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ABSTRACT 
One-dimensional (1D) cardiovascular models offer a non-invasive method to answer medical ques:ons, 
including predic:ons of wave-reflec:on, shear stress, func:onal flow reserve, vascular resistance, and 
compliance. This model type can predict pa:ent-specific outcomes by solving 1D fluid dynamics equa:ons 
in geometric networks extracted from medical images. However, the inherent uncertainty in in-vivo imag-
ing introduces variability in network size and vessel dimensions, affec:ng hemodynamic predic:ons. Un-
derstanding the influence of varia:on in image-derived proper:es is essen:al to assess the fidelity of 
model predic:ons. Numerous programs exist to render three-dimensional surfaces and construct vessel 
centerlines. S:ll, there is no exact way to generate vascular trees from the centerlines while accoun:ng 
for uncertainty in data. This study introduces an innova:ve framework employing sta:s:cal change point 
analysis to generate labeled trees that encode vessel dimensions and their associated uncertainty from 
medical images. To test this framework, we explore the impact of uncertainty in 1D hemodynamic predic-
:ons in a systemic and pulmonary arterial network. Simula:ons explore hemodynamic varia:ons resul:ng 
from changes in vessel dimensions and segmenta:on; the laMer is achieved by analyzing mul:ple segmen-
ta:ons of the same images. Results demonstrate the importance of accurately defining vessel radii and 
lengths when genera:ng high-fidelity pa:ent-specific hemodynamics models. 
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KEY POINTS 
• This study introduces novel algorithms for genera:ng labeled directed trees from medical images, fo-
cusing on accurate junc:on node placement and radius extrac:on using change points to provide he-
modynamic predic:ons with uncertainty within expected measurement error. 

• Geometric features, such as vessel dimension (length and radius) and network size, significantly impact 
pressure and flow predic:ons in both pulmonary and aor:c arterial networks. 

• Standardizing networks to a consistent number of vessels is crucial for meaningful comparisons and de-
creases hemodynamic uncertainty. 

• Change points are valuable to understanding structural transi:ons in vascular data, providing an auto-
mated and efficient way to detect shiUs in vessel characteris:cs and ensure reliable extrac:on of repre-
senta:ve vessel radii. 
 
 

INTRODUCTION 
Medical images, including computed tomography (CT) and magne:c resonance imaging (MRI), are widely 
used for disease diagnos:cs and treatment planning (Chassidim et al., 2015; Doi, 2006; Khoo et al., 1997; 
Alas: et al., 2006). They are non-invasive and reliable ways to assess the structure of the heart, lungs, and 
vasculature. However, such images do not provide insight into hemodynamics, which is essen:al to deter-
mine the health of the cardiovascular system. One way to assess cardiovascular health is to embed one-
dimensional (1D) pa:ent-specific computa:onal fluid dynamics (CFD) models within the image. This can 
be done by extrac:ng a pa:ent-specific vascular network from the medical image, and then solving fluid 
dynamics equa:ons in each vessel within the network to make predic:ons of dynamic blood pressure and 
flow. To generate high-fidelity predic:ons for clinical applica:ons, it is essen:al to minimize and quan:fy 
the uncertainty associated with this process. In this context, uncertainty arises from two main sources: the 
network extracted from the medical image and parameters in the computa:onal model. Numerous studies 
have explored how varia:ons in model parameters influence fluid dynamics predic:ons (Bertaglia et al., 
2020; Chen et al., 2013; Ninos et al., 2021; Ye et al., 2022), but only a few (Colebank et al., 2019; Sankaran 
et al., 2015) have addressed the role of varia:ons in network geometry. This study focuses on determining 
varia:ons in vessel radius, length, and network connec:vity and exploring how it affects 1D hemodynamic 
predic:ons in arterial networks. 

Labeled trees are generated from three-dimensional (3D) rendered surfaces obtained using image seg-
menta:on. Image segmenta:on allows for analysis of anatomical data by isola:ng key features in an im-
age, in this case vascular networks (Pham et al., 2000; Pa:l and Deore, 2013). However, there is inherent 
uncertainty in the image segmenta:on process due to complex anatomy, pa:ent mo:on during scanning, 
variability in user exper:se, and noise (Sharma and Aggarwal, 2010; O’Donnell, 2001; van Rikxoort and van 
Ginneken, 2013; Buelow et al., 2005). Despite advances including semi- and fully automa:c extrac:on 
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using machine learning, most soUware requires manual edi:ng to capture the en:rety of the desired an-
atomical features (van Rikxoort and van Ginneken, 2013). In par:cular, pa:ent images are only captured 
up to a finite resolu:on, and certain anatomies, such as the rapidly branching structure of the pulmonary 
vasculature, are nearly impossible to extract in an automated manner (Colebank et al., 2019; van Rikxoort 
and van Ginneken, 2013). Other anatomies, such as the aorta, are difficult to automa:cally extract due to 
differences in spa:al scales within the structures we wish to capture, which includes the smaller branching 
neck vessels and larger main aor:c branch. Overall, a major challenge is that vascular networks span sev-
eral orders of magnitude, but resolu:on within the image is constant (Lakhani, 2020), adding significant 
uncertainty when extrac:ng data, especially for small vessels (Colebank et al., 2019). Moreover, for images 
acquired without contrast, differen:a:ng arteries, veins, and other structures is not trivial (van Rikxoort 
and van Ginneken, 2013). This study generates networks from images segmented using 3D Slicer devel-
oped by Kitware, Inc. (Federov et al., 2012), which is a widely used open-source soUware. 

AUer segmen:ng the image and genera:ng a 3D rendered surface, centerlines are iden:fied along each 
vessel, crea:ng a 1D characteriza:on of blood vessel geometry (Pham et al., 2000; Pa:l and Deore, 2013). 
This study builds networks using the Vascular Modeling Toolkit (VMTK) (Izzo et al., 2018), which generates 
centerlines by placing maximally inscribed spheres along each vessel. This process is sensi:ve to intricate 
vascular networks containing vessels with high tortuosity, rapid branching structures, and narrow lumen.  
In these networks, maximally inscribed spheres placed by VMTK intersect earlier than expected, leading 
to junc:on nodes placed outside of physiological domain. In par:cular, VMTK oUen posi:ons junc:on 
nodes prior to the os#um region, the area surrounding the opening of a blood vessel where it divides into 
mul:ple vessels and where the radius is not defined (Cheng, 2019). This limita:on has been described in 
several studies, including Ellwein et al. (2016) and Pfaller et al. (2022). To address the limita:on, Ellwein et 
al. (2016) adjust junc:ons by examining the angles between vessels, while Pfaller et al. (2022) u:lize slices 
rather than maximally inscribed spheres to generate centerlines. Other programs exist to generate center-
lines, such as SimVascular (Updegrove et al., 2017), CRIMSON (CardiovasculaR Integrated Modelling and 
Simula:ON) (Arthurs et al., 2021), and SGEXT (Cappek et al., 2022), each balancing accuracy and effi-
ciency. Independent of the soUware used to generate centerlines, the vessel radius is not defined in the 
os:um region, yet fluid dynamics models solving the equa:ons in 1D trees require a radius measurement 
at all points along the vessel. To address this limita:on, this study devises an algorithm to move junc:ons 
into the os:um region and uses sta:s:cal change points to iden:fy a segment within each vessel's center-
lines that best represents its radius. 

CFD modeling provides insights into the func:on of the vasculature by predic:ng hemodynamic proper:es 
that cannot be measured in vivo (MiMal et al., 2016; Chinnaiyan et al., 2017). By integra:ng with pa:ent-
specific networks, these methods can be used to study the outcome of treatments or predict disease pro-
gression (Candreva et al., 2022). Several recent studies have used pa:ent-specific geometry derived from 
medical images to predict hemodynamics (Taylor-LaPole et al., 2023; Colebank et al., 2019; Bartolo et al., 
2022; Baksta et al., 2016; Formaggia et al., 2006; Gray and Pathmanathan, 2018; Yang et al., 2019). They 
superimpose dynamic pressure and or flow data onto geometric domains extracted from images and make 
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predic:ons of blood pressure, flow, shear stress, and wave intensity to simulate the impact of disease and 
treatment. The most detailed models include 3D CFD and fluid-structure interac:on, which provide pre-
dic:ons of local flow paMerns important in regions with significant secondary flows. Unfortunately, 3D 
models are computa:onally expensive and challenging to calibrate to pa:ent data (Yang et al., 2019; 
Botnar et al., 2000). Thus, this study focuses on 1D fluid dynamics models, providing an efficient alterna:ve 
to predict volumetric flow and pressure averaged over vessel cross-sec:ons. This model type is useful for 
predic:ng wave-propaga:on and wave-intensity, organ perfusion, func:onal flow reserve, vascular re-
sistance, and compliance (Shi et al., 2011). In addi:on, 1D models can be easily calibrated to data, making 
them ideal for pa:ent-specific simula:ons, and provide reasonable agreement to 3D models (Moore et al., 
2005; Reymond et al., 2012; Blanco et al., 2018). 

Uncertainty arises in nearly every level of the modeling process, including in the assump:ons to derive the 
equa:ons that model the physical system, parameter choices, and geometry extracted from image seg-
menta:on. Uncertainty quan:fica:on has been studied extensively in computa:onal modeling of hemo-
dynamics. For example, Colebank et al. (2019) study the influence of pre-segmenta:on parameters, such 
as thresholding and smoothing, on 1D predic:ons in ex vivo murine arteries.  Chen et al. (2013) incorpo-
rates intrinsic parametric uncertain:es to depict blood flow and pressure within a stochas:c model of 
arteries. Bertaglia et al. (2020) highlight the effects of changes in elas:c and viscoelas:c parameters in 
fluid-structure interac:on models of arteries. While these studies effec:vely quan:fy uncertainty in the 
modeling and parameter es:ma:on process, they do not examine uncertain:es associated with the net-
work extrac:on process. It is well known that there is a significant interplay between vascular geometry 
and hemodynamics, and therefore, the uncertainty of geometric features of vessels must be explored and 
quan:fied (Gounley et al., 2017). 

