
Statistics and Probability Letters 215 (2024) 110246

A
0
(

r
p

f

w
o
p

h
R

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

A kernel-type regression estimator for NMAR response variables
with applications to classification
Majid Mojirsheibani ∗, Arin Khudaverdyan
Department of Mathematics, California State University, Northridge, CA, USA

A R T I C L E I N F O

MSC:
primary 62G05
secondary 62G08

Keywords:
Regression
Missing data
Kernel
Convergence
Margin

A B S T R A C T

This work deals with the problem of nonparametric estimation of a regression function when the
response variable may be missing according to a not-missing-at-random (NMAR) setup. To assess
the theoretical performance of our estimators, we study their strong convergence properties in
𝐿𝑝 norms where we also look into their rates of convergence. We also study applications of our
results to the problem of statistical classification in semi-supervised learning.

1. Introduction

The problem of statistical estimation, prediction, and inference with nonignorable missing data (i.e., data missing but not at
andom) has received considerable attention in recent years. This paper considers the problem of nonparametric regression in the
resence of missing response variables, 𝑌 , for the not-missing-at-random (NMAR) setup where the mechanism that causes the absence
of 𝑌 is allowed to depend on both the predictor 𝐗 and the response variable 𝑌 .

To present our results, let (𝐗, 𝑌 ) ∈ R𝑑 × R be a random vector and consider the nonparametric estimation of the regression
unction 𝑚(𝐱) = 𝐸(𝑌 |𝐗 = 𝐱) using the independent and identically distributed (iid) observations (𝐗𝑖, 𝑌𝑖), 𝑖 = 1,… , 𝑛, drawn from the
distribution of (𝐗, 𝑌 ). When the data is fully observable, the classical Nadaraya–Watson kernel estimator of 𝑚(𝐱) is given by

𝑚̂𝑛(𝐱) =
𝑛
∑

𝑖=1
𝑌𝑖((𝐱 − 𝐗𝑖)∕ℎ)

/

𝑛
∑

𝑖=1
(𝐱 − 𝐗𝑖)∕ℎ , (1)

here the function  ∶ R𝑑 → R+ is the kernel used with bandwidth ℎ > 0. A global measure of performance of 𝑚̂𝑛(⋅) as an estimator
f 𝑚(⋅) is the 𝐿𝑝-type statistic 𝐼𝑛(𝑝) = ∫ |

|

𝑚̂𝑛 (𝐱) − 𝑚 (𝐱)|
|

𝑝 𝜇(𝑑𝐱), 1 ≤ 𝑝 <∞ , where 𝜇 is the probability measure of 𝐗. The quantity 𝐼𝑛(1)
lays an important role in statistical classification; see for example Devroye et al. (1996), Sec. 6.2). For the almost sure convergence
of 𝐼𝑛(1) to zero see, for example, Devroye and Krzyzak (1989).

Now suppose that the response variable 𝑌 may be missing according to the NMAR mechanism, then the estimator 𝑚̂𝑛(𝐱) in (1)
is no longer available and, furthermore, the estimator based on the complete cases alone is not the correct estimator in general. To
appreciate this, define the indicator variable 𝛥=0 if 𝑌 is missing, and 𝛥=1 otherwise. Similarly, for 𝑖= 1,… , 𝑛, let 𝛥𝑖 =0 when 𝑌𝑖
is missing (and 𝛥𝑖 =1 otherwise). Then, the complete-case estimator

𝑚cc
𝑛 (𝐱) ∶=

𝑛
∑

𝑖=1
𝛥𝑖𝑌𝑖((𝐱 − 𝐗𝑖)∕ℎ)

/

𝑛
∑

𝑖=1
𝛥𝑖((𝐱 − 𝐗𝑖)∕ℎ). (2)

∗ Corresponding author.
vailable online 21 August 2024
167-7152/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: majid.mojirsheibani@csun.edu (M. Mojirsheibani).

ttps://doi.org/10.1016/j.spl.2024.110246
eceived 5 February 2024; Received in revised form 11 August 2024; Accepted 12 August 2024

https://www.elsevier.com/locate/stapro
https://www.elsevier.com/locate/stapro
mailto:majid.mojirsheibani@csun.edu
https://doi.org/10.1016/j.spl.2024.110246
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2024.110246&domain=pdf
https://doi.org/10.1016/j.spl.2024.110246
http://creativecommons.org/licenses/by-nc-nd/4.0/


Statistics and Probability Letters 215 (2024) 110246M. Mojirsheibani and A. Khudaverdyan

b
e
S

d
a
u
n

i
i
t
n
t
o
s
o
m
W
n

I
o
o
(
s
r

r
t
p
m

2

2

f

T

turns out to be the kernel-type estimator of the quantity 𝐸(𝛥𝑌 |𝐗 = 𝐱)
/

𝐸(𝛥|𝐗 = 𝐱) which, in general, is not equal to the regression
function 𝑚(𝐱)= 𝐸(𝑌 |𝐗 = 𝐱) under the NMAR missing response mechanism. Of course, when the MAR assumption holds, i.e., when
𝐸(𝛥|𝐗, 𝑌 ) = 𝐸(𝛥|𝐗), the expression in (2) is the correct estimator of 𝑚(𝐱) because 𝐸(𝛥𝑌 |𝐗) = 𝐸(𝛥|𝐗)𝑚(𝐗).

