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Abstract—This paper examines an application of a two-lane
microscopic Traffic Flow (TF) simulation to comprehend the
impact of the complex behavior of Dynamic Wireless Power
Transfer (DWPT) charging systems onto electric power distri-
bution grids. The proposed approach utilizes real-world data to
determine a more accurate TF density at each time interval. The
simulation is carried out considering all vehicles, whether electric
vehicles (EVs) or non-electric, and they have a randomized
lane changing behavior and fluctuating velocities following a
leading car model. Three different scenarios are conducted
for 5 mile, 10 mile, and 15 mile DWPT networks that are
proportionally connected to an IEEE 33-bus distribution grid.
Our findings indicate that EVs’ average State-of-Charge (SOC)
increases proportionally and significantly at each DWPT network
length. Furthermore, the load demand generated from the DWPT
network also increases proportionally with its length; and this
increment in load demand causes adverse impacts on distribution
grid voltage magnitudes exceeding operational standards that
leads to equipment failure or blackout events.

Index Terms—Dynamic wireless power transfer, electrified
transportation, EV charging, grid stability, microscopic traffic
flow.

I. INTRODUCTION

THe transition of transportation infrastructures to an elec-
trified apparatus is one of the many challenges while

integrating electric vehicles (EVs) into power distribution
grids. As the penetration of EVs into transportation networks
increases, the necessary charging energy from distribution
systems can be reasonably assumed to fluctuate proportion-
ally. This growth, although it will alleviate charging anxiety,
improve air quality, and reduce annual carbon emissions, it
will also require tremendous efforts to ensure electric power
distribution systems can withstand the added load demand [1]–
[3]. According to [4], the U.S. would need to produce approxi-
mately 20%-50% more energy to sustain an all EV fleet within
transportation infrastructures. This increase in load demand
will potentially require, in certain locations, the modification
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Fig. 1. Microscopic traffic flow topology of a two-lane highway infrastructure
with a single DWPT charging lane. ▶ Lane-1: is the charging lane consisting
of numerous Transmitter (Tx) pads that transfer energy to EVs through a
Receiver (Rx) pad. ▶ Lane-2: is a non-charging lane for all vehicles.

and/or modernization of distribution grid equipment (i.e.,
distribution lines, transformers, etc.) to facilitate EV charging
even though localized Renewable Energy Sources (RES), such
as photovoltaics and wind turbines, are capable of mitigating
a portion of the overall load demand. Furthermore, innovative
methods to mitigate or lessen the burden of EV charging are
necessary to allow individuals to actively utilize their vehicles
without restricting access to energy.

In recent years, a new approach in EV charging has been
proposed that can allow EVs to traverse through transportation
networks while charging. Fig. 1 illustrates an evolving EV
in-motion charging system, which is generally known as Dy-
namic Wireless Power Transfer (DWPT). This type of charg-
ing system is predominately implemented with consecutively
embedded inductive coils known as Transmitter (Tx) pads
within the pavement of transportation networks and a Receiver
(Rx) pad that is installed below the chassis of an EV [5]–[8].
One of the many challenges associated with DWPT is the
scalability to large-scale systems where hundreds of Tx pads
are implemented to produce relatively long lasting charging
access while the vehicle is traversing at highway speeds. The
majority of research, in the context of DWPT systems, are
implemented at small-scale where only one to four Tx pads
are analyzed at the same time. Zakerian et al. [9] utilized a
single Tx pad to develop a frequency and voltage tracking
regulation model to improve the overall efficiency of the
DWPT system to approximately 72%. In [10], the authors
implemented a four Tx pad system in connection with artificial
neural networks to predict the power output of DWPT systems
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with an accuracy of about 87%. Varghese et al. [11] simulated
a three Tx pad system to analyze a multi-receiver pad approach
to simplify the adoption of various duty classes of EVs in
DWPT charging infrastructures. Liu et al. [12] considered
multiple Rx pads across a single Tx pad with a voltage
doubler rectifier to develop a novel approach in mitigating
output voltage fluctuations. Xue et al. [13] validated a design
for a 120 kW charging system where a single Tx pad was
implemented in simulations.

