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1. Introduction

The problem of statistical estimation, prediction, and inference with nonignorable missing data (i.e., data missing but not at
random) has received considerable attention in recent years. This paper considers the problem of nonparametric regression in the
presence of missing response variables, Y, for the not-missing-at-random (NMAR) setup where the mechanism that causes the absence
of Y is allowed to depend on both the predictor X and the response variable Y.

To present our results, let (X,Y) € RY x R be a random vector and consider the nonparametric estimation of the regression
function m(x) = E(Y|X = x) using the independent and identically distributed (iid) observations (X;,Y;), i = 1, ..., n, drawn from the
distribution of (X,Y). When the data is fully observable, the classical Nadaraya—Watson kernel estimator of m(x) is given by

()= Y Y, K(x=X)/h)/ Y Kx=X)/h, ¢
i=1 i=1

where the function K : R? - R, is the kernel used with bandwidth & > 0. A global measure of performance of 7i,(-) as an estimator
of m(-) is the L ,-type statistic 1,,(p) = / |r?z,, xX)—m (x)|” u(dx), 1 < p < oo, where y is the probability measure of X. The quantity 71,,(1)
plays an important role in statistical classification; see for example Devroye et al. (1996), Sec. 6.2). For the almost sure convergence
of I,(1) to zero see, for example, Devroye and Krzyzak (1989).

Now suppose that the response variable Y may be missing according to the NMAR mechanism, then the estimator 7,(x) in (1)
is no longer available and, furthermore, the estimator based on the complete cases alone is not the correct estimator in general. To
appreciate this, define the indicator variable A=0 if Y is missing, and 4=1 otherwise. Similarly, for i= 1,...,n, let 4,=0 when Y;
is missing (and 4; =1 otherwise). Then, the complete-case estimator

AY, K(x = X)/I)] Y AK(x = X)/h). @

1 i=1

n
cC -—
mf(x) 1=

i
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turns out to be the kernel-type estimator of the quantity E(4Y|X = x) / E(A|X = x) which, in general, is not equal to the regression
function m(x)= E(Y|X = x) under the NMAR missing response mechanism. Of course, when the MAR assumption holds, i.e., when
E(41X,Y) = E(A|X), the expression in (2) is the correct estimator of m(x) because E(4Y |X) = E(4|X)m(X).

In order to present and construct our proposed estimator, we start by considering a flexible logistic-type NMAR selection
probability model that works as follows. For any real-valued functions ¢ > 0 on R and g on R¢, define

px.y) = [L+exp{e0)} - 0] . ®3)

Then we consider the following generalization of the popular model of Kim and Yu (2011)
P{a=1x=xY =y} = [l+ep{em} 0’0" =m0, @

where ¢* represents the true function ¢ that could depend on unknown parameters and g is a completely unspecified function.
The case where ¢*(y) = exp(y*y) in (4) for some parameter y* corresponds to the original model of Kim and Yu (2011) which has
been studied and explored extensively in the literature; see, for example, Zhao and Shao (2015), Shao and Wang (2016), Morikawa
et al. (2017), Morikawa and Kim (2018), Morikawa and Kano (2018), Fang et al. (2018), O’Brien et al. (2018), Maity et al. (2019),
Sadinle and Reiter (2019), Chen et al. (2020), Liu and Yau (2021), and Mojirsheibani (2022).

It is well-understood in the framework of NMAR missing data that in a fully nonparametric setup where z,(x,y) and the
distribution of (X, Y) are completely unknown, one faces the issue of non-identifiability when estimating quantities such as ¢ (Shao
and Wang, 2016). On the other hand, imposing parametric models on both 7,(X, y) and the distribution of (X, Y) is too strong to be
useful in practice (Molenberghs and Kenward, 2007). Some authors have assumed a fully parametric model for z,(x, y) only, but
not the underlying distributions (Qin et al., 2002), but this is also considered to be too strong in practice.

