2024 17th IEEE/ACM International Workshop on Network on Chip Architectures (NoCArc) | 979-8-3315-0642-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/NoCArc64615.2024.10749907

NoCSNet: Network-on-Chip Security Assessment
Under Thermal Attacks Using Deep Neural Network

Meisam Abdollahi*, Mohammad Chegini*, Mahdi Hasanzadeh Hesar, Samaneh Javadinia*,
Ahmad Patooghy', Amirali Baniasadi*
*Department of Electrical & Computer Engineering, University of Victoria, Victoria, Canada
TDepartment of Computer Systems Technology, North Carolina A&T State University, NC, USA
Email: {meisam, mchegini, samanehjavadinia, amiralib} @uvic.ca, mhasanzadehhesar @aggies.ncat.edu, apatooghy @ncat.edu

Abstract—As the demand for high-performance computing
continues to rise, Network-on-Chip (NoC) architectures play
a crucial role in enabling efficient data transmission within
complex systems. However, the sensitivity of NoCs to intentional
thermal fluctuations opens doors to conducting Denial of Service
(DoS) attacks that can alter the system’s reliability and security.
In this paper, for the first time, we introduce NoCSNet as a
novel database of NoC traffic collected under various network
configurations and thermal attack scenarios. We also use Deep
Neural Networks (DNNs) to analyze the collected traffic to en-
hance data transmission security in the presence of thermal DoS
attacks. Through comprehensive experimentation and evaluation,
we demonstrate the effectiveness of NoCSNet in capturing the
security profile of NoC architectures, which can be actively used
in protecting NoCs’ data integrity and stability against thermal
DoS attacks. The experimental results indicate that among the
MLP, LSTM, and RNN deep neural networks, the RNN approach
provides the highest attack detection accuracy of 93.8%. We
anticipate that the collected dataset will help the community
develop a deeper understanding of the susceptibility of NoCs
against thermal DoS attacks.

Index Terms—Thermal Attack, Deep Learning, Opto-electrical
Network on Chip, Accuracy, Security Management

I. INTRODUCTION

In modern Multi-Processor System-on-Chips (MPSoCs),
inter-processor data exchange is mainly done through elec-
tronic Network-on-Chip (ENoC) that employ packet-based
data transmission. This architectural approach offers notable
enhancements over traditional bus and crossbar architectures
by applying computer network theories and methodologies
to on-chip communications [1]. However, recent advances in
complementary metal oxide semiconductor (CMOS) circuits
have prompted the integration of optical components into
MPSoCs [2] i.e., optical NoCs (ONoCs) offering ultra-high
bandwidth, low latency, and low power dissipation [2], [3].
As ONoC technology brings its challenges such as opti-
cal/electrical conversion overhead, complexities in laser inte-
gration, and sensitivity to thermal variations [4], [5], the hybrid
opto-electrical paradigm appears to be an intriguing solution
that offers advantages of both technologies [6].

ENoC and ONoC face an elevated risk of vulnerability to
hardware attacks for several reasons. First, as a NoC inter-

connects various Intellectual Properties (IPs) including those
produced in-house, sourced from trusted vendors, and IPs
sourced from unverified vendors, there is always a possibility
that a NoC can be leveraged for launching security attacks e.g.,
crypto-analysis attacks, side-channel attacks, denial of service
(DoS) attacks, etc. [7], [8]. Such attacks can be conducted
by Hardware Trojans (HTs) inserted in any of the sourced IP
cores.

In this paper, we explore temperature variations as a se-
curity threat for targeting hybrid opto-electrical NoCs. We
demonstrate how this vulnerability can be exploited by an
adversary to compromise the network and exfiltrate sensitive
information. Subsequently, we collect the necessary data in a
simulated environment during the design phase to study the
impact of thermal attacks. We utilize state-of-the-art neural
networks in addition to traditional machine learning algorithms
to analyze the behavior of such attacks. During runtime,
we can predict whether each data transmission represents
an attack or a safe transaction, enabling us to implement
appropriate countermeasures. The contributions of this paper
are as follows.

o In this paper, a novel security vulnerability affecting
hybrid opto-electrical systems has been studied.

e We assess an opto-electrical NoC under various thermal
attack scenarios along with normal data transmission
during the design phase, using data collected from the
Access-Noxim simulator.

o We utilize various neural networks and traditional ma-
chine learning approaches to identify the most accurate
predictor in runtime scenarios.

