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ABSTRACT
In this short note, we give a novel algorithm for$ (1) round triangle
counting in bounded arboricity graphs. Counting triangles in $ (1)
rounds (exactly) is listed as one of the interesting remaining open
problems in the recent survey of Im et al. [17]. The previous paper of
Biswas et al. [8], which achieved the best bounds under this setting,
used$ (log log=) rounds in sublinear space permachine and$ (<U)
total space where U is the arboricity of the graph and = and< are
the number of vertices and edges in the graph, respectively. Our
new algorithm is very simple, achieves the optimal $ (1) rounds
without increasing the space per machine and the total space, and
has the potential of being easily implementable in practice.
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• Theory of computation ! MapReduce algorithms; Dis-
tributed algorithms; Graph algorithms analysis.
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1 INTRODUCTION
In this short extended abstract, we study the triangle counting
problem in theMassively Parallel Computation (MPC) model. Given
a simple, undirected input graph,⌧ = (+ , ⇢), the total triangle count
is the number of cycles of length three in the graph. This problem
has a wide variety of applications including community detection,
spam detection, link recommendation, and social network analysis.
Triangle counting and enumeration play key roles in database joins
and are among the most important problems in database theory.
Because of these applications, we often need to solve the problem
on massive graphs and datasets. For a sample of works on triangle
counting on large graphs, both in theory and practice, see [1–5, 7,
8, 12–14, 19, 21–25, 27, 28] and references therein.
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The Massively Parallel Computation (MPC) model [6, 16, 20]
is one of the main models for modeling large distributed systems
capable of processing graphs with billions or even trillions of edges.
These systems include MapReduce [10], Hadoop [29], Spark [30]
and Dryad [18]. In the MPC model, we are given" machines each
with ( memory. The initial input is partitioned arbitrarily across the
machines. Computation is performed using a number of synchro-
nous rounds. In each round, �rst, local computation is performed
in each machine using the data that is stored in the machine. Then,
data is sent between machines synchronously. No machine can
receive or send more than ( data. The complexity measures we care
about in this setting are the number of rounds of communication,
', the space per machine, ( , and the total memory used by the
computation, which is equal to" · ( . This model has gained much
interest within the distributed and parallel communities with an
abundance of research works published within just the past few
years. For a survey of such works, see [17] and references therein.

In this paper, we give a novel algorithm for constant-round
triangle counting in bounded arboricity graphs. Bounded arboricity
graphs are graphs whose edges can be decomposed into a small
number of forests. Speci�cally, a graph has arboricity U if the set
of edges in the graph can be decomposed into at most U forests.
Various papers have demonstrated that a large number of real-
world graphs have very small arboricity [11, 26]. The best previous
result of Biswas et al. [8] for bounded arboricity graphs achieved
$ (log log=) rounds in sublinear space permachine and$ (<U) total
space where U is the arboricity of the graph. Despite the importance
of this problem for a wide variety of applications, triangle counting
has remained elusive in the MPC model with either $ (1) round
algorithms su�ering from lower bounds on the count to guarantee
good estimates or the best algorithms needing l (1) rounds for
an exact count. In this short note, we give a simple algorithm for
the bounded arboricity setting where our algorithm returns an
exact count of the number of triangles in$ (1) rounds,$ (=X ) space
per machine for any constant X > 0, and using near-linear total
space when U is small. An added bonus is that our algorithm is
very simple, making it practically implementable for real-world
networks, where U tends to be small.

2 PRELIMINARIES
We formally de�ne the MPC model and arboricity in this section.

De�nition 2.1 (Arboricity). The arboricity, U , of a graph ⌧ =
(+ , ⇢) is the minimum number of forests needed to decompose the
edges of ⌧ .
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De�nition 2.2 (Massively Parallel Computation (MPC) Model). In
the massively parallel computation (MPC) model, there are " ma-
chines which communicate with each other in synchronous rounds.
The input graph, ⌧ = (+ , ⇢), is initially partitioned across the ma-
chines arbitrarily. Each machine has ( space and performs the follow-
ing (in order) during each round:

(1) Each machine performs (unbounded) local computation using
data stored within the machine. (Most reasonable algorithms
will not use a large amount of time.)

(2) At the end of the round, machines exchange messages syn-
chronously to inform the computation for the next round. The
total size of messages sent or received by a machine is upper
bounded by ( .

We seek to minimize ( , the number of rounds of communication,
and the total space ( · " . There are three domains for the size of
( : (i) Sublinear: ( = =X for some constant X 2 (0, 1); (ii) Near-
linear: ( = ⇥(= poly(log=)); (iii) Superlinear: ( = =1+X for constant
X 2 (0, 1).

Throughout, we denote the degree of a vertex E 2 + by deg(E).

3 $ (1) ROUND EXACT TRIANGLE COUNTING
In this section, we give a very simple algorithm for counting the
exact number of triangles in an input graph ⌧ = (+ , ⇢) in $ (=X )
space per machine for any constant X > 0. The main idea behind our
algorithm consists of enumerating the wedges adjacent to the lower
degree endpoint of every edge. We �rst show that the total memory
necessary to perform such an enumeration is bounded by $ (<U)
where U is the arboricity of the input graph ⌧ = (+ , ⇢). Chiba-
Nishizeki [9] showed the following lemma that bounds the sum of
the minimum of the degrees of the endpoints of every edge. For
completeness, we include the proof of Lemma 3.1 in Appendix A.