Due to identifiability issues, it turns out that the estimation of (4) can be challenging and that a sufficient condition for model
identification is to assume (see, for example, Shao and Wang (2016) that there is a part of X, say V, which is conditionally
independent of 4, given Y and Z, where X = (Z,V) € RY and Z € RY, with 1 < ¢ < d. Of course, this approach fails for
the important case of X € R!. Furthermore, finding consistent estimators of ¢* based on the above assumption on X does not
necessarily yield strong optimality (in L, norms) of kernel regression estimators in general. To tackle these difficulties, we consider
the approach of Kim and Yu (2011) where one has access to a small follow-up subsample of response values selected from the set
of non-respondents. This approach, which enables one to perform various estimations (even for the case where X is in R!), does not
suffer from identifiability issues; see, for example, Shao and Wang (2016) and Kim and Yu (2011). An even more attractive feature
of our approach is that the subsample size can be negligibly small. For example, as our numerical work shows, when n=100 and the
missing rate is at about 50% then on average a follow-up subsample of size around 2 will be sufficient to carry out all estimations!
We have pressed this issue here to emphasize that the seemingly undesirable need for a follow-up subsample can in practice be a
non-issue.

Regression function estimation with NMAR response variables is generally viewed to be a challenging problem in the literature.
In fact, to the best of our knowledge, there are only a few results available in the literature that also address the theoretical validity
of their proposed methods. These include the work of Niu et al. (2014) and Guo et al. (2019) for the case of linear regression, those
of Bindele and Zhao (2018) to estimate f in the model E(Y|X = x) = g(x, ), where g is completely known, and the results of Li et al.
(2018) for parameter estimation in functional linear regression. The current work does not impose linearity or any other known
structures on the underlying regression function. In the case of nonparametric regression, Mojirsheibani (2022) constructed a new
regression estimator and derived the limiting distribution of its maximal deviation.

The rest of the paper is organized as follows. Section 2 presents the main results where we outline the mechanics of the proposed
regression estimators and study their asymptotic properties in general L, norms. Section 3 discusses the applications of our estimators
to the problem of nonparametric classification with partially observed data, where we also look into the rates of convergence of the
proposed classifiers under different conditions. Numerical studies are presented in Section 4. All proofs are deferred to Supplemental
materials.

2. Main results
2.1. The proposed estimator

To motivate our proposed estimator, we first observe that the regression function m(x) = E[Y|X = x] can also be represented as
follows (see Lemma 1 in the Supplementary material)
wi (%5 9%)
v (X; %)
where ¢* is as in (4) and the functions y, and #,, k = 1,2, are conditional expectations given by

mx) = m(x;¢*) = n(x)+ (1-m), (5)

v (X %) 1= E[AYH(p*(Y)(x =x| and 7% = E[AYZ”‘|X =x|, for k=1,2. (6)

Now let D, = {(X,,Y;.4),..., (X,.Y,.4,)} represent a sample of size n (iid), where 4; = 0 if Y; is missing (and 4; =1 otherwise).
Then in the hypothetical situation where ¢* is completely known in (4), one can consider the following estimator of m(x)
PO 71 (x; 0") ~
(% ") = 7(X) + == —— (1 = (), %)
W, (X; %)
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where ¥, (x; ¢*) and 7, (x), k = 1,2, are the kernel estimators given by

P 0" = Y AYR et (V) K(x = X))/h) / X K(x = X)/h), ®
i=1 i=1

(x) = Z AYRIC(x - X)/h) / Z K((x = X,)/h), 9)
i=1 i=1

where, as before, £ : R - R , is the kernel with bandwidth # > 0. Clearly the estimator in (7) is not available because ¢*
is unknown and must be estimated. To that end, we employ a data splitting approach that works as follows. Start by randomly
splitting the data into a training sample D,, of size m and a validation set D, of size £ = n — m. It is assumed that as n — oo, both
¢ — oo and m — oo; the choices of m and # will be discussed later. Also, define the index sets I,, = {i e {l,....n} | XY, 4) €