In order to present and construct our proposed estimator, we start by considering a flexible logistic-type NMAR selection
probability model that works as follows. For any real-valued functions 𝜑 > 0 on R and 𝑔 on R𝑑 , define

𝜋𝜑(𝐱, 𝑦) ∶=
[

1 + exp
{

𝑔(𝐱)
}

⋅ 𝜑(𝑦)
]−1. (3)

Then we consider the following generalization of the popular model of Kim and Yu (2011)

𝑃
{

𝛥 = 1 ||
|

𝐗 = 𝐱, 𝑌 = 𝑦
}

=
[

1 + exp
{

𝑔(𝐱)
}

⋅ 𝜑∗(𝑦)
]−1 ∶= 𝜋𝜑∗ (𝐱, 𝑦), (4)

where 𝜑∗ represents the true function 𝜑 that could depend on unknown parameters and 𝑔 is a completely unspecified function.
The case where 𝜑∗(𝑦) = exp(𝛾∗𝑦) in (4) for some parameter 𝛾∗ corresponds to the original model of Kim and Yu (2011) which has
een studied and explored extensively in the literature; see, for example, Zhao and Shao (2015), Shao and Wang (2016), Morikawa
t al. (2017), Morikawa and Kim (2018), Morikawa and Kano (2018), Fang et al. (2018), O’Brien et al. (2018), Maity et al. (2019),
adinle and Reiter (2019), Chen et al. (2020), Liu and Yau (2021), and Mojirsheibani (2022).
It is well-understood in the framework of NMAR missing data that in a fully nonparametric setup where 𝜋𝜑(𝐱, 𝑦) and the

istribution of (𝐗, 𝑌 ) are completely unknown, one faces the issue of non-identifiability when estimating quantities such as 𝜑 (Shao
nd Wang, 2016). On the other hand, imposing parametric models on both 𝜋𝜑(𝐱, 𝑦) and the distribution of (𝐗, 𝑌 ) is too strong to be
seful in practice (Molenberghs and Kenward, 2007). Some authors have assumed a fully parametric model for 𝜋𝜑(𝐱, 𝑦) only, but
ot the underlying distributions (Qin et al., 2002), but this is also considered to be too strong in practice.
Due to identifiability issues, it turns out that the estimation of (4) can be challenging and that a sufficient condition for model

dentification is to assume (see, for example, Shao and Wang (2016) that there is a part of 𝐗, say 𝐕, which is conditionally
ndependent of 𝛥, given 𝑌 and 𝐙, where 𝐗 = (𝐙,𝐕) ∈ R𝑑 and 𝐙 ∈ R𝑞 , with 1 ≤ 𝑞 < 𝑑. Of course, this approach fails for
he important case of 𝐗 ∈ R1. Furthermore, finding consistent estimators of 𝜑∗ based on the above assumption on 𝐗 does not
ecessarily yield strong optimality (in 𝐿𝑝 norms) of kernel regression estimators in general. To tackle these difficulties, we consider
he approach of Kim and Yu (2011) where one has access to a small follow-up subsample of response values selected from the set
f non-respondents. This approach, which enables one to perform various estimations (even for the case where 𝐗 is in R1), does not
uffer from identifiability issues; see, for example, Shao and Wang (2016) and Kim and Yu (2011). An even more attractive feature
f our approach is that the subsample size can be negligibly small. For example, as our numerical work shows, when 𝑛=100 and the
issing rate is at about 50% then on average a follow-up subsample of size around 2 will be sufficient to carry out all estimations!
e have pressed this issue here to emphasize that the seemingly undesirable need for a follow-up subsample can in practice be a
on-issue.
Regression function estimation with NMAR response variables is generally viewed to be a challenging problem in the literature.

n fact, to the best of our knowledge, there are only a few results available in the literature that also address the theoretical validity
f their proposed methods. These include the work of Niu et al. (2014) and Guo et al. (2019) for the case of linear regression, those
f Bindele and Zhao (2018) to estimate 𝛽 in the model 𝐸(𝑌 |𝐗 = 𝐱) = 𝑔(𝐱, 𝛽), where 𝑔 is completely known, and the results of Li et al.
2018) for parameter estimation in functional linear regression. The current work does not impose linearity or any other known
tructures on the underlying regression function. In the case of nonparametric regression, Mojirsheibani (2022) constructed a new
egression estimator and derived the limiting distribution of its maximal deviation.
The rest of the paper is organized as follows. Section 2 presents the main results where we outline the mechanics of the proposed

egression estimators and study their asymptotic properties in general 𝐿𝑝 norms. Section 3 discusses the applications of our estimators
o the problem of nonparametric classification with partially observed data, where we also look into the rates of convergence of the
roposed classifiers under different conditions. Numerical studies are presented in Section 4. All proofs are deferred to Supplemental
aterials.

. Main results

.1. The proposed estimator

To motivate our proposed estimator, we first observe that the regression function 𝑚(𝐱) = 𝐸[𝑌 |𝐗 = 𝐱] can also be represented as
ollows (see Lemma 1 in the Supplementary material)

𝑚(𝐱) = 𝑚(𝐱;𝜑∗) ∶= 𝜂1(𝐱) +
𝜓1(𝐱;𝜑∗)
𝜓2(𝐱;𝜑∗)

⋅
(

1 − 𝜂2(𝐱)
)

, (5)

where 𝜑∗ is as in (4) and the functions 𝜓𝑘 and 𝜂𝑘, 𝑘 = 1, 2, are conditional expectations given by

𝜓𝑘(𝐱;𝜑∗) ∶= 𝐸
[

𝛥𝑌 2−𝑘𝜑∗(𝑌 )||
|

𝐗 = 𝐱
]

and 𝜂𝑘(𝐱) ∶= 𝐸
[

𝛥𝑌 2−𝑘|
|

|

𝐗 = 𝐱
]

