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Abstract—This paper assesses the potential energy flexibility of
thermostatically controlled loads from a customer-centric pricing
perspective. The power system’s evolving landscape, marked by
efforts towards grid decarbonization and the proliferation of grid
edge resources for diversified energy sourcing, has introduced
significant complexity to grid operations. This complexity is
exacerbated by unpredictability and variability in consumer
demand due to changes in weather patterns (seasonal and un-
expected), economic conditions, and preferences. This challenge
highlights the need for more flexibility in the grid to manage the
changes in demand and supply. When optimally managed and
controlled, thermostatically controlled loads represent flexible
loads. They offer significant potential to provide essential grid
services (such as peak load management), thus improving the
grid’s reliability and resilience. This paper estimates the inherent
flexibility potential of HVAC systems of individual residential
houses from a pricing standpoint, evaluating their suitability for
demand response initiatives. Using data from Phoenix, Arizona,
three tariff models from SRP Electric Utility are tested for
energy and cost savings. The flexible estimation is formulated
as a linear optimization with customer bill minimization. The
results emphasize the importance of grid edge resources for
enhancing energy flexibility and highlight the need to tailor
pricing strategies to different customer segments for optimal
results.

Keywords—Thermostatically Controlled Loads, Flexibility, Es-
timation, Demand Response, Electricity Pricing.

I. INTRODUCTION

Over the past decade, traditional power distribution infras-
tructure has swiftly evolved, driven by government policies
and initiatives towards grid decarbonization, advancement in
smart grid technology, and the increasing drive for renewable
energy options like electric vehicles, rooftop photovoltaic
systems, and energy storage solutions [1]–[3]. These factors
have informed the change from traditional distribution systems
to active distribution grids that can accommodate bi-directional
power flow and support a decentralized energy generation
structure [4]. Furthermore, the rise in adverse weather events
and the escalating impact of climate change, characterized
by global temperature increases and abrupt weather fluctua-
tions, pose significant challenges to operating, monitoring, and
controlling distribution systems. Consequently, the electrical
network is compelled to adapt to unforeseen scenarios, placing
increased strain on grid infrastructure [5], [6]. In response
to these changing dynamics, there is a pressing need for
greater flexibility within the distribution grid. This flexibility
is crucial to enhance adaptability, maintain grid functionality,

and ensure system reliability in the face of evolving challenges
and opportunities in the energy landscape [7].

Thermostatically controlled load units, including air condi-
tioning systems, space heaters, refrigerators, and water heaters,
play a significant role in building energy consumption, ac-
counting for approximately 35% of total energy use [8]. These
loads are flexible as they can be monitored and controlled
strategically to shift electricity demand, offering ancillary
services during peak events [9], [10]. Therefore, accurately
assessing these systems’ flexibility is essential for improving
grid efficiency and evaluating the effectiveness of energy-
saving measures at the building level. Estimating energy
flexibility is becoming increasingly important as it enables
system operators to utilize flexible loads to meet various grid
service requirements, such as avoiding capacity constraints and
preventing costly grid outages [11], [12]. Utilities can also
reduce operational costs by characterizing and optimizing flex-
ible loads to assist in planning day-ahead generation dispatch
and peak load curtailment, obtaining a better balance between
demand and supply, and improving overall system efficiency
[12], [13].

Several approaches for estimating energy flexibility have
been explored in the literature. For instance, setpoint ad-
justments are utilized in [14] to measure flexibility in com-
mercial and residential loads for demand response purposes.
[15], [16] employed data-driven approaches to assess energy
flexibility potential in residential load users. [17] quantified
flexibility in thermostatically controlled loads using scenario-
based approaches derived from power flexibility distribution
functions. In [18], a home energy management system with
model predictive control is employed to quantify flexibil-
ity in residential buildings, formulating flexibility bands and
dispatching resources upon request. Also, [19] implemented
a distributed controller involving a central load aggregator
and building-level controllers to coordinate thermostatically
controlled loads. Furthermore, [20] examined the application
of adaptive model-free optimal control strategies for thermo-
statically controlled loads. Despite these advancements, en-
ergy stakeholders continue to pursue methods for quantifying
demand flexibility, given its growing significance in modern
distribution grid operations [21].

This paper assesses the potential energy flexibility of res-
idential grid-interactive cooling systems from a customer-
centric pricing perspective to optimize energy consumption
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and enable effective energy management. It aims to minimize
energy costs by considering the household’s cooling needs and
different pricing strategies. The study explicitly targets a hot
climate region in Arizona, utilizing the local utility’s pricing
structure. The main contributions of this paper are:

• Develop a grid-interactive cooling system model for a
residential home to estimate flexibility potentials.