D,}and I, = {i € {1,....n} L(X,-,YI-,A,-) € D, }. Let F be the class of functions to which the unknown function ¢* in (4) belongs
and for each ¢ € F consider the following counterpart of (7) constructed based on the training set D,, only

. N W1 (X5 ) N
My (X5 @) = 1y 1 (X) + Al— (1 =), (10)
V/m,Z(X» (ﬂ)

where

Vi (X; @) ez, 477 o) K(&x = X0 /P k=12 F o
oo , k=12, @eF,
Vs (X3 00 Yier, K(x=X)/h) ’

2-k
A (X) = Liet, 4% K& XI)/h), k=1,2. 12)
Yier, K(x=X)/h)

Next, to estimate ¢*, we will use the approach based on the approximation theory of totally bounded function spaces. More
specifically, let 7 be a given class of functions ¢: [-L,L] — (0, B], for some B < oo and finite L > 0. Fix ¢ > 0 and suppose
that the finite collection of functions 7, = {¢y, ... ,(pN(é)} @;: [-L,L] - (0, B], is an e-cover of F, i.e., for each ¢ € F, there is a
¢’ € F, such that || —¢'||,, <¢; here, || - ||, is the usual supnorm. The cardinality of the smallest e-cover of F is called the covering
number of F and will be denoted by N, (F). If N_(F) < oo holds for every ¢ > 0, then the family F is said to be totally bounded (with
respect to || - ||o,). The quantity log(N,(F)) is called Kolmogorov’s e-entropy of F. For more on such concepts see, for example, the
monograph by van der Vaart and Wellner (1996, p. 83).

Now, let 0 < ¢, 10 be a decreasing sequence, as n — oo, and let 7, = {@,,...,@n(,)} CF be any ¢,-cover of F; the choice of
e, will be discussed later in Corollary 1. Also, as explained in the introduction, here we consider the setup in which one has access
to response values for a small follow-up subsample selected from the set of non-respondents. More formally, let §,, i = 1,...,7, be
iid Bernoulli random variables, independent of the data D,, with the probability of success

p,=P{s=1}, i=1,....¢, withp, >0, asn - . 13)

Then we select a non-respondent in the validation set D, to be included in the small follow-up subsample only when (1-4,)§; =1,
i € I,, where 4;=0 if Y; is missing. Next, for each ¢ € F, define the empirical L, error of the estimator ,,(x; ¢) in (10), based on
the validation set D, by

L) = 1[2 A, X 0) = Y[+ ¥ (1= 4)@i/py)

Z (X, 0) = n(z]

i€l, i€el,
1 (=46 \|
= 2 X (4 )X o) - (14)
i€l, Pn

Our estimator of ¢* is then given by

$, = argmin fmf((p). (15)
€T,

The subscript n at @, reflects the fact that the entire data of size n has been used here. Finally, our proposed estimator of m(x)
is given by

mx; @,) = m,(x;9)| .  where i, (x; @) is as in (10). (16)
=0,
2.2. How good is m(x; ®,) in (16) as an estimator of m(x)?
To answer this, we assume that the kernel K is regular in the sense of Devroye and Krzyzak (1989):

Definition. A nonnegative kernel K is said to be regular if there are real constants b > 0 and r > 0 such that K(u) > b I{u € S}
and [ supyeyy s, K(¥) du < oo, where S, is the ball of radius r centered at the origin.

3
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Theorem 1. Suppose that the regularity conditions described in the supplementary section hold. Then, for every ¢, > 0 satisfying ¢, | 0,
as n — o, every t > 0, any distribution of (X,Y) € R? x [-L, L], L < oo, and n large enough,

2
P {/ ‘r?t(x;@,,) - m(x)| u(dx) > t} <¢ ‘T}n‘ (e’czf’ﬁ’z + £ emamh ”3’2> a7

whenever ¢* € F, where ¢, c,, and c; are positive constants not depending on m, ¢, n, or t, and where |Fe,,| is the cardinality of the set
Fe .