These approaches are commonly implemented in simulation
software such as PLECS, Ansys Maxwell, and MATLAB
Simulink. However, the computational burden for these ap-
proaches is typically high as the time-scale of the simulations
ranges from nanoseconds to milliseconds. For the purposes
of distribution grid analysis with the incorporation of large-
scale DWPT networks, these time-scales are not adequate
as the processing time would be too large. In our previous
work [14], a novel approach for reducing the computational
burden of DWPT networks is utilized to determine the load
demand profile for a single-lane large-scale DWPT network
with numerous EVs traversing the system over a period of
a week. Although the results presented in [14] are sufficient
in generating the load demand profiles for distribution grid
analysis, the modeling of the behavior of individual EVs
traversing through the system can be improved further to
track/mimic free-flowing Traffic Flow (TF) that can provide
for a more accurate load demand profile when multiple lanes
are considered, as depicted in Fig. 1. Hence, in contrast to
the existing literature, this paper significantly contributes to
the field of evolving electrified-transportation networks, thus
the major contributions of this paper are the following: (1)
Development of a microscopic TF algorithm for a two-lane
DWPT network that enhances stability analysis of distribution
grids, (2) Demonstration and analysis of DWPT load de-
mand profiles at large-scale, (3) Impact analysis of large-scale
DWPT networks in distribution grid to ascertain the diverse
effects caused by EV in-motion charging, and (4) Development
of a computationally efficient method that can provide insights
to the power system operations about EV in-motion charging
infrastructure.

This paper is organized as follows. Section II presents the
proposed approach to develop the two-lane microscopic TF
simulation. Sections III and IV present the simulations/data
setup and analysis of DWPT network and impact on grid.
Section V concludes with the major findings of the paper.

II. PROPOSED APPROACH

This section describes the development of the proposed
method to generate DWPT load demands utilizing a two-
lane microscopic simulation that incorporates numerous EVs,
different duty classes, fluctuating velocities, and randomized
lane-changing behavior.

A. Background of Microscopic Simulation

In transportation engineering, the study of vehicle behavior
through roadway networks that mimic real-world driving pat-

terns is utilized to analyze the structural integrity of roadway
networks, construction methods to reduce congestion, planning
operations, and maintenance scheduling. Simulations of TF
for varying types of roadway networks can be divided into
two separate categories: macroscopic and microscopic [15].
Macroscopic simulations analyze the entirety of the TF, while
microscopic simulations observe the individual behaviors of
each vehicle. For the purposes of this paper, the focus will be
microscopic simulations where the model attempts to analyze
individual driving behavior in relation to other vehicles on the
roadway system [16]. In this paper, a microscopic simulation
of a two-lane highway is constructed that accounts for the
individual driving behavior of EVs and non-EVs. A typical ap-
proach of microscopic simulations is developed to incorporate
lane-changing behavior through randomized processes and car-
following models that fluctuate vehicle velocities according to
the proximity to leading or adjacent vehicles in the roadway
network. In this paper, to ensure that the TF simulation does
not allow vehicles to overlap one another while traversing
through the network, the positional data of each vehicle is
tracked by

x = (xα − lα) + xo , (1)

where x is the gap distance, xα is the position of the leading
vehicle, lα is the leading car length, and xo is the position of
the currently observed vehicle. Furthermore, the gap distance
is utilized to fluctuate the velocity of each vehicle, which is
given by

X(t) =

{
+v(t), if x > γ

−v(t), otherwise
, (2)

where γ is the minimum distance between the leading and
currently observed vehicle, v(t) is the velocity, and X(t) is
the finalized positional data for the next time interval. Then
the TF simulation is updated multiple times at each time step
to track the movements of each vehicle by implementing

Xf (t) = F (X(t), Y (t), lo, v(t)) , (3)

where X(t) is the updated positional data, Y (t) is the lane of
travel, lo is the length of the vehicle, and v(t) is the velocity
of the vehicle.

B. Microscopic TF Algorithm for DWPT Network

Fig. 1 demonstrates the proposed roadway network where
Lane-1 represents the DWPT charging system (e.g., gray
highlighted area) and all vehicles (non-charging) is represented
by Lane-2. The network is constructed as an array that contains
2 − by − N indices, where N is the length of the overall
transportation infrastructure. This method is different from
our previous approach [14] by not restricting the behavior
of vehicles to a singular lane of travel. Fig. 2 presents the
step-by-step processes of the proposed microscopic algorithm
that incorporates the calculation of the DWPT load demand.
In Step 1, the input and initialization process utilizes object-
oriented programming to store and collect vehicle specifica-
tions during the TF simulation. Each vehicle object has two
constructors that are utilized to gather information to calculate
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Fig. 2. Flowchart of microscopic traffic flow simulation for DWPT network.

the overall behavior of each vehicle type during each time
step. Our another previous work [17], presents a Monte Carlo
algorithm to convert historical hourly TF into secondly time
intervals which is utilized in this paper to generate the initial
time entry for each vehicle in the simulation. Additionally,
the dimensional characteristics of the DWPT network are
determined by taking into account the Rx pad limits, Tx pad
limits, length of Tx pads, length of the Rx pad, gap distance
between each Tx pad, lane drifting percentages, and length of
overall DWPT as demonstrated in [14].