• Test and compare the energy flexibility and cost savings
offered by different pricing models from an existing
utility.

• Evaluate the significance of grid edge resources, includ-
ing PV and battery storage, using different scenarios to
observe how they enhance the flexibility available.

The rest of the paper is structured as follows: Section II
presents background and problem formulation, Section III
provides the simulation results and discussion, and finally,
Section IV concludes the study.

II. BACKGROUND AND PROBLEM FORMULATION

A. Cooling Load Energy Flexibility Estimation

Cooling load flexibility is the amount of variation in energy
consumption that a cooling device can accommodate while
maintaining customer requirements. Electricity users with
grid-interactive cooling devices can shift energy consumption
to times when electricity costs are cheaper and can also use
less energy when the grid is at peak demand while maintaining
preset comfort levels. In this study, the primary goal is to
quantify and optimize the potential level of flexibility, specifi-
cally in terms of cost and energy savings from the customer’s
perspective, based on energy pricing structures for every hour
of the day. The flexibility available is the savings in energy
between a base case consumption Pbc and a customer-centric
controlled energy consumption Pwc as shown in (1) and (2).

∆P t = P t
bc − P t

wc ∀t ∈ {1, 2, . . . , 24} (1)

Flex = ∆P =
24∑
t=1

∆P t ∀t ∈ {1, 2, . . . , 24} (2)

Pbc, the base case power consumption, represents the typical
energy usage during regular operations. This value is derived
from historical data through regression or machine learning
models trained on predictor variables like outdoor tempera-
ture, humidity, cloud cover, and other climate indicators. It
serves as the expected energy consumption for an average
residential customer at specific time intervals. Pwc, the power
consumption with control, reflects a customer’s energy usage
when employing a customer-centric control strategy to mini-
mize energy expenses. This controlled consumption considers
outdoor weather conditions, room temperature, room setpoint,
electricity prices, and cooling system capacity. To maximize
flexibility potential at each time step (∆P t), we introduce
an optimization problem to minimize controlled consumption
(Pwc) while maintaining the desired comfort level. The goal
is to minimize Pwc and examine the associated costs based on
different pricing structures. Therefore, the objective function

Minimize: 
Ctotal = λ · Pwc
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Fig. 1: Grid Interactive Cooling System

is defined in (3) as minimizing the cost of energy consump-
tion subject to the desired comfort level and cooling system
requirement constraints.

Minimize: Ctotal = λ ·Pwc (3)

Where:

λ =
[
λ1, λ2, · · · λ24

]
Pwc =

[
P 1
wc, P 2

wc, · · · P 24
wc

]
B. Grid Interactive Cooling System Modeling

1) Building Occupants Need: The building occupants’ need
is modeled as a human comfort constraint in (4), (5). The room
temperature must be maintained within a boundary to keep
the occupants comfortable and safe as they set their tasks.
Therefore, at any time t, the room temperature must be within
bound {Tmin, Tmax}. Also, the change from one hour of the day
to the next must not be so drastic that it makes the occupants
uncomfortable.

Tmin
in ≤ T t

in ≤ Tmax
in (4)

|T t+1
in − T t

in| ≤ ∆Tmax
in (5)

2) HVAC System Model: The cooling system constraint is
presented in [22]. The indoor temperature at the next time step
is a weighted sum of the current indoor temperature and the
amount of cooling provided by the HVAC system. The weight
is considered as the factor of inertia property of the building,
which defines the rate at which indoor temperature is affected
by that of the environment.

T t+1
in = εHVACT

t
in + (1− εHVAC)

(
T t

out − ηAP
t
wc

)
(6)

0 ≤ P t
wc ≤ Pmax (7)

Tmin
in ≤ T t

in ≤ Tmax
in (8)
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3) Weather Condition Model: The outdoor temperature is
considered for July, Arizona’s peak summer period, when
the cooling demand is at its maximum. The data used for
the 24-hour time is obtained from the Phoenix Sky Harbour
International Airport Station [23].

4) PV System Model: The rooftop solar PV constraint is
presented in [22]. The output power of the PV system is
obtained from the available solar irradiance Rt

pv as defined
by (9). The output power is also a function of the surface area
of the PV array Apv and the transformation efficiency ηpv.