Remark 1 (p > 2). The above theorem is stated in the L, sense; it is straightforward to show that the theorem holds for all p > 2.
To see this, observe that if p > 2 then one can always write

[iix; 9,) = mo|” < (| §,)] + |m(x)\)ﬂ_2(rﬁ<x; B — m(x)\2 < BLY 2% ,) = m(x) .

Additionally, we note that if p € [1,2), then by Lyapunov’s inequality (for expectations) we have P{ / |m(x; @) — m(X)|P u(dx) >
1} < P{[ |mx;8,) — mx)|>u(dx) > 2y,

The following result follows from Theorem 1 in conjunction with the Borel-Cantelli lemma.
Corollary 1. Consider the estimator in (16) and let p, be as in (13). If, as n — oo,
e, 10, (pp)'lognV |F, ) — 0, and  (mhp})""log(nV|F, |) — 0, (18)
then, under the conditions of Theorem 1, E[‘rﬁ(X; D) — m(X)‘p|]D>,,] —@50, fordll p € [2, ).

We also note thpat by Lebesgue dominated convergence theorem, under the conditions of Corollary 1 without further ado we have
E |rﬁ(X; D) — m(X)| — 0, for all p € [2, ). However, to study the rates of convergence here, we first state the following theorem.

Theorem 2. Suppose that the conditions of Theorem 1 hold. Then, for n large enough,

s +logZ +logl|F, | 1

¢+ (€ Amhd) p? \/c7 (¢ Amhd) p2[es +log £ +log |F, ||

E|jiX;9,) - mx)| < \/
for all p € [2, ), where cs,cg, and ¢, are positive constants not depending on m, ¢, or n.
The following result looks at the rate of convergence of the proposed regression estimator.

Corollary 2. Suppose that (18) holds. Then, under the conditions of Theorem 1, for all p > 2,

oA » log(? v |F,, 1)

In the special case where m = a - n and ¢ = (1 — a) - n, where a € (0, 1), one finds for all p > 2,

PN P log(n Vv |F,,
E’m(X;(p”)—m(X)‘ =0 — |
n

A close inspection of Corollary 2 shows that choosing # and m to satisfy £/n — 0 or m/n — 0 results in estimators with rates of
convergence worse than the case m = |an] for any a € (0, 1).

Remark 2 (Rates of Convergence). The rates of convergence in Corollary 2 are generally not optimal as compared to those of kernel
estimators based on no missing data. A better rate would be of order O(+/logn/nh? ) which is achievable if the following conditions
hold: (i) p, = ¢ € (0,1] for some fixed probability ¢ instead of p, = o(1), (ii) the cardinality of the ¢,-cover satisfies log IF,,| = On),
and (iii) m is chosen as m = |an| for some « € (0, 1). When there are no missing data, it is well known in the framework of kernel
regression that with additional assumptions such as Lipschitz continuity of the regression function m(x), one can establish rates
as fast as O((nh?)~! + h?) for the usual kernel estimator in (1) based on the naive kernel; see, for example, Gyorfi et al. (2002;
Sec. 5.3). Unfortunately, such rates do not seem to be available for our estimators with NMAR missing data where the estimation
process involves many steps and many components. In fact, to the best of our knowledge, such fast rates are not available even for
the simpler case of MAR missing data. The dependence of the rate of convergence on p, in Corollary 2 shows that if obtaining a
follow-up subsample is not too inconvenient, then one can have good rates by taking p, to be a fixed percentage, such as 15%, of
the entire data (as in Kim and Yu, 2011). Otherwise, by choosing p, = o(1) appropriately, one requires a much smaller subsample
size while still retaining the convergence in Corollary 2, but at rates slower than (9(\/10g n/nhd )

4
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3. Applications to classification with possibly missing labels