Lemma 3.1 (Chiba-Nishizeki Sum of Minimum Degree End-
points [9]). Given an input graph ⌧ = (+ , ⇢) with arboricity U ,
it holds that

Õ
(D,E)2⇢ min (deg(D), deg(E))  2<U .

Given Lemma 3.1, we give our MPC algorithm in Algorithm 1.
We use a number of MPC primitives which are listed below and
have been shown [8, 15] to take $ (1/X) rounds (where X > 0) in
$ (=X ) space per machine, and $ ( |# |) total space (# is the input
and |# | is its size):

(1) MPC�S���(# ): sorts a set # of elements,
(2) MPC�C����(# ): counts the number of elements in the mul-

tiset # ,
(3) MPC�D��������(# ): duplicates the elements in # ,
(4) MPC�F�����(# ,"): returns the set of elements that are in

both # and" ,
(5) MPC�C����D���������(# , 8): given a list of tuples # ,

counts the number of copies of each distinct element in
the multiset consisting of the element in the 8-th index of
each tuple; returns a sorted list of tuples (4;4<4=C, 2>D=C)
where 4;4<4=C is a distinct element and 2>D=C is its count,
and

(6) MPC�T��C����(# ,⇡): given a sorted list # of constant-
sized tuples and list of tuples (4;4<4=C, 2>D=C) in ⇡ (where
every element in any tuple in # is counted in ⇡); tag each
element in each tuple in # with its count in ⇡ .

Algorithm 1 $ (1)-Round Exact Triangle Counting

Input: Graph ⌧ = (+ , ⇢), constant X > 0.
Output: An exact count of the number of triangles in ⌧ in $ (1)

rounds, $ (=X ) space per machine, and $ (<U) total space.
1: ⇢ 0  MPC�D��������(⇢).
2: (>AC43⇢ 0  MPC�S���(⇢ 0) by both endpoints of edges in ⇢ 0.
3: ⇡  MPC�C����D���������((>AC43⇢ 0, 0) returning degree

vector of each vertex.
4: )06643(>AC43⇢ 0  MPC�T��C����((>AC43⇢ 0,⇡).
5: for edge 4 = (D, E) 2 ⇢ do
6: LetF  argmin(deg(D), deg(E)).
7: Split (>AC43⇢ 0[F] into size =X partitions:

%4,1, . . . , %4, ddeg(F)/=X e .
8: Send 4 and each partition %4,8 to a separate machine.
9: for each machine" containing an edge 4 and partition %4,8 of

edges do
10: Form wedges using 4 and each edge in %4,8 .
11: for each wedge (0,1, 2) do
12: Construct query ((0, 2), 4,").
13: Let & be the set of all queries.
14: )  MPC�F�����(&, ⇢).
15: Return () , |) |/3).

First, we assume that each vertex is assigned a unique index in
[=]. Our algorithm �rst �nds the adjacent edges to each vertex by
duplicating each edge in Line 1 and then sorting the edges by both
endpoints (Line 2). In other words, for each edge 4 = (D, E) and its
duplicate 4 0 = (D, E), we sort 4 by D and 4 0 by E . Then, we count
the number of edges adjacent to each vertex in Line 3 which allows
us to obtain the endpoint with smaller degree for each edge. Let ⇡
be a vector containing the degree of each vertex. We then use our
degrees stored in ⇡ to tag each edge in (>AC43⇢ 0 with its degree
(Line 4). Then, for each edge (Line 5), we �nd the endpoint with
smaller degree in Line 6 using)06643(>AC43⇢ 0. For the endpointF
with smaller degree, we split the adjacency list forF into chunks
of size =X (Line 7). Let these partitions be %4,1, . . . , %4, ddeg(F)/=X e .
Then, we send each 4 and a partition %4,8 to a separate machine
(Line 8). Partitioning can be done in $ (1/X) MPC rounds by �rst
counting the number of times 2D each vertex D is the lower degree
endpoint, then duplicating each {D, E} edge 2D+2E times and tagging
the duplicate with a unique 8 2 [2D ] or 9 2 [2E]; �nally, we sort all
(duplicated) edges by their smaller degree endpoint and tag, and
partition the sorted list.

For each machine which contains an edge 4 and corresponding
partition %4,8 (Line 9), we form paths of vertex length 3 (2 edges
each), otherwise known as wedges, between 4 and each edge in
%4,8 (Line 10). For each wedge (0,1, 2) where 1 is the middle vertex
(Line 11), the wedge is a triangle if edge (0, 2) exists in the graph.
Thus, we form a query for edge (0, 2) (Line 12). We tag the query
with the edge 4 and the machine" to distinguish between di�erent
queries for the same edge. We de�ne & to be the set of all queries
(Line 13). We then determine the set of queries which are existing
edges by using the MPC �lter primitive (Line 14). We use the �lter
to �lter all queries ((0, 2), 4,") where (0, 2) is an edge. The �lter
primitive can be implemented by sorting all queries together with
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the actual edges. Then, if the count of all sorted elements that
contain (0, 2) is greater than the number of queries for (0, 2), the
edge (0, 2) exists. The �lter then returns all queries for which edge
(0, 2) exists. We let this set of returned queries be) (Line 14). From
(0, 2) and 4 , one can enumerate the triangle. Finally, we return all
�ltered queries and the triangle count which is equal to the number
of �ltered queries divided by 3.

