hypergraph P € P such that H is P-reducible.

If a pattern H is P-computable and P is only formed by cyclic patterns we will instead
write C;-computable, where [ is the length of the largest cycle in P. The complexity of
computing homomorphisms of P-computable patterns will be dominated by the hardest
complexity for computing Col-WSubp.

» Lemma 3.6. Let P be a set of hypergraphs, if for every hypergraph P € P there is
an algorithm that computes Col-WSubp in time O(m®), then for any input graph G with
degeneracy k and any P-computable pattern H, there is an algorithm that computes Hom g (G)

in time f(1k)O(n®).

4 Reducing to cycles

We first focus on patterns that can be reduced to counting cycles. We start by introducing
the following two lemmas, showing that directed patterns with either few sources or few
intersection vertices are Cs-reducible.

» Lemma 4.1. Every directed acyclic pattern H with at most 3 sources is either Cs-reducible

—

orT(H) =1.

» Lemma 4.2. FEvery directed acyclic pattern H with at most 3 intersection vertices is either

—

Cs-reducible or T(H) = 1.

Using this two lemmas we can prove that all 6 and 7-vertex patterns are Cz-computable.
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» Lemma 4.3. FEvery 6 and 7-vertex undirected pattern H is C3-computable.

Additionally, the patterns in the spasm will always have less vertices, and hence all
patterns in the spasms of all 6 and 7-vertex patterns will also be Cs-computable. This fact,
together with Lemma 1.5 gives the following.

» Corollary 4.4. Let H be a pattern with 6 or 7 vertices. For any input graph G, we can
compute Hompy (G) and Subgy(G) in time f(n)O(nd3) < f(k)O(n'11).

We can also show that the acyclic orientations of cycle patterns are always Cg-reducible
for some k at most half of the length of the cycle. This is equivalent to the result in [29], but
expressed using our reducibility framework.

» Lemma 4.5. For all k > 3, Co, and Cox41 are C-computable.

Moreover, we can also show that all patterns in the spasms of cycles up to length 10 are
also cycle-computable.

» Lemma 4.6. All the patterns in Spasm(Cs) and Spasm(Cr) are Cs-computable.
All the patterns in Spasm(Cs) and Spasm(Cq) are Cy-computable.
All the patterns in Spasm(Cig) are Cs-computable.

This lemma allows us to prove the upper bound of Theorem 1.2.

» Lemma 4.7. For all 6 < k < 10, there is an algorithm that computes Sube, (G) in time
F(R)O(msr21),

5 Reducing to other patterns

Consider the set of directed patterns with 8 vertices. Using the results of the previous section
we can show that most of the orientations will either admit a DAG-tree decomposition with
7 = 1 or will be Cs-reducible. However, if a pattern H has 4 sources and 4 intersection
vertices then it might not be cycle-reducible. Instead we might need to reduce to some
hypergraphs, like in Fig. 2. The following definitions will help us determining which patterns
we will need to reduce to for patterns with at least 8 vertices.

» Definition 5.1. [P, ,, P] We define P; s as the set of hypergraphs P with i vertices and s
hyperedges such that:

Every vertex has degree at least 2.

Every hyperedge contains at least 2 vertices.

No hyperedge is a subset of any other hyperedge.

For every pair of distinct vertices u,v € V(P) the set of hyperedges containing u can not
be equal or a subset of the set of hyperedges containing v.

For any k > 7, we define Py, recursively as the union of Pr—1 and all sets P; s, withi+s =k
and i,s > 4, with Ps = {Cs}.

N

We can prove that for any k, patterns with k vertices will reduce to some pattern in Py.
This was stated earlier as Lemma 1.4.

» Lemma 1.4. Let k > 6, every connected pattern H with k vertices is Py-computable.

In order to prove Theorem 1.1, we show exactly which patterns form Pg.

» Lemma 5.2. Py = {C3,C4,D,83,H1,H2}
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Figure 5 The diamond graph D, the hypergraph H: and the hypergraph Ho.

Where, D is the diamond pattern, Ss the 3-simplex, H; and Hs are the two hypergraphs
shown in Fig. 5. It turns out that simplex-reducible patterns are also cycle-reducible. Hence

we can set Py = Py \ S3 and show that every Py-computable pattern is also Pg-computable.

» Lemma 5.3. If a pattern H is Py-computable, then it is also Pg-computable
We can show that all the hypergraphs in Pg can be counted in subquadratic time.

» Lemma 5.4. For any weighted colored hypergraph G with m edges, there is an algorithm
that computes Col-WSubp(G) for all patterns P € Pg in time O(m>/3).

Finally we can prove the main theorem.

» Theorem 1.1. (Main Theorem) There is an algorithm that computes Suby(G) for all
patterns H with at most 9 vertices in time f(x)O(n®/3).

Proof. Let H be a pattern with 9 or less vertices. From Lemma 1.4 we have that H is
Po-computable, using Lemma 5.3 we will have that it is also Pg-computable. Additionally,
from Lemma 5.4 we have that for all hypergraphs P € Pg we can compute Col-WSubp(G) in
O(m®/3) time. This together with Lemma 3.6 gives that we compute Hom (G) in f(r)O(n5/3)
time.

All the graphs H’ in the Spasm of H have also at most 9 vertices, hence we can compute
Homp/ (G) for them and use inclusion-exclusion to obtain the value of Suby (G) in total time
f(r)O(nd/3). <

6 Counting cycles

We adapt the two algorithms for counting weighted homomorphisms of cycles shown in [29] for
computing Col-WSubg, . The first is a combinatorial algorithm that matches the complexity
of detecting directed cycles combinatorially [4]. The second is a matrix multiplication based
algorithm which adapts the algorithm from [53]. The complexity of this algorithm for
counting Cy, is given by the value ¢, the exact values of ¢, for £ > 6 are not known, but the
following upper bound holds [21]:

wk+1)

o < wk —4/k
M=tk —1

<
*= 0wt k—2—4/k

if k is odd if k is even (2)

Where w is the matrix multiplication exponent.
» Lemma 6.1. Let G be a colored weighted graph with m edges. For all k > 3:

There is a combinatorial algorithm that computes Col-WSubc, (G) in time O(m?~1/Tk/21),
There is an algorithm that computes Col-WSube, (G) in time O(m®*).
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For any k we use dj, for the fastest of the two algorithms, similar to [29]. Lemma1.5

follows directly from Lemma 6.1 and the following equation:

di. = min(2 - 1/[k/2], cx) (3)

Note that d < 2 for all k, hence we have subquadratic algorithms for all cycles. For

k < 6 and using the best known upper bound w < 2.371339 on the matrix multiplication
exponent [3], we have that the matrix multiplication algorithm is faster and we get the
following bounds on dg: d3 < 1.41, d4 < 1.48 and d5 < 1.63.
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