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Abstract—Due to environmental concerns, electric vehicles
(EVs) have become increasingly popular in recent decades. While
EVs offer several benefits, they also present challenges such
as prolonged charging times and range anxiety. To address
these issues and enhance EV market participation, dynamic
wireless power transfer (DWPT) is gaining a great attention
in electrified-transportation sector, leading to an emergence of
DWPT for EVs. DWPT offers advantages like charging while
in-motion. However, DWPT roadways also impose additional
demands on the power system, potentially increasing operational
costs. The main objective of this paper is to manage effectively
the additional load caused by DWPT roadways, and this paper
presents the utilization of distributed energy resources (DERs),
such as photovoltaic (PV) systems and battery storage system
(BSS), to minimize the system costs. The importance of our
proposed load management strategy becomes even more critical
during extreme events. Therefore, this paper further examines
two scenarios, i.e., normal operations and under extreme condi-
tions considering line outages, to compare the costs associated
with DWPT systems. The efficiency of the proposed method
is validated using IEEE 33-bus distribution systems through a
mixed integer linear programming (MILP) optimization problem.
Test results demonstrate that integrating DWPT system increases
the system costs under both normal and extreme conditions,
however, the DER-based mechanism is capable of mitigating these
costs optimally.

Index Terms—Distributed energy resources, distribution net-
works, dynamic wireless power transfer, electric vehicles, opti-
mization.

NOMENCLATURE

Indices
i Index of generators
j Index of loads
l, k Indices of buses
t Index of time

Parameters
PBSS
cont Continuous charging/discharging power of

BSS
PD(j, t) Conventional active load
PEV
t EV in-motion load
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P
G

i,t Upper limit of active generation of DGs
PG

i,t lower limit of active generation of DGs

P
m,buy

t Upper limit of buying power from upstream
network

P
m,sell

t Upper limit of selling power to upstream net-
work

QD(j, t) Conventional reactive load
Q

G

i,t Upper limit of reactive generation of DGs
QG

i,t
lower limit of reactive power of DGs

rlk, xlk Resistance/Reactance of branch l−k
V OLLt Load shedding cost
λG
i Marginal cost of DG

λG
i Market price of energy selling/buying

Variables
LSj,t Load-shedding of demand j
PE
t Excess power of PV

PE
ch,t Charging power of battery

PE
dis,t Discharging power of battery to supply EV in-

motion load
PF
lk,t Active power flow of branch l−k

PG
i,t Power produced by the ith generation unit

Pm,buy
t Power bought from upstream network

Pm,sell
t Power sold to upstream network

Pm
t Power bought (or sold) from (or to) the up-

stream network
PN
dis,t Discharging power of battery to supply con-

ventional load
PPV
t Total PV power

PPV,E
t PV power to supply EV in-motion load

PPV,N
t Excess PV power to supply conventional load

Pdis,t Total discharging power of battery
QF

lk,t Reactive power flow of branch l−k
SOCt State of charge of BSS
Vl,t, Vk,t Voltage magnitude of buses
xt, yt Binary variable for BSS charging/discharging

state
δl,t, δk, t Voltage angles of buses
ϵt Binary variable for buying/selling power

I. INTRODUCTION

TO improve the environmental conditions and reduce the
dependency on fuel, the adoption of electric vehicles

(EVs) is growing significantly [1], and it is also predicted that
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EVs will constitute 24% of the light vehicle fleet and 64%
of light vehicle sales in the United States [2]. Despite the
rapid growth of the EV market, challenges such as charging
time, battery capacity, and range anxiety still persist. These
issues have hampered the widespread use of EVs in both
private and public transportation sectors [3]. Dynamic wireless
power transfer (DWPT) technology, which allows EVs to
charge while in-motion, has been recognized as a potential
technology to cope with these challenges. Besides addressing
range limitations, this technology enables the use of smaller
onboard battery packs, which could result in cost savings [4].

