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Active mode mismatch sensing and control can facilitate optimal coupling in optical cavity experiments such as
interferometric gravitational wave detectors. In this paper, we demonstrate a radio-frequency (RF) beam wave-
front curvature modulation-based mode mismatch sensing scheme inspired by the previously proposed RF beam
jitter alignment sensing scheme. The proposed mode mismatch sensing scheme uses an electro-optic lens (EOL)
device that is designed to provide the required beam wavefront curvature actuation, as well as a mode converting
telescope that rephases the RF second-order modes and generates a non-vanishing mode mismatch sensing signal.
We carefully investigate the total second-order mode generation from the wavefront actuation both analytically
and numerically, taking the effects of Gaussian beam size evolution and the second-order mode phase mismatch
cancellation into consideration. We demonstrate the second-order mode generation as a function of the incident
beam waist size and the electro-optic crystal size which, along with a “trade-off” consideration of the beam size at
the edges of the crystal and the clipping loss, provides us with guidance for designing the beam profile that interacts
with the crystal to improve the EOL modulation efficiency. © 2025 Optica Publishing Group. All rights, including for text
and datamining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Precise locking and control of perfect alignment and mode-
matching states are essential for maintaining efficient power
coupling of laser beams to spherical optical resonators in many
high-precision optical cavity experiments, such as in searches
for particles beyond the standard model [1] and precision mea-
surements of quantum gravity phenomena at the Planck scale
[2,3]. This requires, for instance, that the laser beam wavefront
curvature must match the curvature of the cavity mirrors at their
positions on the optical axis to achieve optimal resonance in
the optical cavity. Imperfect matching of the eigenmode of an
optical cavity and an injected laser beam mode leads to degrada-
tions in optical resonance and power coupling for the laser beam
[4–6].

High-finesse optical cavities are also widely used in applica-
tions related to gravitational wave detection. Monitoring and
correcting the mode-matching state is becoming increasingly
important for advanced gravitational wave (GW) detectors such
as Advanced LIGO and Advanced Virgo [7,8], which are mostly
composed of multiple inter-coupled suspended cavities, to
yield the optimal sensitivity. For instance, it was demonstrated
that the coupling of injected squeezed light in advanced GW
detectors to the main interferometer can be extremely sensitive

to mode mismatch losses [9–12]. In addition, the power loss
scattered into the second-order modes by a mode mismatch
between the laser beam and the output mode cleaner cavity in
Advanced LIGO also directly corresponds to a loss of GW signal
and an increased shot noise level at the GW readout. One should
ideally monitor and limit the amount of the mode mismatch to
prevent the degradation of squeezing performance and of the
sensitivity of GW detectors.

Several hardware and schemes for sensing and correcting
mode mismatches have been proposed. For instance, radio-
frequency (RF) quadrant photodiodes or bullseye photodiodes
have been proposed and demonstrated for sensing and control-
ling the beam wavefront distortion, with the use of multiple
sensors and Gouy phase telescopes for the complete mode
mismatch degrees of freedom (DoFs), such as the beam waist
size and waist position mismatch [13,14]. An alternative novel
method through the generation of RF higher-order mode side-
bands has also been proposed for determining and correcting the
alignment and mode-matching states of the laser mode coupling
to the eigenmode of optical cavities [15,16]. These RF beam
modulation-based sensing schemes have potential advantages
over the traditional standard schemes by greatly simplifying the
experiment with the use of a single-element photodiode for the
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complete sensing of all DoFs and do not require any additional
Gouy phase telescopes.

In this paper, we extend the RF beam jitter alignment sensing
scheme proposed by Fulda et al. [15], to characterize and cor-
rect mode mismatches between the laser beam mode and the
eigenmodes of optical cavities. This QPD-free mode mismatch
sensing scheme uses an electro-optic lens (EOL) device as a fast
wavefront curvature actuator that provides the required RF
beam wavefront curvature modulation [15,17–19]. Second-
order spatial mode RF sidebands are generated at twice the mode
separation frequency of an optical cavity. This guarantees the
co-resonance in the cavity of one of the second-order mode side-
bands with the carrier light in the fundamental mode. Complete
RF lens (RFL) mode mismatch sensing signals can theoretically
be obtained through the detection of the beat signal between the
second-order mode RF sidebands from the wavefront modu-
lation with the second-order mode carrier field from the static
mode mismatch with only a single-element photodiode for both
mode mismatch DoFs, at orthogonal demodulation phases, as
described in our previous work [18].