The remainder of this paper is structured as follows. In Sec-
tion II, the necessary background information on the network
model and the thermal threat is provided. Section III explores
the methodology including dataset gathering, pre-processing,
and details of the neural network architecture. Section IV
presents simulation experiments and analyzes the results, and
finally Section V concludes the paper.
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II. TARGETED ARCHITECTURE & THREAT MODEL

In this section, we review the typical architecture for hybrid
NoCs and then discuss the threat model proposed in [9] that
is based on intentional thermal fluctuations occurring in the
reviewed hybrid NoCs.

A. Opto-electrical Network-on-Chips

Typically, in a hybric NoC, long-distance communications
(inter-cluster) occur through optical channels, while electri-
cal communications are utilized for local destinations (intra-
cluster) [6], [10]. Packet switching is used in the electrical
domain, whereas optical circuit switching is utilized in the
ONoC domain. When communication is necessary between
two cores, the Network Interface (NI) sends a path-setup
packet to the electrical router. Upon receiving this packet,
the electrical router injects it into the electrical network and
establishes an optical path for subsequent data transmission
whenever an optical path is needed.

Optical signals are modulated at specific wavelengths, for
instance, using Microring Resonators (MRs), which employ
electrical signals for modulation. In this process, an array
of photodetectors converts optical signals into corresponding
electrical signals after they are multiplexed into a single optical
waveguide [11]. This study adopts the cluster-based hybrid
architecture, wherein optical routers are interconnected based
on a mesh-based Crux optical router, with adaptations for a
Wavelength Division Multiplexing (WDM) enabled network
[9]. In MR technology, the resonant wavelength is highly
susceptible to changes in the thermal conditions of the chip.
To counteract the impacts of temperature fluctuations and
variations induced during fabrication, MR necessitate tuning
through the application of external current or heat (referred to
as thermal tuning) to the MRs [12]. This adjustment process
enables the modification of their effective refractive index.
Within ONoCs, MRs undergo electrical and/or thermal tuning
via a dedicated tuning circuit [2]. A similar circuit can be
employed to activate and deactivate the MRs as required.
However, these tuning circuits represent the most vulnerable
aspect of the device concerning chip security.

Malicious hardware (such as a Hardware Trojan) could
potentially manipulate the tuning circuit to interfere with
the resonant wavelength of the ring resonators. Meanwhile,
data traveling through the waveguide can be intercepted by
malicious detector MRs without alteration, thereby posing a
significant threat to photonic links.

B. Threat Model

The studied network comprises two layers: the initial layer
constitutes an electrical network, while the upper layer is an
optical network. Based on our assessments outlined in this
section, an adversary can execute a thermal attack using any

of the three scenarios described in [9], [13] to either drop or
sniff data classified as private. The core of this attack lies in
the thermal sensitivity of ONoCs. According to the proposed
attack model, the attacker aims to overload a specific area of
the network to raise the temperature of certain optical routers,
thereby causing a shift in their operational wavelength. This
deliberate congestion enables the attacker to manipulate the
wavelength of the optical routers, granting access to data that
the modified router would not otherwise have access to. The
ensuing scenarios delve into how this thermal vulnerability can
be exploited to compromise the security and dependability of
ONoCs.

1) NACK Replay Attack Scenario: A malicious actor endeav-
ors to identify the source of information and sends a series
of NACK packets to the specified source router. This form
of NACK replay attack capitalizes on the handshake process
employed by the NoC in an end-to-end fashion. The replaying
of NACK packets results in heightened network activity within
the designated region, potentially elevating the local or overall
chip temperature. Ultimately, this increased temperature may
induce a wavelength alteration in the affected ONoC routers.

2) Packet Drop Attack Scenario: In instances where the
attacker is unable to pinpoint the source address of a packet,
they may opt to discard a segment of the packet, compelling
the destination to issue a NACK to the source. This involves
employing a fault injection attack to execute the ONoC thermal
attack.

3) False Traffic Injection Attack Scenario: The attacker
can inject significant volumes of fake traffic directly into
the network to disrupt or overload a specific area, thereby
breaching the thermal limits of the targeted ONoC router(s).

III. DATA COLLECTION AND ML PROCESSING

In a NoC-enabled MPSoC, following the generation of a
message, the NoC routes the message based on the predefined
routing algorithms, determining the path to the destination.
This path typically involves multiple intermediary nodes, such
as cores or routers, each tasked with forwarding the message
progressively toward its final destination. In our method, as
the message navigates through the network, it is subject to
comprehensive monitoring where various attributes of the
message and its transit are recorded. These attributes include
the packet’s size, source and destination identifiers, the chosen
route, timestamps at various nodes, and traffic density, among
others. Such monitoring is imperative as it furnishes the real-
time data requisite for the analysis by a deployed learning
algorithm (ML or DNN approach).

