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Abstract—As the demand for high-performance computing

continues to rise, Network-on-Chip (NoC) architectures play

a crucial role in enabling efficient data transmission within

complex systems. However, the sensitivity of NoCs to intentional

thermal fluctuations opens doors to conducting Denial of Service

(DoS) attacks that can alter the system’s reliability and security.

In this paper, for the first time, we introduce NoCSNet as a

novel database of NoC traffic collected under various network

configurations and thermal attack scenarios. We also use Deep

Neural Networks (DNNs) to analyze the collected traffic to en-

hance data transmission security in the presence of thermal DoS

attacks. Through comprehensive experimentation and evaluation,

we demonstrate the effectiveness of NoCSNet in capturing the

security profile of NoC architectures, which can be actively used

in protecting NoCs’ data integrity and stability against thermal

DoS attacks. The experimental results indicate that among the

MLP, LSTM, and RNN deep neural networks, the RNN approach

provides the highest attack detection accuracy of 93.8%. We

anticipate that the collected dataset will help the community

develop a deeper understanding of the susceptibility of NoCs

against thermal DoS attacks.

Index Terms—Thermal Attack, Deep Learning, Opto-electrical

Network on Chip, Accuracy, Security Management

I. INTRODUCTION

In modern Multi-Processor System-on-Chips (MPSoCs),

inter-processor data exchange is mainly done through elec-

tronic Network-on-Chip (ENoC) that employ packet-based

data transmission. This architectural approach offers notable

enhancements over traditional bus and crossbar architectures

by applying computer network theories and methodologies

to on-chip communications [1]. However, recent advances in

complementary metal oxide semiconductor (CMOS) circuits

have prompted the integration of optical components into

MPSoCs [2] i.e., optical NoCs (ONoCs) offering ultra-high

bandwidth, low latency, and low power dissipation [2], [3].

As ONoC technology brings its challenges such as opti-

cal/electrical conversion overhead, complexities in laser inte-

gration, and sensitivity to thermal variations [4], [5], the hybrid

opto-electrical paradigm appears to be an intriguing solution

that offers advantages of both technologies [6].

ENoC and ONoC face an elevated risk of vulnerability to

hardware attacks for several reasons. First, as a NoC inter-

connects various Intellectual Properties (IPs) including those

produced in-house, sourced from trusted vendors, and IPs

sourced from unverified vendors, there is always a possibility

that a NoC can be leveraged for launching security attacks e.g.,

crypto-analysis attacks, side-channel attacks, denial of service

(DoS) attacks, etc. [7], [8]. Such attacks can be conducted

by Hardware Trojans (HTs) inserted in any of the sourced IP

cores.

In this paper, we explore temperature variations as a se-

curity threat for targeting hybrid opto-electrical NoCs. We

demonstrate how this vulnerability can be exploited by an

adversary to compromise the network and exfiltrate sensitive

information. Subsequently, we collect the necessary data in a

simulated environment during the design phase to study the

impact of thermal attacks. We utilize state-of-the-art neural

networks in addition to traditional machine learning algorithms

to analyze the behavior of such attacks. During runtime,

we can predict whether each data transmission represents

an attack or a safe transaction, enabling us to implement

appropriate countermeasures. The contributions of this paper

are as follows.

• In this paper, a novel security vulnerability affecting

hybrid opto-electrical systems has been studied.

• We assess an opto-electrical NoC under various thermal

attack scenarios along with normal data transmission

during the design phase, using data collected from the

Access-Noxim simulator.

• We utilize various neural networks and traditional ma-

chine learning approaches to identify the most accurate

predictor in runtime scenarios.

The remainder of this paper is structured as follows. In Sec-

tion II, the necessary background information on the network

model and the thermal threat is provided. Section III explores

the methodology including dataset gathering, pre-processing,

and details of the neural network architecture. Section IV

presents simulation experiments and analyzes the results, and

finally Section V concludes the paper.
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II. TARGETED ARCHITECTURE & THREAT MODEL

In this section, we review the typical architecture for hybrid

NoCs and then discuss the threat model proposed in [9] that

is based on intentional thermal fluctuations occurring in the

reviewed hybrid NoCs.

A. Opto-electrical Network-on-Chips

Typically, in a hybric NoC, long-distance communications

(inter-cluster) occur through optical channels, while electri-

cal communications are utilized for local destinations (intra-

cluster) [6], [10]. Packet switching is used in the electrical

domain, whereas optical circuit switching is utilized in the

ONoC domain. When communication is necessary between

two cores, the Network Interface (NI) sends a path-setup

packet to the electrical router. Upon receiving this packet,

the electrical router injects it into the electrical network and

establishes an optical path for subsequent data transmission

whenever an optical path is needed.