In this paper, we propose a design and demonstrate by a
simulation our implementation of the electro-optic lens device,
by sandwiching an electro-optic crystal between three pairs of
alternating polarity electrodes. We will calculate the change in
the refractive index of the crystal near the central axial region
due to the Pockels electro-optic effect, and thus the accumu-
lated phase map for the input Gaussian beam coupling, and
show that it can be well approximated by a hyperbolic parabo-
loid surface. The interaction of the Gaussian beam with the
hyperbolic paraboloidal phase map is characterized in terms of
scattering in the Hermite–Gaussian (HG) mode basis through
a numerical mode decomposition technique. The phase of the
second-order scattered modes HG2,0 and HG0,2 differ by ⇡
due to the opposite signs for the focal length from the phase
profile in the two principal transverse directions, which leads to
vanishing RFL mode mismatch sensing signals. The hyperbolic
paraboloid phase profile, and thus the phase difference between
the second-order modes, can however be corrected by passing
the beam through a subsequent astigmatic mode converter.
This rephases the second-order modes in the RF wavefront
modulation sidebands, producing the desired second-order
Laguerre–Gauss LG1,0 mode for the RFL sensing.

The strength of the RFL mode mismatch sensing signals
depends on the effective modulation depth, namely the amount
of second-order modes in the RF beam wavefront curvature
modulation sidebands, as the Gaussian input beam interacts
with the electro-optic crystal inside the EOL. On the other
hand, the size and the wavefront curvature of the input beam
vary as it propagates inside the crystal. This changes the ampli-
tude and the phase of the RF modulation second-order modes.
The phase mismatch between the second-order modes gener-
ated at different locations in the crystal leads to cancellation
and a reduction in the total RF second-order mode generation.
This cancellation of the RF second-order modes due to the
phase mismatch is carefully calculated analytically in this paper.
The result is verified with corresponding numerical results by
treating the input Gaussian beam amplitude profile and the
paraboloidal phase maps as two-dimensional arrays. This more
careful and precise treatment gives us a significant difference in

the estimation of the total RF second-order mode generation
compared to the previous simplified approach by treating the
entire interaction with the phase profile at a single location
of the beam waist. It captures the effect of the Gaussian beam
size evolution and the phase mismatch cancellation and bet-
ter characterizes the RF lens modulation efficiency. The total
second-order mode generation as a function of the waist size of
the input beam and the size of the electro-optic crystal, through
a “trade-off” consideration with the beam size and consequently
the clipping loss at the edges of the crystal, is demonstrated as a
quantitative guidance for the design choice of the beam profile.

This paper is structured as follows. We start with our design
and implementation of the electro-optic lens device for the
proposed RF lens mode mismatch sensing scheme in Section 2.
We then report a careful and precise calculation of the total
second-order mode generation in Section 3, where the effects
of the beam size evolution and phase mismatch cancellation are
demonstrated both analytically and numerically. In Section 4,
we discuss the result and how it can guide us in designing the
incident beam profile to achieve better RF second-order mode
generation. We report conclusions and discussions for future
work lastly in Section 5.

2. ELECTRO-OPTIC LENS DESIGN

The proposed radio-frequency lens modulation mode mis-
match sensing scheme implements an electro-optic lens device
that can provide the required beam wavefront modulation. The
electro-optic lens device can be designed based on three pairs of
alternating polarity electrodes placed around a cuboid-shaped
electro-optic crystal, such as the lithium niobate (LiNbO3)
crystal. As illustrated in Fig. 1, the positive electrodes are shown
in red, and the negative electrodes are shown in black. With a
given voltage applied to the electrodes, it produces an electric
field inside the crystal, causing a linear variation in the refractive
index of the crystal, due to the Pockels electro-optic effect:

1n
�
E y
�
= 1

2
n3

e r33 E y , (1)

where ne is the extraordinary refractive index, and r33 is the
electro-optic coefficient of the crystal, with the coordinates
defined in Fig. 1. If we ignore the edge effect and assume a
uniform electric field E y throughout the beam propagation
direction z, we have E y = E y (x , y ). The input Gaussian beam
picks up a total phase distortion to the wavefront as it propagates
through the crystal, characterized by the following phase map:

1� = kLz1n
�
E y
�
, (2)

where k is the wavenumber, and Lz is the length of the crystal.
The induced phase profile is proportional to the electric field dis-
tribution due to the linear electro-optic effect.

