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ABSTRACT As electric vehicles (EVs) become increasingly common in transportation infrastructures, the
need to strengthen and diversify the EV charging systems becomes more necessary. Dynamic Wireless Power
Transfer (DWPT) roadways allow EVs to be recharged while in-motion, thus allowing to improve the driving
ranges and facilitating the widespread adoption of EVs. One major challenge to adopt large-scale DWPT
networks is to efficiently and accurately develop load demand models to comprehend the complex behavior
on power distribution grid due to difficulty in developing power electronic simulations for charging systems
consisting of either numerous transmitter pads or high traffic volumes. This paper proposes a novel modified
Toeplitz convolution method for efficient large-scale DWPT load demand modeling. The proposed method
achieves more accurate modeling of DWPT systems from a few transmitter pads to tens of miles in real-world
traffic scenarios with light computational load. Test results for a small-scale DWPT system are first generated
to validate the accuracy of the proposed method before scaling to large-scale load demand modeling where
real-world traffic flow data is utilized in DWPT networks ranging from 2—10 miles. A comparative analysis
is further performed for the scenarios under consideration to demonstrate the efficiency and accuracy of the
proposed method.

INDEX TERMS Convolution method, dynamic wireless power transfer, electrified transportation, EVs
charging load, power distribution system.

NOMENCLATURE Cpp Primary Parallel Capacitance.

o Length of transmitter pads. Cps  Primary Series Capacitance.

B Rated power capacity of receiver pad. Csp  Secondary Parallel Capacitance.

B’ Rated power capacity of transmitter pad. Css  Secondary Series Capacitance.

8  Length of receiver pad. L,  Primary Inductance.

€  Receiver and transmitter pad overlap percentage. Ly Secondary Inductance.

A Horizontal distance between transmitter pads. Ly;  Primary Series Inductance.

¢  Phase Shift of Gate Signals. Ly, Secondary Series Inductance.

p  Power output fitting variable. M Mutual Inductance.

m Total distance to traverse.
The associate editor coordinating the review of this manuscript and N Current position of vehicle.

approving it for publication was Alon Kuperman n Total length of charging system.
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Py Cross-sectional area output array.
Pr Power transference output array.
Sr Receiver matrix.

St Transmitter matrix.

Tr Modified Toeplitz matrix.

Vbat EV Battery Voltage.

Vin Transmitter Input Voltage (dc).
CONV Convolution.

DWPT Dynamic Wireless Power Transfer.
ES Euclidean Similarity.

ETN Electrified Transportation Network.
EV Electric Vehicle.

HDV Heavy-duty Vehicle.

INTG Integrative.

LDV Light-Duty Vehicle.

MAE Mean Absolute Error.

mCONV  Modified Toeplitz Convolution.
MDV Medium-duty Vehicle.

PT Power Transmitter.

Rx Receiver Pad.

TF Traffic Flow.

Tx Transmitter Pad.

I. INTRODUCTION

Recent advancements in Electrified Transportation Networks
(ETNs) are addressing the growing need to provide clean,
sustainable, and reliable energy to charge Electric Vehi-
cles (EVs) for reducing petroleum fuel consumption. The
ETN development requires the collaboration of multiple
disciplines, such as power electronics, power systems, and
transportation engineers to design adequate infrastructure
to facilitate the complete transition to EVs. Currently, it is
estimated that EV sales will reach 2.9 million by 2030 and has
experienced a sales increase of approximately 50% between
the years 2022 and 2023 [1], [2]. With this, it’s reasonable
to expect electrical load demands to fluctuate proportionally
with EV sales as their density into transportation networks
increase. This will potentially require a modernization of
electrical equipment, i.e., distribution lines, transformers,
feeders and etc., to prevent any hazardous events from
occurring that could cause grid failure. The most common
charging access point for EVs are located at residential
locations that implement plug-in power transfer architectures.
However, these systems produce slow charging speeds and
causes electrical load demands present on distribution grids
to increase before and after normal business hours [3], [4],
[5], [6], [7]. Commercial fast-chargers offer higher charging
speeds ranging between 15 minutes to 1-hour through higher
power capacities, but due to the minimal availability of
chargers queuing will inevitably lengthen the amount of time
required to charge [8], [9], [10]. These charging speeds are
not comparable with internal combustion engine vehicles and
has developed a phenomenon in human behavior known as
range anxiety that will decrease the adoption of EVs [11],
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[12]. Dynamic Wireless Power Transfer (DWPT) networks,
which allows EVs to be charged while in-motion, are
gaining great attention as it can achieve increased EV ranges
without increasing the battery size while also reducing the
consumption of petroleum fuels enabling air quality and noise
pollution to be mitigated [13], [14], [15], [16].