The overview of our proposed methodology is presented in
Figure 1. We performed system-level simulations to assess the
viability of the aforementioned attack scenarios. It should be
noted that we did not alter the optical layer in any way; rather,

Authorized licensed use limited to: North Carolina A T State University. Downloaded on July 22,2025 at 14:32:25 UTC from IEEE Xplore. Restrictions apply.



Data Gathering

Data Preparation

Model Development & Data Classification

Network Trace

Data Preprocesing
- Data Cleaning
- Data Formatting
- Data Sampling

Opto-Electrical
Network
Configurations
Noxim Simulator
L \]:
Simulation Parameters 3 =
_& cnu@

HotSpot Simulator

Attack Scenarios

Hyper-Parameter

—
A i
A4~[ Candidate Model ]—-[ Model Evaluation J
Performance Metrics
- Accuracy
- Precision Model Prediction
- Recall
-Fi-Score

Neural Network
Models
Machine

Learning Models

Fig. 1: Overview of the proposed methodology

TABLE I: Traffic features and value ranges applied in the model. *Source ID and Destination ID features are removed from
the dataset for classification due to the applied secure countermeasure approach. **The attack label is the target that should

be classified by the applied learning algorithm

Feature/Target Value Range Feature Description
Source ID* 0-35 The sender network node of a packet/flit
Destination ID* 0-35 The destination network node of a packet/flit
Current ID 0-35 The current network node where a packet/flit resides in each cycle
Flit Type {head, tail, body} Type of the flit
Hop Count 1-10 Number of hops from the current node to the destination
Flit Sequence Number 0-8 The unique sequence number for each flit of a packet

Packet Number Depends on the Packet Injection Rate

The unique sequence number for each packet

Buffer Packet Count

0-112 (VC_Number (2) x Port_Number (7) x Buffer_Width(8))

Specifies the number of occupied buffers in the buffer of the current node

Input Port {0: Local, 1: North, 2: South, 3: East, 4: West}

Port used by the flit to enter the current router

Output Port (0: Local, 1: North, 2: South, 3: East, 4: West)

Port used by the flit to exit the current router

Core Temperature From Ambient temperature to Maximum temperature

Temperature of the current node each packet/flit resides in each cycle

Current Cycle 1-1,500,000

The clock cycle of simulation

Attack Label™* {0,1}

Specifies whether this recorded data transmission is indicative of an attack or not

we solely conducted NACK replays in the electrical layer and
monitored the resulting temperature changes in the optical
layer. The findings indicate that the attack can significantly
raise the network’s temperature, leading to wavelength alter-
ations in the optical routers. Throughout the system-level sim-
ulation of network parameters using the Noxim Simulator [14]
and analysis of thermal behavior employing the Hotspot tool
[15] which integrated into Access-Noxim simulator [16], we
identified 13 essential features (as listed in Table I). Following
data engineering and pre-processing of the dataset, various
machine learning algorithms, as well as deep neural networks,
were employed to identify the most effective classifier for
distinguishing between attack and non-attack records based
on the most significant metrics.

To collect the dataset, simulations were performed on a 6 X6
mesh network featuring a secondary optical layer, spanning
1.5 million clock cycles with a 10% warm-up period. The
electrical network parameters have been considered the default
values in the Noxim simulator. The optical network parameters
are imported into the simulator using the values reported in
[10]. We recorded data while flits traversed routers by extract-
ing information from electrical NoC packets. Approximately
40% of the traffic is related to attack transactions, which are
randomly distributed from a random source; the remainder of
the traffic is associated with normal uniform synthetic traffic.
The dataset, comprising about 4.6 million records, is divided

into three segments i.e., 70% allocated for training, 20% for
validation, and 10% for testing. The details of the NoC traffic
features used in our analysis are presented in Table L.

A. Data Preprocessing

As described in [13], in some state-of-the-art security
approaches in on-chip data transmissions, the source and
destination IDs are removed from the header of transmitted
packets to prevent access by attackers, as we did in our training
dataset. All ’not a number’ (NaN) values and incomplete
records were also removed from the dataset, and the final
pruned dataset was normalized using the StandardScaler used
in machine learning to standardize features by removing the
mean and scaling them to unit variance. It transforms the
dataset such that its distribution will have a mean value of
zero and a standard deviation of one.

Figure 2 displays the correlation matrix of the dataset
features. As depicted in the figure, the primary correlation
exists between Current Cycle and Packet Number. This corre-
lation arises from the observation that, as the simulation cycle
progresses, the number of packets increases. Consequently, we
have excluded the Packet Number feature from the feature list
during the training of the ML algorithms. Another notable
correlation is observed between Temperature and Current
Cycle, which is expected since the advancement of the simu-
lation typically leads to an increase in core temperature due
to network activity. Since both features are important for
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Fig. 2: Correlation matrix of features

our investigation, we will retain them both. Another notable
correlation is evident between the Source ID/Destination 1D
and Current ID features. As previously mentioned, the Source
ID and Destination ID features have been excluded from the
dataset due to security concerns.