With the boundary conditions from the electric potentials
of the electrodes set to ±1 V, the electric field inside the crystal
is solved numerically through finite element methods. Table 1
lists the parameters of the electro-optic crystal used in solving
the electric field distribution and the resulting phase profile.
Figure 2 shows our numerical result for the electric field E y
distribution inside the electro-optic crystal as a function of the
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Fig. 1. Illustration of the RF lens modulation mode mismatch
sensing scheme. The EOL design consists of an electro-optic crystal
sandwiched between three pairs of alternating polarity electrodes (red
for positive and black for negative). The input Gaussian beam picks
up a hyperbolic paraboloidal phase profile as it passes through the
electro-optic crystal, which generates the second-order modes HG2,0

and HG0,2 in anti-phase, characterized by the 45� rotated HG1,1

mode. The converted HG45�rot
1,1 mode beam is reshaped by a mode-

matching lens (red) and is focused to a beam waist at the center of the
two cylindrical lenses that form the mode converter telescope (light
green), with the focal length and separation of the lenses determined
by the new waist size. It rephases the pair of second-order modes and
converts them to the desired LG1,0 mode for the RFL sensing.

transverse coordinates x and y obtained from finite element
analysis modeling with the assumed crystal geometry and pairs
of alternating polarity electrodes at the boundary. The left
panel shows the numerical solution of the electric field distribu-
tion in the entire cross-sectional region of the crystal, which is
2 mm ⇥ 2 mm wide. The locations of the electrodes can be seen
at the top and bottom, where the electric field is the strongest.
The right panel shows the electric field distribution at the central
1 mm ⇥ 1 mm region of the transverse direction, as illustrated
by the black dashed square on the left. The electric field near the
central axial region can be well approximated by a hyperbolic
paraboloid surface.

This electric field distribution produces a change in the index
of refraction and consequently the extra phase accumulation

Table 1. Parameters of the Cuboid-Shaped
Electro-optic Crystal Used in the EOL Device

Parameter Symbol Value Unit

Extraordinary
index of refraction

ne 2.156 -

Electro-optic
coefficient

r33 31 pm/V

Physical size L x ⇥ L y ⇥ Lz 2 ⇥ 2 ⇥ 20 mm3

Electrode Size in x dx 0.653 mm

profile that is proportional to E y according to Eqs. (1) and (2).
The hyperbolic paraboloidal phase profile exerts an effect on the
transmitted beam as a lens with equal magnitude but opposite
sign focal lengths in the two principal transverse axes. In terms
of HG mode scattering, sinusoidal modulation of the voltage
applied to the electrodes produces pairs of RF wavefront modu-
lation sidebands in both the second-order HG2,0 and HG0,2

modes, but in anti-phase with each other, due to the opposite
sign in the focal length from the phase profile.

To get a rough estimate of the amount of second-order mode
generation, the total hyperbolic paraboloidal phase profile
through the interaction with the entire crystal is applied to an
input Gaussian beam at the waist location. The more precise
and careful treatment is described in the next section. The phase
profile and the beam amplitude distribution are represented
in terms of two-dimensional arrays, and the mode decompo-
sition is performed subsequently. For the beam profile that
interacts with the electro-optic crystal, we start with a default
design where the beam waist is placed at the center of the crystal.
The beam sizes at the front and the back faces of the crystal are
therefore equal due to symmetry.

To achieve minimum clipping losses at the two ends of the
crystal, one could be tempted to keep the size of the beam at the
front and back faces of the crystal as small as possible; we will
start with this particular configuration as our baseline nominal
case and later show through detailed numerical and analytical
calculations that this however is not necessarily the best choice.