After the initialization process has concluded, the micro-
scopic simulation begins by determining how many vehicles
are actively traversing the network at each time step. This
process is performed to reduce the computational burden when
the number of vehicle objects is large. Then each active vehicle
is generated in the network according to their individual time
of entry at Step 3. In this paper, it assumed that all vehicles will
enter the network at a randomized lane regardless if the vehicle
is an EV or not. However, if two vehicles have the same time
of entry and starting lane, then one vehicle will be modified to
start on the other lane to avoid overlapping. Steps 4 through
5 are where each vehicles positional data and velocities are
updated within the simulation. In this paper, two different lane
changing behaviors are implemented to differentiate between
EVs and non-EVs and are defined as:

Ynone(t) =

{
L(−y), if P = 1, x ≤ γ, and yα ≤ γo

L(y), otherwise
, (4)

YEV (t) =

{
L(−y), if P = 1, Lo = 2, and yα ≤ γo

L(y), otherwise
, (5)

where P is the probability for the vehicle to choose to change
lanes, yα is a check to ensure that no vehicles are within the
minimum gap distance γo for the opposite lane, and Lo is
the initial lane of travel. For EVs, it is assumed that they
prioritize the need to be on the DWPT charging lane and
will seek to remain/change to it regardless of congestion. The
behavior of non-EVs is assumed to have no prioritization
towards charging. Instead non-EVs will prioritize speed of
travel to avoid any congestion that is produced in the TF
simulation.

The final process illustrated in Fig. 2 is to calculate energy
transferred and the State-of-Charge (SOC) for all EVs that

are actively traversing the DWPT network. The calculation
is performed utilizing an algorithm presented in Section III
of [17], where the specifications of each EV is implemented
to determine a new SOC and load demand profile at each
time step. In addition to the algorithm, the modification
demonstrated in Section II of [14] is implemented to increase
the accuracy of the calculated load demand by utilizing a novel
convolutional approach.

III. DATA DESCRIPTION AND SIMULATION SETUP

This section presents the data utilized to simulate numerous
vehicles traversing through a DWPT network simulation with
a purpose to demonstrate how each dataset is implemented at
the preprocessing stage to generate the microscopic simulation.

A. Traffic Flow Data Description

The TF density of vehicles that enter into the network is
determined by historical data collected for the Interstate-10
highway in El Paso, Texas region for 2021 [18]. This data
is condensed to the averaged seasonal TF for each day of the
week at intervals of an hour. In this paper, the traffic flow for a
typical Monday during the fall season is implemented for a 24-
hour period at intervals of seconds. Fig. 3(a) illustrates the total
number of vehicles entering into the DWPT network and how
many of them are classified as EVs (i.e., the solid red line),
which equates to 25% of the TF for each hour. This data is then
converted into secondly TF using the Monte Carlo process that
we formulated on our previous work [14]. In Fig. 3(b), each
vehicles initial lane of entry is illustrated, where the numbering
is determined by random processes where Lane-1 had a 60%
probability and Lane-2 had a 40%.

Fig. 3. Traffic flow totals. (a) All vehicle types and electric vehicles, and (b)
All vehicle types on Lane-1 and Lane-2 of DWPT network.

B. Vehicle Specification Description

For a real-world scenario of free flowing TF on a highway
network, there needs to be various types of vehicles within
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TABLE I
LIGHT-DUTY EV SPECIFICATIONS

Specifications L1 L2 L3 L4 L5 L6
Capacity (kWh) 53.6 60 40 64 64 42.2

Mass (Mg) 1.61 1.62 1.55 1.68 1.74 1.34
Length (m) 4.69 4.16 4.48 4.18 4.37 4.01

Cross Sect. Area (m) 2.16 2.28 2.26 2.29 2.30 2.30
Drag Coefficient 0.23 0.31 0.28 0.29 0.29 0.29

Charging Capacity (kW) 170 80 50 100 100 50
L1: Tesla Model 3, L2: Chevy Bolt, L3: Nissan Leaf, L4: Hyundai Kona, L5: Kia e-Niro, L6: BMW i3