Optical signals are modulated at specific wavelengths, for

instance, using Microring Resonators (MRs), which employ

electrical signals for modulation. In this process, an array

of photodetectors converts optical signals into corresponding

electrical signals after they are multiplexed into a single optical

waveguide [11]. This study adopts the cluster-based hybrid

architecture, wherein optical routers are interconnected based

on a mesh-based Crux optical router, with adaptations for a

Wavelength Division Multiplexing (WDM) enabled network

[9]. In MR technology, the resonant wavelength is highly

susceptible to changes in the thermal conditions of the chip.

To counteract the impacts of temperature fluctuations and

variations induced during fabrication, MR necessitate tuning

through the application of external current or heat (referred to

as thermal tuning) to the MRs [12]. This adjustment process

enables the modification of their effective refractive index.

Within ONoCs, MRs undergo electrical and/or thermal tuning

via a dedicated tuning circuit [2]. A similar circuit can be

employed to activate and deactivate the MRs as required.

However, these tuning circuits represent the most vulnerable

aspect of the device concerning chip security.

Malicious hardware (such as a Hardware Trojan) could

potentially manipulate the tuning circuit to interfere with

the resonant wavelength of the ring resonators. Meanwhile,

data traveling through the waveguide can be intercepted by

malicious detector MRs without alteration, thereby posing a

significant threat to photonic links.

B. Threat Model

The studied network comprises two layers: the initial layer

constitutes an electrical network, while the upper layer is an

optical network. Based on our assessments outlined in this

section, an adversary can execute a thermal attack using any

of the three scenarios described in [9], [13] to either drop or

sniff data classified as private. The core of this attack lies in

the thermal sensitivity of ONoCs. According to the proposed

attack model, the attacker aims to overload a specific area of

the network to raise the temperature of certain optical routers,

thereby causing a shift in their operational wavelength. This

deliberate congestion enables the attacker to manipulate the

wavelength of the optical routers, granting access to data that

the modified router would not otherwise have access to. The

ensuing scenarios delve into how this thermal vulnerability can

be exploited to compromise the security and dependability of

ONoCs.

1) NACK Replay Attack Scenario: A malicious actor endeav-

ors to identify the source of information and sends a series

of NACK packets to the specified source router. This form

of NACK replay attack capitalizes on the handshake process

employed by the NoC in an end-to-end fashion. The replaying

of NACK packets results in heightened network activity within

the designated region, potentially elevating the local or overall

chip temperature. Ultimately, this increased temperature may

induce a wavelength alteration in the affected ONoC routers.

2) Packet Drop Attack Scenario: In instances where the

attacker is unable to pinpoint the source address of a packet,

they may opt to discard a segment of the packet, compelling

the destination to issue a NACK to the source. This involves

employing a fault injection attack to execute the ONoC thermal

attack.

3) False Traffic Injection Attack Scenario: The attacker

can inject significant volumes of fake traffic directly into

the network to disrupt or overload a specific area, thereby

breaching the thermal limits of the targeted ONoC router(s).

III. DATA COLLECTION AND ML PROCESSING

In a NoC-enabled MPSoC, following the generation of a

message, the NoC routes the message based on the predefined

routing algorithms, determining the path to the destination.

This path typically involves multiple intermediary nodes, such

as cores or routers, each tasked with forwarding the message

progressively toward its final destination. In our method, as

the message navigates through the network, it is subject to

comprehensive monitoring where various attributes of the

message and its transit are recorded. These attributes include

the packet’s size, source and destination identifiers, the chosen

route, timestamps at various nodes, and traffic density, among

others. Such monitoring is imperative as it furnishes the real-

time data requisite for the analysis by a deployed learning

algorithm (ML or DNN approach).

The overview of our proposed methodology is presented in

Figure 1. We performed system-level simulations to assess the

viability of the aforementioned attack scenarios. It should be

noted that we did not alter the optical layer in any way; rather,
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Fig. 1: Overview of the proposed methodology

TABLE I: Traffic features and value ranges applied in the model. ∗Source ID and Destination ID features are removed from

the dataset for classification due to the applied secure countermeasure approach. ∗∗The attack label is the target that should

be classified by the applied learning algorithm

Feature/Target Value Range Feature Description

Source ID∗ 0-35 The sender network node of a packet/flit

Destination ID∗ 0-35 The destination network node of a packet/flit

Current ID 0-35 The current network node where a packet/flit resides in each cycle

Flit Type {head, tail, body} Type of the flit

Hop Count 1-10 Number of hops from the current node to the destination

Flit Sequence Number 0-8 The unique sequence number for each flit of a packet

Packet Number Depends on the Packet Injection Rate The unique sequence number for each packet

Buffer Packet Count 0-112 (VC Number (2) × Port Number (7) × Buffer Width(8)) Specifies the number of occupied buffers in the buffer of the current node