Fig. 2. Numerical result on the electric field distribution inside the electro-optic crystal generated by applying ±1 V to the electrodes obtained
from the finite element analysis simulation. Left: entire cross-sectional region of the crystal 2 mm ⇥ 2 mm; right: 1 mm ⇥ 1 mm central axial region.
The relevant properties of the electro-optic crystal used in the numerical modeling are listed in Table 1.



Research Article Vol. 64, No. 6 / 20 February 2025 / Applied Optics 1559

One can in principle achieve better RF beam wavefront modu-
lation efficiencies through different beam profile configurations
at the expense of a negligible increase in beam size at the faces of
the crystal, and consequent clipping losses. The size of the input
Gaussian beam at the edges of the crystal in general reads

w(z) = w0

s

1 +
✓

z
zR

◆2

=
s

w2
0 + z2�2

⇡2w2
0
, (3)

where zR = ⇡w2
0

�
is the Rayleigh length. Thus, the beam size

at the crystal faces (z = ±Lz/2) reaches the global minimum
when

zR = ⇡w2
0

�
= Lz

2
. (4)

Namely, when the waist size is set to be wm =
q

Lz�
2⇡

, the front
and end faces of the crystal are placed exactly at one Rayleigh
length before and after the beam waist. For example, for a crystal
that is 2 cm along the beam propagation direction, and for a
wavelength of 1064 nm, the waist size that corresponds to the
smallest beam size at the crystal edges is

wm =
r

Lz�

2⇡

Lz=2 cm= 58.2 µm, (5)

while the beam size at the crystal edges in this nominal case isp
2 · wm = 82.3 µm, which is the smallest beam size for a given

crystal length of 2 cm.
The entire hyperbolic paraboloidal phase map is applied to

the Gaussian beam at the waist by representing the incident
beam amplitude profile and the resulting phase map as discrete
matrices. The modulated beam is numerically decomposed
in the Hermite–Gaussian mode basis, and the amplitude and
phase of the most dominant HG mode contents are obtained
through numerical overlap integration utilizing the orthogo-
nality of the HG mode basis for describing coherent paraxial
beams. The results are listed in Table 2. With the hyperbolic
paraboloidal phase profile applied to the Gaussian beam, the
most dominant HG modes other than the input HG0,0 mode
are the second-order HG2,0 and HG0,2 modes. They have
roughly the same amplitude, from the mode decomposition,
but with a phase difference of 180�. The next dominant HG
mode from the beam wavefront curvature modulation is the
fourth-order HG2,2 mode, with an amplitude that is two orders
of magnitude smaller than the amplitude of the second-order
modes.

Due to the opposite phase of the HG2,0 and HG0,2 modes
in the RF sidebands, the resulting RFL mode mismatch error
signals derived from the second-order modes cancel out after
detection and demodulation. Therefore, such an electro-optic
lens device with alternating polarity electrodes on its own can-
not provide the required second-order modes with the correct
phase alignment for the RFL mode mismatch sensing.

Instead, one can solve this problem by mode matching the
beam passing through the EOL into a subsequent ⇡/2 mode

Table 2. Mode Content by Decomposing the Input
Gaussian Beam Applied with the Hyperbolic Paraboloid
Phase Profile That is Proportional to the Electric Field
Distribution in Fig. 2 to the Beam Waista

HG Mode HG0,0 HG0,2 HG2,0 HG2,2

Amplitude 1 3.888 · 10�5 3.881 · 10�5 3.231 · 10�7

Phase [deg] 0 �90.0 90.0 �89.7
aThe mode contents of the Hermite–Gauss modes are ranked by their

amplitudes.

converter telescope, as illustrated in Fig. 1. The output beam
through the EOL forms a new beam waist wn centered in the
mode converter telescope, which consists of two astigmatic
cylindrical lenses spaced by

p
2 f , where f is the focal length

and is related to the new waist size via f = ⇡w2
n

�
/(1 + 1p

2
)

[13,20]. As a result, it corrects the opposite phase of the pair of
second-order modes generated by the EOL. Specifically, with an
opposite phase in the HG2,0 and HG0,2 modes, the converted
beam after the RF wavefront modulation is a 45 degree rotated
HG1,1 mode, as illustrated on the top panel of Fig. 3:

HG45�rot
1,1 = 1p

2

�
HG2,0 � HG0,2

�
. (6)

After the beam passes through the astigmatic mode con-
verting telescope, it accumulates an extra phase of ⇡/2 for the
cylindrical lens focusing axis (x axis) for each mode order in that
direction compared to the normal Gouy phase accumulation
for the non-focusing axis (y axis) [13]. Since the second-order
mode HG2,0 has two mode orders in the x axis, it accumulates
twice the extra Gouy phase ⇡/2, i.e. ⇡ , compared to the HG0,2
mode. The sign of the HG2,0 mode as a result is flipped, since
e i⇡ = �1. The second-order modes HG2,0 and HG0,2 after the
cylindrical lenses have the same phase:

LG1,0 = 1p
2

�
HG2,0 + HG0,2

�
. (7)

The second-order modes get rephased and converted to the
desired LG1,0 mode for the RFL sensing, as shown in the bottom
panel of Fig. 4.

3. RF SECOND-ORDER MODE GENERATION

The second-order mode generation through the interaction of
the Gaussian beam with the paraboloidal phase profile depends
on the location of the interaction, due to the wavefront curva-
ture and the beam size evolution of the input Gaussian beam.
We would thus have to consider both the amplitude and phase of
the second-order modes generated throughout the interaction
with the electro-optic crystal region and add all the contri-
butions to properly characterize the wavefront modulation
efficiency of the EOL.

In Fig. 4, the electro-optic crystal and the input Gaussian
beam are illustrated in green and red, respectively. For our design
choice, the beam waist is placed at the center of the crystal. In
general, in the HG mode basis, the field amplitude of second-
order modes generated from the interaction with a crystal region
around a given z location can be characterized by a complex



1560 Vol. 64, No. 6 / 20 February 2025 / Applied Optics Research Article

Fig. 3. Mode converter made from cylindrical lenses rephases the second-order modes HG2,0 � HG0,2 to HG2,0 + HG0,2. This converts the RF
HG45�rot

1,1 mode to the desired LG1,0 mode for the RFL mode mismatch sensing.

Fig. 4. Illustration of the interaction between the input Gaussian beam in red with the EOL crystal in green. The amplitude and phase of the RF
second-order mode coefficient m(z) in general depend on the location of the interaction.

number m(z): the mode scattering coefficient. The amplitude
and the phase of the mode scattering coefficient, in general, is
a function of the z location, due to the size and the wavefront
curvature evolution of the input Gaussian beam. To obtain
the total second-order mode content from the RF wavefront
curvature modulation, we have to accumulate all the mode
scattering coefficients throughout the interaction length within
the crystal, by integrating the complex coefficients m(z) over the
entire crystal length.

As demonstrated in the previous section, the combination of
the EOL and mode converter effectively generates a wavefront
curvature modulation to the input Gaussian beam. The curva-
ture modulation can be characterized by applying the following
phase factor to the Gaussian beam amplitude:

e ik S
2 (x2+y 2), (8)

where the amount of curvature modulation is denoted as S. As
derived in our previous work. [6], for a generic HG mode with
a mode index n in the x direction, the effect of this extra phase
factor on the x component of the input beam amplitude can be
expressed as mode scattering into the HG modes that are offset
from the original mode by two mode orders:

Un(x , z) ⇡ Un + ik
Sw(z)2

8

⇣p
(n + 1)(n + 2) · Un+2e�2i9

+ (2n + 1) · Un +
p

n(n � 1) · Un�2e 2i9
⌘

.

(9)

We thus see that the mode coefficients are z-dependent,
in both the amplitude and the phase: the amplitudes of the
second-order modes scattered from the RF wavefront curvature
modulation are proportional to the beam size squared, and the
phases contain two factors of Gouy phase delay 9.