Several studies have explored the potential of DWPT for
EVs. Machura et al. [5] presented the driving range of EVs
that were charged by wireless power transfer (WPT) systems.
Their results showed that utilizing dynamic and quasi-dynamic
wireless charging at medium power levels is sufficient to
achieve unlimited range compared to high power requirements
for standalone charging. Fathollahi et al. [6] proposed a long-
term stochastic model to allocate and size dynamic wireless
charging (DWC) while considering power distribution losses,
transportation network traffic, and EV location routing. An
optimal placement strategy of power tracker based on city
traffic information and EV energy demand was investigated
by Zhang and Yu [7]. Further, EVs were considered as
ancillary services as they can be operated in vehicle-to-grid
(V2G) mode. Since the DWPT system puts an additional load
on the distribution networks (DN), it is imperative to carry
out optimal management/scheduling of DN when the grid
infrastructure is designed utilizing DWPT. The sustainability
and impact of varying densities of EVs on the DN were
explored in [8] where they reported that an increase in DWPT
infrastructure length led to reduced demand fluctuations. Ad-
ditionally, Newbolt et al. [9] introduced a priority load control
method aimed at mitigating the load impact on the DN caused
by EVs in-motion. Efficient energy management for wireless
charging roads equipped with energy storage was described
in [10] where their simulation results showed that effective
control of energy storage not only reduced the cost associated
with wireless charging road systems but also alleviated the
stress on the power system caused by the wireless charging
load. Moreover, the optimal deployment of DWC facilities for
electric bus routes was presented in [11] where they considered
the uncertainty of travel times through stochastic optimization,
aiming to minimize the cost of purchasing power transmitters
and inverters.

Recently, research on DWPT systems within electrical
power systems is receiving a significant amount of attention
with an aim to integrate EVs in-motion into DN to enhance
driver comfort and reduce anxiety. However, a balance be-
tween comfort and cost is essential. To the best knowledge of
authors, no studies have thoroughly examined the economic
impact of DWPT on DN under both normal and extreme
events, specifically how the integration of DWPT system
impacts the system costs and the additional power needed
from the main grid, thus making this paper novel. That being
so, this paper addresses these gaps by integrating distributed

energy resources (DERs), primarily, photovoltaic (PV) system
and battery storage system (BSS), to mitigate the system load
create by DWPT and compare costs with and without the
integration of DERs. The major contributions of this paper
are following: (1) Load modeling of an EV in-motion utilizing
the real traffic data and integration of PV and BSS to support
the DWPT infrastructure; (2) New optimization strategy to
manage DN in the presence of DWPT system with a goal
to minimize the cost; (3) Investigating the impact of EV in-
motion load on the electric distribution grid under extreme
events from an economic perspective; and (4) New research
direction to the emerging sector of electrified-transportation.

The remainder of this paper is organized as follows. In
Section II, the theoretical explanation of several steps of the
proposed method is discussed. Results and discussions are
presented and discussed in Section III, and the major findings
of the papers including future work are presented Section IV.

II. PROPOSED APPROACH FOR EV IN-MOTION LOAD
MANAGEMENT

This section presents the proposed approach to manage the
DN in the presence of DWPT system for EV in-motion load
management. This section further provides a formulation of
optimization problem for DER-integrated DN incorporating
DWPT. Our proposed load modeling as well as optimization
(and scheduling) strategies are illustrated in Fig. 1.

Fig. 1. Overall flow of the proposed approach for optimizing the distribution
network by integrating DWPT system, PV, and BSS illustrating three major
steps: (1) EV in-motion load modeling; (2) Integration of PV and BSS; and
(3) Optimal scheduling of DN.

A. Load Modeling of EV In-Motion

This paper considers the traffic data acquired from the the
Texas Department of Transportation [12] in order to calculate
the load for EV in-motion. The dataset also involves an hourly
data of density of vehicles (over a period of 24 hours) passing
through the I-10 highway for August 1, 2022.