, for 𝑘 = 1, 2. (6)

Now let D𝑛 = {(𝑿1, 𝑌1, 𝛥1),… , (𝑿𝑛, 𝑌𝑛, 𝛥𝑛)} represent a sample of size 𝑛 (iid), where 𝛥𝑖 = 0 if 𝑌𝑖 is missing (and 𝛥𝑖 =1 otherwise).
hen in the hypothetical situation where 𝜑∗ is completely known in (4), one can consider the following estimator of 𝑚(𝐱)

𝑚̂(𝐱;𝜑∗) = 𝜂1(𝐱) +
𝜓̂1(𝐱;𝜑∗) (

1 − 𝜂2(𝐱)
)

, (7)
2

𝜓̂2(𝐱;𝜑∗)
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where 𝜓̂𝑘(𝐱;𝜑∗) and 𝜂𝑘(𝐱), 𝑘 = 1, 2, are the kernel estimators given by

𝜓̂𝑘(𝐱;𝜑∗) =
𝑛
∑

𝑖=1
𝛥𝑖𝑌

2−𝑘
𝑖 𝜑∗(𝑌𝑖)((𝐱 − 𝐗𝑖)∕ℎ)

/

𝑛
∑

𝑖=1
((𝐱 − 𝐗𝑖)∕ℎ), (8)

𝜂𝑘(𝐱) =
𝑛
∑

𝑖=1
𝛥𝑖𝑌

2−𝑘
𝑖 ((𝐱 − 𝐗𝑖)∕ℎ)

/

𝑛
∑

𝑖=1
((𝐱 − 𝐗𝑖)∕ℎ), (9)

here, as before,  ∶ R𝑑 → R+ is the kernel with bandwidth ℎ > 0. Clearly the estimator in (7) is not available because 𝜑∗

s unknown and must be estimated. To that end, we employ a data splitting approach that works as follows. Start by randomly
plitting the data into a training sample D𝑚 of size 𝑚 and a validation set D𝓁 of size 𝓁 = 𝑛 − 𝑚. It is assumed that as 𝑛 → ∞, both
→ ∞ and 𝑚 → ∞; the choices of 𝑚 and 𝓁 will be discussed later. Also, define the index sets 𝑚 =

{

𝑖 ∈ {1,… , 𝑛} ||
|

(𝐗𝑖, 𝑌𝑖, 𝛥𝑖) ∈

𝑚
}

and 𝓁 =
{

𝑖 ∈ {1,… , 𝑛} ||
|

(𝐗𝑖, 𝑌𝑖, 𝛥𝑖) ∈ D𝓁
}

. Let  be the class of functions to which the unknown function 𝜑∗ in (4) belongs
nd for each 𝜑 ∈  consider the following counterpart of (7) constructed based on the training set D𝑚 only

𝑚̂𝑚(𝐱;𝜑) = 𝜂𝑚,1(𝐱) +
𝜓̂𝑚,1(𝐱;𝜑)
𝜓̂𝑚,2(𝐱;𝜑)

(

1 − 𝜂𝑚,2(𝐱)
)

, (10)

where

𝜓̂𝑚,𝑘(𝐱;𝜑) =

∑

𝑖∈𝑚 𝛥𝑖𝑌
2−𝑘
𝑖 𝜑(𝑌𝑖)((𝐱 − 𝐗𝑖)∕ℎ)

∑

𝑖∈𝑚 ((𝐱 − 𝐗𝑖)∕ℎ)
, 𝑘 = 1, 2, 𝜑 ∈  , (11)

𝜂𝑚,𝑘(𝐱) =

∑

𝑖∈𝑚 𝛥𝑖𝑌
2−𝑘
𝑖 ((𝐱 − 𝐗𝑖)∕ℎ)

∑

𝑖∈𝑚 ((𝐱 − 𝐗𝑖)∕ℎ)
, 𝑘 = 1, 2. (12)

Next, to estimate 𝜑∗, we will use the approach based on the approximation theory of totally bounded function spaces. More
specifically, let  be a given class of functions 𝜑 : [−𝐿,𝐿] → (0, 𝐵], for some 𝐵 < ∞ and finite 𝐿 > 0. Fix 𝜀 > 0 and suppose
hat the finite collection of functions 𝜀 = {𝜑1,… , 𝜑N(𝜀)} 𝜑𝑖 : [−𝐿,𝐿] → (0, 𝐵], is an 𝜀-cover of  , i.e., for each 𝜑 ∈  , there is a
𝜑′ ∈ 𝜀 such that ‖𝜑−𝜑′

‖∞ < 𝜀; here, ∥ ⋅ ∥∞ is the usual supnorm. The cardinality of the smallest 𝜀-cover of  is called the covering
number of  and will be denoted by 𝜀( ). If 𝜀( ) < ∞ holds for every 𝜀 > 0, then the family  is said to be totally bounded (with
respect to ∥ ⋅ ∥∞). The quantity log(𝜀( )) is called Kolmogorov’s 𝜖-entropy of  . For more on such concepts see, for example, the
monograph by van der Vaart and Wellner (1996, p. 83).