In this section we consider the following two-group classification problem. Let (X,Y) € RY x {0, 1} be a random pair where the
class label Y has to be predicted based on the covariate X. More specifically, the goal is to find a function g : R? — {0, 1} for which
the misclassification error, i.e.,

L(g) = P{gX)#Y}, (19)
is as small as possible. The optimal classifier, also referred to as the Bayes classifier, is given by
g(x) = 1if m(x)>1/2, (gz(x) =0, otherwise) (20)

where m(x) = E[Y|X = x]; see, for example, Chapter 2 of Devroye et al. (1996). In practice, the distribution of (X,Y) is
almost always unknown and therefore finding g; is impossible. Suppose that we have access to » iid observations (the data),
D, = {X;.Y})),....X,.Y,)}, where (X,,Y;) X X,Y), i = 1,...,n, and let g, be any classifier constructed based on the data D,.
Also, let

L&) = P{&,X) #Y|D,} @D

be the conditional misclassification error of g,. Now, let 7i(x) be any estimator of the regression function m(x) and consider the
plug-in type classifier

g,(x) = 1if a(x)>1/2, (8,(x) =0, otherwise.) (22)
Then the following bound follows from Devroye et al. (1996); Lemma 6.1)

L@ — L(g) < 2E[|(X) - m(X)|

D,|. (23)

and thus E[L,,(gﬁ,)] - L(gy) < ZE‘rﬁ(X) — m(X)‘. Now, suppose that some of the Y;’s may be missing not at random (NMAR) and
consider the plug-in classifier corresponding to (16)

R L if A, > 5
_ n 24
& { 0  otherwise, 24

where m(x; $,) is as in (16). To study the asymptotic performance of the classifier in (24), we also state the following so-called
margin condition which can be found in Audibert and Tsybakov (2007).
Assumption (G) [Margin condition.] There exist constants ¢ > 0 and a > 0 such that
P{0 < ‘m(X)—O.Sl <t} < cr®, foralls>0. (25)

Several authors have studied the margin condition (25); these include Mammen and Tsybakov (1999), Audibert and Tsybakov
(2007), Kohler and Krzyzak (2007), and Doring et al. (2016).

Theorem 3. Suppose that (18) holds. Then, under the conditions of Theorem 1,
@ P{8,X) #Y|D, } == Plg,X) #¥).
Yo ~ log(#VI|Fe 1) 1/4
(i) P{2,00# Y} - Plgu(X) £ Y} =0 <(E—") ) ‘

(¢Amhd)y-p?

(¢Amhd)-p?

ta
(iii) If (25) holds then P {§,(X) # Y} — P(g,(X) #Y} = O ((M)W‘” > .

Part (iii) shows that the rate in Part (ii) can come closer to the better rate in Corollary 2 whenever the regression function m(x)

satisfies condition (25); in fact, 2(]2:”;) — % as a diverges.

4. Numerical studies

For the numerical work, we generated n = 50, 100 observations from the following two models:
Model A. X ~ N5(1, %) and Y = u, = X, + X3 X4 — X2 +exp(=X5) + N(0,62)
Model B. X ~ N,(0, Z) and Y = X, + (2X, — 1)> + % +sin(27X,) + 2 cos(2r X ,)
+3sin’2xX,) + 4 cos?(2xX,) + N(O, o2),

where N,(u, X) is the d-dimensional normal distribution with mean u and covariance matrix ¥ = (c;)); ;» with o;; = 27li=/I*1
in Model A and o; ;= 2-li=jl in Model B. As for oy, tWo values are considered, 0.5 and 4 (high variance model); in Model A we used
two values of Hy: 1 and 2.6. Here, Model B is as in Meier et al. (2009). Next, we also considered two choices for the function ¢* in
(4), ¢*(y) = exp(y*y) as in Kim and Yu (2011) and ¢*(») = [0.1 + (v* y)Z]‘l.