Generally, capacitive and inductive power transfers are the
types of DWPT infrastructures utilized [17], [18], [19], [20].
In practice, however, the majority of DWPT infrastructures
are inductive wireless power transfer implemented through
consecutively embedded inductive coils, which are referred
to as transmitter (Tx) pads, within a roadway, and a receiver
(Rx) pad that is attached underneath an EV [21]. One
of the main challenges associated with DWPT networks
lies in investigating the various operating point parameters
to increase the systems’ efficiency to transfer electrical
power [22], [23]. This process can be computationally
burdensome as the DWPT becomes more complex (i.e.,
as the system increases in scale). Zakerian et al. [24]
developed a frequency tracking and voltage regulation model
for a DWPT network to increase the efficiency and power
factor in connection with the grid and achieved a higher
efficiency approximately 72% of the time when compared
to conventional methods and their study considered only one
Tx pad within the modulation. Likewise, Xue et al. [25]
validated a design for a 120 kW DWPT system of one
Tx pad achieving 91.31% efficiency to deliver energy to
the EVs battery system. Varghese et al. [26] assumed an
EV velocity of 1600 km/h to reduce the computational
burden during the proposed simulation of a three Rx pad
architecture, which aimed to simplify the adoption of varying
duty classes of EVs in DWPT networks. Inoue et al. [27]
developed an optimization algorithm that utilized artificial
neural networks to predict the output power of a DWPT
network with four Tx pads and was capable of achieving
an accuracy of 87.3% while also reducing data collection
time from 40 months to 1 month, however, the scalability
of their method is computationally burdensome when the
number of Tx pads increases since the dataset necessary
to train the model will increase proportionally with the
length of the DWPT network. Reference [28] presented
a DWPT model for three separate Tx pad configurations
all consisting of multiple lengths and dimensions for a
roadway length of 1 km by considering groupings of EVs
throughout the charging system. Debnath et al. [29] explored
the electromagnetic transient behavior of a 30 mile DWPT
network by considering a constant velocity and one duty class
of EVs.

In the context of DWPT networks, the majority of research
is found to be primarily focused on small-scaled systems
when the need to have high accuracy is required to analyze
switching transients, although that produces high compu-
tational burden because the time-scale of simulations can
range from nanoseconds to milliseconds. When considering
a constant EV Traffic Flow (TF) through a DWPT or
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FIGURE 1. Overview of proposed approach for DWPT network load
demand modeling.

a constant velocity for the EVs, the processing intensity
reduces and that also deteriorates the performance of the
model to generate more accurate load demand profiles since
real-world applications will have fluctuating TF and veloc-
ities. In these applications, switching transients are lost due
to the assumption of constant energy transfer. Furthermore,
as the length of the DWPT roadway increases, the complexity
of the data required to simulate higher integration of Tx
pads accurately intensifies proportionally, thus amplifying
the processing time when switching transients are of
concern.

The limited scalability of DWPT network research in
literature presents a need to further explore convincing
methodologies to achieve more reduced computational
intensity while achieving higher accuracy in order to
perform impact analyses from large-scale DWPT roadway
on the electric power distribution grid. In our previous
work [30], an Integrative (INTG) object-oriented algorithm
was developed to analyze different DWPT network lengths
in conjunction with the fluctuation of EV TF and velocities,
assuming a constant energy transfer while the EVs are
traversing over the DWPT roadway. This paper presents a
novel Convolution (CONV) method with scalability and light
computational load to achieve more accurate modeling of
power and energy profiles for (i) any given DWPT roadway
with varying EV TF, (ii) dynamically fluctuating velocities,
and (iii) the dimensional characteristics of the charging
infrastructure. References [31], [32], and [33] demonstrated
the theory of discrete linear CONV utilizing the Toeplitz
method, however, in this paper, our proposed CONV modifies
the matrices to mimic the traversal of EVs through a
DWPT network to generate power output profiles from the
overlapping of the Tx and Rx pads through time; thus,
hereinafter, our proposed modified Toeplitz CONV method
will be termed as mCONV. To the best knowledge of the
authors, a mCONYV method to calculate DWPT network load
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demands does not exist in the current literature, thus making
this paper novel. Fig. 1 presents the scope of this paper
to model small-scale and large-scale DWPT network load
demands utilizing the proposed mCONV, fluctuating EV
velocities, and varying EV densities. Hence, in contrast to
the existing literature, the major contributions of this paper
lies in the following: (1) Development of a new and an
effective methodology for accurately modeling the power
and energy profiles of large-scale DWPT networks with
significantly reduced computational intensity and detailed
dimensional characteristics of DWPT roadways, (2) Compre-
hensive analyses comparing different methods in generating
DWPT load demand profiles, and (3) Advancing the field
of electrified transportation, particularly in regards to EV
in-motion charging systems of the future.

The remainder of this paper is organized as follows.
Section II presents the proposed mCONV method to model
the load demand of a large-scale DWPT roadway system.
Section III provides a validation of our proposed method
on a small-scale DWPT system by comparing its results
with those obtained from power electronics simulation.
Section IV demonstrates the load modeling of large-scale
DWPT roadway with real-world TF data using the proposed
method. Section V concludes the major findings of the

paper.

Il. PROPOSED mCONV METHOD

This section describes the development of the proposed novel
method to generate DWPT load demands utilizing a mCONV
method that accounts for the dimensions of the charging
system and varying density and velocities of EVs.