This study inves:gates the process of extrac:ng networks from medical images and the associated hemo-
dynamic uncertainty. We use 3D Slicer (Federov et al., 2012) to generate 3D rendered surfaces from CT 
images of the pulmonary arteries for a normotensive human subject and from magne:c resonance angi-
ography (MRA) from a double outlet right ventricle (DORV) pa:ent. VMTK is used to generate centerlines 
along each vessel. From these, we generate labeled directed trees characterized by vessel connec:vity, 
radius, and length. To improve fidelity of the generated models, we devise algorithms to align networks 
and adjust junc:ons to physiologically accurate loca:ons. We then employ sta:s:cal change point analysis 
to determine a representa:ve radius for each vessel, avoiding outlier data. We propagate uncertainty in 
segmenta:on, junc:on loca:on, and radius to a 1D fluid dynamics model, finding that varia:on in vessel 
radius have the most significant impact on fluid dynamics predic:ons. In addi:on, we generate mul:ple 
segmenta:ons from each image – five for the pulmonary vasculature and ten for the aorta – to study 
varia:ons between segmenta:ons. Finally, in the pulmonary vasculature, each segmenta:on captures a 
varying number of vessels, so to enable comparison, we standardize networks using a radius pruning algo-
rithm. Our framework generates high-fidelity labeled trees and provides hemodynamic predic:ons with 
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uncertainty within expected measurement error. As pa:ent-specific modeling becomes increasingly pop-
ular in medical applica:ons, we argue that quan:fying geometric uncertainty using our methodology (il-
lustrated in Figure 1) is cri:cal to obtaining reliable hemodynamic predic:ons. 
 

 

Figure 1: Workflow for our methodology, consisting of image segmentation and analysis, creation of labeled directed 
tree from centerlines, junction node modification, change point analysis, radius identification, and construction of 
a computational domain for fluid dynamics simulations. 
 
 

MATERIALS AND METHODS 
Image Analysis  
We analyze two images: a chest CT image from a healthy, 67-year-old female volunteer captured using the 
Omnipaque 350  contrast agent available at the Vascular Model Repository (Wilson et al., 2013) 
(hMp://simvascular.github.io/) and an MRA image from a DORV pa:ent acquired at the Texas Children's 
Hospital Heart Center. Data collec:on was approved by the Baylor College of Medicine, Ins:tu:onal Re-
view Board (H-46224: “Four-Dimensional Flow Cardiovascular Magne:c Resonance for the Assessment of 
Aor:c Arch Proper:es in Single Ventricle Pa:ents”). The MRA image was obtained using :me-resolved, 
contrast-enhanced imaging performed using localizing sequences from the cardiac MRI with a 0.1 mL/kg 
intravenous gadolinium contrast bolus injec:on.  More details on the image analysis protocol can be found 
in (Taylor-LaPole et al., 2023). 

3D Rendering. The pulmonary and aor:c networks are rendered as a 3D surface using the open-source 
image segmenta:on soUware 3D Slicer developed by Kitware, Inc. (see hMp://www.slicer.org) (Federov et 
al., 2012; Kikinis et al., 2014). Image intensi:es in the CT image range from 50 − 3027 Hounsfield unit 
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(HU) and from 75 − 327 HU for the MRA. Image voxel size for the CT image is 0.68	 × 	0.68	 × 	5.00 mm3 
and is 1.22	 × 	1.22	 × 	1.40 mm3 for the MRA. The CT image was segmented five :mes and the MRA im-
age 10 :mes by the same user, each using the same threshold and smoothing factors. Example 3D ren-
dered surfaces for the two geometries are shown in Figure 2.  

The MRA segmenta:on was acquired u:lizing 3D Slicer's thresholding, growing from seeds, cukng, and 
smoothing tools in a semi-automa:c manner. To segment pulmonary arterial networks from the CT image, 
we first iden:fy the main (MPA), right (RPA), and leU (LPA) pulmonary arteries through thresholding fol-
lowed by manual pain:ng, erasing, and cukng. This is followed by manual segmenta:on of the lobar, 
segmental, and subsegmental vessels (Colebank et al., 2021b).  The rendered surfaces are saved as stand-
ard tessella:on language (STL) files, which can be opened in Paraview, Kitware Inc. (Ayachit, 2015). The 
skeletonized images are converted to a VTK polygonal data file and then processed through VMTK (An:ga 
et al., 2008) (see hMp://www.vmtk.org). 

Centerlines.  VMTK (Izzo et al., 2018) determines centerlines in the 3D rendered surfaces of arteries using 
maximally inscribed spheres. Spheres, which touch at least four points on the 3D rendering, are inscribed 
throughout each vessel, and the medial axis is approximated by a Voronoi diagram (An:ga et al., 2008). 
Centerlines are defined as the minimal path along the inverse of the spheres' radii (An:ga et al., 2008). 
User-specified inlet and outlet points establish centerline boundaries, guiding VMTK in a recursive process 
star:ng at the terminal vessels. When two centerlines intersect, a junc:on node is placed. Example 3D 
rendered surfaces with centerlines are shown in Figure 2. 

Labeled Tree Genera3on  
A tree is generated to form arterial networks and used in fluid dynamics simula:ons. This tree consists of 
two parts: (a) large arteries iden:fied from centerlines derived from MRI and CT images and (b) small 
vessels represented by fractal trees. The small vessels extend the networks from (a) represen:ng vessels 
that are not visible in the images. The caliber of vessels represented by fractal trees will depend on the 
image resolu:on. 

Custom MATLAB algorithms are used to construct a raw labeled directed tree from VMTK centerlines (Cole-
bank et al., 2019, 2021a). This algorithm transforms centerlines to edges with $x,y, \text{ and }z$ coordi-
nates at the center of each maximally inscribed sphere and defines junc:ons as nodes where two or more 
centerlines intersect. The tree has three types of vessels: the root vessel, which starts at the inlet and ends 
at the first junc:on node, central vessels, which begin and end at junc:on nodes, and terminal vessels, 
which start at a junc:on node and end at an outlet node. Each vessel contains 𝑛	nodes with associated 
𝑥, 𝑦, and 𝑧 values, radius, and length. The radii along the vessel are determined from the maximally in-
scribed spheres. Each vessel is assigned a length specified by calcula:ng the Euclidean distances between 
𝑥, 𝑦, and 𝑧 coordinates of all nodes within the vessel. Informa:on about each vessel is stored in a connec-
:vity matrix that links parent and daughter vessels to describe how vessels are connected in the tree. 
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The ten aor:c networks all have 13 bifurca:ng vessels joined using the same connec:vity matrix, but ves-
sel length and radii vary between networks. In contrast, the rapidly branching pulmonary network requires 
manual segmenta:on to separate arteries from veins and occasionally leads to trifurca:ons. Therefore, in 
addi:on to vessel radius and length varia:on, the five segmented pulmonary arterial networks have dif-
ferent numbers of vessels and connec:vity. The trees range from 167 to 238 vessels with 0.5	 − 	2% of 
parents having three daughters and the rest of the parents having two daughters. There are no quadfur-
ca:ons or higher in the networks we segment. To compare these networks, similar to our previous study 
(Miller et al., 2023) we employ a pruning procedure to generate trees with the same number of vessels. 
This involves itera:vely removing the smallest terminal vessels with terminal siblings un:l the networks 
reach the desired number of vessels (Figure 3). In this case, we prune networks un:l they reach the size of 
the smallest network of 167 vessels. As seen in Figure 3, dis:nct networks have a more similar radius dis-
tribu:on aUer pruning.  

 
Figure 2: 3D rendering from (a) a normotensive pulmonary arterial network and (b) the aortic vasculature of a double 
outlet right ventricle patient. Centerlines (black lines) and structured trees, used outside the imaged region, consti-
tute a labeled directed tree. 

Small Vessels. Due to limits in image resolu:on, it is not possible to obtain measurements for small arteries 
and arterioles. To represent all arteries in the network, star:ng at the heart and ending at the capillary 
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level (Boron and Boulpaep, 2017), we augment the large vessel domain with asymmetrically-branching, 
self-similar fractal trees (Olufsen et al., 2000). These structured trees have a root vessel with the same 
radius as the large terminal vessel it is aMached to. Each parent vessel, 𝑝, branches into two daughter 
vessels 𝒅	 = 	 (𝑑!, 𝑑"), with length and radii defined as 

𝑟#! = 𝛼𝑟$, 𝑟#" = 𝛽𝑟$, 𝑙% = 𝑟#𝑙%% (1) 

where 𝛼, 𝛽 < 1, 𝛼	 + 𝛽 ≥ 1, and ℓ%% is a length to radius ra:o. Values for these parameters are listed in 
Table 1 and are assigned based on literature and analysis of murine micro-CT images (Olufsen et al., 2000; 
Chambers et al., 2020). The structured trees bifurcate un:l a specified minimum radius, 𝑟&'(, is reached. 
For this study, 𝑟&'( = 0.001 cm, consistent with a red blood cell's diameter (Townsley, 2012). 

 
Figure 3: Kernel density estimates in five pulmonary arterial networks for trees (a) before and (b) after pruning to 
have the same number of vessels. 

Adjusted Labeled Trees 
The directed trees represen:ng the large vessels have two flaws: (1) the junc:on nodes are oUen placed 
outside of the os:um, and (2) the low-dimensional representa:on of the vessel radius is incorrectly es:-
mated if all nodes within a vessel are used. In par:cular, the radii assigned for vessel nodes within the 
os:um do not represent the vessel's true radius, as it contains values for mul:ple vessels as they split. To 
mi:gate these limita:ons, we have designed an algorithm that moves the junc:on node to the center of 
the os:um and iden:fies the segment within each vessel that best represents its radius. Nodes along this 
op:mal segment are then used to determine a radius and its standard devia:on along the en:re vessel. 
The input to our algorithm is a connec:vity matrix, vessel length and radii generated by VMTK, and post-
processed by custom algorithms devised in this study. Results include an adjusted labeled tree that reduce 
the uncertainty in fluid dynamics predic:ons propagated from uncertainty in vessel radii and length. 

Adjusted Junc9on Nodes 
Step 1: Star:ng at the VMTK-derived junc:on nodes 𝒙) = C𝑥) , 𝑦) , 𝑧)D that connect terminal vessels, we 
compute the distance between the 𝑥, 𝑦, 𝑧	coordinates of the daughter vessels as 
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𝐷* 	= FC𝑥#!,* − 𝑥#",*D
" + C𝑦#!,* − 𝑦#",*D

" + C𝑧#!,* − 𝑧#",*D
", 𝑖 = 1,… ,𝑁, (2) 

where 𝑥𝒅,* =	 (𝑥𝒅,* , 𝑦𝒅,* , 𝑧𝒅,*) denotes the 𝑖th point aUer the junc:on node 𝒙)  for each of the daughter ves-
sels 𝒅 = (𝑑!, 𝑑", … , 𝑑#), where #	is the number of daughter vessels and  𝑥𝒅,. denotes the last node of the 
shortest daughter vessel. If there is a trifuca:on, we consider the pair of daughters that has the smallest 
distance between them. For each node 𝑥𝒅,*, we then normalize 𝐷*  by dividing by the maximum distance 
between the daughter vessels, 𝐷&/0 . A new junc:on node  𝑥K)  is placed at the smallest 𝑖	 for which 
𝐷*/𝐷&/0 > 0.1. The cutoff value 0.1 is an empirically chosen input parameter. Figure 4(a) shows the 𝑗th 
junc:on node represen:ng the end of the parent vessel that separates into a bifurca:on and nodes along 
each of the daughter vessels 𝒙𝒅,*, where 𝑑! is red and 𝑑" is blue. 