P t
pv = Rt

pvApvηpv (9)

5) Battery Storage System Model: The battery energy stor-
age system constraint is presented in [22]. The charging and
discharging capacity (PBSC, PBSD) must be greater than or
equal to 0 but less than or equal to the capacity of the battery
PBSmax as in (10) and (11). the state of charge of the battery
must be within {Bmin

SoC , B
max
SoC} as in (12). Also, the battery’s

charge state follows as defined in (13).

0 ≤ P t
BSC ≤ PBSmax (10)

0 ≤ P t
BSD ≤ PBSmax (11)

Bmin
SoC ≤ Bt

SoC ≤ Bmax
SoC (12)

Bt+1
SoC = Bt

SoC +
P t

BSC − P t
BSD

PBSmax
(13)

C. Pricing Structure Implementation

The electricity pricing model is broadly classified into
time-of-use and tier-structure pricing. The time-of-use pricing
model is such that the electricity price varies depending on the
time of the day, thus reflecting the variability of demand and
supply on the grid throughout the day. For example, during
peak hours, the electricity price may be higher due to high
demand, and during off-peak hours, the price is reduced to
allow consumers to use the excess capacity. On the other hand,
tiered structure pricing sets electricity prices in tiers based
on consumption levels. The first tier charges a lower rate for
the initial consumption, with subsequent tiers imposing higher
rates for additional usage. The pricing models used in this
study are cloned from SRP Electric Utility, Phoenix, Arizona
[24].

1) TOU Price Plan: In the Time of Use (TOU) price plan,
the daily peak hours are between 2 pm and 8 pm. As a result,
the energy price during those hours is higher than that of the
rest. The total energy cost is calculated as follows.

Ctotal =
24∑
t=1

λtP t
wc (14)

where,

λt =


0.0906, for 1 ≤ t ≤ 14

0.2585, for 15 ≤ t ≤ 20

0.0906, for 21 ≤ t ≤ 24

(15)

2) EZ3 Price Plan: In the EZ3 price plan, the daily peak
hours are between 3 pm and 6 pm. As a result, the energy
price during those hours is higher than that of the rest. The
total energy cost is calculated as follows.

Ctotal =
24∑
t=1

λtP t
wc (16)

where,

λt =


0.1029, for 1 ≤ t ≤ 15

0.3620, for 16 ≤ t ≤ 18

0.1029, for 19 ≤ t ≤ 24

(17)

3) Residential Demand Price Plan: In the residential
demand price plan, the total energy cost comprises the
energy charge per kilowatt-hour (kWh), and the demand
charge, as a tiered rate charge, is based on the maximum
power consumed within a single interval. Customers are
encouraged to distribute their electricity usage throughout the
day, reducing the energy required at once. The total energy
cost is calculated as follows.

Ctotal =Cenergy + Cdemand

=
24∑
t=1

λtP t
wc +maλa max(P t

wc)

+mb

(
λaPa + λb

(
max(P t

wc)− Pa

))
+mc

(
λaPa + λb(Pb − Pa) + λc

(
max(P t

wc)− Pc

))
subject to:

ma +mb +mc = 1, ma,mb,mc ∈ {0, 1}
(18)

where,

λt =


0.0588, for 1 ≤ t ≤ 14

0.0798, for 15 ≤ t ≤ 20

0.0588, for 21 ≤ t ≤ 24

(19)

ma =

{
1, if 0 < max(P t

wc) ≤ Pa

0, otherwise
(20)

mb =

{
1, if Pa < max(P t

wc) ≤ Pb

0, otherwise
(21)

mc =

{
1, if Pb < max(P t

wc) ≤ Pc

0, otherwise
(22)

Pa = 0.5Pmax, Pb = 0.8Pmax, Pc = Pmax (23)
λa = 1.886, λb = 3.502, λc = 6.718 (24)

III. SIMULATION AND RESULTS

A. Base Case Modeling

This study focuses on the cooling load of residential
customers. The baseline energy consumption profile is de-
rived from a business-as-usual scenario. In this scenario,
the consumer maintains a fixed indoor temperature of 25◦C
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(b) The energy consumption profile for the base case is
derived over 24 hours, utilizing a fixed target indoor room
temperature set point of 25◦C

Fig. 2: The baseline energy consumption profile is presented
with higher outdoor temperatures leading to increased cooling
system energy consumption

throughout the day, as shown in Fig. 2a. Consequently, energy
consumption is calculated as the amount needed to sustain
this indoor temperature, factoring in outdoor temperature con-
ditions. The outdoor temperature data is from a typical hot
summer day in Phoenix, Arizona, representing the forecasted
conditions that influence the cooling system’s energy usage.
Fig. 2b presents the resulting base-case consumption profile.
Understandably, hot outdoor conditions will require more
energy consumption from the cooling system as it would run
against a more significant temperature difference.