A. FRAMEWORK OF CONVOLUTION METHOD

In DWPT networks, the motion of the Rx pad with respect to
the Tx pad through time can be conceptualized as two over-
lapping objects that produce various power outputs according
to the cross-sectional area between them. Likewise, the theory
of convolution is a mathematical formulation that combines
two distinct functions by overlapping them and finding the
cross-sectional area to produce a representative result of both
functions. The relationship between the Rx and Tx pads can
be expressed by linearly time invariant functions when the
EVs velocity at this junction is not considered, which results
into a discrete convolution expression defined as:

N
Py[n] = Sgln] * Stnl = ZST[i]SR[” — i, ey

i=0
where Sk is the characteristics of the Rx pads on EVs, St
is the characteristics of the DWPT network, n is the length
of the charging system, N is the current position of overlap,
and y is the output matrix that contains the cross-sectional
areas according to position in the roadway. The relationship
between the Rx and Tx pads can be further constructed as a
diagonally constant matrix that allows for a simplification by
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utilizing a Toeplitz matrix.

0 0 0 0
Sg[0] O 0 0
Sg[1] Sg[0] O 0
Sr[2] Sgr[1] Sg[O] 0
0 Sg[2] Sg[1] 0
k=10 0 s 0 @
: : : ... Srlé]
0o 0o o0 0 o0 |
[S7(1)
S7(2)
Sy = | S73) (3)
| ST ()
Py = [TR.St].p @

In (2), the motion of the Rx pad is constructed utilizing
a mCONV matrix designed to track the movement of the
EV as it traverses across the DWPT network, where § is
the dimensional length of the Rx pad, the rows represent
the different positions of the Rx pad, and the columns are the
length of the DWPT network. Therefore, Tk is constructed as
am—by—n matrix instead of the defined n—by—n dimensions
of Toeplitz, where n is the length of the DWPT network and
m is the distance for the EV to traverse through the entire
charging system. In (3), the matrix S7 is comprised of the
dimensional characteristics of the DWPT network where the
physical lengths, number of Tx pads, and the gaps between
each Tx pad are considered. By utilizing (2) and (3), the
resulting Py, matrix can be calculated following (4) where the
additional variable p is implemented to convert the output
matrix from position/ cross-sectional area to position/ power
output. Since Py is a function of position and power output,
the EVs velocity can then be used to determine how much
energy is being transferred over time.

B. DEVELOPMENT OF CONVOLUTION BASED METHOD

In this subsection, the mCONV method is further elucidated
through visual representation to demonstrate how the matri-
ces are developed/utilized to generate load demand profiles
for a DWPT network. Fig. 2(a) illustrates how the Sk and St
arrays are implemented with each having a particular length
depending on their own specifications. For the Sg matrix,
in this case, the length (§) comprises of three colors (i.e.,
orange, blue, and green) with each representing a unit of
length. For the St matrix, the length of each individual Tx
pad («) and the gap distance (\) between them are considered
(i.e., dark blue and white colors respectively) with each color
representing a unit of length. The unit of length between St
and Sk must be consistent as the indices need to align properly
for the mCONV method to function. In Fig. 2(b), the Sg
matrix is utilized to develop the mCONV . The left-hand side
of Fig. 2(b) illustrates how the Sg matrix is positioned through
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FIGURE 2. Modified Toeplitz convolution (mCONV) method for DWPT
load demand approximation: (a) Rx and Tx pattern, (b) mCONV, and
(c) cross-sectional area power output array.

POWER
OUTPUT

each row to simulate the traversal of an EV through the
DWPT network. Then, on the right-hand side of Fig. 2(b), the
resulting mCONYV matrix is presented. The columns represent
specific units of length, which must equal in numbering to the
overall length of the DWPT network. The rows represent the
Sg traversal through the system, thus the first and last rows
account for positions before and after the DWPT network.
Fig. 2(c) visualizes how the linear multiplication of Tg, S,
and p is implemented to generate power outputs. Each index
in Py represents a unit of length and each value—in this case
gradient colors— provides the power output expected at each
position. The matrix Py can thereby be utilized in a simulation
of an EV traversing a DWPT network where velocity and
its position through time can be considered to determine the
energy transference.

C. CONVOLUTION ALGORITHM FOR DWPT LOAD
MODELING

As demonstrated in the previous subsection, the process to
generate DWPT load demands utilizing the mCONV method
requires three separate stages. The first stage, presented in
Algorithm 1, is to generate the DWPT characteristic profile as
the length of the charging system must be known to generate
the mCONV matrix. Rows 1 through 7 of Algorithm 1
produces a temporary array that contains a single Tx («) with
magnitude equal to the capacity limits (8’) of the Tx pad
and the gap distance ()\) between consecutive pads. Rows
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Algorithm 1 Produce DWPT Transmitter Pad Profile

Algorithm 2 Produce mCONV Matrix

Input: Dimensions of DWPT transportation network.
Output: Transmitter pad profile.
1: fori=1:1:(a+)\) do
2 if i< 1 then
3 temp(i,1) = B/
4 else
5: temp(i,1) =0
6 end if
7: end for
8: N = (n+ 1)/size(temp)
9: € =ones(N,1)
10: for j=1:1:N do
11:  s=size(St)
12:  if s(1)> x then