Step 2: Star:ng at the first node along each daughter vessel 𝒙𝒅,!, we iden:fy all nodes 𝑖 = 1,… , 𝑘 for 
which 𝐷* 𝐷&/0⁄ ≤ 0.1. Here,	𝑘 denotes the index of first the node for which 𝐷* 𝐷&/0⁄ > 0.1. The new 
nodes along the parent branch are computed by averaging the loca:on of the daughter vessel coordinates  

𝑥$,* =
1
#R𝑥#ℓ,*

#

ℓ2!

. (3) 

Figure 4(b) shows the new parent vessel nodes (green) and the adjusted junc:on node 𝒙S)  (purple). Note 
that the path from the new junc:on to the daughter vessels is not smooth. 

 

Figure 4: Junction node adjustment in 3D space for a bifurcating vessel. Dark gray lines and teal circle represent the 
VMTK-generated centerlines and junction node 𝒙!, respectively. (a) Nodes along daughter vessels, where daughter 
vessel 1, 𝑑", is in red and daughter vessel 2, 𝑑#, is in blue, for which 𝐷$ 𝐷%&'⁄ ≤ 0.1, 𝑖 = 1,… , 𝑘. (b) The green line 
and purple circle denote the new parent vessel and junction node  𝒙.!, calculated by an average between daughter 
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vessel nodes. The direct path from the new junction nodes to daughter vessels 𝑥𝒅,* is characterized by a sharp angle. 
(c) Smoothed adjustment of daughter nodes  𝒙.𝒅,$ , based on a weighted averaged in sections where 0.1	 <
𝐷$ 𝐷%&'⁄ ≤ 	0.2, 𝑖 = 𝑘,… ,𝑚. 

Step 3: The new junc:on node 𝒙S)  is connected to nodes 𝒙𝒅,* , 𝑖 = 1,… , 𝑘 along each daughter vessel. To 
ensure a smooth transi:on, we compute a weighted average in sec:ons where daughter vessel centerlines 
are within 10 − 20%, i.e., nodes for which 0.1	 < 	𝐷*/𝐷&/0 ≤ 	0.2, 𝑖 = 𝑘,… ,𝑚. Here, 𝑚 is the index of 
the first node for which 𝐷* 𝐷&/0⁄ ≥ 0.2. The new daughter nodes, 𝒙S𝒅,* , 𝑖 = 1,… , 𝑘, shown in Figure 4(c), 
are computed as a weighted average between the extension of the parent branch (dashed green line on 
Figure 4(c)) and the original nodes 𝒙S𝒅,* , 𝑖 = 𝑘,… ,𝑚. The extension of the parent branch is computed by 
averaging all nodes 𝑖 = 𝑘,… ,𝑁	along the daughter vessels as described in Equa:on (3). 

The degree of weigh:ng between the extended parent vessel and the daughter vessels is computed based 
on the ra:o of the radius and the distance between the extended parent and the daughter vessels. The 
loca:ons of the new daughter nodes are calculated as  

		𝒙S𝒅,*	 =
𝑤𝒙𝒅,* + 𝒙$,*
𝑤 + 1 , 𝑖 = 𝑘,… ,𝑚. (4) 

Each daughter is individually averaged with the extended parent using weights, i.e, 𝑑!, 𝑑", … , 𝑑# are aver-
aged separately. For the pulmonary arteries, we use a double-weighted average (𝑤 = 2). Since the aorta 
consists of a large, curved main vessel, centerlines lie closer to the main aor:c vessel than the neck vessels, 
branching upward at a nearly 90 −degree angle. For these vessels, we calculate a 100 −:mes weighted 
average 𝑤 = 100 towards the main aor:c branch. The weigh:ng cutoff of 0.2 and the degree of weigh:ng 
𝑤	are empirically chosen input parameters that can be adjusted to fit the par:cular applica:on. Based on 
these adjustments, new lengths and radii are assigned to the labeled directed tree. 

Adjusted Radii 
The radii iden:fied by VMTK at each node along vessels include values in the os:um region, oscilla:ons 
associated with irregulari:es on the surface of the 3D rendering, and regions close to image resolu:on. 
Therefore, to determine the radius of each vessel, we devise a three-step process that (1) uses change 
points to characterize the vessel shape, (2) determines the region that represents the vessel radius (Algo-
rithms 1 and 2), and (3) checks the consistency of the generated labeled tree.  

Step 1: Sta9s9cal change point calcula9on. A change point	𝜓 ∈ {1,… , 𝑛 − 1}	can be iden:fied within the 
ordered sequence of radii data (determined from VMTK values) 𝒓 = {𝑟!, … , 𝑟4}	for which sta:s:cal prop-
er:es  \𝑟!, … , 𝑟5] and \𝑟56!, … , 𝑟4]	differ significantly. The dataset may contain mul:ple change points, 
represented as 𝝍	 = 	 {𝜓!, 𝜓", … , 𝜓7}, where 𝑚	is the number of change points. We use a two-step pro-
cess to determine the change points using publicly available R packages. We use R/changepoint to iden:fy 
the number of change points and R/segmented to define the loca:on of change points within each vessel. 
The two-step process is needed since R/segmented requires user-specifica:on of the number of change 
points, and R/changepoint does not precisely indicate where change points occur. 
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Number of change points. We use the R/changepoint package (Killick and Eckley, 2014) to determine the 
op:mal number of change points in each vessel. This program employs binary segmenta:on, itera:vely 
par::oning the dataset and fikng a piecewise constant line in each segment. To determine if a change 
has occurred, the algorithm seeks the loca:on at which the maximum of the log-likelihood is aMained, 

	𝑀𝐿(𝜓!) = log d𝑝C𝒓!:5!|𝜃g!Dh + log d𝑝C𝒓(5!6!)∶4i𝜃g"Dh, (5) 

where  𝜃g! and  𝜃g" are es:mates of mean and variance before and aUer the data is par::oned. We use 
Bayesian Informa:on Criterion (𝐵𝐼𝐶) to penalize the 𝑀𝐿 

𝑀𝐿(𝜓!) = log d𝑝C𝒓!:5!|𝜃g!Dh + log d𝑝C𝒓(5!6!)∶4i𝜃g"Dh, (6) 

where 𝜅 is the number of parameters and 𝑛 is the number of data points. Here, 𝜅 = 2 since parameters 
are the mean and variance.  Once the 𝐵𝐼𝐶 is minimized, a change point is placed at max

5!
C𝑀𝐿(𝜓!)D. We 

limit the number of change points to three to avoid overfikng and enable consistent analysis between 
vessels. This binary change point algorithm efficiently iden:fies the number of change points at a low 
computa:onal cost but at the expense of precise change point loca:on (Eckley et al., 2011; Killick et al., 
2012; Killick and Eckley, 2014), so we employ R/segmented to improve change point placement. 

Change point loca6on. Op:mal change point placement is determined using the customizable and flexible 
R/segmented package, which requires specifica:on of the number of change points (selected as described 
above). Like R/changepoint, this program employs binary segmenta:on, itera:vely par::oning the da-
taset. Within each segment, the algorithm maximizes the likelihood between a linear regression model 
and the data (Muggeo, 2003, 2008) (Figure 5), using a sta:s:cal model that accounts for the slope, mean, 
and variance, which are parameters of the regression model. 

A two-step process is employed using a regression model between the mean response, 𝐸[𝒓], and param-
eters, 𝜃,  to determine the loca:on of change points, and then a simpler regression model (using the same 
response and a predictor) to fit piecewise linear func:ons between change points. The regression model 
used to determine change point loca:on is defined as 

𝑔(𝐸[𝒓]) = 𝜂(𝑙) + 𝑏 × ℎC𝜃g; 𝜓*D, (6) 

where 𝑔(⋅) is the link func:on for 𝐸[𝒓], ℎC𝜃g; 𝜓*D is a parameteriza:on for 𝜃, 𝜓* , 𝑖 = 1, 2, 3	are the change 
points, 𝜂(𝒍) is the predictor, 𝒍 is the length along the vessel. A first-order Taylor expansion around an ini:al 
𝜓*
(<) is used to approximate 

ℎC𝜃g; 𝜓*D ≈ ℎC𝜃g; 𝜓*
(<)D + C𝜓* − 𝜓*

(<)Dℎ=C𝜃g; 𝜓*
(<)D. (7) 

The response and parameters form a piecewise rela:onship with the terms 

𝑎𝜃 + 𝑏(𝜃 − 𝜓*)6 (8) 

Note that (𝜃 − 𝜓*)6 = (𝜃 − 𝜓*) × C𝐼(𝜃 > 𝜓*)D where 𝐼(⋅) is the indicator func:on. 𝐼(⋅) = 1 when the 
statement is true, and 𝐼(⋅) = 0, otherwise. Using this parameteriza:on 
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• 𝑎 is the slope of the line segment prior to the change point. 

• 𝑏 is the difference in slopes of the lines before and after the change point. 

• (𝑎 + 𝑏) is the slope of the line segment following the change point. 

The change point is fixed at 𝑈(>) = C𝜃 − 𝜓*
(>)D

6
 and 𝑉(>) = −𝐼(𝜃) > 𝜓*

(>) and iterated 𝑠 :mes un:l there 

is no improvement in the	𝑀𝐿 es:mate. Using radii, 𝒓 (cm), as the response, and 𝑥𝒅,*	 = (1,… , 𝑘) the loca-
:on along the vessel, the linear regression model is given by 

𝒓(𝑖) = 𝛽< − 𝛽!𝑥𝒅,* , (9) 

where  𝛽<, 𝛽! are regression coefficients. 

 

Figure 5: Binary segmentation is used to place change points along radii data attained from VMTK (grey points). In 
each panel, the blue lines are the piecewise linear fit determined in Equation (9), and the red circles denote the 
change point placement. Panel 1 shows the radii before change points are placed, and panel 2 shows the segmen-
tation after placing the first change point. Panel 3 shows the placement of the second change point. It is placed to 
the left of the first change point as this placement leads to a higher maximum likelihood. Finally, panel 4 shows the 
optimal placement of three change points. 

Step 2: Vessel segment selec9on to adjust vessel radius and determine its uncertainty. This step deter-
mines the segment within each vessel that best represents the vessel radius and from which the value can 
be reliably es:mated. We refer to this as the op:mal radius segment, 𝒓?@A. Given the varia:on in vessel 
morphology, a mul:step process is used to iden:fy 𝒓?@A. The process is described in detail in Algorithms 1 
and 2 with R and MATLAB code available in the repository found at 

hMps://github.com/msolufse/CDG_NCSU/tree/master/VascularTreeFromImages. 