This paper focuses on DN management incorporating
DWPT system at a small-scale, i.e., only 10% of the vehi-
cles in-motion are considered. Accordingly, the simulation is
carried out by utilizing the IEEE 33-bus system with DWPT
injected only at bus-10. This involves the consideration of
Nissan Leaf having a battery capacity of 40 kWh as a major
case study vehicle. However, the algorithm developed in this
paper is scalable to other EV models as well. Based on the
speed data available in [12], the random speed for each EV
is generated within the range of 50 mph−60 mph. The state-
of-charge (SOC) for batteries is randomly generated, varying
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from 30%−60%. The length of DWPT road is considered to
be 10 miles and it is assumed that an EV will continue to
charge while on the DWPT road until it reaches 80%. Based
on these data, the total EV load for each hour is obtained.

B. Photovoltaic and Battery Storage System Integration

To support the EV load over a 24-hour period, integration
of PV and BSS into DN are utilized in this paper. Initially,
the solar irradiance for each hour is obtained from [13] and
this irradiance data is then converted into solar power using
the method described in [14], which is given by

PPV = si× η ×A (1)

where PPV represents the output power (W) of solar panel, si
is solar irradiance (W/m2), η is the efficiency of solar panel,
and A is the area of the solar panel (m2).

Based on the EV load information available (described
in previous sub-section III.A), the number of solar panels
required to support the EV load will be determined. In
hours when solar power generation is insufficient or non-
existent (e.g., during dark hours), BSS is employed to provide
continuous support to meet the load over 24 hours. The BSS
is designed to store excess PV power generated during peak
sunlight hours and discharge it during the periods of low or
non-sunny hours. It is important to note that the battery is
charged exclusively with surplus power from the PV system.
Additionally, when the EV load is fully satisfied, any remain-
ing discharge capacity can be utilized to assist the DN in
supplying conventional loads. The mathematical formulation
of integrating PV and BSS into the DN is described below.

SOCt = SOCt−1 + η · Pch,t −
Pdis,t

η
, (2)

PE
t = PPV

t − PEV
t , (3)

Pch,t = PBSS
cont · xt, (4)

Pdis,t = PBSS
cont · yt, (5)

xt + yt ≤ 1, (6)

yt =

{
0 if PE

t ≥ 0

1 if PE
t < 0

, (7)

where (2) presents the battery SOC at each time. The ex-
cess power is shown in (3); The charging and discharging
power of battery is shown in (4) and (5), respectively. The
limitation requiring the battery to be in only one operational
mode—either charging or discharging—is specified in (6).
Finally, the condition mandating battery discharge when the
EV load exceeds the PV output is described in (7).

C. Optimization Problem and Formulation

Based on the initial steps, the optimization problem is
formulated to schedule the units for supplying loads and
performing economic load dispatch in DN to minimize the
cost. The cost includes operational costs during normal
operation; and in the case of operations during extreme
events (e.g., impacting on the line outages), additional costs
associated with load shedding are considered. The DN is
considered to be connected to the upstream network, allowing
for the buying (or selling) of power to (or from) the upstream
network when local generation is insufficient. The linearized
AC power flow model used in this optimization is adopted
from [15]. The objective function and constraints of the
proposed model are presented below.

Minimize OF

=
∑
t∈T

∑
i∈I

PG
i,tλ

G
i + Pm

t λm
t +

∑
j∈J

LSj,tV OLLt

 (8)

s.t.
(2)− (7) (9)

Pm
t + PG

i,t = PD
j,t − PN

dis,t + PPV,N
t +

∑
l,k

PF
lk,t (10)

PPV,E
t + PE

dis,t − PE
ch,t = PEV

t (11)

Qm
t −QG

i,t = QD
j,t +

∑
lk

QF
lk,t (12)

PPV,N
t + PPV,E

t = PPV
t (13)

PN
dis,t + PE

dis,t = Pdis,t (14)

