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Abstract 
The traditional method of positioning scans to document existing building geometry relies on expert 
surveyor experience. This research emphasizes the need for optimal scan positioning in automated 
scanning using autonomous robots. The study introduces a framework for planning scans in a stop-and-
go mapping process with a quadruped walking robot, leveraging Building Information Modeling (BIM). 
The framework consists of four phases: generating scan-position options, determining optimal positions, 
organizing the positions, and collecting data using an autonomous scanning system. Experimental 
results demonstrate that this approach outperforms conventional methods. It significantly reduces the 
number of scan positions and operation time in real in- door environments, compared to manual 
scanning by skilled surveyors. Future work will focus on automating the registration process and 
improving computational efficiency. 
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1. Introduction

In recent years, laser-scanning technology has significantly advanced, enabling precise 3D data 
acquisition over long distances with millimetre accuracy [1, 2]. This progress has led to the widespread 
adoption of terrestrial laser scanning (TLS) in various fields, such as construction assessment, historic 
preservation, facility management (FM), and as-built 3D modelling [3, 4, 5, 6, 7]. In the context of FM, 
TLS-generated point clouds facilitate the representation of existing 3D environments and help identify 
defects and discrepancies in comparison to new designs [8, 9]. However, conducting large-area TLS 
surveys is time-consuming and labour-intensive due to manual interventions required by surveyors, 
such as positioning the scanner and scanning the target site. 

To address the challenges associated with large-area TLS, researchers have proposed automated 
systems like the stop-and-go system, utilizing mobile robots to collect precise 3D geometric data [10, 
11, 12]. These robots navigate autonomously to specific positions, conduct static laser scanning, and 
generate 3D point clouds, minimizing scanning time and human involvement. A crucial aspect of these 
stop-and-go systems is determining optimal scan positions that maximize coverage and minimize time 
consumption. 

Currently, determining scan positions in the field relies on the expertise of laser scanning professionals 
and lacks certainty that these positions meet quality constraints, such as the number of scans and the 
distance between positions. Additionally, the scan coverage may not be maximized using these 
manual methods [13]. Researchers have explored computer vision techniques to address this 
challenge, known as the next-best-view (NBV) problem. NBV solutions fall into non-model-based 
methods, which lack prior scene knowledge, and model-based methods, which utilize an initial scene 
model [14]. While non-model based NBV solutions have been proposed [15, 16], they have limitations 
in completely scanning 
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large target spaces [17]. Therefore, robust optimal scan positioning requires prior knowledge of the 
building, exemplified by a BIM. 

This paper aims to determine the optimal scan plan for a quadruped walking robot, leveraging BIM as 
prior knowledge. Furthermore, the proposed framework is validated by conducting real-world 
experiments in indoor environments. 

2. Related Studies 

Various studies have explored methods to determine optimal scan positions for laser scanning, with an 
emphasis on model-based approaches utilizing prior knowledge of the scanned scene [12, 13, 16, 17]. 
While some studies utilized UGVs with wheels [8, 10, 11], quadruped walking robots like Boston 
Dynamics Spot [18] and Unitree Go1 [19] (Fig. 1) were introduced as promising platforms for scanning 
and mapping indoor environments, owing to their unique mobility capabilities and stability in challenging 
terrains [20]. 

 

Fig. 1. SPOT [18] (left) & Unitree Go1 [19] (right). 
 

Blaer and Allen [10] optimized the scan plan for a stop-and-go system using unmanned ground vehicles 
(UGVs) and TLS based on this approach. Other researchers like Soudarissanane and Lindenbergh [21] 
utilized a similar process, although their scan-position candidates were generated from all possible 
points on a 2D grid map, leading to computational inefficiency. Elzaiady and Elnagar [22] performed 2D 
line-of-sight analysis using obstacle polygons extracted from a 2D occupancy grid map. Jia and Lichti 
[23] proposed a more efficient method employing a hierarchical strategy-based weight greedy algorithm 
to minimize candidate numbers. However, these methods were limited by their 2D-based approach, 
lacking consideration for the actual 3D environment. 

Recent research has explored utilizing 3D point clouds as prior knowledge. Mozaffar and Varshosaz 
[24] employed 3D voxel models from an initial scan, determining visibility through line-of-sight analysis. 
Prieto et al. [11] adopted a similar approach for the stop-and-go system with UGV and TLS. Wakisaka 
et al. [13] estimated the point cloud using structure from motion (SFM) for visibility analysis, while an 
unmanned aerial vehicle (UAV) [8] was used for 3D voxel mapping in another study. However, these 
3D point-cloud-model-based approaches assumed prior knowledge of the as-is state, overlooking the 
as-designed state, which is crucial for facility maintenance due to the unavailability of point cloud data 
[25]. 