13: break

14:  else

15: St = vertcat(St, temp*e(j))
16:  end if

17: end for

18: return Sy

8 through 17 concatenate the temporary array upon itself a
number of times N in order to produce a St matrix that is of
equal length of the DWPT network. Row 9 of Algorithm 1
produces an array (¢) equal in size to the number of Tx pads
within the DWPT network, where each value represents a
percentage of horizontal overlap to account for the widths of
the Rx and Tx pads. The second stage develops the mCONV
matrix by utilizing the S7 from Algorithm 1. Rows 1 through
4 of Algorithm 2 generate the profile for the Sg matrix
according to the dimension specifications of the Rx pad (6)
and its charging capacity limit (8). Row 5 of Algorithm 2
then utilizes the length (n) of the St to produce an identity
matrix. Rows 6 through 14 develop the mCONV matrix by
inserting the Sg pattern at every instance where the value is
equal to one. This process generates the m-by-n matrix for
the mCONYV method where m is the distance the EV needs to
traverse and 7 is length of the DWPT network.

Fig. 3 illustrates the appearance of the S7 and Sg matrices
after Algorithms 1 and 2 are performed, where § is the length
of the Rx pad, « is the length of the Tx pad, X\ is the gap
distances between consecutive Tx pads, f is the charging
capacity limit of the Rx pad, B’ is the capacity limit of the
Tx pads, and € is the operating point percentage that accounts
for the displacement between the Rx and Tx pads during lane
drifting of EVs. The differences in magnitude between the
St and Sk matrices demonstrate the flexibility of the method
to restrict the amount of energy transferred according to the
capacity limits of the Tx pads. Thus, for instance, if the Rx
pad had a power capacity limit beyond the Tx pad, then the
maximum amount of power that the Rx pad would receive is
limited according to the Tx pad capacity. Conversely, if the
Tx pad has a higher capacity limit than the Rx pad, then the
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Input: Transmitter pad profile S7.
Output: mCONV matrix.
1: Sg =zeros(s, 1)
2: for i=2:1:(6+1) do
33 Sg=8
4: end for
5. Tr =eye(n, n)
6: for j=1:1:n do
7 x=0
8 for k=1:1:6 do
9: Tr(j + x,)) = Sr(k, 1)
10: x+=1
11:  end for
12: end for
13: A =zeros(1, n)
14: Tr(end + 1,:)=A;
15: return Ty

Algorithm 3 Produce DWPT Output Power Profile
Input: Transmitter pattern St and Toeplitz matrix Tg.
Output: Output load demand Pgr matrix.
Py =Tg * St
[max, ~] = max(P4)
p=0
if 8 > B’ then
p = B'/max
else
0 = B/max
end if
return (Tr x S7)p

R A A ol S

Rx pad would be restricted to its own maximum capacity.
Additionally, in Fig. 3, the x-axis is in units of length, such
as centimeter or millimeter, and the y-axis is in units of
Watts according to the rated power of the Rx and Tx pads.
The yellow highlighted regions in Fig. 3 demonstrates the
convolution of the S and Sg matrices to produce the Py
output matrix. In row 1 of Algorithm 3, the mCONV method
is implemented to generate the cross-sectional areas between
the St and Sk matrices. Rows 2 through 8 determine the
maximum cross-sectional area produced and then calculates
the fitting variable to convert the output results from position/
cross-sectional area to position/ power output. At row 9 of
Algorithm 3, the final P, output matrix is produced for
a single EV’s traversal across the DWPT network. Fig. 4
presents the P, matrix results where the x-axis is the position
across the DWPT network and the y-axis is the power output.

In Fig. 5, a comprehensive flowchart of the mCONV
method is illustrated to demonstrate how DWPT network
load demands are calculated. Steps 1 and 2 are utilized to
determine the specifications of the charging network and the
EV. Step 3 produces the matrices St and Sk that is then
implemented in Step 4 to develop the Tr matrix. Step 5 will
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produce the output matrix Py that represents the output power
per unit of distance. Step 6 determines the velocity of the EV
that is traversing the DWPT network, which is then utilized in
Step 7 to calculate the output power according to the position
of the EV through time from the P, matrix.

lll. VALIDATION OF mCONV METHOD THROUGH POWER
ELECTRONIC SIMULATION

This section presents the validation procedure for the
proposed mCONV method through power electronic-based
simulation of a small-scale (three Tx pads) DWPT network.
Two other methodologies are presented to provide thorough
comparison of the available approaches in literature to deter-
mine the computational intensity (i.e., reduced processing
time) while also maintaining accuracy.