B. Flexibility Without Edge Resources

In this scenario, the outdoor temperature remains consistent
with the base case for estimating flexibility. The assessment
involves the cooling system’s flexibility without incorporating
additional grid edge resources. The model assumes that indoor
temperature set point adjustments are permitted solely during
peak hours. Consequently, the indoor temperature must align
with the base case scenario, set at 25◦C, outside peak pricing
hours. Moreover, comfort criteria are introduced, stipulating
that the indoor temperature must not deviate by more than
±3◦C at any given time and that the temperature change
between two periods must not exceed 5◦C. Optimized and
controlled through the flexibility approach, the resulting en-
ergy consumption profile is compared with the base case
consumption profile for each pricing structure. Additionally,
evaluation is conducted on the resulting indoor temperature.

The optimized consumption pattern of a customer under the
TOU price strategy is shown in Fig. 3a. The room is pre-cooled
immediately after the flexibility window opens during peak
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(a) With the TOU price plan,
the customer peak consumption is
20kWh due to pre-cooling.
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(b) TOU price plan customers
can provide energy flexibility
of 14 kWh.
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(c) With the EZ3 price plan,
the customer peak consumption is
20kWh due to pre-cooling.
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(d) EZ3 price plan customers
can provide energy flexibility
of 4.5 kWh.
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(e) With the Residential demand
price plan, the peak consumption
is pegged at 17kWh to save cost.
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(f) Residential demand price
plan customers can provide en-
ergy flexibility of 10.9 kWh.

Fig. 3: Comparison of the energy flexibility potential among
customers based on enrolled pricing structures.

hours at 14:00, resulting in higher energy consumption. How-
ever, energy savings are implemented from 15:00 to 20:00 to
reduce the total energy consumption cost. Following the peak
hours, when electricity prices decrease, energy usage increases
again to maintain the desired indoor temperature outside peak
hours. Consequently, the customer follows a pattern of initially
higher consumption, gradual reduction during peak hours, and
subsequent increase to meet temperature constraints. The TOU
price plan shows peak flexibility at 15:00, with a 7 kWh
reduction in energy usage compared to the base case and an
algebraic sum of 14 kWh of energy flexibility available. The
hourly flexibility result is presented in Fig. 3b, and the indoor
temperature profile is provided in Fig. 4a.

Next, with the EZ3 price strategy, the optimized consump-
tion pattern of a customer is shown in Fig. 3c. The room
is also pre-cooled immediately after the flexibility window
opens during peak hours at 15:00, resulting in higher energy
consumption. However, energy savings are implemented from
16:00 to 18:00 to reduce the total energy consumption cost.
Following the peak hours, when electricity prices decrease,
energy usage increases again to maintain the desired indoor
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(a) Resulting indoor temperature profile for customers on
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(b) Resulting indoor temperature profile for customers on
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(c) Resulting indoor temperature profile for customers on
the Residential demand price plan.

Fig. 4: Comparison of the indoor temperature profile obtained
based on the optimal flexibility with the three pricing struc-
tures.

temperature outside peak hours. Therefore, the customer fol-
lows a similar pattern of initially consuming more than the
base case, gradually reducing consumption during peak hours,
and subsequently increasing consumption after the peak period
to meet indoor temperature constraints. The EZ3 price plan
shows peak flexibility at 16:00, with a 6.5 kWh reduction
in energy usage compared to the base case and an algebraic
sum of 4.5 kWh of energy flexibility available. The flexibility
available to these customers is reduced compared to TOU
customers due to a smaller flexibility window. In this case,
only a 3-hour window is available compared to the 6-hour
option offered by TOU pricing. The hourly flexibility result
is presented in Fig. 3d, and the indoor temperature profile is
provided in Fig. 4b.

The optimized consumption pattern of a customer under
the residential demand price strategy is shown in Fig. 3e.
The residential demand price strategy avoids pre-cooling,
unlike the other two methods. This precaution is taken to
prevent a surge in peak demand, which could result in higher
prices under the demand price plan. Peak flexibility under
this plan is observed at 15:00, with a 5.5 kWh reduction in
energy usage compared to the base case. This results in an
algebraic sum of 10.9 kWh of energy flexibility available. The
flexibility available to these customers is not as high as that
of TOU customers due to the restriction on pre-cooling. The
hourly flexibility result is presented in Fig. 3f, and the indoor
temperature profile is provided in Fig. 4c.