BIM has also been proposed as a valuable resource for optimal scan planning. Biswasa et al. [26] utilized 
BIM for simple concrete structures, but computational time was a challenge. Zhang et al. [27] developed 
a scan planning method for large construction environments based on manually extracted points of 
interest from BIM, but accuracy depended on skilled engineers. Fr´ıas et al. [12] proposed a 
comprehensive framework for optimal scan planning, discretizing the construction site’s BIM into a 2D 
grid and employing grid-based and triangulation-based distribution for generating scan-position 
candidates. A 2D ray-tracing algorithm determined optimal scan positions, and an optimal path was 
determined using the ant colony optimization algorithm. Tan et al. [28] integrated UAV and BIM for scan 
planning, employing a genetic algorithm for coverage path planning, suitable for outdoor environments. 

2.1. Challenges in the Existing Work 

Previous research faced significant limitations: first, experiments in indoor spaces predominantly utilized 
simplistic Manhattan world settings, such as rectangular rooms, which lack the complexity necessary 



for practical applications [11, 12, 13]. Second, most visibility analyses were conducted on 2D grids or 
3D voxels, failing to accurately represent real-world geometry, and all potential scanning locations were 
considered without regard for precise obstacles [8, 12, 13, 28]. Third, while some researchers addressed 
scan ordering optimization, their approach focused solely on the shortest straight-line paths between 
scan positions, ignoring obstacles, rendering it impractical [10, 22]. Lastly, only a few studies employed 
autonomous robot platforms take advantage of BIM as a valuable resource that has become an industry 
standard, with a quadruped walking robot for field applications, and there was a lack of validation for 
acquired scanning data from these robot platforms [10, 11, 29]. 

3. Methodology 

The methodology employed in this study involves a systematic process of detecting corners or vertices 
in the costmap, identifying vertices that scan the maximum number of edges in the polygon, and 
iteratively finding additional vertices to cover the remaining unscanned edges until the entire polygon is 
scanned comprehensively. The following steps comprise the methodology. 

3.1. Corner Detection 

The first step involves processing the costmap image to identify the corners or vertices of the polygon. 
The following procedures are undertaken: 

• The costmap image is loaded and converted into grayscale to simplify the processing. 

• A thresholding technique is applied to create a binary occupancy grid map, highlighting the occupied 
and unoccupied regions. 

• The OpenCV function cv2.goodFeaturesToTrack is utilized to detect corners in the binary 
occupancy grid map. This function identifies key feature points that represent corners within the 
map. 

• Detected corners are filtered to eliminate nearby duplicates. Euclidean distances between corner 
points are calculated, and duplicates are removed, ensuring an accurate representation of distinct 
corners. 

3.1.1. Finding a Vertex (𝑉𝑖) Scanning Maximum Edges of the Polygon 

In this step, scan locations (𝑉𝑖) are identified based on a convolution operation and careful analysis of 
corners. The process is as follows: 

• A convolution operation is performed on a binary occupancy grid map using a 10 × 10 kernel. This 
operation helps in identifying regions with high edge density, indicating potential locations for 
efficient scanning. 

• The function find_scan_locations iterates through the detected corners and identifies scan locations 
(𝑉𝑖) that are not visible from any existing scan location. These locations correspond to vertices that 
scan the maximum number of edges of the polygon. 

3.1.2. Searching for Unscanned Edges by Previous Vertex (𝑉𝑖) 

In this step, the focus is on ensuring that all corners are visible from scan locations (𝑉𝑖) and identifying 
edges that remain unscanned. The following procedures are implemented: 

• Utilizing the occupancy grid map and previously detected scan locations, a function named is_visible 
checks if a corner is visible from a given scan location. This visibility check is performed using 
Bresenham’s line algorithm, ensuring accurate determination of visibility between corners and scan 
locations. 

• The function identifies edges that remain unscanned by the previous vertex (𝑉𝑖), ensuring that the 
scanning process is comprehensive. 



3.1.3. Finding Another Vertex (𝑉𝑗) Scanning Max. Unscanned Edges 

In this step, new scan locations (𝑉𝑗) are identified to cover the remaining unscanned edges effectively. 
The following procedures are followed: 

• Another function iterates through the remaining unscanned edges, identifying new scan locations 
(𝑉𝑗) that maximize the scanning coverage. 

• The visibility check using the is_visible function ensures that the new scan locations effectively cover 
previously unscanned edges. 

3.1.4. Continuing the Process Until All Edges Are Scanned 

Steps 3.1.2 and 3.1.3 are repeated iteratively until all edges of the polygon are scanned. The iterative 
process ensures that each new scan location selected is strategically positioned to maximize the 
coverage of unscanned edges, thereby forming an optimal set for efficiently scanning the entire polygon 
represented by the occupancy grid map. 