All vessels iden:fied by VMTK contain 𝑛 nodes. Each node 𝑥* , 𝑖 = 1,… , 𝑛 is associated with a radius value 
𝑟(𝑖). In step 1, each vessel is assigned between zero and three change points placed at 𝜓* , 𝑖	 = 	1, … ,𝑚,



Computa:onal framework for genera:ng pa:ent-specific vascular models 

13 

𝑚 ≤ 3. Sec:ons of nodes between change points are labeled by 𝐬𝐞𝐜* , 𝑖	 = 	1, … ,𝑚 + 1. The first segment, 
𝐬𝐞𝐜! = 𝒓(1, 𝜓!), includes radii values from the first node of the vessel, 𝑟(1), to the first change point 
𝑟(𝜓!). The last segment 𝐬𝐞𝐜76! = 𝒓(𝜓7, 𝑛) includes radii values from the last iden:fied change point, 
𝑟(𝜓7), to the last node in the vessel, 𝑟(𝑛). The linear fits within each segment, also determined in step 1, 
are used to determine the slope of each segment 𝑠𝑙𝑝* , 𝑖	 = 	1, … ,𝑚 + 1. 

Most 1D fluid dynamics models predict hemodynamics, assuming that vessels are either straight (Colebank 
et al., 2021a) or tapering (Olufsen et al., 2000). Typically, in rapidly branching vascular networks such as 
pulmonary vasculature, the brain, or the liver, vessels do not taper significantly between junc:ons, 
whereas in networks with longer vessels, e.g., networks including the aorta, caro:d, brachial, or iliac ar-
teries, vessels taper along their length (Taylor-LaPole et al., 2023; Olufsen et al., 2000; Epstein et al., 2015). 
The fluid dynamics code used in this study allows vessels to be straight or taper exponen:ally. Therefore, 
the proposed algorithm generates radii labels for both cases. 

Non-tapering vessels are assigned a constant radius along the vessel, averaging values in  𝒓?@A	, such that 

𝑟̂ =
1
𝑘R𝑟?@A(𝑖),

B

*2!

 (10) 

where 𝑟?@A(𝑖) refers to the 𝑖th radius observa:on in 𝒓?@A and	𝑘 is the number of points in 𝒓?@A. Note that 
although  𝒓Ñ is assigned a single value based on the mean, it is a vector because we assign this value to 
every node along the length of the vessel. In tapering vessels, we fit a decaying exponen:al func:on to 
radius values in  𝒓?@A  given by 

𝒓Ñ(𝑖) = 𝑟'( exp(𝑖 log(𝑟'( 𝑟?CA⁄ )), (11) 

where 𝑟'(	and 𝑟?CA refer to inlet and outlet radius of the vessel. The parameters 𝑟'( and 𝑟?CA are es:mated 
using MATLAB's op:miza:on func:on fminsearch() (MathWorks, 2022) minimizing the least squared error 

𝐽 =
1
𝑘Rd𝑟̂(𝑖) − 𝑟?@A(𝑖)h

"
B

*2!

 (12) 

For all vessels, the standard devia:on of the radius is determined by 

𝜎%̂ = â∑ d𝑟?@A(𝑖) − 𝑟̂(𝑖)hB
*2!

𝑘 . (13) 

The following sec:ons describe how 𝒓?@A is selected for the two vessel types. 

Non-tapering vessels. To iden:fy 𝒓?@A for non-tapering vessels, the slopes of regression lines fit to 𝑠𝑒𝑐* 	are 
considered, choosing the sec:on with the smallest absolute value slope, 𝑠𝑒𝑐&'(. The smallest slope is 
found as 𝑠𝑙𝑝&'( = min(𝑠𝑙𝑝*), 𝑖 = 2,… ,𝑚 + 1. Note that the first segment (the sec:on prior to the first 
change point) is not included as it is typically within the os:um region. To account for the varia:on in vessel 
morphometry, this process requires user specifica:on of three parameters: the minimum percentage 
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needed to ensure the length of single segment has sufficient data (here set at 𝑛/4 = 25%), the threshold 
for analysis of mul:ple segments to specify 𝒓?@A (here set to 𝑛/2	 = 	50%), and a threshold 𝜉 to compare 
the slopes of the last two segments (here set to 𝜉 = 2.8). 

Case 1: Iden:fy the segment with the smallest absolute value slope located between change points 𝜓* , 𝑖 =
1,… ,𝑚 and 𝑛, the last node in the vessel. For a vessel with three change points, there are three sec:ons 
to consider, 𝒓(𝜓!, 𝜓"), 𝒓(𝜓", 𝜓E), or 𝒓(𝜓E, 𝑛). If the sec:on with the smallest absolute value slope in-
cludes more than 25% of the total vessel observa:ons, we assign it to be 𝒓?@A. The threshold 𝑛/4	 = 25% 
is one of the three input parameters. 

Case 2: For vessels not included in case 1, we determine the first (𝑖 = 1) and last (𝑖 = 𝑘) radius values in 
𝒓?@A(𝑖) by analyzing change point loca:ons. 

(a) To identify the first point in 𝒓?@A, we consider the location of the first change point, 𝜓!. If 𝜓! is 
position beyond the 25% mark in the vessel, 𝒓?@A begins at 𝑟(𝜓!). If 𝜓! is located before the 
25% mark, the first change point is assumed to be in the ostium region, so we start 𝒓?@A at the 
second change point, 𝑟(𝜓"). To avoid excluding data, when 𝜓" is located more than 50% into 
the vessel, we instead start 𝒓?@A at the 25% mark in the vessel, 𝑟(⌈𝑛 4⁄ ⌉).  

(b) The last radius value in 𝒓?@A is determined by considering the last change point, 𝜓7, or the last 
radius observation, 𝑟(𝑛). Which option is used depends on the data structure. We compare the 
slopes of the second-to-last, 𝑠𝑙𝑝7, and last, 𝑠𝑙𝑝76! segments as these slopes differ significantly 
for many vessels, particularly in small vessels with diameters close to the image resolution (Cui 
et al., 2019; Lesage et al., 2009). To compare these slopes, we compute 

𝑠F = í
𝑠𝑙𝑝76! − 𝑠𝑙𝑝7

𝑠𝑙𝑝7
í. (14) 

If 𝑠F ≤ 𝜉, we let 𝑟?@A(𝑘) = 𝑟(𝜓7) and otherwise, 𝑟?@A(𝑘) = 𝑟(𝑚). 

Case 3: For vessels with no change points (typically short vessels), we let 𝒓?@A = 𝑟(1, 𝑛).  

Tapering vessels. The methodology for determining 𝒓?@A for tapering vessels is similar. Instead of examin-
ing the segment with the minimum slope, we examine the longest segment 𝑙&/0 =
maxClength(𝑠𝑒𝑐!, 𝑠𝑒𝑐", … , 𝑠𝑒𝑐&6!)D	. Iden:fica:on of the op:mal radius segment for tapering vessels 
depends on four parameters:  the threshold for fikng 𝒓?@A from a single segment (here 0.4	𝑛	 = 	40% of 
the total vessel length), the parameters used in case 2 for non-tapering vessels (𝑛/4	 = 	25% and 𝑛/2	 =
	50%), and the threshold parameter 𝜉 (for this study, 𝜉 = 2.8). 

Case 1: If the longest segment includes more than 40% of the total vessel length, we let 𝒓?@A = 𝑙&/0. The 
threshold 0.4	𝑛	 = 40% is one of the four input parameters. 



Computa:onal framework for genera:ng pa:ent-specific vascular models 

15 

Case 2: For vessels not included in case 1, we determine the first and last points in 𝒓?@A as described in 
case 2 for non-tapered vessels. 

Case 3: For vessels with no change points (typically short vessels), we let 𝒓?@A = 𝑟(1, 𝑛). Note these vessels 
are assigned a non-tapering radius. 

Case 4: Vessels with op:mal radius segment not iden:fied in cases 1—3 , an exponen:al is fit of the same 
form described above (Equa:on (12)). The op:mal inlet radius is determined from 𝑟(1), and the op:mal 
outlet radius is determined from 𝑟(𝑛). 

Step 2: Network Consistency Check. For healthy subjects, vascular networks sa:sfy that the radius of the 
parent vessel is larger than the radii of the daughter vessels 𝑟$ 	> 𝑟𝒅. In most cases, a parent splits into 
two daughter vessels and very rarely (less than 2%) splits into three (Chambers, 2022).  In addi:on, the 
combined area of the daughters is greater than the area of the parent vessel, such that ∑𝐴𝒅 > 𝐴$ (Zamir, 
1978; Murray, 1926; Uylings, 1977; Townsley, 2012). In vessels where these condi:ons are not sa:sfied, 
we adjust the radii depending on the vessel's posi:on within the network. If one terminal daughter, 𝑑!, 
violates the assump:on, we let 𝑟#! = 𝛼	𝑟$ and if two terminal daughters violate the assump:on, we let 
𝑟#! = 𝛼	𝑟$ and 𝑟#" 	= 𝛽	𝑟$. Internal vessels or terminal junc:ons with trifurca:ons viola:ng these condi-
:ons are manually assigned new radius values from inspec:on of the data.   
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Algorithm 1: Given radius data 𝒓,𝑚 ≤ 3 change points 𝝍, segments between change points 𝒔𝒆𝒄, and 
slopes of lines fitted within each segment 𝒔𝒍𝒑, this function identifies the region that best determines 
the vessel radius, 𝒓?@A, in straight and tapering vessels. 
1 Function get_ropt: 
2     input: double: 𝒓	 = 	 {𝑟!, … , 𝑟4}, 𝝍	 = 	 {𝜓!, … , 𝜓7}, 𝒔𝒍𝒑	 = 	 {𝑠𝑙𝑝!, … , 𝑠𝑙𝑝76!}, 𝒔𝒆𝒄 = 
3     {𝑠𝑒𝑐!, … 𝑠𝑒𝑐76!}; boolean: taper 
4     output: 𝒓?@A 
5     if taper == false then 
6         if 𝑚 = 0 then 
7             𝒓?@A = 𝒓 
8         else 
9             𝒔𝒍𝒑&'( 	= 	min	({|𝑠𝑙𝑝"|, … , |𝑠𝑙𝑝76!|})  
10 												𝑛> 	= length(𝑠𝑙𝑝7*4), 𝑘	 = 𝜓(𝑠𝑙𝑝7*4 − 1) 
11             if 𝑛>/𝑛 ≥ 	0.25 then 
12                 𝒓?@A = 𝑟(𝑘, 𝑘 + 𝑛>) 
13             else if 𝜓! 𝑛⁄ ≥ 0.25 then 
14                 𝒓?@A = 𝑔𝑒𝑡_𝑠𝑙𝑜𝑝𝑒𝑠(𝑟, 𝑠𝑙𝑝, 𝜓!, 𝜓7) 
15             else 
16                 𝒓?@A = 	𝑔𝑒𝑡_𝑠𝑙𝑜𝑝𝑒𝑠(𝑟, 𝑠𝑙𝑝, 𝜓", 𝜓7) 
17             end 
18         end 
19     else if taper == true then 
20 								𝑙7FG 	= max(length(𝑠𝑒𝑐)) , 𝑘 = 𝜓(𝑙&/0 − 1) 
21         if 𝑙_𝑚𝑎𝑥/𝑛 ≥ 	0.4 then 
22         				𝒓?@A = 𝑟(𝑘: 𝑘 + 𝑙7FG) 
23         else if 𝜓!/𝑛 ≥ 0.4 then 
24         				𝒓?@A = 𝑠𝑙𝑜𝑝𝑒𝑠(𝑟, 𝑠𝑙𝑝, 𝜓!, 𝜓7) 
25         else if 𝜓"/𝑛 ≥ 0.5 then 
26         				𝒓?@A = 𝑔𝑒𝑡_𝑠𝑙𝑜𝑝𝑒𝑠(𝑟, 𝑠𝑙𝑝, ⌈𝑛 4⁄ ⌉, 𝜓7) 
27         else 
28         				𝒓?@A = 𝑔𝑒𝑡_𝑠𝑙𝑜𝑝𝑒𝑠(𝑟, 𝑠𝑙𝑝, 𝜓", 𝜓7) 
29         end 
30     end 
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Algorithm 2: Given radius data 𝒓, slopes of linear fits between change points 𝒔𝒍𝒑, indices 𝑖!, 𝑖", and a 
threshold, this algorithm returns the optimal radius section. 
1 Function get_slopes: 
2     input: double: 𝒓	 = 	 {𝑟!, … , 𝑟4}, 𝒔𝒍𝒑	 = 	 {𝑠𝑙𝑝!, … , 𝑠𝑙𝑝76!}, 𝜉 = 2.8 
3     integer: 𝑖!, 𝑖" 
4     output: 𝒓?@A 
5     if |(𝑠𝑙𝑝76! − 𝑠𝑙𝑝7) 𝑠𝑙𝑝7⁄ | ≥ 𝜉 then         
6         𝒓?@A = 𝒓(𝑖!, 𝑖") 
6     else 
8         𝒓?@A = 𝒓(𝑖!: 𝑛)             
9     end         