Pm
t = Pm,buy

t − Pm,sell
t (15)

0 ≤ Pm,buy
t ≤ P

m,buy

t · εt (16)

0 ≤ Pm,sell
t ≤ P

m,sell

t · (1− εt) (17)

PG
i,t ≤ PG

i,t ≤ P
G

i,t (18)

QG

i,t
≤ QG

i,t ≤ Q
G

i,t (19)

LSj,t ≤ rPD
j,t (20)

PF
lk,t =

hlk,2

xlk
(δl,t − δk,t) +

hlk,1

xlk
(Vl,t − Vk,t) (21)

QF
lk,t = −hlk,1

xlk
(δl,t − δk,t) +

hlk,2

xlk
(Vl,t − Vk,t) (22)

hlk,1 =
rlkxlk

r2lk + x2
lk

(23)

hlk,2 =
x2
lk

r2lk + x2
lk

(24)

where (8) represents the objective function of the optimization
problem. The first term in (8) reflects the cost of generation;
the second term indicates the cost associated with buying (or
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selling) power from (or to) the upstream network; and the
final term accounts for the costs related to load shedding.
Active and reactive power balance equations are indicated in
(10)−(12). PV power and discharging power are divided into
the parts involved in DN and EV as shown in (13) and (14),
respectively. Net power purchased from the upstream network
is represented by (15). The limitation for buying power, selling
power, active diesel generator (DG) power, reactive DG power,
and load shedding are represented by (16)−(20); Moreover, the
linearized AC active and reactive power flow are explained in
(21)−(24).

III. SIMULATION RESULTS AND DISCUSSION

This paper proposed a method for optimal scheduling of
DN with and without EV in-motion loads, i.e., utilizing the
DWPT infrastructure. It is crucial for power system operators
to manage the load (generated by DWPT system and others)
efficiently while minimizing the costs. To address the addi-
tional demand from EVs in-motion, we integrated PV systems
and BSS as DERs using the IEEE 33−bus test system, where
the EV load, PV, and BSS are strategically placed at bus-10,
which has the minimum conventional load. The configuration
of the modified distribution network (33−bus) is illustrated in
Fig. 2. The data associated with DGs is presented in Table
I and network data is extracted from [16]. Load profiles and
market prices are collected from NYISO [17] for August 1,
2022. The resultant mixed integer linear programming (MILP)
optimization problem is solved using Gurobi solver.

Moreover, under extreme events due to hurricanes impacting
the line outages, the proposed strategy aims to minimize load
shedding, thus preventing cost escalations. Two case studies
are presented to demonstrate the effectiveness of the proposed
approach. In the first case, the amount of EV in-motion load
is obtained (Step 1 in Fig. 1), and then the sizing of the PV
and BSS (Step 2 in Fig. 1) is performed to support EV load.
The optimization problem (Step 3 in Fig. 1) is carried out to
determine how EV load can affect the cost with and without
PV and BSS integration. Moreover, in the second case study,
the system under extreme events is considered and the cost
of scheduling with and without DWPT system (i.e., EV in-
motion) is compared.

TABLE I
TECHNICAL DATA OF DGS

DGn PG
n [MW] ṖG

n [MW] QG
n [MVar] QG

n [MVar] λS
n [$/MWh]

1 3 0.21 2.1 -2.1 90
2 2 0.19 1.9 -1.9 90
3 2 0.19 1.9 -1.9 90
4 3 0.22 2.2 -2.2 90
5 3 0.22 2.2 -2.2 90

A. Normal Operation of Distribution Network

This section considers the DN operating under normal
conditions with no extreme events affecting the system. The
conventional loads as well as EV in-motion loads along with
the price data are illustrated in Fig. 3. As previously explained,
an EV load is recognized within the system when an EV is
on DWPT road and its SOC is below 80%.