A. DESCRIPTION OF POWER TRANSMITTERS
A DWPT network can be established in several different
power distribution architectures to facilitate the power
transfer from the grid to EVs as they are traversing. These
include, but not limited to, ac voltage distribution, dc voltage
distribution, and dc current distribution [34]. This paper
considers a dc voltage distribution for the DWPT network
where a single grid-connected ac/dc converter provides the
dc voltage to the Power Transmitter (PT) that generates
the high-frequency current running through the Tx pad.
Multiple PTs are connected in parallel to the output of
the ac/dc converter as shown in Fig. 6. Each PT in the
DWPT system is an active full bridge that generates an
85 kHz high-frequency square wave as illustrated in Fig. 7.
In current literature, several passive compensation networks
are available to be implemented in DWPT networks [23],
[35], [36], [37]. In this paper, a dual-LCCL tuning topology is
used in the system for its load-independent transmitter current
characteristics. A diode rectifier is used on the receiver
side before connecting to the battery. Through inductive
coupling, energy is exchanged between the Tx pads and
Rx pads as current flows through the Tx pad. The amount
of power transferred is proportional to the coupling factor
between the pads. Furthermore, the power transfer can be
controlled by changing the phase shift ¢ between the two
half-bridge legs. In Fig. 7, Ly is the Rx pad and L, represents
one of the Tx pads of the DWPT system. The LCCL
compensation used in this paper is designed by following the
validated methodology available in [38]. Additionally, this
paper utilizes the split-tuning design as presented in [39].

In the DWPT system, the coupling factor between the Tx
and Rx pads changes as the vehicle travels down the roadway.
The coupling factor is represented as

M;;
JLL;’
where i and j are the identifiers of the two pads in question, M;;
is the mutual inductance between the two pads, and L; and L;

are the self-inductances of the individual pads, respectively.
For the system under consideration (see Fig. 6) with three Tx

kij =

&)
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FIGURE 4. Power demands from convolution method according to EV
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FIGURE 5. Diagram of mCONV algorithmic flow.

pads (represented by Pad 1, Pad 2, and Pad 3) and one Rx pad
(represented by Pad 4), the inductance matrix is given by

Ly My Mz My
My, Ly M3 My

L= . 6
Mz Mys Lz M3y ©)

My My M3y Ly

B. POWER ELECTRONIC-BASED DWPT SIMULATION

To obtain the desired simulation results for the DWPT
network, this work follows the validated simulation process
exhibited in [38] and [39] where three separate simulation
stages are performed. First, a position-varying inductance
matrix needs to be generated using Ansys Maxwell software,
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Secondar

FIGURE 7. Circuit topology used in small-scale simulations of DWPT using
power electronics.

which is commonly used to simulate magnetic designs for
wireless power transfer. Second, the position-varying induc-
tance matrix is converted into a time-varying matrix using
MATLAB to be used as an input for the variable-inductor
component in the third step that focuses on simulating a
DWPT network in PLECS. Fig. 8 illustrates the processes
(through Ansys, MATLAB, and PLECS) required to simulate
DWPT networks, in particular PLECS assists to generate the
load demand profiles that can be compared to the results
obtained through the proposed mCONV method.

1) ANSYS INDUCTANCE MATRIX DESCRIPTION

The purpose of the Ansys simulation is to obtain a
position-varying inductance matrix of the DWPT network for
different Rx pad positions relative to the Tx pads. This matrix
represents the coupling between all pads in the system as the
Rx pad traverses over the Tx pads. The power transferred
through the DWPT network is a function of the coupling
between the Rx and Tx pads, e.g., when the Rx pad is
directly aligned with the first Tx pad, the coupling factor
and the power transferred are maximized. When the Rx pad
moves away from the first Tx pad, the coupling factor and
the power transferred will reduce. In Ansys, the Double-D
(DD) shaped Tx and Rx pads are first created and placed at
appropriate positions in the simulation space. Fig. 9 illustrates
the simulation space in Ansys, where three Tx pads and one
Rx pad are included. Table 1 presents a summary of the
parameters utilized in the Ansys simulation. The inductance
profiles are obtained by performing a parametric sweep of
the Rx pad position. At each position of the Rx pad, the
self and mutual inductance profiles of the four pads are
obtained to generate a L matrix corresponding to the position
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FIGURE 8. Workflow of DWPT simulations in power electronics.

of the Rx pad. Collectively, these L. matrices generate the
position-varying inductance matrix as shown in [38].

2) MATLAB AND PLECS SIMULATION DESCRIPTION

The position-varying inductance matrix generated from the
Ansys simulation is then converted to a time-varying matrix
using the designated vehicle velocity, which is given by

t = w (7

where x; and x,,;, represent the current position of the Rx
pad and the starting position of the Rx pad available from
Ansys, respectively; V is the designated vehicle velocity;
and #; is the time when the Rx pad is at position x;.
Once each entry in the position-varying matrix is converted
to a time-varying domain, the data is formatted for the
variable-inductor component in PLECS as outlined in [38].
Fig. 10 shows the time-varying coupling coefficients in the
considered system for any given vehicle velocity. Table 1
lists the parameters pertaining to the PLECS simulation for
which an ideal voltage source (instead of a grid-connected
ac/dc converter) is used as input for each PT. Using the
properly-formatted time-varying inductance matrix obtained
from the Ansys simulation (from Fig. 6), accurately accounts
for the coupling between the Rx pad and each Tx pad at
each simulation time step in PLECS. The PLECS simulation
results thus produce the power transferred to the vehicle side
of the DWPT network, and accordingly the load profiles are
obtained.