Table II illustrates the ranking of feature importance follow-
ing the training of machine learning algorithms. The feature
importance ranking provides valuable insights into the rele-
vance and predictive power of different features across various
machine learning algorithms. By examining the rankings as-
signed to each feature (i.e., a lower number indicates a higher
importance rank), we can discern which features exert the most
significant influence on the model’s predictive performance.
This analysis aids in understanding the underlying relation-
ships within the dataset and helps identify key factors driving
the outcomes of the model. Additionally, comparing feature
importance across multiple algorithms offers a comprehen-
sive perspective on feature relevance, highlighting consistent
predictors across different modeling approaches. According to
Table I1, Current ID and Input Port emerge as two of the most
critical features across all machine learning algorithms.

IV. EXPERIMENTAL RESULTS

In this section, we compare the effectiveness of simple
DNN, namely Multi-Layer Perceptron (MLP), RNN, and
LSTM, with the most applicable machine learning classifiers
such as XGBoost, LightGBM, Decision Tree, Random For-
est, k-nearest neighbors (KNN), Naive Bayes, and Stochastic
Gradient Descent (SGD) classifier. Figure 3 illustrates the
variations in accuracy and loss functions during training and

validation for various DNN approaches. It can be concluded
that none of the algorithms are overfitted or underfitted based
on the behavior of accuracy and loss functions. Additionally,
the results indicate that, as previously mentioned, the data
series approaches exhibit better parameters compared to the
best MLP accuracy and loss values after 50 epochs.

A. Accuracy & Loss function Analysis

Table III depicts the most important performance metrics
for comparing ML and DNN algorithms. The accuracy met-
ric provides an overall measure of the model’s correctness
in predicting both attack and non-attack instances. A high
accuracy score indicates that the model performs well in
correctly classifying instances from both classes. Precision
measures the proportion of true positive predictions among all
positive predictions, highlighting the model’s ability to avoid
false positives. Similarly, recall, also known as sensitivity,
quantifies the proportion of true positive instances correctly
identified by the model among all actual positive instances,
emphasizing the model’s ability to detect attack scenarios. F1-
score, the harmonic mean of Precision and Recall, provides
a balanced measure of the model’s performance, consider-
ing both false positives and false negatives. Analyzing these
metrics collectively allows for a comprehensive assessment
of the model’s effectiveness in distinguishing between attack
and non-attack scenarios. These metrics verify that although
most ML algorithms have lower accuracy, precision, recall,
and Fl-score values compared to DNN algorithms, Decision
Tree and Random Forest algorithms (with a maximum tree
depth of 20) outperform in these metrics. With increasing the
depth parameters to 25, the accuracy will be changed to over
99%. Further investigation and consideration are warranted
regarding this issue, as the presence of excessively deep trees
suggests the potential for overfitting the models to the training

TABLE II: Feature importance ranking for different classifiers

ML Algorithm
Features T 5
XGBoost LightGBM | Decision Tree | Random Forest | Naive Bayes SGD KNN
Flit Type 7 8 9 8 7 7 8
Hop Count 5 3 2 3 2 4
Flit Sequence Number 9 9 8 9 8 9 9
Current ID 1 1 1 1 1 1 1
Buffer Packet Count 6 6 7 7 4 4 5
Temperature 4 Bl 4 4 6 5 6
Input Port 2 2 2 3 2 3 2
Output Port 8 7 6 5 5 6 7
Current Cycle 3 4 5 6 9 8 3

TABLE III: Metrics comparison in ML and DNN algorithms

Algorithm Performance Metric
Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
XGBoost 90.8 87.6 91.6 89.6
LightGBM 80.6 83.7 68.4 75.3
Decision Tree 92 88.5 93.8 91.1
ML Random Forest 91.2 88.1 91.1 90.9
Naive Bayes 62.3 72.4 22.5 337
SGD 65.3 63.8 46.7 53.6
KNN 89.3 86.1 89.8 87.9
MLP 90.3 86.6 91.7 89.1
DNN | LSTM 93.5 92.7 923 92.5
RNN 93.8 92.9 92.5 92.6
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data. Overfitting occurs when the model learns the training
data too well, capturing noise and outliers that are specific
to the training set but do not generalize well to new, unseen
data. To address this issue, it may be necessary to tune
the hyperparameters of the decision tree and random forest
algorithms, such as limiting the maximum depth of the trees
or implementing pruning techniques to prevent overfitting and
improve the generalization performance of the models.