Now, let 0 < 𝜀𝑛 ↓0 be a decreasing sequence, as 𝑛 → ∞, and let 𝜀𝑛 = {𝜑1,… , 𝜑𝑁(𝜀𝑛)} ⊂  be any 𝜀𝑛-cover of  ; the choice of
𝑛 will be discussed later in Corollary 1. Also, as explained in the introduction, here we consider the setup in which one has access
o response values for a small follow-up subsample selected from the set of non-respondents. More formally, let 𝛿𝑖, 𝑖 = 1,… ,𝓁, be
id Bernoulli random variables, independent of the data D𝑛, with the probability of success

𝑝𝑛 = 𝑃 {𝛿𝑖 = 1}, 𝑖 = 1,… ,𝓁, with 𝑝𝑛 → 0, as 𝑛 → ∞. (13)

Then we select a non-respondent in the validation set D𝓁 to be included in the small follow-up subsample only when (1−𝛥𝑖) 𝛿𝑖 =1,
∈ 𝓁 , where 𝛥𝑖 =0 if 𝑌𝑖 is missing. Next, for each 𝜑 ∈ 𝜀𝑛 define the empirical 𝐿2 error of the estimator 𝑚̂𝑚(𝐱;𝜑) in (10), based on
he validation set D𝓁 , by

𝐿̂𝑚,𝓁(𝜑) = 1
𝓁

[

∑

𝑖∈𝓁

𝛥𝑖
|

|

|

𝑚̂𝑚(𝐗𝑖;𝜑) − 𝑌𝑖
|

|

|

2 +
∑

𝑖∈𝓁

(1 − 𝛥𝑖)(𝛿𝑖∕𝑝𝑛)
|

|

|

𝑚̂𝑚(𝐗𝑖;𝜑) − 𝑌𝑖
|

|

|

2
]

= 1
𝓁

∑

𝑖∈𝓁

(

𝛥𝑖 +
(1 − 𝛥𝑖)𝛿𝑖

𝑝𝑛

)

|

|

|

𝑚̂𝑚(𝐗𝑖;𝜑) − 𝑌𝑖
|

|

|

2. (14)

Our estimator of 𝜑∗ is then given by

𝜑̂𝑛 = argmin
𝜑∈𝜀𝑛

𝐿̂𝑚,𝓁(𝜑) . (15)

The subscript 𝑛 at 𝜑̂𝑛 reflects the fact that the entire data of size 𝑛 has been used here. Finally, our proposed estimator of 𝑚(𝐱)
s given by

𝑚̂(𝐱; 𝜑̂𝑛) ∶= 𝑚̂𝑚(𝐱;𝜑)
|

|

|𝜑=𝜑̂𝑛
where 𝑚̂𝑚(𝐱;𝜑) is as in (10). (16)

2.2. How good is 𝑚̂(𝐱; 𝜑̂𝑛) in (16) as an estimator of 𝑚(𝐱)?

To answer this, we assume that the kernel  is regular in the sense of Devroye and Krzyzak (1989):

Definition. A nonnegative kernel  is said to be regular if there are real constants 𝑏 > 0 and 𝑟 > 0 such that (𝐮) ≥ 𝑏 𝐼{𝐮 ∈ 𝑆0,𝑟}
and ∫ sup (𝐲) 𝑑𝐮 < ∞, where 𝑆 is the ball of radius 𝑟 centered at the origin.
3

𝐲∈𝐮+𝑆0,𝑟 0,𝑟
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Theorem 1. Suppose that the regularity conditions described in the supplementary section hold. Then, for every 𝜀𝑛 > 0 satisfying 𝜀𝑛 ↓ 0,
s 𝑛→ ∞, every 𝑡 > 0, any distribution of (𝐗, 𝑌 ) ∈ R𝑑 × [−𝐿,𝐿], 𝐿 <∞, and 𝑛 large enough,

𝑃
{

∫
|

|

|

𝑚̂(𝐱; 𝜑̂𝑛) − 𝑚(𝐱)
|

|

|

2
𝜇(𝑑𝐱) > 𝑡

}

≤ 𝑐1
|

|

|

𝜀𝑛
|

|

|

(

𝑒−𝑐2 𝓁 𝑝
2
𝑛𝑡
2
+ 𝓁 𝑒−𝑐3 𝑚ℎ

𝑑 𝑝2𝑛𝑡
2
)

(17)

whenever 𝜑∗ ∈  , where 𝑐1, 𝑐2, and 𝑐3 are positive constants not depending on 𝑚, 𝓁, 𝑛, or 𝑡, and where |𝜀𝑛 | is the cardinality of the set
𝜀𝑛 .

Remark 1 (𝑝 ≥ 2). The above theorem is stated in the 𝐿2 sense; it is straightforward to show that the theorem holds for all 𝑝 ≥ 2.
To see this, observe that if 𝑝 > 2 then one can always write

|

|

|

𝑚̂(𝐱; 𝜑̂𝑛) − 𝑚(𝐱)
|

|

|

𝑝
≤
(

|

|

|

𝑚̂(𝐱; 𝜑̂𝑛)
|

|

|

+ |

|

|

𝑚(𝐱)||
|

)𝑝−2
|

|

|

𝑚̂(𝐱; 𝜑̂𝑛) − 𝑚(𝐱)
|

|

|

2
≤ (3𝐿)𝑝−2||

|

𝑚̂(𝐱; 𝜑̂𝑛) − 𝑚(𝐱)
|

|

|

2
.

Additionally, we note that if 𝑝 ∈ [1, 2), then by Lyapunov’s inequality (for expectations) we have 𝑃 {∫ |𝑚̂(𝐱; 𝜑̂𝑛) − 𝑚(𝐱)|𝑝𝜇(𝑑𝐱) >
} ≤ 𝑃 {∫ |𝑚̂(𝐱; 𝜑̂𝑛) − 𝑚(𝐱)|2𝜇(𝑑𝐱) > 𝑡2∕𝑝}.