C. VALIDATION DESCRIPTION OF PROPOSED
CONVOLUTION METHOD

To accurately compare the proposed mCONV and INTG
(our previous work [30]) methods, each time-step generated
from the Ansys and PLECS simulation is utilized to model
the power output profile of an EV. The same parameters,
as presented in Table 1, are implemented to ensure an
adequate comparison to perform the Ansys and PLECS
simulations. Furthermore, the INTG method assumes that
the maximum power is transferred to the EV as it traverses
through the DWPT network. In this paper, the Ansys and
PLECS simulations are implemented as a baseline to compare
the accuracy and efficiency of the proposed mCONV method
as they are recognized in literature for their better match
to physical systems. Therefore, the mCONV and INTG
methods are validated through the use of Mean Absolute
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FIGURE 9. Ansys simulation model used to generate the time-varying
inductance matrix used in PLECS.

Error (MAE) and Euclidean Similarity (ES) to measure
the accuracy of the proposed mCONV and INTG methods
through comparison with Ansys and PLECS simulation
results while the efficiency is determined based upon the
computational intensity to obtain the DWPT network load
demand. The MAE and ES are calculated by

I « .
MAE = = 3 | = Xi|, ®)

n=1

where Y represents the results of the Ansys and PLECS
simulations, and X represents either the INTG or the proposed
mCONYV method results.

D. SMALL-SCALE DWPT RESULTS: COMPARISON AND
VALIDATION

To validate the performance of the INTG and mCONV
methods, we compare their power output profiles obtained
during the EV traversals across the DWPT network with
those from the Ansys and PLECS simulations. Fig. 11
presents the results from each of the power profile methods
(INTG, Ansys/PLECS, and mCONV) and demonstrates the
effectiveness and accuracy of the proposed mCONV method.
The INTG method (in red line) illustrates a clear deviation
from the Ansys/PLECS simulation as it assumes a constant
maximum power output while the EV is traversing across the
DWPT network. The proposed mCONV method (in dotted
green line) matches the baseline results from Ansys/PLECS
simulations accurately and demonstrates a vast improvement
in accuracy when compared to the INTG method as the
fluctuations caused by the special gaps between each Tx pad
are preserved. Table 2 presents the MAE and ES comparisons
between mCONV (or INTG) with the Ansys and PLECS
output power profile. As we can observe from both accuracy
measures, test results demonstrated a significant reduction in
error obtained from the mCONV method, thus outperforming
the INTG method. The mCONV method has an MAE of
approximately 2.2 kW, which is only 1.49% error on an
average compared to the rated capacity of 150 kW. Moreover,
the ES value (8.694 MWs) obtained from the mCONV
method also showed its better performance than the INTG
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TABLE 1. Parameters Utilized in Small-Scale DWPT Network.

Variables Ansys PLECS mCONV
Tx Pad (@) 2x1)m — 2m
Rx Pad (9) (1.5x1.2)m — 1.5m
Horizontal Gap (\) 0.1524 m — 0.1524 m
Vertical Gap 0.305 m — —
EV Velocity — 60 mph 60 mph
Vi — 800 V —
Vbar — 800 V —
Power (8', B) — 150 kW 150 kW
Lps — 5.62 uH —
Cop — 0.624 uF
Cps — 0.424 uF —
L, — 13.88 uH —
L — 11.85 uH —
Cys — 0413uF —
Cop — 1.05 uF —
Ly — 3.35uH —
10} — 165° —
€ — — 100%
0.3 e e e e s s e s s g
_ 025} —kip — ki3 ——k3qg —kog —koy — k14
£ o2}
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FIGURE 10. Coupling coefficients between all Tx and Rx pads in the
small-scale DWPT simulation.

method with an improvement of approximately 93.67%.
Table 3 presents the computational burden for each of the
three methods where we can observe a massive reduction
in the processing time for the mCONV (59.61 s) and INTG
(0.203 s) methods when compared to the Ansys/PLECS
simulation (26.880 ks). Although the INTG method has a
reduced computational burden compared to the mCONV
method, its accuracy, however, is much lower as seen in
Table 2.

IV. LARGE-SCALE DWPT NETWORK LOAD MODELING

The previous section presented the results for a small-scale
DWPT network comparing the INTG, mCONV, and
Ansys/PLECS methods. In this section, a comparison
between the INTG and mCONV methods for large-scale
DWPT networks is performed to demonstrate the effec-
tiveness of the proposed mCONV to reduce computational
intensity while also maintaining a high level of accuracy. The
results from Ansys/PLECS are not presented in this section
due to their poor performance in terms of computational
intensity that arises when simulating large-scale DWPT
networks. For example, in a 1 mile DWPT network there are
approximately 747 Tx pads when utilizing the dimensions
in Table 1. Therefore, the processing time could potentially
reach 77.53 days if an assumption is made that the
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FIGURE 11. DWPT network power profile comparison results.

TABLE 2. Accuracy Metrics for DWPT Output Power Methods.

Method MAE (W) ES (MW)
mCONV 2,242.41 8.694
INTG 25,472.02 137.423

TABLE 3. Processing Intensity for Small-Scale DWPT.