On the other hand, each data record in the dataset was
captured in every simulation cycle, and the dataset can be
considered as a time series dataset (Current Cycle feature in
Table I). The temporal dependencies and sequential nature of
the data make RNNs and LSTMs well-suited for capturing pat-
terns and making predictions. DNNs may struggle with such
data because they do not consider the sequential information
present in the data, whereas RNNs and LSTMs are designed to
handle such dependencies effectively. Upon training three deep
neural networks, it is imperative to compare their respective
parameters, particularly the number of trainable parameters.
This comparison sheds light on the complexity and capacity of

each network to learn and represent the underlying patterns in
the data. The MLP exhibits a simpler architecture, comprising
densely connected layers, resulting in a relatively lower num-
ber of trainable parameters compared to LSTM and DNN.
In contrast, LSTM, designed for sequential data analysis,
incorporates specialized memory cells and gates, contributing
to a larger parameter space. Meanwhile, DNN, characterized
by its deep architecture with multiple hidden layers, tends to
possess the highest number of trainable parameters among the
three networks, facilitating the extraction of intricate features
from the data. Regarding the number of hidden layers, the
MLP typically has a single hidden layer, while the LSTM and
RNN architectures can have multiple hidden layers. LSTM
networks commonly include recurrent connections in multiple
time steps, enabling them to capture long-term dependencies in
sequential data effectively. In contrast, DNN architectures can
be customized to include a variable number of hidden layers
based on the complexity of the task and available resources.
In terms of neurons per layer, MLP architectures often have
a fixed number of neurons in each hidden layer, while LSTM
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TABLE IV: The best models’ parameters

Parameter Neural Networks
MLP LSTM RNN
Learning Rate 0.01 0.001 0.001
Training Time (minutes) 640 870 910
Number of Layers 7 8 8
Number of Training Parameters | 1,156,291 | 1,232,750 | 1,289,228

and DNN architectures can vary significantly depending on the
specific architecture and task requirements. LSTM networks
have a larger number of neurons per layer compared to MLPs
due to the additional complexity introduced by memory cells
and gates.

The experimental results of various machine learning algo-
rithms alongside three DNN architectures, i.e. MLP, LSTM,
and RNN, at design time for thermal attack detection in
NoC systems, have yielded insightful results. Among these
methods, RNNs and specifically LSTM architectures have
demonstrated superior performance across multiple perfor-
mance metrics. These findings underscore the suitability of
RNN-based approaches, particularly LSTM, as robust security
measures for real-time application in NoC systems. By lever-
aging the inherent capability of LSTM networks to capture
temporal dependencies and patterns in sequential data, such
approaches exhibit enhanced sensitivity to detect anomalous
thermal behavior indicative of potential attacks. Furthermore,
the effectiveness of these methods in accurately identifying
and mitigating security threats at runtime highlights their
potential for proactive defense mechanisms in NoC environ-
ments, thus enhancing the resilience and security posture of
these critical systems.

B. Hyperparameter Tuning

To optimize a model, it is necessary to fine-tune its hy-
perparameters to minimize testing errors. Each classifier uses
a unique number and variety of these parameters. Having
experimenting with various permutations and combinations of
optimal parameters, including the number of hidden layers,
neurons per layer, dropout rates, batch size, learning rate,
activation functions, and loss functions, we have successfully
optimized neural network models to minimize the loss metric.

Table IV illustrates the key parameters of the optimal neural
network models. In particular, the number of hidden layers
ranged from 1 to 20. The dropout rate varied from 0.1 to
0.8 in increments of 0.1, and the number of neurons per
hidden layer was set between 1 and 100. Additionally, the
activation functions for each layer included Linear, Tanh, Relu,
and Sigmoid. The learning rates were chosen from 0.1, 0.01,
and 0.001. The classification loss function was Binary Cross-
entropy, and the Adam optimizer was employed.

V. CONCLUSIONS
The susceptibility of NoCs to thermal Denial-of-Service
(DoS) attacks presents a formidable challenge to system relia-

bility and security. Through the development and evaluation of
a NoC traffic dataset (the so-called NoCSNet), we presented
a pioneering approach for analyzing NoC traffic using Deep
Neural Networks (DNNs). We have demonstrated the efficacy
of our framework in fortifying data transmission security in
the face of thermal-based attacks. In our future work, we
plan to deploy HDL design of NoCSNet to develop hardware-
accelerated run-time component of attack detection and also
an appropriate countermeasure.
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