The following result follows from Theorem 1 in conjunction with the Borel–Cantelli lemma.

orollary 1. Consider the estimator in (16) and let 𝑝𝑛 be as in (13). If, as 𝑛→ ∞,

𝜀𝑛 ↓ 0, (𝓁𝑝2𝑛)
−1 log(𝑛 ∨ |𝜀𝑛 |) ⟶ 0, and (𝑚ℎ𝑑𝑝2𝑛)

−1 log(𝑛 ∨ |𝜀𝑛 |) ⟶ 0, (18)

hen, under the conditions of Theorem 1, 𝐸
[

|

|

|

𝑚̂(𝐗; 𝜑̂𝑛) − 𝑚(𝐗)
|

|

|

𝑝
|

|

|

D𝑛
]

→𝑎.𝑠. 0, for all 𝑝 ∈ [2,∞).

We also note that by Lebesgue dominated convergence theorem, under the conditions of Corollary 1 without further ado we have
|

|

|

𝑚̂(𝐗; 𝜑̂𝑛) − 𝑚(𝐗)
|

|

|

𝑝
→ 0, for all 𝑝 ∈ [2,∞). However, to study the rates of convergence here, we first state the following theorem.

heorem 2. Suppose that the conditions of Theorem 1 hold. Then, for 𝑛 large enough,

𝐸||
|

𝑚̂(𝐗; 𝜑̂𝑛) − 𝑚(𝐗)
|

|

|

𝑝
≤

√

𝑐5 + log𝓁 + log |𝜀𝑛 |

𝑐6 ⋅ (𝓁 ∧ 𝑚ℎ𝑑 ) 𝑝2𝑛
+
√

1
𝑐7 ⋅ (𝓁 ∧ 𝑚ℎ𝑑 ) 𝑝2𝑛

[

𝑐5 + log𝓁 + log |𝜀𝑛 |
]

or all 𝑝 ∈ [2,∞), where 𝑐5, 𝑐6, and 𝑐7 are positive constants not depending on 𝑚, 𝓁, or 𝑛.

The following result looks at the rate of convergence of the proposed regression estimator.

Corollary 2. Suppose that (18) holds. Then, under the conditions of Theorem 1, for all 𝑝 ≥ 2,

𝐸||
|

𝑚̂(𝐗; 𝜑̂𝑛) − 𝑚(𝐗)
|

|

|

𝑝
= 

⎛

⎜

⎜

⎝

√

log(𝓁 ∨ |𝜀𝑛 |)

(𝓁 ∧ 𝑚ℎ𝑑 ) ⋅ 𝑝2𝑛

⎞

⎟

⎟

⎠

.

In the special case where 𝑚 = 𝛼 ⋅ 𝑛 and 𝓁 = (1 − 𝛼) ⋅ 𝑛, where 𝛼 ∈ (0, 1), one finds for all 𝑝 ≥ 2,

𝐸||
|

𝑚̂(𝐗; 𝜑̂𝑛) − 𝑚(𝐗)
|

|

|

𝑝
= 

⎛

⎜

⎜

⎝

√

log(𝑛 ∨ |𝜀𝑛 |)

𝑛ℎ𝑑 ⋅ 𝑝2𝑛

⎞

⎟

⎟

⎠

.

A close inspection of Corollary 2 shows that choosing 𝓁 and 𝑚 to satisfy 𝓁∕𝑛 → 0 or 𝑚∕𝑛 → 0 results in estimators with rates of
convergence worse than the case 𝑚 = ⌊𝛼𝑛⌋ for any 𝛼 ∈ (0, 1).

Remark 2 (Rates of Convergence). The rates of convergence in Corollary 2 are generally not optimal as compared to those of kernel
estimators based on no missing data. A better rate would be of order 

(
√

log 𝑛∕𝑛ℎ𝑑
)

which is achievable if the following conditions
hold: (i) 𝑝𝑛 = 𝑐 ∈ (0, 1] for some fixed probability 𝑐 instead of 𝑝𝑛 = 𝑜(1), (ii) the cardinality of the 𝜀𝑛-cover satisfies log |𝜀𝑛 | = (𝑛),
and (iii) 𝑚 is chosen as 𝑚 = ⌊𝛼𝑛⌋ for some 𝛼 ∈ (0, 1). When there are no missing data, it is well known in the framework of kernel
regression that with additional assumptions such as Lipschitz continuity of the regression function 𝑚(𝐱), one can establish rates
as fast as 

(

(𝑛ℎ𝑑 )−1 + ℎ2
)

for the usual kernel estimator in (1) based on the naive kernel; see, for example, Györfi et al. (2002;
Sec. 5.3). Unfortunately, such rates do not seem to be available for our estimators with NMAR missing data where the estimation
process involves many steps and many components. In fact, to the best of our knowledge, such fast rates are not available even for
the simpler case of MAR missing data. The dependence of the rate of convergence on 𝑝𝑛 in Corollary 2 shows that if obtaining a
follow-up subsample is not too inconvenient, then one can have good rates by taking 𝑝𝑛 to be a fixed percentage, such as 15%, of
the entire data (as in Kim and Yu, 2011). Otherwise, by choosing 𝑝𝑛 = 𝑜(1) appropriately, one requires a much smaller subsample
size while still retaining the convergence in Corollary 2, but at rates slower than 

(
√

log 𝑛∕𝑛ℎ𝑑
)

.