In the special case of the input HG0,0 mode, on which
we focus in this paper, the second-order mode content after
applying the phase factor can be written as

2nd Order Modes = ik

p
2Sw(z)2

8
e�2i9 ·

�
HG2,0 + HG0,2

�

= ik
Sw(z)2

4
e�2i9 · LG1,0,

(10)

in the HG or the LG mode basis. For instance, from the second-
order mode amplitude in Table 2 with the approximation that
the entire phase map is applied at the beam waist, we can calcu-
late the effect of the phase map on the curvature modulation S0
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with ±1 V applied to the electrodes is

S0 = 2nd Order Mode Content

k
p

2w2
m/8

= 0.011m�1, (11)

where we used wm = 58.3 µm. Our EOL design of the three
pairs of alternating polarity electrodes of ±1 V effectively
produces a wavefront curvature modulation of 11 mD.

The complex coefficient of the second-order modes generated
from the interaction with the crystal of unit length around loca-
tion z thus is

m(z) = ik
Sw(z)2

4
e�2i9 . (12)

Around the region [z, z + dz] in the crystal, the infinitesimal
second-order mode generated is

dm = ik
w(z)2

4
e�2i9d S

= ik
Cw2

0

✓
1 +

⇣
z

zR

⌘2
◆

· dz

4
e�2i arctan z

zR , (13)

where we have substituted the z dependence of the beam size
and Gouy phase. We have also assumed a uniform electric field
distribution along the beam propagation direction z inside the
EOL crystal so that the infinitesimal curvature modulation from
crystal region [z, z + dz] can be written as d S = C · dz, where
the curvature modulation from the unit crystal length C is a
constant. If we assume that the total amount of beam wavefront
curvature modulation generated from the entire EOL crystal is
S0, it then leads to

C = S0

Lz
, (14)

assuming uniform electric field distribution, where Lz is the
crystal length.

Integrating along the region of the crystal [�Lz/2, Lz/2], we
obtain the total amplitude of second-order modes produced:

m2 = ik
Cw2

0

4

Z Lz/2

�Lz/2

 

1 +
✓

z
zR

◆2
!

e�2i arctan z
zR dz

= ik
Cw2

0

4

Z Lz/2

�Lz/2

 

1 +
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z
zR

◆2
!

cos
✓

2 arctan
z

zR

◆
dz

= ik
S0w

2
0

4

✓
1 � Lz

2�2

12⇡2w4
0

◆
,

(15)

where we have used the relation C = S0
Lz

. S0 is the total amount
of beam wavefront curvature modulation through the entire
electro-optic crystal (a property which is first-order independent
of the beam traversing the crystal), w0 is the waist size of the
input Gaussian beam, and Lz is the crystal length.

The second-order mode generation has also been investigated
numerically by applying the paraboloidal phase maps to the

Fig. 5. Amplitude and phase of the second-order mode coeffi-
cient as the entire crystal length are divided into 100 segments in
the Gaussian beam propagation direction. The amplitude of the
second-order mode is proportional to the square of the beam size at the
interaction location. The phase difference between the second-order
modes generated at different locations can lead to cancellation.

propagating Gaussian beam in terms of two-dimensional arrays,
as illustrated previously. For the numerical calculation, we
divide the entire EOL crystal length along the beam propagation
direction z evenly into many segments and evenly distribute
the paraboloidal phase map factor for the wavefront curvature
modulation for each z segment. The second-order mode ampli-
tudes generated from each z segment are then calculated and
coherently summed over for the total second-order modes.

Figure 5 shows the amplitude and the phase of the second-
order mode content for all the z segments throughout the
intersection of the crystal, from the numerical calculation. The
entire crystal range in z was divided into 100 segments, which
was shown to lead to a converging result in the total second-
order mode generation. Three different cases corresponding to
different waist sizes have been shown. The blue line represents
the nominal waist size wm = 58.3 µm, and the red and green
lines show the cases when the waist size is slightly larger and
smaller than wm , respectively. The amplitude of the second-
order modes scales as the beam size squared. The phase of the
second-order modes is depicted as

arg{m2} = ⇡

2
� 29(z), (16)

as shown in Eq. (12), where ⇡/2 comes from the prefactor i . For
the case with the nominal waist size where the crystal length is
exactly two Rayleigh lengths around the waist, as shown in the
blue curve, the Gouy phase evolves from �⇡/4 at the front of
the crystal, to 0 when at the center of the crystal, and to ⇡/4 at
the end of the crystal edge. The phase of the second-order mode
is thus centered at ⇡/2, from Eq. (16). The range of the phase
difference for the second-order modes generated at different
locations is ⇡ , from twice the Gouy phase factor. On the other
hand, for the large waist size solution in the red curve, the range
of the phase difference is smaller than ⇡ , since the Gouy phase
accumulation inside the crystal, in this case, is less than ⇡/2.