TABLE II
MEDIUM AND HEAVY-DUTY EV SPECIFICATIONS

Specifications M1 M2 M3 H4
Capacity (kWh) 112 131 200 564

Mass (Mg) 2.65 2.61 2.81 11.1
Length (m) 4.95 5.91 5.69 21.3

Cross Sect. Area (m) 2.70 3.80 3.74 11.6
Drag Coefficient 0.25 0.40 0.30 0.70

Charging Capacity (kW) 195 150 250 350
M1: BMW iX, M2: Ford F-150 Lightning, M3: Cadillac Escalade IQ, H1: Volvo VNR Electric 4x2 Tractor

the simulation to have an accurate model. In this paper, six
different Light-Duty Vehicles (LDVs), three Medium-Duty
Vehicles (MDVs), and one Heavy-Duty Vehicle (HDV) are
implemented. Each of these models are based on the most
popular EVs on the market (i.e., LDV and MDV models) or
estimated specifications (i.e., HDV). Table I and II present
the specifications for each vehicle type implemented in the
microscopic simulation including the vehicles type considered
in this paper [19]. Each of these specifications are utilized
to calculate the behavior of the vehicle while in-motion, and
in the case of an EV, they are essential to determine the
SOC, energy discharged, and/or energy transferred through
the DWPT network. In this paper, each EV is restricted from
charging past 80% SOC to limit the number of EVs that are
actively utilizing the network to those vehicles that have a
higher priority to charge [20]. Furthermore, each vehicle type
is considered to have a different density probability in the TF
simulation according to the U.S. Department of Transportation
statistics where LDVs, MDVs, and HDVs will have 73.6%,
22.5%, and 3.9% respectively [21]. For each instances of a
vehicle, the initial velocity and SOC is randomly selected
uniformly from 45 mph−90 mph and 10%−90%, respectively.

C. DWPT Network and Grid Connection Description

In this paper, three different lengths of DWPT networks of
5 miles, 10 miles, and 15 miles are implemented to investigate
the impacts of large-scale DWPT networks onto a distribution
grid. Each length constitutes a different scenario and intercon-
nection within the grid. In Fig. 4, the topology of an IEEE 33-
Bus distribution grid is illustrated to present how the DWPT
network is attached. Each scenario will increase the number of
buses that are attached to the DWPT network proportionally,
where bus-6 through bus-8 will facilitate 5 miles of the
charging system individually. Thus, for Scenario 1, only bus-
6 is considered to be in connection with the DWPT network,
whereas, Scenario 2 has bus-6 and bus-7 attached and the
Scenario 3 utilizes all three buses 6−8. The characteristics of
the DWPT network is designed to accommodate the largest

Fig. 4. Distribution grid topology for an interconnection of DWPT infras-
tructure at 5 mile incremental lengths.

charging capacity as presented in Table II. Therefore, the Tx
pads charging capacity is 350 kW and the length and width
is 3 m by 1 m, respectively. Additionally, the gap distance
between each of the Tx pads are set to 0.025 m to produce
a steady flow of energy through the system when the EV
is traversing. The dimensional specifications for the DWPT
network results in approximately 532 Tx pads per mile.

IV. SIMULATION RESULTS AND DISCUSSION

This section presents the results for the two-lane micro-
scopic TF simulations for varying lengths of DWPT networks.
All simulations are conducted and obtained utilizing MATLAB
version R2021b and MATPOWER version 7.

A. Microscopic Traffic Flow Simulation Results

This paper focuses on developing a two-lane microscopic
simulation to analyze DWPT networks in distribution grids.
The results of the load demands generated by each of the
three scenarios is presented in Fig. 5 where it can be seen that
as the length of the network increases the magnitude of the

Fig. 5. Load demand profiles for two-lane microscopic simulation for 5, 10,
and 15 mile DWPT transportation network.

Fig. 6. Number of vehicles on each lane at the beginning and end of
microscopic TF simulation.
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load expands proportionally. This results can be expected since
each EV will traverse through the network for longer periods
of time as the length increases. Fig. 5 also demonstrates that
the load demand between the hours of 8am and 11pm follow
the TF pattern and drastically increases the slope of the load
when the length of the network goes from 5 miles to 15 miles.
Additionally, the load demand in Fig. 5 also fluctuates rapidly
with the largest gap occurring in the 15 mile simulation where
the maximum demand is approximately 18 MW during hour
13 and then suddenly drops to approximately 10 MW by
hour 14. The rapid drop of approximately 8 MW of load
can potentially have negative effects onto distribution grids
if proper planning is not conducted.