A comparison of energy flexibility in kilowatt-hours (kWh)
across various pricing plans is presented in Table I. The total

TABLE I: Comparison of energy consumption and energy
flexibility in kWh from different price plans

Model TOU EZ3 Demand

Base case (Pbc) 315 315 315
Controlled (Pwc) 301 310.5 304.1
Flexibility (∆P ) 14 4.5 10.9

flexibility, denoted as ∆P , is determined using (1) and (2).
Fig. 3 illustrates the temporal flexibility pattern.

C. Flexibility With Edge Resources

In this scenario, all the constraints in the previous scenario
are maintained. However, we introduce the rooftop PV system
and battery energy storage as grid-edge resources to provide
more flexibility to the customer. The battery’s state of charge is
constrained to be between 0.1 and 0.9 at any time. The initial
state of charge is set to 0.1. The battery charging or discharging
capacity at any time step is constrained to be always less than
or equal to the maximum battery capacity set to 10 kWh.
Also, the PV system’s output determines the battery’s charging
rate. Hence, the charging rate is high for periods of high solar
irradiance, and for periods of low irradiance, the charging rate
is low.

The optimized charging and discharging schedule for cus-
tomers enrolled in the TOU price plan is presented in Fig.
5a. Notably, the battery reaches its peak discharge at 16:00,
coinciding with peak pricing hours, effectively reducing cus-
tomer energy costs. The consumption pattern is shown in Fig.
6a. Integrating grid-edge resources, such as PV and battery
storage systems, significantly reduces the dependence on grid
power during peak hours, providing more flexibility for system
operators in managing peak load situations. After peak hours,
energy consumption rises again to maintain indoor comfort
levels, leveraging lower electricity prices. Primarily, the battery
discharges during peak hours to reduce energy expenses.
By adopting grid-edge resources, TOU customers can offer
more flexibility during peak periods, boasting an aggregate
energy flexibility of 46.4 kWh. The hourly flexibility result
is presented in Fig. 6b, and the indoor temperature profile is
provided in Fig. 7a.

Next, the optimized charging and discharging schedule for
customers enrolled in the EZ3 price plan is presented in Fig.
5b. In this case, the battery also reaches its peak discharge
at 16:00, coinciding with peak pricing hours and reducing
customer energy costs. The consumption pattern is shown in
Fig. 6c. By incorporating grid-edge resources, EZ3 customers
can offer more flexibility during peak periods and boast an
aggregate energy flexibility of 36.9 kWh. Even with grid
edge resources, the flexibility available to these customers is
lower than that of TOU customers due to a smaller flexibility
window, which is only a 3-hour window compared to the 6-
hour option offered by TOU pricing. The hourly flexibility
result is presented in Fig. 6d, and the indoor temperature
profile is provided in Fig. 7b.
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(b) The charging, discharging, and state of
charge patterns of grid edge resources for
EZ3 customers.
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(c) The charging, discharging, and state of
charge patterns of grid edge resources for
residential demand plan customers.

Fig. 5: The charging, discharging, and state of charge patterns of grid edge resources vary depending on the pricing structure
for consumers.

14 16 18 20

Hour of the Day

5

10

15

20

C
on

su
m

pt
io

n 
(k

w
h) Pbc Pwc

(a) With the EZ3 price plan, the
customer peak consumption is 20
kWh due to pre-cooling.
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(b) TOU price plan customers
can provide energy flexibility
of 46.4 kWh.
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(c) With the EZ3 price plan, the
customer peak consumption is 20
kWh due to pre-cooling.
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(d) EZ3 price plan customers
can provide energy flexibility
of 36.9 kWh.
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(e) With the Residential demand
price plan, the peak consumption
is reduced to 13 kWh.
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(f) Residential demand price
plan customers can provide en-
ergy flexibility of 49.7 kWh.

Fig. 6: Comparison of the energy flexibility potential among
customers with grid edge resources based on enrolled pricing
structures.
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(a) Resulting indoor temperature profile for customers with
grid energy resources enrolled in the TOU price plan.
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(b) Resulting indoor temperature profile for customers with
grid energy resources enrolled in the EZ3 price plan.
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(c) Resulting indoor temperature profile for customers with
grid energy resources enrolled in the residential demand
price plan.