1562 Vol. 64, No. 6 / 20 February 2025 / Applied Optics Research Article

The phase range is larger than ⇡ for the small waist size solution
in the green.

From the amplitude and phase of the second-order modes
generated from the interaction with each z segment of the EOL
crystal, we can then sum over all the contributions to get the
total result. As can be seen, treating the entire phase map accu-
mulation at a single waist location leads to inaccurate results.
The inaccuracy comes from two factors: the amplitude of
second-order mode generation depending on the beam size and
the phase mismatch between the second-order modes generated
at different locations, which leads to some cancellation due to
the phase difference.

4. RESULT AND DISCUSSION

The effects of the beam size evolution and the phase mismatch
cancellation on the total second-order mode generation can also
be extracted from the analytical result in Eq. (15). The first term

ik S0w2
0

4 is the result if the entire interaction between the crystal,
and the input Gaussian beam is treated as a single interaction
at the beam waist. Our more accurate result by treating the
interaction throughout the crystal region individually differs
from the simple treatment by the second term, which is a joint
result of the phase mismatch between the second-order modes
generated at different locations along the longitudinal direction
and the quadratic Gaussian beam size evolution throughout the
crystal.

Figure 6 shows the total second-order mode generation, from
the two treatments. The resulting total second-order mode gen-
eration by treating the entire interaction of the input Gaussian
beam with the phase map at the waist location is shown in
the red curve, and the more precise calculation by treating
the interaction throughout the crystal is shown in green. For
instance, at the nominal waist size wm , with the approximated
treatment of a single interaction at the waist, the amount of the

Fig. 6. Total second-order mode content generated through the
wavefront curvature modulation as the waist size increases. The
interaction with the paraboloidal phase map is calculated in two
approaches. The second-order mode calculated with the entire phase
map interaction is treated at a single location at the beam waist shown
in red, which gives inaccurate results and leads to overestimation of
the second-order mode generation compared to the more accurate
approach with the interaction treated throughout the crystal, shown in
green.

Fig. 7. Total second-order mode generation, normalized by the
case with the nominal waist size wm , as a function of the waist size. The
numerical results in red agree well with the analytical results in green.
The corresponding beam size at the crystal edges is shown on the right
y axis.

second-order mode is roughly 3.8 · 10�5, agreeing with the
result from Table 2. With a more careful and precise calculation
by treating the interaction individually throughout the crystal,
as shown in Fig. 5, the total second-order mode generation is
roughly 2.5 · 10�5, which is more than 35% different from the
approximated approach.

Figure 7 shows the normalized total amount of second-order
mode amplitude, or the EOL wavefront curvature modulation
efficiency, as a function of the waist size. The numerical result
in the red curve agrees extremely well with the analytical result
from Eq. (15) in the green dashed line. The second-order mode
content for a given crystal length Lz and total curvature modula-
tion S0 increases as the waist size increases. The merit of a larger
waist size comes in two parts. First, the interaction with the
phase profile generated from the EOL crystal is stronger with a
larger average beam size throughout the crystal. In addition, the
effect of mode cancellation from the phase mismatch between
the second-order modes generated from different parts of the
crystal is smaller due to smaller Gouy phase accumulation in the
crystal range.

The result for the second-order modes is normalized by
the nominal waist size case with the smallest beam size at the
crystal edges, which is shown on the right y axis. For instance,
if we increase the waist size from the optimal case by 10%, the
amount of second-order modes, or the EOL wavefront curva-
ture modulation efficiency, is increased by 40%, at the expense
of increasing the beam size at the crystal edges by roughly 1 µm,
from the smallest beam size at 82.3 µm to roughly 83.3 µm.
As a result, one can substantially increase the resulting RF beam
wavefront modulation efficiency through a careful choice of the
incident beam profile while maintaining a negligible increase in
clipping losses.