Input Port {0: Local, 1: North, 2: South, 3: East, 4: West} Port used by the flit to enter the current router

Output Port (0: Local, 1: North, 2: South, 3: East, 4: West) Port used by the flit to exit the current router

Core Temperature From Ambient temperature to Maximum temperature Temperature of the current node each packet/flit resides in each cycle

Current Cycle 1-1,500,000 The clock cycle of simulation

Attack Label∗∗ {0,1} Specifies whether this recorded data transmission is indicative of an attack or not

we solely conducted NACK replays in the electrical layer and

monitored the resulting temperature changes in the optical

layer. The findings indicate that the attack can significantly

raise the network’s temperature, leading to wavelength alter-

ations in the optical routers. Throughout the system-level sim-

ulation of network parameters using the Noxim Simulator [14]

and analysis of thermal behavior employing the Hotspot tool

[15] which integrated into Access-Noxim simulator [16], we

identified 13 essential features (as listed in Table I). Following

data engineering and pre-processing of the dataset, various

machine learning algorithms, as well as deep neural networks,

were employed to identify the most effective classifier for

distinguishing between attack and non-attack records based

on the most significant metrics.

To collect the dataset, simulations were performed on a 6×6

mesh network featuring a secondary optical layer, spanning

1.5 million clock cycles with a 10% warm-up period. The

electrical network parameters have been considered the default

values in the Noxim simulator. The optical network parameters

are imported into the simulator using the values reported in

[10]. We recorded data while flits traversed routers by extract-

ing information from electrical NoC packets. Approximately

40% of the traffic is related to attack transactions, which are

randomly distributed from a random source; the remainder of

the traffic is associated with normal uniform synthetic traffic.

The dataset, comprising about 4.6 million records, is divided

into three segments i.e., 70% allocated for training, 20% for

validation, and 10% for testing. The details of the NoC traffic

features used in our analysis are presented in Table I.

A. Data Preprocessing

As described in [13], in some state-of-the-art security

approaches in on-chip data transmissions, the source and

destination IDs are removed from the header of transmitted

packets to prevent access by attackers, as we did in our training

dataset. All ’not a number’ (NaN) values and incomplete

records were also removed from the dataset, and the final

pruned dataset was normalized using the StandardScaler used

in machine learning to standardize features by removing the

mean and scaling them to unit variance. It transforms the

dataset such that its distribution will have a mean value of

zero and a standard deviation of one.

Figure 2 displays the correlation matrix of the dataset

features. As depicted in the figure, the primary correlation

exists between Current Cycle and Packet Number. This corre-

lation arises from the observation that, as the simulation cycle

progresses, the number of packets increases. Consequently, we

have excluded the Packet Number feature from the feature list

during the training of the ML algorithms. Another notable

correlation is observed between Temperature and Current

Cycle, which is expected since the advancement of the simu-

lation typically leads to an increase in core temperature due

to network activity. Since both features are important for
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Fig. 2: Correlation matrix of features

our investigation, we will retain them both. Another notable

correlation is evident between the Source ID/Destination ID

and Current ID features. As previously mentioned, the Source

ID and Destination ID features have been excluded from the

dataset due to security concerns.

Table II illustrates the ranking of feature importance follow-

ing the training of machine learning algorithms. The feature

importance ranking provides valuable insights into the rele-

vance and predictive power of different features across various

machine learning algorithms. By examining the rankings as-

signed to each feature (i.e., a lower number indicates a higher

importance rank), we can discern which features exert the most

significant influence on the model’s predictive performance.

This analysis aids in understanding the underlying relation-

ships within the dataset and helps identify key factors driving

the outcomes of the model. Additionally, comparing feature

importance across multiple algorithms offers a comprehen-

sive perspective on feature relevance, highlighting consistent

predictors across different modeling approaches. According to

Table II, Current ID and Input Port emerge as two of the most

critical features across all machine learning algorithms.

IV. EXPERIMENTAL RESULTS

In this section, we compare the effectiveness of simple

DNN, namely Multi-Layer Perceptron (MLP), RNN, and

LSTM, with the most applicable machine learning classifiers

such as XGBoost, LightGBM, Decision Tree, Random For-

est, k-nearest neighbors (KNN), Naive Bayes, and Stochastic

Gradient Descent (SGD) classifier. Figure 3 illustrates the

variations in accuracy and loss functions during training and

validation for various DNN approaches. It can be concluded

that none of the algorithms are overfitted or underfitted based

on the behavior of accuracy and loss functions. Additionally,

the results indicate that, as previously mentioned, the data

series approaches exhibit better parameters compared to the

best MLP accuracy and loss values after 50 epochs.