Algorithmic Method Processing Time (s)
mCONV 59.61
INTG 0.203
Ansys and PLECS 26,880

Ansys/PLECS software will perform linearly with the length
of DWPT network compared to the results presented in
Table 3. Accordingly, the validation metric of ES is modified
which involves comparing only INTG and mCONV methods
such that ¥ and X in (9) now denotes the results from INTG
and mCONV , respectively.

A. DATA DESCRIPTION FOR LARGE-SCALE DWPT
MODELING

Since the accuracy of the proposed mCONV method has been
validated in Section III, the purpose here is to compare our
previously developed methodology [30], which implemented
an object-oriented INTG method, with the proposed mCONV
method. Fig. 12 presents the secondly TF that is utilized
to determine the entry time of each EV into the DWPT
network. This pattern was determined by calculating the
averaged weekly seasonal vehicle counts for the i-10 gateway
high in El Paso, TX during 2021 with an assumed EV
density of 25% [40]. Table 4 presents a summary of
the parameters utilized in the large-scale DWPT network
simulations. Each EV will be randomly selected to either
be a light-duty, medium-duty, or heavy-duty vehicle with
each having varying charging capacities (i.e., the rating
of the Rx pad) ranging from 50—80 kW, 100—170 kW,
and 195-350 kW, respectively. Furthermore, the initial
velocities of each EV is randomly selected from a range of
45—80 mph. These velocities are dynamically controlled at
each secondly interval to ensure that the EVs cannot overlap
each other on the single-lane charging system [30]. The
DWPT network is simulated at five separate lengths from
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2—10 miles in order to determine if the mCONV and INTG
methods remain consistent with the calculated load demands
and/or if the divergences between them increases/decreases
proportionally.

B. LARGE-SCALE DWPT LOAD DEMAND MODELING
RESULTS

Tables 5 through 7 present the comparison between the
mCONYV and the INTG methods for the large-scale DWPT
networks for lengths ranging from 2 miles to 10 miles.
The Ansys and PLECS methods are not considered in
this scenario as the processing time would vastly exceed
the small-scale DWPT result of approximately 7.5 hrs
(i.e., 26,880 s) as presented in Table 3, which makes
the Ansys/PLECS method unreasonable for large-scale
simulations. However, the validity of the mCONV method to
be utilized for large-scale DWPT networks is demonstrated
through the formulation of the matrices implemented. Each
matrix in the mCONV method is linearly increased based
on the length of the DWPT network without changing any
other parameter. Thus, the mCONV methods performance to
achieve a more accurate load demand modeling compared
to the INTG would result in similar behavior for small-scale
or large-scale DWPT networks. Figs. 13(a) and (b) illustrate
the modeled load demand profile for the 10 mile DWPT
network utilizing the mCONV and INTG methods for a
weekly and a daily period, respectively. In Figs. 13(a) and (b),
the load demand generated by the INTG method is seen
higher than that of the proposed mCONV method, primarily
during peak TF times. Fig. 13(c) illustrates the secondly
load demand differences between the mCONV and INTG to
demonstrate that the divergence between them is significant
as the maximum load demand difference is approximately
1.25 MW. Table 5 provides the total differences in the
generated energy demands from the INTG and mCONV
methods at each DWPT network length. As expected, the
energy demands for both methods increase proportionally
with the length of the charging system, however, each
method has a significant difference in their generated energy
demands. In Table 5, the energy demand differences for the
weekly period has a minimum of 4.2 MWh and a maximum
of 17.7 MWh for the 2 mile and 10 mile DWPT networks,
respectively. The results in Table 5 also demonstrate that
the divergence in the energy demand between mCONV
and INTG methods increases directly proportional with the
length of the DWPT network. At each DWPT length, the
mCONV method produces a lower energy demand, which
indicates the superior performance of the proposed mCONV
method over the INTG method in terms of providing a more
accurate energy demand which is also validated by the MAE
values as seen in Table 2. Furthermore, Table 6 presents the
differences (between mCONV and INTG) given by the ES for
each scenario where the likeness between the mCONV and
INTG methods reduces as the length of the DWPT network
increases.
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FIGURE 12. EV traffic flow counts for a weekly period.

TABLE 4. Parameters Utilized in Large-Scale DWPT Network.

Variables mCONV & INTG
Rx pad limits (3) 50—350 kW
Tx pad limits (8) 350 kW
Length of Tx pad (o) 3m
Length of Rx pad () 1m
Gap distance (\) 0.025m
Percentage of overlap (€) 100%
Length of DWPT (n) 2—10 miles
EV velocities 40—80 mph
Intervals of simulation 1 second
Length of simulation 1 week

TABLE 5. Total Weekly Energy for Averaged Seasonal Traffic Flow.

DWPT INTG mCONV Difference
Length (MWh) (MWh) (MWh)
2 mile 111.9 107.7 4.2

4 mile 230.2 2223 7.9

6 mile 349.0 337.0 12.0

8 mile 464.1 449.0 15.2

10 mile 573.9 556.2 17.7

TABLE 6. Euclidean Similarity Comparison for Large-Scale DWPT.