3.2. Challenges in the Current Approach 

In the process of optimizing scan locations for the autonomous scanning platform, several challenges 
have been identified, particularly in the context of room image capture. These challenges significantly 
impact the quality and uniformity of the captured data and pose constraints on the robot’s ability to 
effectively scan room corners. The challenges are as follows: 

• Robot Dimensions: One of the primary challenges faced pertains to the physical dimensions of the 
robot, restricting its ability to access and reach room corners effectively. This limitation poses a 
significant obstacle as the robot’s placement away from the corners hinders its ability to capture 
detailed information from these critical areas. Consequently, the captured data lacks comprehen- 
sive coverage of room corners, leading to incomplete and potentially inaccurate representations of 
the room layout. 

• Data-Capture Quality and Uniformity: Another critical challenge arises from the placement of the 
robot in the corner of the room, impacting the quality and uniformity of the captured data. 
Specifically, the data captured from the walls near the corner appears overly zoomed-in, lacking 
context and detail. 

3.3. Revised Approach 

To calculate the optimal scan positions, we used centroid computation and point selection criteria. The 
objective is to strategically determine scan positions within a room, ensuring comprehensive coverage 
while maintaining an even distribution across the environment. 

Taking the centroid as the reference point for determining optimal scan positions offers several 
advantages in terms of achieving comprehensive coverage and even distribution across the 
environment. 

• Geometric Balance: The centroid represents the geometric center of the polygonal environment. 
By placing scan positions around this central point, it ensures a balanced distribution of 
coverage throughout the space. This geometric balance helps in minimizing redundancy and 
maximizing efficiency in scanning. 

• Maximized Coverage: Scan positions placed around the centroid facilitate maximum coverage 
of the environment. Since the centroid is equidistant from all corners of the polygon, scan 
positions strategically located around it can effectively capture details from all directions, 
ensuring no area is left unscanned. 

• Distance Optimization: By utilizing the centroid as a reference point, the distance between scan 
positions can be optimized. This optimization ensures that scan points are neither too close nor 



too far apart, striking a balance between coverage and resource utilization. It helps in avoiding 
overlapping scans while ensuring that no area is left unexplored due to large gaps between 
scan positions. 

• Simplicity and Robustness: Calculating the centroid is a straightforward geometric operation 
that provides a single reference point for scan position determination. This simplicity enhances 
the robustness of the scanning methodology, making it less prone to errors or inaccuracies 
associated with more complex algorithms. 

• Adaptability to Polygon Shape: Regardless of the shape of the polygonal environment (here, 
the room), the centroid serves as a consistent reference point. This adaptability ensures that 
the scanning approach remains effective across various room geometries without the need for 
significant modifications or adjustments. 

Incorporating centroid computation into the methodology for determining optimal scan positions thus 
enhances the efficiency and effectiveness of the autonomous scanning platform. It not only ensures 
comprehensive coverage of the environment but also contributes to the generation of detailed and 
reliable maps by strategically placing scan points for thorough data collection. 

3.3.1. Centroid Computation 

The first step in our methodology involves the calculation of the centroid using the optimal corner points 
identified through the initial approach. 

3.3.2. Point Selection Criteria 

To strategically choose new scan positions, a set of specific criteria are applied to ensure an even 
distribution of points while maintaining a certain distance between them. 

By integrating centroid computation and stringent point selection criteria, our methodology facilitates the 
calculation of optimal scan positions, which are strategically placed within the room, ensuring both 
comprehensive coverage and an even distribution across the environment. This approach enhances the 
efficiency and accuracy of the autonomous scanning platform, enabling it to generate detailed and 
reliable maps of the scanned space. 

4. Results 

4.1. BIM Data 

 
Fig. 2. Sample BIM model of a floor at office space. 

In our study, we selected a specific floor within an office space as our experimental site due to its 
considerable size, necessitating multiple scan positions for thorough coverage. Office spaces typically 
include elongated corridors with architectural elements such as windows, doors, and stairs. Notably, the 



chosen office space also features a semi-circular corridor, adding complexity to the environment (Fig. 
2). 

 
Fig. 3. (a) corresponding occupancy map(top-view) calculated using ROS [30]; (b) detected corners using OpenCV function. 

The office space data provided for our research was in the .obj format, a widely used commercial BIM 
format characterized by a standard triangular mesh structure. To facilitate our analysis, we automatically 
extracted the BIM geometry from the .obj file. Using the Robot Operating System (ROS) [30], this 
geometry was then converted into the .png file format (Fig. 3(a)), enabling further processing. 

4.2. Optimal scan planning result 

The proposed optimal scan planning framework determines optimal scan positions, or waypoints, for an 
autonomous scanning system through a line-of-sight simulation that evaluates candidate scan positions. 

 

Fig. 4. (a) optimal scan corners; (b) optimal scan locations using revised approach. 
 