Fig. 7: Comparison of the indoor temperature profile obtained
based on the optimal flexibility with grid edge resources on
the three pricing structures.

Residential customers utilizing the demand-based pricing
strategy observe significant advantages from leveraging grid-
edge resources. The optimized charging and discharging pat-
tern for demand-based pricing customers is shown in Fig.
5c. The battery reaches its peak discharge just after the peak
pricing hours, around 20:00. This timing reflects the strategy of
the residential demand price plan, which encourages spreading
out energy consumption to prevent surges at any single point.
The consumption pattern is detailed in Fig. 6e. Through this
approach, customers reduce peak consumption from 17 kWh
to 13 kWh, resulting in a notable decrease in energy costs, as
peak consumption heavily affects price. Also, a total energy
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TABLE II: Comparison of energy consumption and energy
flexibility in kWh from different price plans after introducing
grid edge resources

Model TOU EZ3 Demand

Base case (Pbc) 315.0 315.0 315.0
Controlled (Pwc) 268.6 278.1 265.3
Savings (∆P ) 46.4 36.9 49.7
PV contribution 32.4 32.4 32.4

flexibility of 49.7 kWh is available, more than that of TOU
and EZ3 customers. The hourly flexibility is presented in Fig.
6f, and the indoor temperature profile is shown in Fig. 7c.

A comparison of energy flexibility in kilowatt-hours (kWh)
across various pricing plans and highlighting the impact of
integrating grid-edge resources is presented in Table II. The
total flexibility, denoted as ∆P , is determined using (1) and
(2). Fig. 6 illustrates the temporal flexibility pattern. The base
case consumption remains constant across all three pricing
structures, as does the contribution from the PV system.

IV. CONCLUSION

This study has examined optimizing and quantifying energy
flexibility for a grid-interactive cooling system. The optimiza-
tion is designed to help minimize the cost of energy utilization
for the customer. Three different pricing plans have been
considered, and the optimization results for each plan were
compared against a base case (i.e., rule-based temperature con-
trol). Also, the effect of grid edge resources, including PV and
battery energy storage, was evaluated to determine the flexibil-
ity level. The results show that the TOU pricing mechanism
has the highest amount of flexibility. One limitation of this
study is the simplicity of the developed models and the number
of customer loads considered. Scaling up to include customer
clusters or diverse customer types (residential, commercial, in-
dustrial) increases optimization complexity and computational
demands. Future studies will incorporate customer clusters
with different temperature settings, varying cooling device
capacities, and the uncertainties of PVs, battery systems, and
EVs. The objective is to examine and evaluate the implica-
tions and opportunities of spatial aggregation/disaggregation
of diverse customer behaviors using graph-based estimation
methods. Also, AI and edge computing techniques will be
introduced to examine the stochastic nature of the outdoor
temperature and the variability associated with PV supply.
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Response to Decision Letter

Dear Editor,

The authors thank the editor and reviewers for the timely manuscript processing and for 
recommending our paper for acceptance for presentation at the IAS Annual Meeting. We have 
addressed all the comments raised by the reviewers and the editor in the paper and provided our 
responses. We submitted the revised manuscript and the following explanations in response to the 
reviewers' comments. We hope the editor and reviewers will find these explanations and 
modifications satisfactory.

Response from Authors to Reviewers’ Responses to Questions

Reviewer: 1

1. This paper evaluates the energy flexibility of thermostatically controlled loads (TCLs) from a 
customer-centric pricing perspective. The evolving power grid landscape, driven by 
decarbonization efforts and diverse energy sources, increases grid complexity due to 
unpredictable and variable consumer demand influenced by weather, economic conditions, and 
preferences. Flexibly managed TCLs, like HVAC systems, can improve grid reliability and 
resilience by providing essential services such as peak load management. The study uses data 
from Phoenix, Arizona, to test three tariff models from SRP Electric Utility for energy and cost 
savings, formulating flexibility estimation as a linear optimization to minimize customer bills. 
The results underscore the value of grid edge resources for energy flexibility and the need for 
tailored pricing strategies for different customer segments. I think this paper merits a 
publication in this journal, with the following concerns that require the authors to response:

Response: We want to thank the reviewer for recognizing the contribution of our paper.