Fig. 2. Modified IEEE 33−bus for optimal scheduling of DN incorporating
DERs. In this figure, DG1−5, EV, PV, and BSS represent diesel generator,
electric vehicle on DWPT roadway, photovoltaic, and battery storage system,
respectively. The normal condition considers operation without any outage,
and extreme event conditions considers the operation of the system with the
outage of lines 3-4, 6-7, and 6-26

Fig. 3. Load (conventional and EV in-motion) and price data in distribution
system.

Fig. 4. Power bought (or sold) from (or to) upstream network without PV
and BSS integration.

Fig. 3 depicts that the peak EV load occurs at hour-19 (2.74
MW), which aligns with the overall peak hour for the system
load. Managing this additional load at hour-19 is crucial for
alleviating the stress on the system. The proposed optimization
model based on (8)−(24), generated the operational costs
amounting to $29.7k. The capacity for power transmission to
the upstream network is capped at 5 MW. Fig. 4 displays these
power transactions, highlighting how power is bought (or sold)
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from (or to) the upstream network to meet demand. During
the early morning hours, when electricity costs are lower than
the generation costs, power is predominantly purchased from
the upstream network. At hour-9, when the electricity price
surpasses the cost of generation, there is a sharp decrease in
power procurement, dropping to -0.66 MW. Subsequently, the
power transaction increases, reaching 4.44 MW at hour-19 to
accommodate the peak load.

The integration of PV systems and BSS offers significant
cost benefits in managing EV in-motion loads for efficient
management of DN incorporating DWPT. When only the PV
system is considered, cost decreased to $24.6k representing a
reduction of about 17% in system cost. However, by adding
BSS, the surplus PV power can be stored during low demand
periods and released when needed. This further contributes
to lowering the costs to $23.7k, which is around 20% re-
duction in cost compared to scenarios without any PV and
BSS integration. Thus, our proposed optimization strategy
demonstrates the financial effectiveness of combining PV and
BSS for efficient energy management systems. During this

Fig. 5. Power bought (or sold) from (or to) upstream network with PV and
BSS integration.

scenario, the BSS is active in such a way that it discharges
the needed power to meet the EV load when the PV power
is not sufficient. It is to be noted our optimization strategy is
also designed in such a way that the BSS, after fulfilling the
EV load, can still supply the remained surplus power to meet
the conventional load, partially. This mechanism can affect
the power transmitted from the upstream network, as shown
in Fig. 5 where we can observe that the power bought from
network is less than the previous case (without PV and BSS),
and also during peak hours, the DN can sell the power to
the upstream network to gain profit. Therefore, test results
demonstrate the effect of managing the EV in-motion load in
the distribution grid as well as its impact on the system cost.
Note that the cost of PV and battery installation is ignored in
this paper. The cost can be considered and optimal placement
can further be determined, however, this is out of scope of this
paper.

B. Operation of Distribution Network Under Extreme Events

Ensuring the load in the system can be met under both
normal and extreme conditions is crucial for system operators.
Since the goal in this section is to investigate the effect
of EV in-motion load on the cost under extreme events
(due to hurricane), we considered three line outage scenarios
involving the outage of lines 3−4, 6−7, and 6−26 due to the
hurricane. These scenarios are chosen based on the most load
shedding cost when the optimization solution is feasible. The
load shedding for each line outage with and without DWPT
integration is depicted in Fig. 6. The maximum allowable limit
for load shedding at each bus is set at 50% of the load for
that particular bus.

Fig. 6. Total load shedding in each hour.

As illustrated in Fig. 6, during the line outages L3−4
and L6 − 7, the regions equipped with EVs become isolated
from those connected to the upstream network, leading to
significantly increased load shedding compared to scenarios
without EV integration. Specifically, for L3 − 4 outage, total
load shedding escalates dramatically from 4.12 MW in the
non-EV scenario to 33.38 MW when EVs are integrated. For
L6− 7 outage, load shedding rises from 0 MW without EVs
to 16.35 MW with EVs. Meanwhile, for L6− 26 outage, the
increase is more modest, from 5 MW to 5.69 MW.