4
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3. Applications to classification with possibly missing labels

In this section we consider the following two-group classification problem. Let (𝐗, 𝑌 ) ∈ R𝑑 × {0, 1} be a random pair where the
class label 𝑌 has to be predicted based on the covariate 𝐗. More specifically, the goal is to find a function 𝑔 ∶ R𝑑 → {0, 1} for which
the misclassification error, i.e.,

𝐿(𝑔) ∶= 𝑃 {𝑔(𝐗) ≠ 𝑌 }, (19)

is as small as possible. The optimal classifier, also referred to as the Bayes classifier, is given by

𝑔B(𝐱) = 1 if 𝑚(𝐱) > 1∕2, (𝑔B(𝐱) = 0, otherwise) (20)

here 𝑚(𝐱) = 𝐸[𝑌 |𝐗 = 𝐱]; see, for example, Chapter 2 of Devroye et al. (1996). In practice, the distribution of (𝐗, 𝑌 ) is
lmost always unknown and therefore finding 𝑔B is impossible. Suppose that we have access to 𝑛 iid observations (the data),
𝑛 ∶= {(𝐗1, 𝑌1),… , (𝐗𝑛, 𝑌𝑛)}, where (𝐗𝑖, 𝑌𝑖)

iid
= (𝐗, 𝑌 ), 𝑖 = 1,… , 𝑛, and let 𝑔𝑛 be any classifier constructed based on the data D𝑛.

lso, let

𝐿𝑛(𝑔𝑛) = 𝑃
{

𝑔𝑛(𝐗) ≠ 𝑌 ||
|

D𝑛
}

(21)

e the conditional misclassification error of 𝑔𝑛. Now, let 𝑚̂(𝐱) be any estimator of the regression function 𝑚(𝐱) and consider the
lug-in type classifier

𝑔𝑛(𝐱) = 1 if 𝑚̂(𝐱) > 1∕2, (𝑔𝑛(𝐱) = 0, otherwise.) (22)

Then the following bound follows from Devroye et al. (1996); Lemma 6.1)

𝐿𝑛(𝑔𝑛) − 𝐿(𝑔B) ≤ 2𝐸
[

|

|

|

𝑚̂(𝐗) − 𝑚(𝐗)||
|

|

|

|

D𝑛
]

, (23)

nd thus 𝐸
[

𝐿𝑛(𝑔𝑛)
]

− 𝐿(𝑔B) ≤ 2𝐸||
|

𝑚̂(𝐗) − 𝑚(𝐗)||
|

. Now, suppose that some of the 𝑌𝑖’s may be missing not at random (NMAR) and
onsider the plug-in classifier corresponding to (16)

𝑔𝑛(𝐱) =
{

1 if 𝑚̂(𝐱; 𝜑̂𝑛) >
1
2

0 otherwise,
(24)

here 𝑚̂(𝐱; 𝜑̂𝑛) is as in (16). To study the asymptotic performance of the classifier in (24), we also state the following so-called
argin condition which can be found in Audibert and Tsybakov (2007).
Assumption (G) [Margin condition.] There exist constants 𝑐 > 0 and 𝛼 > 0 such that

𝑃
{

0 < |

|

|

𝑚(𝐗) − 0.5||
|

≤ 𝑡
}

≤ 𝑐 𝑡𝛼 , for all 𝑡 > 0. (25)

everal authors have studied the margin condition (25); these include Mammen and Tsybakov (1999), Audibert and Tsybakov
2007), Kohler and Krzyzak (2007), and Döring et al. (2016).

heorem 3. Suppose that (18) holds. Then, under the conditions of Theorem 1,
(i) 𝑃

{

𝑔𝑛(𝐗) ≠ 𝑌 ||
|

D𝑛
} 𝑎.𝑠.
⟶ 𝑃 {𝑔B(𝐗) ≠ 𝑌 }.

(ii) 𝑃
{

𝑔𝑛(𝐗) ≠ 𝑌
}

− 𝑃 {𝑔B(𝐗) ≠ 𝑌 } = 
(

( log(𝓁∨|𝜀𝑛 |)
(𝓁∧𝑚ℎ𝑑 )⋅𝑝2𝑛

)1∕4)

.

(iii) If (25) holds then 𝑃
{

𝑔𝑛(𝐗) ≠ 𝑌
}

− 𝑃 {𝑔B(𝐗) ≠ 𝑌 } = 

(

( log(𝓁∨|𝜀𝑛 |)
(𝓁∧𝑚ℎ𝑑 )⋅𝑝2𝑛

)

1+𝛼
2(2+𝛼)

)

.

Part (iii) shows that the rate in Part (ii) can come closer to the better rate in Corollary 2 whenever the regression function 𝑚(𝐱)
satisfies condition (25); in fact, 1+𝛼

2(2+𝛼) →
1
2 as 𝛼 diverges.

. Numerical studies

For the numerical work, we generated 𝑛 = 50 , 100 observations from the following two models:
Model A. 𝐗 ∼ 𝑁5(𝟏,𝜮) and 𝑌 = 𝜇𝑦 −𝑋1 +𝑋3𝑋4 −𝑋2

2 + exp(−𝑋5) +𝑁(0, 𝜎2𝑦 )
Model B. 𝐗 ∼ 𝑁4(𝟎,𝜮) and 𝑌 = 𝑋1 + (2𝑋2 − 1)2 + sin(2𝜋𝑋3)

2−sin(2𝜋𝑋3)
+ sin(2𝜋𝑋4) + 2 cos(2𝜋𝑋4)

+ 3 sin2(2𝜋𝑋4) + 4 cos2(2𝜋𝑋4) +𝑁(0, 𝜎2𝑦 ),
where 𝑁𝑑 (𝝁,𝜮) is the 𝑑-dimensional normal distribution with mean 𝝁 and covariance matrix 𝜮 = (𝜎𝑖𝑗 )𝑖,𝑗≥1 with 𝜎𝑖𝑗 = 2−|𝑖−𝑗|+1

n Model A and 𝜎𝑖𝑗 = 2−|𝑖−𝑗| in Model B. As for 𝜎𝑦, two values are considered, 0.5 and 4 (high variance model); in Model A we used
wo values of 𝜇𝑦: 1 and 2.6. Here, Model B is as in Meier et al. (2009). Next, we also considered two choices for the function 𝜑∗ in
4), 𝜑∗(𝑦) = exp(𝛾∗𝑦) as in Kim and Yu (2011) and 𝜑∗(𝑦) =

[

0.1 + (𝛾∗𝑦)2
]−1.