 
Fluid Dynamics Model 
We predict hemodynamics in each vessel using a 1D fluid dynamics model that relates blood pressure, 
flow, and cross-sec:onal area. The model is separated into two domains predic:ng hemodynamics in (1) 
large arteries with geometry determined from images and (2) small arteries represented by structured 
trees. Similar to previous studies (Taylor-LaPole et al., 2023; Bartolo et al., 2022; Olufsen et al., 2000; Cole-
bank et al., 2019), in the large vessels, we solve a non-linear unsteady 1D approxima:on of the Navier–
Stokes equa:ons, enforcing conserva:on of mass and momentum, and in the small vessels, we solve a 
linearized wave equa:on model. Parameters for each domain are listed in Table 1 and the supplement. 

Table 1: Parameters used in the fluid dynamics model for the pulmonary and aorXc networks. 

QuanXty Pulmonary Aorta 
T (s) 0.85 0.8 
ρ (g/cm3) 1.055 1.055 
µL (g/cm/s) 0.032 0.032 
µS(r0) EquaXon (19) EquaXon (19) 
𝑘"+ (g/cm/s2) 2.5 × 106 5.0 × 106 
𝑘#+ (1/cm) −15 −25 
𝑘"+ (g/cm/s2) 6.4 × 104 6.0 × 105 
𝑘", (g/cm/s2) 2.5 × 107 5.0 × 106 
𝑘#, (1/cm) −15 −20 
𝑘-+ (g/cm/s2) 8.0 × 105 1.0 × 105 
rmin (cm) 0.001 0.001 
(α, β) (0.88,0.697) (0.90,0.60) 
ℓrr 15.75 50 

 
Large Vessels. Blood pressure 𝑝(𝑥, 𝑡) (mmHg), flow 𝑞(𝑥, 𝑡)	(cm3/s), and area deforma:on 𝐴(𝑥, 𝑡) (cm2) 
are predicted under the assump:ons that each vessel can be represented by a deformable axisymmetric 
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cylinder with an impermeable wall. We assume that blood is incompressible, Newtonian, viscous, and ho-
mogeneous and that the flow is irrota:onal and laminar. Under these assump:ons, the conserva:on of 
mass and balance of momentum are given by 

𝜕𝐴
𝜕𝑡 +

𝜕𝑞
𝜕𝑥 = 0 

𝜕𝑞
𝜕𝑡 +

𝜕
𝜕𝑥	ô

𝑞"

𝐴 ö +
𝐴
𝜌
𝜕𝑝
𝜕𝑥 = −

2𝜋𝜈𝑅
𝛿

𝑞
𝐴 

(15) 

where µL is viscosity, 𝜈	 = 	𝜇H/𝜌 is the kinema:c viscosity, 𝑅 (cm) is the radius, 𝑡 (s) denotes the temporal 
coordinate, and x (cm) is the axial posi:on. We assume a flat velocity profile with a linearly decreasing 
boundary layer (Nichols et al., 2011; Pedersen et al., 1993; Pries et al., 1992; Olufsen et al., 2000) with 

thickness 𝛿 = °𝜈𝑇/2𝜋		(cm), where 𝑇 (s) is the length of the cardiac cycle, i.e., 

𝑢G(𝑟, 𝑥, 𝑡) = 	 §
𝑢•G ,																												𝑟 < 𝑅 − 𝛿
𝑢•G
𝛿
(𝑅 − 𝑟),			𝑅 − 𝛿 < 𝑟 ≤ 𝑅.

 (15) 

To close the system of equa:ons, we assume that the vessel wall can be modeled as linearly elas:c and 
isotropic (Qureshi et al., 2019) under which pressure and area can be related as 

𝑝(𝑥, 𝑡) − 𝑝< =
4
3
𝐸ℎ
𝑟<
¶â

𝐴<
𝐴 − 1ß ,

𝐸ℎ
𝑟<
= 𝑘!H exp(𝑘"H𝑟<) + 𝑘EH (16) 

where 𝐸 (g/cm/s2) is Young’s modulus, h (cm) is the vessel wall thickness, p0 (mmHg) is a reference pres-
sure, A0 (cm2) is the cross-sec:onal area, and R0 (cm) the radius of the vessel determined by our algorithm. 
To account for changes in wall composi:on, the vascular s:ffness is modeled as exponen:ally increasing 
with vessel radius. In the second equa:on 𝑘!H (g/cm/s2), 𝑘"H (1/cm), and 𝑘EH (g/cm/s2) are constants based 
on literature (Colebank et al., 2021a; Paun et al., 2020; Taylor-LaPole et al., 2023). 

At the inlet of the root vessel, we prescribe an inflow waveform extracted from data. At the MPA, we 
specify a flow waveform using data from SimVascular (Updegrove et al., 2017). In the aor:c vasculature, a 
flow waveform at the root of the ascending aorta is extracted from 4D-MRI data provided by Baylor College 
of Medicine and Texas Children’s Hospital. At junc:ons, we enforce con:nuity of pressure and conserva:on 
of flow between the parent vessel p and the k daughters, d = (d1,d2,...,d#)) 

𝑝$(𝐿, 𝑡) = 𝑝#$(0, 𝑡), 𝑖 = 1,2, … , 𝑙,							and 			𝑞$(H,I) =	R𝑞#$ .
B

J2!

	 (17) 

Small Vessels. In small vessels with radii smaller than image resolu:on, viscous forces are dominant, al-
lowing us to neglect the nonlinear iner:al terms and linearize Equa:ons (15), as done in previous studies 
(Olufsen et al., 2000). In the frequency domain, the conserva:on of mass and momentum equa:ons be-
come 
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𝑖𝜔𝑄 +
𝐴<C1 − 𝐹KD

𝜌
𝜕𝑃
𝜕𝑥 = 0, 𝐹K =

2𝐽!(𝑤<)
𝑤<𝐽<(𝑤<)

 

𝑖𝜔𝐶𝑃 +
𝜕𝑄
𝜕𝑥 = 0, 𝐶 =

𝜕𝑝
𝜕𝐴 ≈

3
2
	𝑟<
𝐸ℎ,			 

(18) 

where 𝐽<, 𝐽!  are the zeroth and first order Bessel func:ons, 𝑤<" = 𝑖E𝑟<𝜔/𝜈, 𝐶 is vessel compliance, and 
𝐸ℎ/𝑟<  has the same form as Equa:on (16) but with parameters 𝑘!L, 𝑘"L, and 𝑘EL. Viscosity becomes more 
significant for smaller vessels (Pries et al., 1992), so in this domain, we compute viscosity as a func:on of 
vessel radius as 

𝜇L(𝑟<) =
𝐷𝜇H
3.2 ô1 + 𝐷 d6𝑒<

M<.!O% + 3.2 − 2.44𝑒<
M<.!"%%%.'() − 1hö, (19) 

where 𝐷 = (2𝑟</(2𝑟< 	− 	1.1))"	 is the rela:ve viscosity at a hematocrit level of 0.45. Solu:ons of these 
equa:ons allow us to compute 𝑍(0, 𝜔) 	= 	𝑃(0, 𝜔)/𝑄(0, 𝜔) at the beginning of each vessel as a func:on 
of the impedance at the end of the vessel as 

𝑍(0, 𝜔) =
	𝑖𝑔PM! sin(𝜔𝐿/𝑐) + 𝑍(𝐿, 𝜔) cos(𝜔𝐿/𝑐)
cos(𝜔𝐿/𝑐) + 𝑖𝑔_𝜔𝑍(𝐿, 𝜔)sin	(𝜔𝐿/𝑐) . (20) 

Using same junc:on condi:ons as the large vessels, the impedance at the root of the structured tree is 
computed recursively. The combined system of equa:ons is solved numerically using the two-step Lax-
Wendroff finite difference scheme (Colebank et al., 2019, 2021a; Bartolo et al., 2022; Taylor-LaPole et al., 
2023; Olufsen et al., 2000; Chambers et al., 2020). 

Sta3s3cal Analysis and Uncertainty Quan3fica3on 
To determine uncertainty associated with image segmenta:on, we perform a one-way analysis of variance 
(ANOVA), comparing five segmenta:ons of the pulmonary vasculature and ten segmenta:ons of aor:c 
vasculature prior to adjus:ng the labeled trees (i.e, before modifying junc:ons and extrac:ng radii based 
on change points). This sta:s:cal test determines if significant differences exist among the variance of 
different samples (Kauffman and Schering, 2007). We conduct the ANOVA tests in a vessel-specific manner 
to determine if there are sta:s:cally significant differences in vessel radii and length from the different 3D 
renderings and centerlines of the same subject. The ANOVA calcula:ons are performed in R using the 
func:on anova() from the R/stats package (R Core Team, 2013) (Table 2). More details about ANOVA can 
be found in the supplemental material (S4). 