TABLE II
COMPARISON OF COST WITH AND WITHOUT MITIGATION OF DWPT

GENERATED LOAD DEMANDS BY PV AND BSS INTEGRATION

Outages With mitigation (k$) Without mitigation (k$) Improvement
L3−4 25.8 32.6 26%

L6− 7 25.5 31 21%
L6− 26 25.6 30.2 18%

Moreover, to assess the impact of DWPT system on the
system costs, a comparison is presented in Table II showing
the costs with and without EV integration. The costs analyzed
include operational costs and load shedding costs. The price
for load shedding is fixed at all times and is set at $200 /MWh.
This fixed rate allows for a straightforward comparison of the
financial implications of integrating EVs into the system. As
shown in Table II, for line outages L3-4, L6-7, and L6-26 the
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costs increased by about 26%, 21%, and 18%, respectively.
The cost values as seen in Table II highlight the effectiveness
of the method explained in Section II to mitigate the EV in-
motion load in the system through the integration of DERs
(i.e., PV and BSS). Although the PV and BSS in this paper
are primarily utilized to serve the EV load, they also have
the potential to assist in meeting the system’s overall load
demands whenever there is excess power available.

This paper contributes to solve an important problem of
EV in-motion integration into DN in which the authors have
proposed DERs integration to overcome the stress that EV im-
poses on the system and to manage the increase in operational
cost. The EV in-motion load is calculated using the real traffic
data, and then the PV and BSS are introduced to support this
load. Test results show that the cost associated with the DN
is found to be significantly increased under both normal and
extreme events conditions when EVs are considered. However,
incorporating DERs helps to mitigate the load and makes the
solution economically attractive.

IV. CONCLUSION

This paper presented an interesting and evolving problem
created by DWPT roadway, in particular, we investigated the
impact of EV load on the operational costs associated with the
efficient management of DN. Real traffic data was utilized with
10% of vehicles designated as EVs to calculate the EV load.
Subsequently, the necessary sizing for PV systems and BSS
was determined to support the EV load throughout a day. An
MILP optimization problem was formulated to minimize the
system costs, and two case studies were conducted to assess
the effectiveness of the proposed optimization framework.

In this paper, the first case (under normal condition) in-
volved the system that was operating under normal conditions
incorporating PV and BSS to mitigate the EV load, and test
results demonstrated that the operating cost of DN while
incorporating PV and BSS was found to be lower ($23.7k)
than the DN without PV and BSS ($29.7k). In other words, this
represents a significant contribution of DERs to reduce the sys-
tem cost by about 20%. The second case (under extreme event
condition) involved operating the system by considering the
line outages caused by a hurricane. The inclusion of the DWPT
system introduced additional challenges to the DN operations.
Notably, these challenges intensified when an outage occurred
on a line that isolated the zone containing the DWPT system
from the area connected to the upstream network. In the most
severe scenarios, load shedding increased dramatically from
4.12 MW to 33.38 MW, underscoring the significant impact
on the system costs. This analysis highlighted the critical need
for the strategic integration of PV and BSS to enhance system
efficiency with respect to economic aspect.

Since the EVs on DWPT roads are vehicles in-motion, the
uncertainty of speed can introduce errors in calculating the
EV load, and this will be an interesting future work. This
paper considered only one DWPT system at bus-10 of the DN.
Additionally, the potential future work would be to consider
DN management incorporating DWPT system at a large-scale

with high (%) EV in-motion penetration. Furthermore, to
provide a comprehensive analysis of the economic aspects, the
impact of EVs on the locational marginal price will be another
future work as this analysis will aid the power system planners
for optimal decision making process with respect to the place-
ment of DWPT roads with a goal to ensure that electrified-
transportation infrastructure development aligns well with both
economic efficiency and system reliability.
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