The following choice of coefficients result in approximately 50% missing rate in Model A:
(A1) 𝜋(𝐱, 𝑦) =

(

1 + exp
{

𝛽0 +
∑5
𝑗=1 𝛽𝑗𝑥𝑗

}

⋅ exp{𝛾𝑦}
)−1
5

with (𝛽0,… , 𝛽5) = (0.6, 0.8, 0.25, −0.35, −0.3, 0.75), 𝛾 = −0.98, and 𝜇𝑦 =2.6.
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Table 1
Empirical 𝐿1 and 𝐿2 errors corresponding selection probabilities (A1) and (A2). Here, the proposed estimator 𝑚̂(𝐱;𝜋𝜑̂𝑛 ) is as in
(16), the complete-case estimator 𝑚𝑐𝑐𝑛 (𝐱) is given by (2), and the estimator 𝑚̂𝑛(𝐱) based on no missing data is given by (1). The
numbers in parentheses are standard errors and those in square brackets are average follow-up subsample sizes drawn from the
non-respondents in D𝓁 .
Selection Sample Noise in Error 𝑚̂(𝐱;𝜋𝜑̂𝑛 ) 𝑚𝑐𝑐𝑛 (𝐱) 𝑚̂𝑛(𝐱)
Prob Model Size (𝑛) Model A Type

(A1) 50 𝜎𝑦 =0.5 𝐿2 24.14 37.46 16.91
(0.5904), [1.46] (1.1949) (0.6497)

𝐿1 3.10 4.23 2.50
(0.0252) (0.0741) (0.0427)

𝜎𝑦 =4 𝐿2 47.22 67.56 40.07
(1.0872), [1.47] (0.8659) (0.6031)

𝐿1 5.11 6.35 4.73
(0.0485) (0.0440) (0.0283)

100 𝜎𝑦 =0.5 𝐿2 20.93 32.47 11.91
(0.5256), [2.10] (0.8113) (0.5364)

𝐿1 2.82 3.82 2.00
(0.0219) (0.0587) (0.0264)

𝜎𝑦 =4 𝐿2 40.99 65.29 34.95
(0.7606), [2.17] (0.7808) (0.7369)

𝐿1 4.75 6.22 4.39
(0.0321) (0.0309) (0.0320)

(A2) 50 𝜎𝑦 =0.5 𝐿2 26.66 36.36 17.55
(1.0315), [1.44] (1.0980) (0.9804)

𝐿1 3.23 4.10 2.51
(0.0263) (0.0451) (0.0420)

𝜎𝑦 =4 𝐿2 47.63 65.58 40.57
(0.9706), [1.50] (0.7706) (0.5967)

𝐿1 5.14 6.26 4.76
(0.0398) (0.0412) (0.0273)

100 𝜎𝑦 =0.5 𝐿2 21.78 30.50 11.53
(0.3435), [2.20] (0.5564) (0.3971)

𝐿1 2.94 3.68 2.02
(0.0210) (0.0466) (0.0299)

𝜎𝑦 =4 𝐿2 42.88 64.06 35.41
(0.7521), [2.07] (0.6096) (0.6778)

𝐿1 4.86 6.17 4.44
(0.0323) (0.0303) (0.0332)

(A2) 𝜋(𝐱, 𝑦) =
(

1 + exp
{

𝛽0 +
∑4
𝑗=1 𝛽𝑗𝑥𝑗 + 𝛽5𝛾 𝑥5

}

⋅ exp{𝛾𝑦}
)−1

with (𝛽0, 𝛽1,… , 𝛽5) = (0.50, 0.75, −0.25, 0.25, −0.25, 0.75), 𝛾 = −0.98, and 𝜇𝑦 =1.
The following choices of coefficients result in approximately 50% missing rate in Model B:
(B1) 𝜋(𝐱, 𝑦) =

(

1 + exp
{

𝛽0𝛾 +
∑4
𝑗=1 𝛽𝑗𝑥𝑗

}

⋅
(

0.1 + 𝛾2𝑦2
)−1

)−1

with (𝛽0,… , 𝛽4) = (0.85, 0.6, 0.35, −0.45, 0.55) and 𝛾 = 0.16.
(B2) 𝜋(𝐱, 𝑦) =

(

1 + exp
{

𝛽0 +
∑3
𝑗=1 𝛽𝑗𝑥𝑗 + 𝛽4𝛾 𝑥4

}

⋅ exp{𝛾𝑦}
)−1

with (𝛽0, 𝛽1,… , 𝛽4) = (2.6, 0.6, 0.35, −0.45, 0.4) and 𝛾 = −0.36.
To estimate 𝛾∗ in 𝜑∗(𝑦) = exp(𝛾∗𝑦), we employed the data-splitting approach of Section 2 with 𝑚= 0.7𝑛 and 𝓁= 0.3𝑛, where the

estimator of 𝛾∗ is the minimizer of (14) with respect to 𝛾 over a grid of equally-spaced values of 𝛾 in [−𝑀,𝑀]; here, we took𝑀 = 15.
Next, a small follow-up subsample was selected from the set of non-respondents in D𝓁 where we took 𝑝𝑛 =