To examine variability within the radius data, we calculate coefficients of varia:on as 𝐶𝑉 = 	𝜎%̂/𝑟̂ for vessel 
radii in each segmenta:on (GraUon et al., 2022). Here, 𝑟̂ is the mean of the op:mal radius region and 𝜎%̂ 	 
is its standard devia:on. 

We also compare kernel density es:ma:ons (KDE) of vessel radii for each segmenta:on. The kernel density 
represents the data using the radii’s probability density func:on (PDF). These KDEs are ploMed to visualize 
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the es:mated distribu:on of the radii throughout the segmented vasculatures (Weglarczyk, 2018). We use 
MATLAB’s ksdensity() to convert the radii from each segmenta:on into a PDF (MathWorks, 2022). 

Simula3ons 
To assess uncertainty in image segmenta:on and 1D network genera:on, we perform two fluid dynamic 
simula:on types. First, we compare mul:ple networks generated from the same image, assessing the im-
pact of segmenta:on uncertainty and pruning. Then we study the impact of varia:on in junc:on place-
ment and vessel radius within a representa:ve network. 

3D Rendering Varia9on. The pulmonary network was segmented five :mes and the aor:c network was 
segmented ten :mes by the same user. For both, we used the same threshold parameters and smoothing 
type. All aor:c networks have the same number of vessels and connec:vity, but these features differ in 
the pulmonary trees. Thus, we examine the effect of discrepancy in vessel count and the impact of pruning.  

Varia9ons in Junc9on and Radius Es9ma9ons. A representa:ve network is selected to study the influence 
of junc:on placement and vessel radius on hemodynamics. We demonstrate the impact of altering the 
loca:on of the junc:on node, which changes the length and radii considered for each vessel in the system. 
Once junc:on nodes are adjusted, we explore how radius uncertainty propagates to fluid dynamics. To do 
so, we fit a normal distribu:on 𝑁(𝑟̂, 𝜎%̂") to the op:mal region represen:ng the vessel radius (Figure 6). 
Sampling from a normal distribu:on is jus:fied by systema:cally analyzing PDF in the op:mal region. In 
vessels with reassigned radii, we sample from the distribu:on 𝑁(𝑘𝑟̂, 𝑘𝜎%̂") , where	𝜅 = 	 𝑟̂𝒅/𝑟̂$	is a parent-
daughter scaling factor. Within the normal distribu:on that represents possible radii values, we sample 
1000 :mes in the chosen representa:ve network and 100 :mes in other segmenta:ons. 

 
Figure 6: Radius extracXon for (a) pulmonary and (b) aorXc arteries. Change points (red circles) denote locaXons 
where the vessel radius changes significantly. The segment used to determine the vessel radius (green) avoids the 
juncXon region (pink box) and rapidly changing radii at the end of the vessel. In the aorta, esXmated inlet and outlet 
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radii are denoted by blue stars. The probability (PDF) and cumulaXve (CDF) density funcXons for the standard devi-
aXon of opXmal radii (green secXon) are shown in the right panels. 
 

RESULTS 
Varia9on in 3D Rendering. One-way ANOVA (Table 2) of the radius and length obtained from the raw 
networks generated from VMTK (before junc:on and radius adjustment) show that the variability between 
the dimensions generated from each segmenta:on is more significant than what would be expected by 
solely random chance (Kauffman and Schering, 2007). The ANOVA analysis on seven pulmonary arteries 
matched in each segmenta:on shows sta:s:cally significant differences in length and radii. In the aor:c 
network, the radius of the innominate, brachial, right common caro:d (RCC), and right subclavian arteries 
differ significantly. The length of the leU common caro:d (LCC), brachial, leU vertebral, and RCC also varies 
significantly between segmenta:ons. This analysis demonstrates that the raw data obtained from VMTK 
is uncertain despite having the same user segment all images using standard segmenta:on parameters, 
methods, and soUware. This jus:fies the need to generate a method to extract length and radii values for 
vessels in a network while accoun:ng for uncertainty. 

Table 2: One-way ANOVA test results predict the error sum of squares (SSE) and p-values for seven vessels in the 
pulmonary vasculature and eight vessels from the aorXc network that can be matched in each segmentaXon. For 
conXnuity, all aorXc vessels (ascending, arch I, arch II, and descending) were treated as one exponenXally tapering 
vessel. P-values in bold text are staXsXcally significant under a 0.05 threshold. 

 Pulmonary Aorta 

 Name SSE p-value Name SSE p-value 

Radius 
ANOVA 

MPA 2.82 < 0.001 Aorta 0.94 0.11 
RPA 5.45 < 0.001 Inominate 2.73 < 0.001 
LPA 3.55 < 0.001 LCC 0.14 0.97 
RIA 3.20 < 0.001 L Subclavian 0.16 0.32 
LIA 13.7 < 0.001 L Brachial 0.10 0.0093 
RTA 1.05 < 0.001 L Vertebral 0.004 0.10 
LTA 18.6 < 0.001 RCC 0.12 < 0.001 
   R Subclavian 0.12 < 0.001 

Length 
ANOVA 
Results 

MPA 246 < 0.001 Aorta 652 0.40 
RPA 178 < 0.001 Innominate 0.77 0.99 
LPA 74.0 < 0.001 LCC 298 0.02 
RIA 37.8 < 0.001 L Subclavian 4.00 0.99 
LIA 195 < 0.001 L Brachial 43.1 0.047 
RTA 14.3 < 0.001 L Vertebral 58.6 < 0.001 
LTA 32.0 < 0.001 RCC 371 < 0.001 
   R Subclavian 9.37 0.83 
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Main (MPA), right (RPA) and leU (LPA) pulmonary arteries; Right (RIA) and leU 
(LIA) interlobular arteries; and right (RTA) and leU (LTA) trunk arteries. 

Network Pruning. Figure 7 shows the impact of standardizing the network size between segmenta:ons. 
Results show predic:ons of pressure and flow at the midpoint of the MPA, RPA, and LPA. Before pruning, 
predicted pressures vary significantly between segmenta:ons with systolic differences of over 15 mmHg 
(Figure 7, solid lines). The segmenta:on with the highest number of vessels pre-pruning has a pressure 
range between 18 − 31 mmHg. The segmenta:on with the smallest number of vessels has a pressure range 
of 5 − 15 mmHg. Once all vessels are pruned to 167 vessels, the pressure range between each  

 

 

Figure 7: Pressure and flow dynamics over a cardiac cycle for each segmentation at the midpoint of the MPA, RPA, 
and LPA in the pulmonary arteries before (solid lines) and after (dashed lines) standardizing network size through 
pruning. Each color represents a distinct segmentation. 

segmenta:on lessened to about 5 mmHg (Figure 7, dashed lines). Since a fixed flow profile is imposed at 
the inlet to the network, there is significantly less varia:on in flow than pressure. However, pruning s:ll 
impacts flow predic:ons favorably. Before pruning, the peak RPA flow varies by approximately 100 mL/s 
and aUer pruning, the varia:on becomes less than 50 mL/s. Flow discrepancies in the MPA and LPA flow 
are smaller. These results are summarized in Table 3. 

Variance in VMTK Radius Es9mates. Figure 8 shows the CV and KDE for the pulmonary and aor:c vascu-
latures. The largest vessels in the pulmonary vasculature, with radii between 1−1.5 cm, have rela:vely 
small CVs, indica:ng that the centerlines generated from the segmenta:on and radius extrac:on for these 
vessels have less noise. For vessels with radii less than 0.5 cm, CVs range from 0−0.6, with one outlier 
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reaching a CV of over 1. This vessel has a standard devia:on greater than its mean, which can occur when 
terminal vessels are close to image resolu:on limits. Smaller vessels consistently have a higher and broader 
range of CV values in each segmenta:on. 

In the aor:c vasculature, CVs range from 0 − 0.32. Vessels with radii less than 0.4 cm and greater than 1 
cm have a CV of less than 0.18. Vessels with radii between 0.4−1 cm have CV values greater than 0.27. 
Similar to the pulmonary arteries, the largest aor:c vessels have the smallest CV of less than 0.1. The 
pulmonary KDE plots have a unimodal, right-skewed distribu:on with the majority of vessel radii from all 
segmenta:ons being less than 0.5 cm, peaking at 0.1 cm. Given the varia:ons in segmenta:ons, the radii 
distribu:on varies across networks even aUer pruning. For example, in one segmenta:on, a radius of 0.1 
cm is observed in 17.5% of vessels, while in another, this radii value is found in 12.5%. However, it should 
be noted that prior to pruning this difference more pronounced with up to 20% varia:on between net-
works (Figure 3). However, it should be noted that prior to pruning this difference more pronounced with 
up to 20% varia:on between networks (Figure 3). For the aor:c networks, the KDE follows a right-skewed 
bimodal distribu:on with a major and minor modes at 0.25 and 0.6 cm, respec:vely. Most aor:c vessels 
have a radius of less than 0.5 cm, with another large por:on having a radius between 0.5 − 0.75 cm. Similar 
to the pulmonary vessels, dis:nct networks have different radii distribu:ons. Despite that, the radii distri-
bu:on between segmenta:ons is less than 5%. 

Table 3: Range, minimum, and maximum pressure, and flow before and afer pruning. 
 