5. CONCLUSION

In this paper, we have proposed a realistic design and charac-
terization of a novel electro-optic lens device for high-efficiency
generation of RF beam wavefront modulation. Upon inclu-
sion of an additional mode converter telescope, it is able to
generate the required second-order modes in the RF sideband
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fields with the correct relative phases and high efficiency. The
second-order modes in the RF sideband fields can be used to
beat with the second-order modes in the carrier field generated
from the static mode mismatch using single-element photo-
diodes to extract the full linearized mode mismatch sensing
error signals in orthogonal demodulation phases, as demon-
strated in the recently proposed QPD-free mode mismatch
sensing scheme [17,18]. This scheme could be implemented to
maintain optimal mode-matching states and minimize optical
loss in high-precision optical cavity experiments such as future
interferometric gravitational wave detectors.

We demonstrated our approach to generating the required RF
second-order HG modes for the RFL mode mismatch sensing
with our design of an electro-optic lens followed by an astig-
matic mode converter made from a pair of cylindrical lenses. We
demonstrated our design for the EOL device by sandwiching an
electro-optic crystal between three pairs of alternating polarity
electrodes. The change in the index of refraction of the crystal
calculated numerically with finite element methods was well
characterized by a hyperbolic paraboloid function, which acts
on the Gaussian beam passing through it by generating the
second-order HG2,0 mode and HG0,2 mode with roughly the
same amplitude but the opposite phase. To rematch the phase
of the second-order modes and generate a non-vanishing mode
mismatch sensing signal, the EOL device is followed by a mode
converter, which flips the sign of one of the second-order modes
and realigns the phase.

We provided a detailed analytical investigation of the total
second-order mode generation from the paraboloidal phase
profile by integrating the second-order mode complex coeffi-
cients throughout the crystal region. The calculation treats the
interaction between the Gaussian beam and the phase front
modulation throughout the crystal region individually, as the
amplitude and phase of the second-order modes depend on
the Gaussian beam propagation. The result is confirmed by
a numerical approach that treats the beam amplitude profile
and the phase profile as two-dimensional arrays. The effect of
the beam size evolution and the phase mismatch between the
second-order modes generated at different locations was shown
to lead to significant correction to the simplified and inaccurate
approach by considering the entire phase map actuation at a
single location at the beam waist.

The total second-order mode generation is related to the RF
wavefront modulation efficiency and the strength of the RFL
mode mismatch sensing signal. It was shown to be a mono-
tonically increasing function of the waist size of the beam for a
given crystal length and total phase front curvature actuation.
This gives us guidance in designing the beam profile to improve
the total second-order mode generation, through a “trade-off”
consideration with the beam size at the edges of the crystal and
the resulting clipping loss. For instance, for a crystal length of
20 mm in the beam propagation direction, upon an increase
in the waist size from the nominal waist size by 10%, the total
second-order mode generation is increased by 40%, at the
expense of increasing the beam size at the edges of the crystal by
1 µm, from the smallest beam size at 82.3 to roughly 83.3 µm.

A thorough theoretical discussion of the RFL mode mismatch
sensing scheme through RF modulating the beam wavefront
curvature and a derivation of the sensing signal for an arbitrary

Hermite–Gauss mode has been demonstrated in our previ-
ous work [18]. With the novel design of an electro-optic lens
device introduced in this paper and the methods incorporated
in characterizing the RF wavefront curvature modulation effi-
ciency, there is work remaining to be done in the future for a
realistic experimental demonstration and verification of such
designs. This includes optimization of the RF beam wavefront
modulation efficiency through the coupled beam profile and
characterization of the quadratic paraboloidal phase profile in
terms of the amplitude and the purity of the generated second-
order modes in the RF sidebands, respectively. In addition,
the novel electro-optic lens design proposed in the current
work opens a new research and development pathway toward
realizing QPD-free beam wavefront modulation-based mode
mismatch sensing schemes. Thus, with custom-built EOLs, the
validity and performance of the RF lens mode mismatch sensing
scheme based on fast wavefront curvature actuation provided
by the proposed EOL device can be demonstrated with coupled
cavity setups, by simultaneously extracting the full mode mis-
match error signals in orthogonal demodulation phases from
single-element RF detectors.
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