The following choice of coefficients result in approlximately 50% missing rate in Model A:

(AD) x(x.3) = (1+exp{fy + Z)_, B} - explry))
with (fy, ..., fs) = (0.6, 0.8, 0.25, —0.35, -0.3, 0.75), y = —0.98, and u,=2.6.

5
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Table 1

Empirical L; and L, errors corresponding selection probabilities (A1) and (A2). Here, the proposed estimator #i(x; 7, ) is as in
(16), the complete-case estimator m<°(x) is given by (2), and the estimator 7i,(x) based on no missing data is given by (1). The
numbers in parentheses are standard errors and those in square brackets are average follow-up subsample sizes drawn from the
non-respondents in D,.

Selection Sample Noise in Error m(x; ’?@ ) mee (x) i, (x)
Prob Model Size (n) Model A Type
(A1) 50 ¢,=0.5 L, 24.14 37.46 16.91
(0.5904), [1.46] (1.1949) (0.6497)
L, 3.10 4.23 2.50
(0.0252) (0.0741) (0.0427)
o, =4 L, 47.22 67.56 40.07
(1.0872), [1.47] (0.8659) (0.6031)
L, 5.11 6.35 4.73
(0.0485) (0.0440) (0.0283)
100 ¢,=0.5 L, 20.93 32.47 11.91
(0.5256), [2.10] (0.8113) (0.5364)
L, 2.82 3.82 2.00
(0.0219) (0.0587) (0.0264)
o,=4 L, 40.99 65.29 34.95
(0.7606), [2.17] (0.7808) (0.7369)
L, 4.75 6.22 4.39
(0.0321) (0.0309) (0.0320)
(A2) 50 o,= 0.5 L, 26.66 36.36 17.55
(1.0315), [1.44] (1.0980) (0.9804)
L, 3.23 4.10 2.51
(0.0263) (0.0451) (0.0420)
o,=4 L, 47.63 65.58 40.57
(0.9706), [1.50] (0.7706) (0.5967)
L, 5.14 6.26 4.76
(0.0398) (0.0412) (0.0273)
100 0,=0.5 L, 21.78 30.50 11.53
(0.3435), [2.20] (0.5564) (0.3971)
L 2.94 3.68 2.02
(0.0210) (0.0466) (0.0299)
o, =4 L, 42.88 64.06 35.41
(0.7521), [2.07] (0.6096) (0.6778)
L, 4.86 6.17 4.44
(0.0323) (0.0303) (0.0332)

-1
(A2) n(x,y) = (1 +exp{fy + X Bx; + sy xs} - eXp{yy})

with (B, fy. ..., fs) = (0.50, 0.75, —0.25, 0.25, —0.25, 0.75), y = —~0.98, and 1, =1.

The following choices of coefficients result in approximately 50% missing rate in Model B:

(B1) n(x,y) = (l +exp{for + Z?:] ﬂjxj} -(0.1+ yzyz)_1 B
with (B, ..., B4) = (0.85, 0.6, 0.35, —0.45, 0.55) and y = 0.16.

-1

(B2) n(x,y) = (1 +exp{fy + 23:1 Bix; + By x4} ~exp{yy})

with (g, . ..., Bs) = (2.6, 0.6, 0.35, —0.45, 0.4) and y = —0.36.

To estimate y* in ¢*(y) = exp(y*y), we employed the data-splitting approach of Section 2 with m= 0.7n and # = 0.3n, where the
estimator of y* is the minimizer of (14) with respect to y over a grid of equally-spaced values of y in [-M, M]; here, we took M = 15.
Next, a small follow-up subsample was selected from the set of non-respondents in D, where we took p, = ((log n)*% /(nA )"“)I/ 2
in (13) with 41=0.95 and a«=0.01. This choice of p, assures a very small subsample size (see the results in Tables 1 and 2). We
employed the Gaussian kernel in our estimators where the bandwidths were selected using the cross-validation method of Racine
and Li (2004) available from the R package “np”; see Racine and Hayfield (2008). To assess the performance of the proposed
estimators we computed their empirical L, errors (mean squared prediction errors) committed on a validation set of 1000 additional
observations. We also computed the empirical L, errors of our estimators. The entire above process was repeated 200 times, each
time using a sample of size n (50 and 100) and a validation set of size 1000, and the average errors were computed.