DWPT Length ES (kW)
2 mile 9.2
4 mile 14.8
6 mile 22.3
8 mile 28.7
10 mile 347

Table 7 presents the minimum and maximum processing
intensities (in seconds) for the weekly DWPT load demand
where we can observe a minimal difference (i.e., 920.74 sec-
onds and 895.30 seconds) between the mCONV and INTG
methods. We can observe that these processing times are in
sharp contrast to those (see Table 3) from the small-scale
DWPT network when we consider the difference in the
processing time between INTG and mCONV which can be
elaborated as follows. For example, the small-scale results
produced a processing time of 59.61 seconds (mCONV)
and 0.203 seconds (INTG), and the difference between
them is 59.407 seconds. Moreover, the processing times of
920.74 seconds (mCONV) and 895.30 seconds (INTG) are
obtained for the large-scale simulations (see Table 7), thereby
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TABLE 7. Processing Intensity for Large-Scale DWPT.

Algorithmic Maximum  Minimum Absolute
Method Time (s) Time (s) Difference (s)
mCONV 4420.88 3500.14 920.74

INTG 4445.81 3550.51 895.30
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FIGURE 13. Comparison of mCONV and INTG 10 mile DWPT load demand
profiles. (a) Weekly load demand, (b) Highest calculated daily load, and
(c) Load demand difference between mCONV and INTG methods.

providing a difference of only 25.44 seconds. This clearly
indicates that as the DWPT network length increases, the
difference in the computational burden between the INTG
and mCONV methods lessens.

C. COMPREHENSIVE DISCUSSION OF RESULTS

Test results demonstrated the accuracy and computational
intensity of the proposed mCONV method that has a distinct
advantage compared to the other methods. For small-scale
DWPT roadway system, the mCONV method showed a
higher degree in accuracy compared to the INTG especially
by accounting for the spatial dimensions of the Tx pads,
Rx pads, and the gaps between consecutive Tx pads.
Furthermore, with respect to the computational intensity,
we observed a massive improvement in processing time with
the mCONV (59.61 seconds) showing superior performance
than Ansys/PLECS (26,880 seconds), as shown in Table 8.
This result is even more significant with respect to the use of
processing architectures for the Ansys/PLECS and mCONV
methods, i.e., in this paper, a computer architecture consisting
of 128 GB of RAM and an AMD Ryzen Threadripper
2990WX 32-core processor was used for Ansys/PLECS,
while the simulations for the proposed mCONV method are
performed in an architecture of 16 GB of RAM and an Intel
17-8550U 4-core processor. Moreover, during the large-scale
DWPT network modeling and analysis, the performance
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TABLE 8. Comparative Overview of Processing Intensity Results for DWPT
Network Simulations.

Small-Scale Large-Scale Computer
Method Processing Processing Time Processing
Time (s) (days) Architecture
Ansys AMD Ryzen
and 26,880 *110.3 - 551.7 Threadripper
PLECS 2990WX 32-core
INTG 0.203 0.04109 - 0.05146 Intel i7-8550U

4-core

mCONV 59.61 0.04051 - 0.05117

*Value is assumed based on small-scale results if processing of Ansys/PLECS has linear increase.

of both mCONV and INTG methods were found quite
similar with respect to their computational intensity with
the mCONV method displaying a higher accuracy than the
INTG method, and the variance in load demand between
them only increases proportionally with the length of the
DWPT system. Additionally, if an assumption is made that
the processing time for Ansys/PLECS increases linearly
with the length of the DWPT network then the mCONV
method is capable of reducing the computational burden
from 110.3 days (i.e., with a single EV) to approximately
an hour (i.e., with hundred of EVs) for a 2 mile network,
as shown in Table 8. Therefore, if switching transients are
of concern, then small-scaled DWPT networks should be
performed utilizing the Ansys/PLECS, or similar software
in like manner. However, if a large-scale DWPT network is
of an interest and the switching transients are of no concern,
then the proposed mCONV method is the best fit to provide
more accurate and efficient results with low computational
intensity.

V. CONCLUSION
This paper presented a novel mCONV method to calculate
the load demand profiles generated by DWPT networks for
both small and large scales. Our proposed mCONV method
utilized the dimensional specifications of the Tx and Rx pads
to calculate the cross-sectional areas of overlap through time
as EVs traverse through the DWPT system. To determine
an overall effectiveness of the proposed method, test results
were validated through accuracy (using MAE and ES) and
efficiency (computational intensity) measures by comparing
mCONV with other methods: Ansys/PLECS and INTG.
Small-scale and large-scale DWPT networks were simulated
to demonstrate how the mCONYV has a massive improvement
in computational burden compared to the Ansys/PLECS
and INTG methods to determine load demand profiles.
Simulation results indicated that the proposed mCONV
method is best suited for research in large-scale DWPT
transportation networks to comprehend the complex behavior
they may pose onto electric power grids. Test results also
indicated that the Ansys/PLECS are more suitable methods
than mCONV and INTG for a small-scale DWPT network
analysis when transient effects are of interest.

To further enhance the proposed mCONV method, future
work can be the implementation of Fourier series expansion
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for square wave forms to generate the St and Sk matrices
which could potentially produce smoother edges between the
transitional cross-sectional areas to generate more accurate
results to be utilized in electric power grid and transportation
network behavior research.
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