In the conducted analysis, Fig. 3(b) presents the output obtained from the OpenCV function, displaying 
all the corners detected within the given dataset. Notably, the green points in Fig. 4(a) represent optimal 
corner positions. These specific corners play a critical role in detecting other corners within the 
environment. However, it is important to acknowledge the practical limitations that hinder data capture 
from these specific corner points. Despite their significance, capturing data from these optimal corner 
positions is challenging due to these limitations. The study highlights the importance of these corners 
for further corner detection, emphasizing the challenges researchers face in practical data capture from 
these crucial points. 

Furthermore, the optimal scan positions were identified and denoted by cyan points in Fig. 4(b). These 
positions were calculated using the centroids of the optimal corner points determined in Fig. 4(a). These 



scan positions were strategically located away from walls, ensuring a strategic placement within the 
indoor space. 

A critical aspect of this approach was the careful selection of new scan positions. To achieve this, a 
specific distance threshold was established, ensuring that the new scan positions remained within a 
certain distance from each other. This distance criterion played a crucial role in evenly spreading the 
scan positions across the room. By preventing the positions from being too close to one another, this 
method aimed to guarantee comprehensive coverage of the environment. 

The systematic spacing of scan positions not only facilitated effective data capture but also enhanced 
the subsequent analysis process. By strategically placing the scan positions and adhering to the 
distance threshold, the approach significantly contributed to ensuring the thorough and accurate capture 
of data, enabling robust analysis and interpretation of the indoor environment. 

The key advantage of employing the optimal scan planning process with BIM lies in its ability to offer a 
reliable job site scan through automated planning, eliminating the reliance on human intuition and 
experience. Manual scanning methods necessitate more time due to leveling and relocating the TLS. 
Additionally, manual results may lack certainty in scan coverage due to the surveyor’s skills and 
experience. In contrast, our proposed framework maintains scan completeness while reducing operation 
time, thanks to optimal scan positioning and robot mobility. 

Furthermore, this study highlighted the advantages of using a quadruped walking robot in automated 
scanning frameworks. While it is widely acknowledged that mobile robot-based data acquisition is more 
efficient in terms of time and cost compared to traditional TLS-based methods, the limitation lies in the 
applicability of general wheeled or caterpillar robots, which require flat, obstacle-free indoor 
environments. In contrast, a quadruped walking robot is suitable for repetitive scanning tasks in 
challenging spaces where ordinary robots cannot operate, enabling the implementation of a fully 
automated scanning system. 

5. Conclusions 

In this research paper, we present a novel approach to optimizing scan planning in 3D indoor spaces 
using a BIM-based autonomous scan planning framework with a quadruped walking robot. Traditional 
scan operations, reliant on a surveyor’s intuitive decision-making, often suffer from inefficiencies. Our 
proposed framework addresses this challenge through a systematic four-phase approach. 

Firstly, in the scan-position candidate generation phase, a set of potential scan positions is generated 
from a binary navigable map. Then, utilizing the ray-tracing algorithm, optimal scan positions are 
selected based on the visibility of these candidates. Finally, automated data collection is achieved 
through the stop-and-go scanning process with the autonomous scanning system. 

Our contributions are multifaceted. Firstly, our framework’s scan positions exhibit superior coverage 
performance in indoor spaces which is achieved by strategically positioning scan points away from walls 
and ensuring even distribution across the room. Secondly, our approach proves to be significantly more 
efficient than manual methods involving skilled surveyors, as it reduces manual scan operation time 
while conserving the coverage of the acquired point cloud. 

Moreover, our research includes the validation of the proposed framework using an autonomous 
scanning system with a quadruped walking robot. The results from real-world job site scans corroborate 
the effectiveness of our optimal scan planning methodology. Notably, our work represents the pioneering 
effort in addressing optimal scan planning using BIM and a quadruped walking robot. This innovative 
approach is poised to contribute significantly to the development of robot-based fully automated 
scanning systems, marking a crucial step forward in the realm of autonomous data acquisition in 
complex indoor environments. 



6. Future Work 

In the upcoming stages of our research, several key areas will be explored to further enhance the 
capabilities of our autonomous building scanning system: 

 
Fig. 5. future work: A1 and A2 denote scan points to be excluded. 

 
• Refinement of Exterior Points Exclusion: The research will delve into advanced techniques for the 

precise identification and exclusion of data points located outside the building premises, as 
highlighted in A1 of Fig. 5. This meticulous filtration process is essential to ensure the accuracy and 
reliability of our analysis. 

• Enhanced Obstacle Detection Algorithms: Building upon our obstacle-enclosed scan locations 
approach, we will develop and refine sophisticated algorithms to detect and exclude scan points 
surrounded by obstacles, as highlighted in A2 of Fig. 5. These algorithms will be designed to 
facilitate seamless navigation and enhance data accuracy, even in complex and cluttered 
environments. 
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