We now prove the number of rounds, space per machine, and
total space used by Algorithm 1.

Theorem 3.2. Algorithm 1 outputs the set of triangles and triangle
count using $ (1/X) MPC rounds, $ (=X ) space per machine for any
constant X > 0, and $ (<U) total space where U is the arboricity of
the graph.

P����. We �rst prove that our algorithm enumerates the set
of triangles in the input graph. For each edge 4 , we enumerate all
wedges formed using 4 and the adjacency list of the smaller degree
endpoint. For each triangle, (0,1, 2), three wedges are enumerated,
one initiated by each of the edges in the triangle. Then, for each
wedge, we check whether the edge that completes the wedge into a
triangle exists in the graph. If it exists, then the wedge is returned
as a query that is a triangle. The triangle can be obtained from
(0, 2) and 4 , both contained in the query. Since each edge of (0,1, 2)
initiates the formation of exactly one wedge, the set of enumerated
queries is exactly three times the number of distinct triangles.

We now show that our algorithm takes $ (1/X) MPC rounds,
$ (=X ) space per machine for any constant X > 0, and $ (<U) total
space where U is the arboricity of the graph. All of our primitives
satisfy these measures. We call a constant number of primitives;
hence the number of rounds necessary to run all of the primitives
is $ (1/X). Then, sending 4 and the associated partitions each into
a separate machine takes one round. Since the adjacency list is
partitioned into =X sized chunks, the total space necessary per
machine is $ (=X ). Finally, $ (=X ) queries are formed per machine.
And by Lemma 3.1, at most $ (<U) total queries are formed. Thus,
the total space usage is $ (<U), the number of rounds is $ (1/X),
and space per machine is $ (=X ) for any constant X > 0. ⇤

3.1 Lower Bound on Number of Rounds
In this section, we show that our number of rounds is optimal. There
exists a simple lower bound of ⌦(1/X) rounds for triangle count-
ing when the initial graph is partitioned across multiple machines.
Suppose we have multiple disjoint subgraphs partitioned across
multiple machines. We show that in this worst case setting, com-
puting the number of triangles in the input graph requires ⌦(1/X)
rounds. This means that our bounds are tight up to constant factors.

Lemma 3.3. Counting the number of triangles in an input graph
with< edges and = < < vertices requires ⌦(1/X) rounds when the
space per machine is =X and total space is<U .

P����. Suppose that each of</=X machines contains the edges
of a disjoint subgraph with number of triangles unknown to the
other machines. Thus, in order to obtain the triangle count, we must
aggregate the counts of the triangles on each individual machine to
one machine. Since each machine has space =X , each machine can
receive only up to =X counts from other machines. The problem

of aggregating the counts onto one machine then reduces to the
problem of constructing constructing a tree with</=X leaves and
where every internal node has degree at most =X . The height of the
tree is then theminimumnumber of rounds required by any triangle
counting algorithm. Such a tree must have height log=X (</=X ) =
log=X (<) � 1 = ⌦(1/X). ⇤

4 OPEN QUESTIONS
The remaining open question is to show that counting the number
of triangles, even when we allow for a (1+Y)-approximation, can be
done in $ (1) rounds in near-linear or sublinear space per machine,
without any assumptions on the minimum number of triangles
that are present in the graph and without sparsity assumptions for
the graph. For very dense graphs, one can potentially use matrix
multiplication techniques. Thus, the interesting setting is when
the graph has arboricity U = l (poly(log=)) but has > (=2) edges.
Another interesting question is to extend our results to other types
of subgraphs beyond triangles.

A PROOF OF LEMMA 3.1
P����. Consider the arboricity decomposition of graph ⌧ =

(+ , ⇢). Let �1, . . . , �U be the U forests of the decomposition. Suppose
we pick an arbitrary root for each tree in each forest �8 . Then, we
orient the edges from the root to the children (toward the leaves).
We assign each edge to the node that it is oriented towards. Then,
each node in forest �8 has at most one edge assigned to it. We denote
the vertex that edge 4 is directed towards by C> (4). Then, we can
show that the sum of the minimum degrees is as follows:

’
(D,E)2⇢

min(deg(D), deg(E)) 
’

18U

’
42�8

deg(C> (4)) (1)


’

18U

’
E2+

deg(E) (2)

 2<U . (3)

Eq. (1) follows because deg(C> (4)) � min(deg(D), deg(E)) where
4 = {D, E}. Eq. (2) follows because each vertex has at most one edge
associated with it; since each vertex has at most one edge associated
with it, it holds that deg(C> (4)) of vertex C> (4) is counted at most
once per forest �8 . ⇤
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