 

 

 

 

 

 

 

 Pressure (mmHg) Flow (mL/s) 

Pulmonary Range Min Max Range Min Max 

MPA 
Before  
AXer 

25 
20 

5 
5 

30 
25 

330 
320 

-15 
-10 

315 
310 

RPA   
Before 
AXer 

25 
20 

5 
5 

30 
25 

170 
150 

10 
10 

180 
160 

LPA 
Before 
AXer 

25 
20 

5 
5 

30 
25 

150 
130 

-30 
-10 

120 
120 

MPA: main pulmonary artery, RPA: right pulmonary artery, LPA: lef pulmonary artery. 
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Figure 8: Coefficient of variation and kernel density estimates for (a) pulmonary arteries and (b) aortic vessels. Each 
color represents a distinct segmentation. 
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Junc9on Node Varia9on. Pressure and flow waveforms calculated at vessel midpoints before (solid lines) 
and aUer (dashed lines) modifying junc:ons are shown in Figure 9. The varia:on before and aUer modify-
ing junc:ons is significantly smaller in the pulmonary vessels compared to the aorta. The pressure varies 
by 1 − 3 mmHg in the MPA, RPA, and LPA. The difference between flow predic:ons is  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Pressure and flow dynamics over a cardiac cycle for each segmentation at the midpoint of (a) the MPA, 
RPA, and LPA in the pulmonary arteries and (b) the descending aorta, LCC, and brachial artery before (solid lines) 
and after (dashed lines) modifying VMTK-derived junctions. Each color represents a distinct segmentation. 
 
also negligible in the pulmonary compared to the aor:c vasculature, but there is a dis:nct effect on the 
shape of the flow predic:ons. Before modifying junc:ons, pulse pressure in the aor:c vasculature is about 
80 mmHg, ranging from 40 − 120 mmHg. AUer this change, the pulse pressure is 50 mmHg, ranging from 
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50 − 110 mmHg. Before adjus:ng the junc:ons, the flow to the LCC and brachial arteries are higher, 
whereas, aUer this modifica:on, more flow is directed to the descending aorta. Table 4 lists the range, 
minimum, and maximum pressure, and flow, before and aUer adjus:ng the junc:ons.  Wave reflec:ons 
are also impacted by modifying junc:on nodes, par:cularly in the LCC. This is likely a result of reduced 
flow to the LCC aUer the junc:on modifica:on. This difference is amplified in the aor:c segmenta:on 
reported with a solid black line with a sizeable nega:ve dip and one large reflec:on around 0.6 s. AUer 
modifying junc:ons, we observe one steady reflec:on between 0.5 − 0.7 s. The opposite trend is apparent 
in the brachial artery, where predic:ons before junc:on modifica:on show one reflec:on and those aUer 
show two minor reflec:ons.  

Table 4: Range, minimum, and maximum, pressure, and flow, before and afer juncXon modificaXon.  
 

 

 

 

 

 

 

 

 

 

 
 

Change Point Analysis. Figures 5 and 6 depict the results of the change point analysis used to iden:fy 
vessel radii. We choose a maximum of three change points in each vessel to balance model complexity 
and interpretability. We analyze nearly 1000 vessels within five segmenta:ons of pulmonary arteries (167 
vessels each) and ten of the aortas (13 vessels each). We find that 9% of pulmonary arteries and 33% of 
aor:c vessels have either zero, one, or two change points. The rest of the vessels have three change points. 
AUer combining change point detec:on with our radius extrac:on protocol, less than 1% of vessels require 
post-processing during the network consistency check. This demonstrates the robust nature of the frame-
work we have developed. 

 Pressure (mmHg) Flow (mL/s) 

Pulmonary Range Min Max Range Min Max 
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MPA: main pulmonary artery, RPA: right pulmonary artery, LPA: lef pulmo-
nary artery, Desc Aorta: descending aorta, LCC: lef common caroXd, bra-
chial: brachial artery. 
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Radius Varia9on. Figure 10 shows how varying vessel radii impacts pressure and flow waveforms in a rep-
resenta:ve network. Pulmonary pressure predic:ons in the MPA, RPA, and LPA range from 10−25 mmHg 
in systole and 0−15 mmHg in diastole. In the MPA, there is a slight varia:on in flow predic:ons in systole 
ranging from approximately 275 − 290 mL/s. In the RPA and LPA, varia:ons are more pronounced, ranging 
from 100 − 175 mL/s and 50 − 100 mL/s, respec:vely. Aor:c pressures range from 90 − 160 mmHg in 
systole and 50 − 100 mmHg in diastole. Flow predic:ons in the descending aorta range from 250−350 mL/s 
in systole, while the LCC and brachial range from 30 − 40 mL/s. Table 5 lists the range, maximum, and 
minimum pressure, and flow predicted from varying radius . 

DISCUSSION 
This study devises novel algorithms for genera:ng labeled directed trees from medical images. The algo-
rithms are demonstrated on trees extracted from CT and MRA images of the pulmonary arteries and aor:c 
vasculature, respec:vely. To study varia:on to image segmenta:on, we extract mul:ple trees for each 
vasculature from the same image. We also develop a robust method for accurately placing nodes at vessel 
junc:ons and use change points to determine segments within each vessel that represent its true radius. 
From this segment, we determine the vessel radius and its standard devia:on. We examine hemodynamics 
in generated trees, exploring the impact of varia:on over segmenta:ons, radii, and length of each vessel. 
Our results show that by pruning vascular networks and carefully extrac:ng vessel radii and length using 
the algorithms designed in this study, users can significantly reduce fluctua:ons in hemodynamic predic-
:ons, improving the methodology for pa:ent-specific modeling. 
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Figure 10: Pressure and flow dynamics over a cardiac cycle at the midpoint of the (a) MPA, RPA, and LPA in the 
pulmonary arteries and (b) descending aorta, LCC, and brachial artery. Gray lines (1000) denote simulaXons with 
radii sampled from a normal distribuXon based on the mean and standard deviaXon of each vessel’s extracted radius, 
and the colored line (1) represents the simulaXons with radii set at the mean radius based on our extracXon proce-
dure. These simulaXons were based on a representaXve segmentaXon of the pulmonary and aorXc vasculatures. 

Analysis of Raw Networks from VMTK. Analysis of the raw networks generated by VMTK from the 3D 
rendered surfaces shows that the CV is higher in the pulmonary vasculature compared to the aor:c, espe-
cially in the smallest vessels (Figure 8). This is an expected finding since the aor:c network only consists of 
rela:vely large vessels, while the pulmonary network has many small vessels near image resolu:on. More-
over, high devia:on is expected since pulmonary tree segmenta:on requires manual components. 

The bimodal nature of the KDE plots in aor:c vessels (Figure 8) stems from the change in the size of the 
vessels analyzed. The ascending aorta, arch I, arch II, and descending aorta have significantly larger radii 
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than the branching head and neck vessels. In contrast, the pulmonary vasculature has a rapidly branching 
structure, giving rise to a unimodal right-skewed KDE. These findings reflect uncertainty in the radii ex-
tracted from centerlines, obtained from the segmenta:ons of MRI and CT images. The importance of 
quan:fying uncertainty associated with quan::es extracted from image segmenta:on through the use of 
KDEs and PDFs has been supported by several studies. Baumgartner et al. (2019) generate PDFs for each 
segmenta:on and compare it to the distribu:on of the actual image. They argue that knowing these PDFs 
can greatly improve image segmenta:on accuracy (Baumgartner et al., 2019). KDEs have also been used 
for machine-learning applica:ons of image segmenta:on. Wang et al. (2013) leverage KDEs of abdominal 
blood vessels from CT angiograms to learn target distribu:ons and es:mate vessel loca:ons in segmenta-
:ons of the same vessels in different pa:ents. The present study uses KDEs to understand vessel distribu-
:ons within and between segmenta:ons, and we note that this analysis can be a powerful tool for gaining 
informa:on about vessel uncertainty.  

It is well known that limited image resolu:on, segmenta:on inaccuracies, or inexactness in centerline gen-
era:on (Lins et al., 2020; Sharma and Aggarwal, 2010; van Rikxoort and van Ginneken, 2013; Buelow et 
al., 2005) impact 3D rendering. Other factors, including noise, poor contrast, and blurred boundaries, also 
increase the difficulty of extrac:ng the smallest vessels (Cui et al., 2019; Lesage et al., 2009; Hirsch et al., 
2012). In the study by Colebank et al. (2019) examining image segmenta:on uncertainty, the uncertanty 
increases as vessel radius decreases, sugges:ng that small vessels are more sensi:ve to segmenta:on pa-
rameters. Van Horssen et al. (2016) postulate that small vessels are more likely underes:mated due to 
image resolu:on. Schwarz et al. (2020) found that in the human coronary arterial circula:on, the smallest 
vessels are subject to segmenta:on errors, resul:ng in triangular loops and spurious side branches that 
must be corrected in post-processing. These studies validate our findings that the aor:c networks with 
larger vessels have less varia:on than the small vessels in the rapidly branching pulmonary network. This 
varia:on is not a flaw of the soUware used to generate segmenta:ons and networks, but points to the 
need for post-processing when using image-generated networks for hemodynamic predic:ons. 

Network Standardiza9on. Standardizing networks to have a consistent number of vessels is impera:ve to 
enable comparison. AUer pruning pulmonary networks, we find that fluid dynamic differences stemming 
from segmenta:on varia:on become less apparent. An alterna:ve way to account for large vessel network 
size differences is to adjust structured tree parameters, α and β, genera:ng networks with similar total 
vessel count and a similar total vessel area or volume. However, this study inves:gates changes in geomet-
ric quan::es, such as radius and length, keeping parameters constant to emphasize the uncertainty caused 
by vascular geometry. Thus, we prune networks rather than adjus:ng α and β parameter values, though 
this can be inves:gated in future studies. Miller et al. (2023) argue that networks with disparate branch 
numbers are an imaging consequence rather than a biological factor, and thus, pruning is essen:al when 
comparing different segmenta:ons. In addi:on, they find that more informa:on about networks can be 
gained by applying pruning techniques (Miller et al., 2023). Colebank et al. (2019) find that choices in 
segmenta:on parameters greatly impact the number of vessels in the network and that network size af-
fects the model output. Since mean pressure and flow metrics are used to diagnose diseases, such as 
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pulmonary hypertension (Hoeper et al., 2013), standardizing results and assessing uncertainty is cri:cal. 
This also highlights the importance of determining the minimum number of imaged arteries needed for 
reliable diagnos:c results. If a subset of larger vessels can yield valid, comparable results, excluding smaller 
vessels that exhibit dras:c imaged-related uncertain:es may be beneficial. This idea has been studied by 
several groups, who use surrogate or reduced order models to lessen computa:onal complexity (Paun et 
al., 2021; Borowska et al., 2023; Ragkousis et al., 2016; Epstein et al., 2015). 

Table 5: Range, minimums, and maximums of pressure and flow predicXons comparing the “true” geometry to pre-
dicXons that are from sampled geometries. The “true” geometry comes from the mean of the opXmal secXon se-
lected by change points and the sampled comes from sampling from a normal distribuXon around the mean.  