2. The dynamic thermal rating (DTR) system has been shown to enhance the rating of existing 
lines by 30-50%, with the latter being possible in desirable weather conditions. In addition, the 
DTR system has also demonstrated that it can achieve the said benefit with lower costs and 
shorter lead time as compared to other equivalent methods. Due to this the DTR system has 
been deployed before to enhance grid reliability in [“Network topology optimisation based on 
dynamic thermal rating and battery storage systems for improved wind penetration and 
reliability”, Applied Energy] and [“Optimisation of generation unit commitment and network 
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topology with the dynamic thermal rating system considering N-1 reliability”, Electric Power 
Systems Research], as well as, to increase RES and EV penetrations in [“Optimal Dispatching 
for AC/DC Hybrid Distribution Systems With Electric Vehicles: Application of Cloud-Edge-
Device Cooperation”, IEEE Transactions on Intelligent Transportation Systems], 
[“Hierarchical and distributed energy management framework for AC/DC hybrid distribution 
systems with massive dispatchable resources”, Electric Power Systems Research], [“Two-
Stage Optimal Dispatching of AC/DC Hybrid Active Distribution Systems Considering 
Network Flexibility”, Journal of Modern Power Systems and Clean Energy]. Given the added 
advantage of the DTR system, it is more beneficial to implement the flexible system rather 
than the static line thermal rating (STR) system, as being implemented here in this paper. 
Hence, it is imperative that the authors additionally consider the DTR system in their proposed 
model which is currently lacking. Otherwise, the authors should highlight in depth the 
drawback of the proposed model in terms of the flexible rating and provide a proposal on how 
this can be performed as future studies.

Response: We appreciate the reviewer's comment. Since this study focuses on a single residential 
customer, the distribution system topology, including the dynamic thermal rating of the 
distribution line, has yet to be considered. Dynamic thermal ratings (DTR) become essential when 
a cluster of customers spread over a distance is considered. DTR helps incorporate changes in real-
time weather conditions, such as wind speed, solar radiation, and ambient temperature, along the 
line. 

The DTR system provides flexible current-carrying capacity for transmission lines, which can help 
mitigate system congestion caused by thermal limits. This flexibility is valuable in reducing the 
curtailment of renewable energy generation due to line capacity constraints. We plan to expand 
future studies to include different customer clusters, where considering the distribution system 
topology and incorporating flexible line ratings will be beneficial.

Reviewer: 2

1. This paper assesses the potential energy flexibility of thermostatically controlled loads from a 
customer-centric pricing perspective. The work is a good contribution in the field, but it could 
benefit from knowing the following related literature: Optimal tracking strategies for uncertain 
ensembles of thermostatically controlled loads. The relevance of this suggestion is not only to 
deal with thermostatically controlled loads (as this manuscript), but also to deal with optimal 
control (as this manuscript) and estimation of uncertainty (as this manuscript). Thus, the 
authors are free to judge if the suggestion is appropriate for being mentioned. Apart from this 
suggestion, I judge this work as a good contribution for IAS meeting, but the following minor 
comments arise

Response: We thank the reviewer for recognizing our paper's contribution and suggesting this 
relevant literature. We have worked with the relevant literature indicated by the reviewer to 
improve the introduction section. We also aim to expand the current work to include uncertainty 
estimation, as suggested by the reviewer, in future studies. 
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Introduction paragraph updated to include suggested literature

Several approaches for estimating energy flexibility have been explored in the literature. For 
instance, setpoint adjustments are utilized in [14] to measure flexibility in commercial and 
residential loads for demand response purposes. [15,16] employed data-driven approaches to 
assess energy flexibility potential in residential load users. [17] quantified flexibility in 
thermostatically controlled loads using scenario-based approaches derived from power flexibility 
distribution functions. In [18], a home energy management system with model predictive control 
is employed to quantify flexibility in residential buildings, formulating flexibility bands and 
dispatching resources upon request. Also, [19] implemented a distributed controller involving a 
central load aggregator and building-level controllers to coordinate thermostatically controlled 
loads. Furthermore, [20] examined the application of adaptive model-free optimal control 
strategies for thermostatically controlled loads. Despite these advancements, energy stakeholders 
continue to pursue methods for quantifying demand flexibility, given its growing significance in 
modern distribution grid operations [21].

[20] Coimbatore Anand and S. Baldi, "Optimal Tracking Strategies for Uncertain Ensembles of 
Thermostatically Controlled Loads," 2020 IEEE 16th International Conference on Control & 
Automation (ICCA), Singapore, 2020, pp. 901-906, doi: 10.1109/ICCA51439.2020.9264495.