Table 1 gives the results for models (A1) and (A2). Table 1 also gives the corresponding results for two other estimators: the
complete-case estimator m‘(x) in (2) and the usual estimator with no missing data; this latter estimator allows one to see how
different the results could have been (and how close our results are to them) if there had not been any missing values. We also
performed the same computations for Model B with the two selections probabilities (B1) and (B2); the corresponding results appear
in Table 2. As the tables show, the proposed estimator’s error rates are significantly lower than those of the complete case estimators.
But more importantly, the tables also show that the average follow-up subsample sizes needed for the proposed estimators are around
2.1 when n=100 and about 1.5 when n=750 (see the boldfaced values in square brackets). In other words, the undesirable need
for a follow-up subsample here is virtually a non-issue in practice. As mentioned in Section 1, the complete-case estimator will be
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Table 2

Empirical L; and L, errors corresponding selection probabilities (B1) and (B2). Here, the proposed estimator 7i(x; 7, ) is as in
(16), the complete-case estimator m<°(x) is given by (2), and the estimator 7i,(x) based on no missing data is given by (1). The
numbers in parentheses are standard errors and those in square brackets are the average follow-up subsample sizes drawn from

the set of non-respondents in D,.

Selection Sample Noise in Error m(x; 7?{7,") mee(X) i, (x)
Prob Model Size (n) Model B Type
(B1) 50 0,=0.5 L, 51.85 53.35 44.57
(0.8269), [1.55] (1.1698) (0.7264)
L, 4.90 5.71 4.55
(0.0505) (0.0924) (0.0509)
c,=4 L, 67.30 70.75 61.62
(0.7762), [1.32] (0.9546) (0.5441)
L, 5.99 6.63 5.71
(0.0398) (0.0616) (0.0255)
100 c,=0.5 L, 49.13 52.52 42.40
(0.8893), [2.04] (1.0010) (0.8758)
L, 4.73 5.74 4.43
(0.0560) (0.0821) (0.0593)
o,=4 L, 66.21 72.10 60.9001
(0.7095), [2.06] (0.9379) (0.6425)
L 5.90 6.75 5.67
(0.0360) (0.0576) (0.0307)
(B2) 50 0,=0.5 L, 53.32 57.52 44.87
(0.7165), [1.40] (1.2368) (0.7478)
L, 4.87 6.07 4.58
(0.0527) (0.0954) (0.0542)
o,=4 L, 71.03 81.53 61.87
(1.2348), [1.51] (1.4935) (0.6288)
L, 6.17 7.33 5.74
(0.0656) (0.0862) (0.0315)
100 c,=0.5 L, 50.95 54.85 44.13
(0.7834), [1.96] (1.1026) (0.7440)
L, 4.68 5.97 4.55
(0.0492) (0.0873) (0.0509)
o,=4 L, 67.44 79.26 61.48
(0.9639), [2.04] (1.1646) (0.6427)
L, 5.94 7.24 5.70
(0.0533) (0.0685) (0.0308)

correct under the MAR assumption and therefore one can expect (2) to have a comparable (if not better) finite sample performance
in MAR scenarios.

5. Discussion

We have proposed kernel-type estimators of a regression function m(x) = E[Y|X = x], with x € R? and Y € R, when the response
variable Y may be missing according to a not-missing-at-random (NMAR) setup, where the underlying missing probability mechanism
can depend on both the predictor X and the response Y. Our proposed estimator is based on a particular representation of m(x) in
terms of four associated conditional expectations that can be estimated nonparametrically. We have established the convergence
properties of our estimators in general L, norms. An application of our results to the problem of classification is also studied.
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