 

 

 

 

 

 

 

 

 

 

 
Junc9on Node Placement. The placement of nodes within junc:ons impacts both the length and radii of 
vessels. Large vessels, especially the aorta, are known to taper along their length (Caro et al., 1978). Due 
to the rapid change in vessel radii, junc:on node placement in these vessels is essen:al. Our algorithm 
addresses this by shiUing the VMTK-derived nodes to the center of the os:um. As a result, sec:ons of 
centerline data previously characterized as part of daughter vessels become reclassified as part of the 
parent. Modifying junc:on nodes impact hemodynamics in the pulmonary and aor:c vasculature (Figure 
8) but impacts aor:c vessels more significantly. Since aor:c vessels are longer and wider than pulmonary 
vessels, geometric changes resul:ng from modifying junc:ons are more pronounced, and this effect is 
propagated to hemodynamics. In par:cular, in the descending aorta, one segmenta:on has a nearly 60 
mmHg varia:on in systole between junc:on node loca:ons. This is not the case in pulmonary vessels, with 
an average pressure varia:on of only 3 mmHg in systole. The wave reflec:ons in the aor:c flow predic:ons 
are also affected. Abdullateef et al. (2020) inves:gates the impact of fluctua:ng vessel radius on wave 

 Pressure (mmHg) Flow (mL/s) 

Pulmonary Range Min Max Range Min Max 

MPA 
True  

Sampled 
10 
25 

13 
0 

23 
25 

280 
285 

0 
0 

280 
285 

RPA 
True 

Sampled 
10 
25 

13 
0 

23 
25 

110 
170 

15 
10 

125 
180 

LPA 
True 

Sampled 
10 
25 

13 
0 

23 
25 

100 
110 

0 
-25 

100 
115 

Aor-c       

Desc Aorta 
True 

Sampled 
60 
75 

60 
45 

120 
160 

400 
275 

0 
-25 

250 
250 

LCC 
True 

Sampled 
50 
110 

60 
40 

110 
150 

30 
55 

0 
-15 

30 
40 

Brachial 
True 

Sampled 
50 
110 

60 
40 

110 
150 

30 
60 

0 
-20 

30 
40 

MPA: main pulmonary artery, RPA: right pulmonary artery, LPA: lef pulmonary artery, 
Desc Aorta: descending aorta, LCC: lef common caroXd, brachial: brachial artery. 
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reflec:ons, finding that as vessel radius decreases, wave reflec:ons increase and begin to overlap. Accu-
rately placing nodes in tapering vessels is crucial, as an incorrect placement can cause wrong reflec:ve 
wave proper:es. Due to the well-known interplay between geometry and hemodynamics, genera:ng ac-
curate vessel geometry is impera:ve. Although this study uses the cylindrical Navier−Stokes equa:ons to 
model hemodynamics, considering the concept of steady flow within a cylinder, namely Poiseuille’s law q 
= πpr4/8µl (Pfitzner, 1976; Demers and Wachs, 2022), allows us to gain insight into how radius and length 
influence pressure and flow dynamics. Clearly, q and p are directly impacted by r and l in Poiseuille’s law. 
Notably, r is raised to the fourth power, whereas l is raised to the first power. These results are reflected in 
our study, though it should be noted that changing the junc:on nodes’ loca:on affects the vessel length 
and radius since nodes with smaller or larger radii may be moved to a different part of the vasculature. 
The laMer, in par:cular, affects the aor:c vasculature, where small and large vessels merge at junc:ons. 

Change Point Analysis. We sequen:ally combine two methods for change point analysis, u:lizing 
R/changepoint to detect the op:mal number of change points (Killick and Eckley, 2014) and R/segmented 
to place them (Muggeo, 2008). Both methods are computa:onally fast, and their combina:on enables 
accurate and automated assessment of vascular data. R/changepoint determines the op:mal change point 
count using mean and variance to detect changes in the data. However, it is an approxima:on algorithm, 
only giving an es:mated change point placement rather than an exact loca:on (Killick and Eckley, 2014). 
In contrast, R/segmented accurately places change points through a customizable and flexible algorithm, 
where users define linear regression models based on prior knowledge of data structure (Muggeo, 2008). 
This package requires users to input the number of change points detected within each dataset (Muggeo, 
2008), so we use the result from R/changepoint as an input. Coupling these two packages allows us to 
create an automated pipeline for accurate vascular network analysis requiring minimal user input. This is 
advantageous when comparing mul:ple vascular datasets, which may encompass thousands of vessels. 

By limi:ng the number of change points to three, we ensure that detected points capture meaningful 
transi:ons in a vessel’s structure, such as the os:um region or image resolu:on loss, while preven:ng the 
overfikng of the data. It enables consistent and computa:onally fast analysis, allowing for the develop-
ment of a robust algorithm for extrac:ng radii. While we could define exactly three change points in all 
datasets, this leads to inaccurate change point placement in vessels with an op:mal count of less than 
three, as observed in 9% of pulmonary vessels and 33% of aor:c vessels. 

Radius Sampling. Figure 10 shows that vessel radius greatly impacts hemodynamics, following the paMern 
we expect from Poiseuille’s law. Given the predicted pressure and flow values for various radii, a small 
change in radius causes a large change in hemodynamics. For example, when we perturb the LCC’s radius 
following a distribu:on N(0.36,0.01), we observe a 70 mmHg range in systolic pressure. This is also shown 
in a study by Colebank et al. (2019), where even slight changes in vessel dimensions influence pressure 
and flow. Secomb (2016) notes that small changes in diameter can widely modulate blood flow and em-
phasizes the need to precisely iden:fy vessel dimensions to understand how blood is distributed through-
out the body. We note that pulmonary blood pressures fluctuate throughout the respiratory cycle, evident 
when using right-heart catheteriza:on for pulmonary artery measurements (Kovacs et al., 2014). Pressure 
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measurements are greatly impacted by pa:ent angle during data collec:on, changes in al:tude, ambula-
:on, and pre-exis:ng heart arrhythmias. Especially when measuring the same subject over :me, this can 
lead to a pressure varia:on of between 5−15 mmHg (Magder, 2018; Alam et al., 2022). Our pressure range 
obtained from sampling radii falls within the an:cipated range, depending on how much the radius is 
changed. It is common prac:ce to segment cardiovascular networks to build pa:ent-specific models used 
as noninvasive methods to monitor and understand disease (Colebank et al., 2021a; Taylor-LaPole et al., 
2023; An:ga et al., 2008; Carson et al., 2019; Dobroserdova et al., 2016). Our findings demonstrate that 
accurate radius measurements are necessary to tune models to pa:ent data accurately, especially when 
using pa:ent-specific parameters, such as vessel s:ffness. 

The use of change points to iden:fy the vessel radius and its standard devia:on is novel, providing an 
automated way to iden:fy the vessel radius accurately. Most previous studies either average all nodes 
within the vessel (Pfaller et al., 2022; Mulder et al., 2011), or assign the vessel radius using a set propor:on 
of the nodes within the vessel without accoun:ng for different vessel structures (Colebank et al., 2021b). 

Correct iden:fica:on of vessel radii is important beyond computa:onal modeling. In the current study, 
our algorithm is used for iden:fying vessel radii in vasculature networks informing the geometric domain 
for computa:onal analysis. However, many studies segment vascular structures from CT and MRI images 
without using CFD.  This is useful when studying diseases and surgical interven:ons, such as hypoplas:c 
leU heart syndrome (HLHS) and chronic thromboembolic pulmonary hypertension (CTEPH).  HLHS pa:ents 
oUen have enlarged and/or deformed aortas due to reconstruc:ve surgery (Taylor-LaPole et al., 2023). Our 
algorithm can iden:fy pa:ents with abnormal vessel radii and compare radius distribu:on to control indi-
viduals, such as DORV pa:ents. Another example is quan:fying vascular remodeling in pa:ents with 
CTEPH, including quan:fying enlargement of the MPA an acute radius reduc:on in vessels with ring- or 
web-like lesions. Compu:ng radii values with uncertainty can provide valuable guidance for surgical inter-
ven:ons, assis:ng physicians in iden:fying which vessels with lesions should be targeted. 

Limita9ons and Future Studies. This paper outlines a semi-automa:c framework to extract and refine 
pa:ent-specific geometries from medical images. We use a linear regression model to define change points 
for all vessels. With these change points, we can avoid unclear os:um regions and reliably detect repre-
senta:ve radii. However, since we use an exponen:al func:on to model tapering radii, we can reduce 
computa:onal complexity by directly defining change points with an exponen:al model in those cases 
(Chen and Gupta, 2011). 

In addi:on, it must be noted that we make several assump:ons regarding the evolu:on of a vessel’s radius 
and the loca:ons of junc:ons to develop this framework. These assump:ons are made based on a thor-
ough analysis of typical vessel structures in large networks and a literature review. However, our frame-
work is highly customizable, so these assump:ons can be adjusted to suit the needs of various vascular 
networks that differ from the aorta and pulmonary arteries, such as the renal, cerebral, and hepa:c arter-
ies. Future studies will inves:gate the impact of specific modeling assump:ons on hemodynamic predic-
:ons in different systems. 
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Another limita:on is that we sample radii for each vessel independently. While this choice allows us to 
inves:gate how geometry impacts hemodynamics, it overlooks the in:mate connec:on between vessels 
in the system. When we sample independently, daughter radii can exceed their parent’s, viola:ng the mor-
phometric condi:on. In the future, we will account for covariance enabling us to consider the link between 
parents and daughter vessels when sampling (McNeil, 2008). 

We generate a rela:vely small number of segmenta:ons for analysis in this study due to the :me-consum-
ing nature of manual segmenta:on of complex structures. We plan to create more segmenta:ons of pul-
monary and aor:c vessels to test our method further. To do so, we will use automa:c segmenta:on soU-
ware, such as (Polek et al., 2022), and compare this to the manual segmenta:ons we have already com-
pleted. Another component is studying how changes in segmenta:on threshold and smoothing impact 
predic:ons. This was analyzed by Colebank et al. (2019) in excised mouse pulmonary artery data captured 
by microcomputed tomography images. Colebank’s results had similar varia:on in flow and pressure com-
pared to those reported in this study. Finally, it is important to factor in the noise in images. Animal dta 
are oUen obtained under anesthesia, while human data are obtained in the awake state.  The laMer may 
have higher impact on image resolu:on than analysis of radii extracted from the images.   

CONCLUSION 
This study develops a robust framework to generate pa:ent-specific labeled directed trees from medical 
images and obtain vessel measurements for use in fluid dynamics simula:ons while considering uncer-
tainty. We find notable varia:on in the raw networks generated using VMTK, especially in the smallest 
vessels, when segmen:ng the same images mul:ple :mes despite using standard segmenta:on proce-
dures and having the same user segment the images. To minimize this uncertainty, we develop a robust 
pipeline to prune networks, shiU junc:on nodes to the center of the os:um, and determine vessel radius 
using change points. Our results emphasize the significance of post-processing and quan:fying uncertainty 
when genera:ng networks for medical applica:ons. Current diagnos:c procedures for many diseases re-
quire invasive protocol, including right-heart catheteriza:on. This study demonstrates that careful analysis 
of image analysis data combined with CFD modeling has the poten:al to augment or mi:gate the need for 
invasive studies via in-silico simula:ons. Despite the poten:al clinical advances CFD provides, medical con-
clusions should only be made by first assessing the level of uncertainty present in diagnos:c informa:on, 
fully understanding limita:ons and possible errors. In the absence of fixed geometric values of vessels due 
to scanning ambiguity, researchers must navigate uncertain measurements by developing effec:ve meth-
odologies, such as the one we have outlined here, for increasingly accurate analyses. 
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Addi7onal Informa7on 
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