(

(log 𝑛)0.25∕(𝑛𝜆𝑑 )1−𝛼
)1∕2

in (13) with 𝜆=0.95 and 𝛼=0.01. This choice of 𝑝𝑛 assures a very small subsample size (see the results in Tables 1 and 2). We
employed the Gaussian kernel in our estimators where the bandwidths were selected using the cross-validation method of Racine
and Li (2004) available from the R package ‘‘np’’; see Racine and Hayfield (2008). To assess the performance of the proposed
estimators we computed their empirical 𝐿2 errors (mean squared prediction errors) committed on a validation set of 1000 additional
observations. We also computed the empirical 𝐿1 errors of our estimators. The entire above process was repeated 200 times, each
time using a sample of size 𝑛 (50 and 100) and a validation set of size 1000, and the average errors were computed.

Table 1 gives the results for models (A1) and (A2). Table 1 also gives the corresponding results for two other estimators: the
complete-case estimator 𝑚𝑐𝑐𝑛 (𝐱) in (2) and the usual estimator with no missing data; this latter estimator allows one to see how
different the results could have been (and how close our results are to them) if there had not been any missing values. We also
performed the same computations for Model B with the two selections probabilities (B1) and (B2); the corresponding results appear
in Table 2. As the tables show, the proposed estimator’s error rates are significantly lower than those of the complete case estimators.
But more importantly, the tables also show that the average follow-up subsample sizes needed for the proposed estimators are around
2.1 when 𝑛=100 and about 1.5 when 𝑛=50 (see the boldfaced values in square brackets). In other words, the undesirable need
6

for a follow-up subsample here is virtually a non-issue in practice. As mentioned in Section 1, the complete-case estimator will be
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Table 2
Empirical 𝐿1 and 𝐿2 errors corresponding selection probabilities (B1) and (B2). Here, the proposed estimator 𝑚̂(𝐱;𝜋𝜑̂𝑛 ) is as in
(16), the complete-case estimator 𝑚𝑐𝑐𝑛 (𝐱) is given by (2), and the estimator 𝑚̂𝑛(𝐱) based on no missing data is given by (1). The
numbers in parentheses are standard errors and those in square brackets are the average follow-up subsample sizes drawn from
the set of non-respondents in D𝓁 .
Selection Sample Noise in Error 𝑚̂(𝐱;𝜋𝜑̂𝑛 ) 𝑚𝑐𝑐𝑛 (𝐱) 𝑚̂𝑛(𝐱)
Prob Model Size (𝑛) Model B Type

(B1) 50 𝜎𝑦 =0.5 𝐿2 51.85 53.35 44.57
(0.8269), [1.55] (1.1698) (0.7264)

𝐿1 4.90 5.71 4.55
(0.0505) (0.0924) (0.0509)

𝜎𝑦 =4 𝐿2 67.30 70.75 61.62
(0.7762), [1.32] (0.9546) (0.5441)

𝐿1 5.99 6.63 5.71
(0.0398) (0.0616) (0.0255)

100 𝜎𝑦 =0.5 𝐿2 49.13 52.52 42.40
(0.8893), [2.04] (1.0010) (0.8758)

𝐿1 4.73 5.74 4.43
(0.0560) (0.0821) (0.0593)

𝜎𝑦 =4 𝐿2 66.21 72.10 60.9001
(0.7095), [2.06] (0.9379) (0.6425)

𝐿1 5.90 6.75 5.67
(0.0360) (0.0576) (0.0307)

(B2) 50 𝜎𝑦 =0.5 𝐿2 53.32 57.52 44.87
(0.7165), [1.40] (1.2368) (0.7478)

𝐿1 4.87 6.07 4.58
(0.0527) (0.0954) (0.0542)

𝜎𝑦 =4 𝐿2 71.03 81.53 61.87
(1.2348), [1.51] (1.4935) (0.6288)

𝐿1 6.17 7.33 5.74
(0.0656) (0.0862) (0.0315)

100 𝜎𝑦 =0.5 𝐿2 50.95 54.85 44.13
(0.7834), [1.96] (1.1026) (0.7440)

𝐿1 4.68 5.97 4.55
(0.0492) (0.0873) (0.0509)

𝜎𝑦 =4 𝐿2 67.44 79.26 61.48
(0.9639), [2.04] (1.1646) (0.6427)

𝐿1 5.94 7.24 5.70
(0.0533) (0.0685) (0.0308)

correct under the MAR assumption and therefore one can expect (2) to have a comparable (if not better) finite sample performance
in MAR scenarios.

5. Discussion

We have proposed kernel-type estimators of a regression function 𝑚(𝐱) = 𝐸[𝑌 |𝐗 = 𝐱], with 𝐱 ∈ R𝑑 and 𝑌 ∈ R, when the response
variable 𝑌 may be missing according to a not-missing-at-random (NMAR) setup, where the underlying missing probability mechanism
can depend on both the predictor 𝐗 and the response 𝑌 . Our proposed estimator is based on a particular representation of 𝑚(𝐱) in
terms of four associated conditional expectations that can be estimated nonparametrically. We have established the convergence
properties of our estimators in general 𝐿𝑝 norms. An application of our results to the problem of classification is also studied.
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