Fig. 6 illustrates the change in the number of vehicles in
each lane at the start and end of the simulation where Lane-
2 increased the total number of vehicles traversing through
the lane while Lane-1 had a decrease. This result is to be
expected since only 25% of the TF is representative of the
overall number of vehicles entering the roadway. Therefore,
non-EVs that where assigned to Lane-1 initially would change
lanes according to congestion rates more frequently.

In Figs. 7(a) through (c) the SOC for all EVs that traversed
through the DWPT networks are compared to determine at
which DWPT length the average user would benefit more
considerably. Each of the sub-figures illustrates the maximum,
minimum, averaged (i.e., the trend line), and all SOC for each
EV. Fig. 7(a) presents the results of the 5 mile network with

Fig. 7. State-of-charge for all EVs. (a) 5 mile DWPT length, (b) 10 mile
DWPT length, and (c) 15 mile DWPT length.

an average increase in SOC of approximately 6%. Fig. 7(b)
illustrates the results for the 10 mile simulation and produced
an average increase of SOC of approximately 11%. Fig. 7(c)
generated the highest increase of approximately 15% for the
15 mile DWPT network. This result is also expected because
as the length of the DWPT network increases each EV will
have more time to actively charge, which also translates to
more load demand generated as seen in Fig. 5.

B. Results for Voltage Stability Analysis of Distribution Grids

The results of the IEEE 33-bus distribution grid are pre-
sented in Fig. 8 where the voltage fluctuations at bus-6 through
bus-8 are illustrated for each of the DWPT network lengths.
In each sub-figure the threshold to determine whether the
system has reached a voltage drop significant enough to cause
severe damage to installed equipment or outage is classified
as a decrease of -10% from the nominal [22]. The voltage
profiles in Figs. 8(a) through (c) are similar in fluctuation
with the only difference in the magnitude of drop as the bus
number increases. For instance, bus-8 experiences a maximum
drop during the 15 mile simulation of approximately 0.33 pu
while bus-7 and bus-6 have a drop of approximately 0.28 pu
and 0.26 pu, respectively. In each simulation the 5 mile
simulation was capable of sustaining the load profile from the
DWPT network. However, the load demand generated from
the 10 mile and 15 mile scenarios drop significantly below
the threshold between hour 9 and hour 22. This signifies

Fig. 8. Voltage magnitude fluctuations for DWPT network in IEEE 33-Bus
distribution grid. (a) Bus-6, (b) Bus-7, and (c) Bus-8.
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that the system would experience potential negative effects if
mitigation strategies are not implemented to sustain the load.
Otherwise, the load during this period would need to be shed to
preserve grid stability, thus preventing EV users from charging
during the most active periods of the day.

C. Summary and Discussion of Results

The microscopic TF simulation for a two-lane highway
demonstrates that the load demand from DWPT networks
not only reduces based on randomized vehicle behaviors but
also increases with the length of the charging system and TF
totals. The obtained simulation results presented the behavior
of each EV that traversed through the DWPT networks and
was able to achieve the best average increase of SOC during
the 15 mile DWPT network. However, the distribution grid
simulations demonstrated that the 15 mile scenario would
experience detrimental voltage fluctuations that would require
additional planning and strategies (e.g., installing voltage
support equipment or load mitigation) to prevent grid stability
from reducing. Therefore, test results demonstrated that a
IEEE 33-bus distribution grid would be capable of sustaining
a 5 mile DWPT network with no additional planning or
strategies to mitigate load demands or voltage fluctuations.

V. CONCLUSION

This paper demonstrated the implementation of the pro-
posed approach for a two-lane microscopic simulation of a
DWPT network at various lengths. The simulation results
provided a comprehensive overview of the proposed approach
to generate a more accurate calculation of the behavior of
each vehicle as well as the charging characteristics of EVs
during each time interval. For all of the DWPT network
lengths, i.e., 5 mile, 10 mile, and 15 mile, considered in this
paper, the average SOC for all EVs increased significantly,
thus proofing the feasibility of the charging system to provide
adequate increases to the SOC of all users while the vehicle
is in-motion. However, at the higher DWPT network lengths,
the load demand generated from the EVs would result into
negative effects on the distribution grid if mitigation strategies
are not implemented properly.

Future work would be interesting to conduct a thorough
analysis on the reliability of the DWPT networks for different
distribution grid topology as well as to determine novel metrics
for their implementation. This would benefit the planning and
construction phases of DWPT networks to ensure that system
operators of both electrical power grids and transportation
networks can reliably implement these complex charging
networks for sustainable and equitable power-transportation
infrastructure.
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