2. The authors write that this paper estimates the inherent flexibility potential of HVAC systems 
of individual residential houses from a pricing standpoint, evaluating their suitability for 
demand response initiatives. However, based on equation (3) and related equations, I mostly 
see an optimization problem. I did not spot where the estimation is inside such optimization. 
This might be better highlighted

Response: We want to thank the reviewer for this comment. Energy flexibility involves 
coordinating energy usage with the power grid to maintain comfort while balancing supply and 
demand. Smart devices allow electricity customers to automatically shift high energy consumption 
to cheaper periods and reduce usage when the grid is stressed. Thus, flexibility entails optimizing 
energy use across the grid to adjust consumption patterns. 

Energy flexibility performance can be measured using various performance indicators focusing on 
different aspects of flexibility. This work quantifies flexibility potential as the energy a customer 
can save by rescheduling appliance operations. This is measured as the difference between base-
case consumption (𝑃𝑏𝑐) and controlled consumption (𝑃𝑤𝑐), as shown in (1) and (2).
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To maximize flexibility potential at each time step (∆𝑃𝑡), we introduce an optimization problem 
to minimize controlled consumption (𝑃𝑤𝑐) while maintaining the desired comfort level. In (3), the 
goal is to minimize 𝑃𝑤𝑐 and examining the associated costs based on different pricing structures.

The second paragraph in subsection II-A has been modified to clarify and enhance the reader's 
understanding.

Excerpt of the modified paragraph in Section II

𝑃𝑏𝑐, the base case power consumption represents the typical energy usage during regular 
operations. This value is derived from historical data through regression or machine learning 
models trained on predictor variables like outdoor temperature, humidity, cloud cover, and other 
climate indicators. It serves as the expected energy consumption for an average residential 
customer at specific time intervals. 𝑃𝑤𝑐, the power consumption with control reflects a customer's 
energy usage when employing a customer-centric control strategy to minimize energy expenses. 
This controlled consumption considers outdoor weather conditions, room temperature, room 
setpoint, electricity prices, and cooling system capacity. To maximize flexibility potential at each 
time step (∆𝑃𝑡), we introduce an optimization problem to minimize controlled consumption (𝑃𝑤𝑐) 
while maintaining the desired comfort level. The goal is to minimize 𝑃𝑤𝑐 and examine the 
associated costs based on different pricing structures. Therefore, the objective function is defined 
in (3) as minimizing the cost of energy consumption subject to the desired comfort level and 
cooling system requirement constraints.

3. Because the work is heavily based on optimization, the authors may consider providing the 
computational time for it

Response: We want to thank the reviewer for this comment. While computational time is essential 
in optimization problems, this study focuses on a single residential customer, resulting in minimal 
computational demands that have not been considered. A single residential customer has minimal 
load and comfort level requirements, leading to very low computational needs. However, scaling 
up this optimization problem would require more computational time, which must be addressed. 

For example, considering a cluster of residential customers introduces varying individual needs, 
thereby increasing optimization requirements and computational demands. Similarly, analyzing a 
distribution feeder with diverse customer types—residential, commercial, and industrial—would 
necessitate more complex optimization and longer computational times. Expanding the problem 
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to account for uncertainties from PV and battery systems and outdoor weather conditions would 
further increase computational requirements. 

In future research, we plan to include different customer clusters and address these uncertainties 
in the input variables. Then, we will address the computational time requirements. We have 
worked with this reviewer's comment to improve the conclusion section.

Excerpt of the modified conclusion section

One limitation of this study is the simplicity of the developed models and the number of customer 
loads considered. Scaling up to include customer clusters or diverse customer types (residential, 
commercial, industrial) increases optimization complexity and computational demands. Future 
studies will incorporate customer clusters with different temperature settings, varying cooling 
device capacities, and the uncertainties of PVs, battery systems, and EVs. The objective is to 
examine and evaluate the implications and opportunities of spatial aggregation/disaggregation of 
diverse customer behaviors using graph-based estimation methods. Also, AI and edge computing 
techniques will be introduced to examine the stochastic nature of the outdoor temperature and the 
variability associated with PV supply.

4. The authors write that using data from Phoenix, Arizona, three tariff models from SRP Electric 
Utility are tested for energy and cost savings. Maybe I missed it, but it is not clear if such data 
are available online or not. Apart from this, it is appreciated that the work is based on real data 
and I confirm that this work is a good contribution for IAS meeting.

Response: We want to thank the reviewer for this comment. The pricing models used in this study 
are from the SRP Electric Utility, Phoenix, Arizona. The data is available online and has been cited 
as [24].

[24] [Online]. Available: https://www.srpnet.com/price-plans/residentialelectric/compare-plans
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