A. Accuracy & Loss function Analysis

Table III depicts the most important performance metrics

for comparing ML and DNN algorithms. The accuracy met-

ric provides an overall measure of the model’s correctness

in predicting both attack and non-attack instances. A high

accuracy score indicates that the model performs well in

correctly classifying instances from both classes. Precision

measures the proportion of true positive predictions among all

positive predictions, highlighting the model’s ability to avoid

false positives. Similarly, recall, also known as sensitivity,

quantifies the proportion of true positive instances correctly

identified by the model among all actual positive instances,

emphasizing the model’s ability to detect attack scenarios. F1-

score, the harmonic mean of Precision and Recall, provides

a balanced measure of the model’s performance, consider-

ing both false positives and false negatives. Analyzing these

metrics collectively allows for a comprehensive assessment

of the model’s effectiveness in distinguishing between attack

and non-attack scenarios. These metrics verify that although

most ML algorithms have lower accuracy, precision, recall,

and F1-score values compared to DNN algorithms, Decision

Tree and Random Forest algorithms (with a maximum tree

depth of 20) outperform in these metrics. With increasing the

depth parameters to 25, the accuracy will be changed to over

99%. Further investigation and consideration are warranted

regarding this issue, as the presence of excessively deep trees

suggests the potential for overfitting the models to the training

TABLE II: Feature importance ranking for different classifiers

TABLE III: Metrics comparison in ML and DNN algorithms

Performance Metric
Algorithm

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

XGBoost 90.8 87.6 91.6 89.6

LightGBM 80.6 83.7 68.4 75.3

Decision Tree 92 88.5 93.8 91.1

Random Forest 91.2 88.1 91.1 90.9

Naive Bayes 62.3 72.4 22.5 33.7

SGD 65.3 63.8 46.7 53.6

ML

KNN 89.3 86.1 89.8 87.9

MLP 90.3 86.6 91.7 89.1

LSTM 93.5 92.7 92.3 92.5DNN

RNN 93.8 92.9 92.5 92.6
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Fig. 3: Accuracy and loss parameters in each epoch of training and validation for different DNN approach (a) MLP Accuracy

(b) LSTM Accuracy (c) RNN Accuracy (d) MLP Loss (e) LSTM Loss (f) RNN Loss

data. Overfitting occurs when the model learns the training

data too well, capturing noise and outliers that are specific

to the training set but do not generalize well to new, unseen

data. To address this issue, it may be necessary to tune

the hyperparameters of the decision tree and random forest

algorithms, such as limiting the maximum depth of the trees

or implementing pruning techniques to prevent overfitting and

improve the generalization performance of the models.

On the other hand, each data record in the dataset was

captured in every simulation cycle, and the dataset can be

considered as a time series dataset (Current Cycle feature in

Table I). The temporal dependencies and sequential nature of

the data make RNNs and LSTMs well-suited for capturing pat-

terns and making predictions. DNNs may struggle with such

data because they do not consider the sequential information

present in the data, whereas RNNs and LSTMs are designed to

handle such dependencies effectively. Upon training three deep

neural networks, it is imperative to compare their respective

parameters, particularly the number of trainable parameters.

This comparison sheds light on the complexity and capacity of

each network to learn and represent the underlying patterns in

the data. The MLP exhibits a simpler architecture, comprising

densely connected layers, resulting in a relatively lower num-

ber of trainable parameters compared to LSTM and DNN.

In contrast, LSTM, designed for sequential data analysis,

incorporates specialized memory cells and gates, contributing

to a larger parameter space. Meanwhile, DNN, characterized

by its deep architecture with multiple hidden layers, tends to

possess the highest number of trainable parameters among the

three networks, facilitating the extraction of intricate features

from the data. Regarding the number of hidden layers, the

MLP typically has a single hidden layer, while the LSTM and

RNN architectures can have multiple hidden layers. LSTM

networks commonly include recurrent connections in multiple

time steps, enabling them to capture long-term dependencies in

sequential data effectively. In contrast, DNN architectures can

be customized to include a variable number of hidden layers

based on the complexity of the task and available resources.

In terms of neurons per layer, MLP architectures often have

a fixed number of neurons in each hidden layer, while LSTM
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TABLE IV: The best models’ parameters

Neural Networks
Parameter

MLP LSTM RNN

Learning Rate 0.01 0.001 0.001

Training Time (minutes) 640 870 910

Number of Layers 7 8 8

Number of Training Parameters 1,156,291 1,232,750 1,289,228

and DNN architectures can vary significantly depending on the

specific architecture and task requirements. LSTM networks

have a larger number of neurons per layer compared to MLPs

due to the additional complexity introduced by memory cells

and gates.

The experimental results of various machine learning algo-

rithms alongside three DNN architectures, i.e. MLP, LSTM,

and RNN, at design time for thermal attack detection in

NoC systems, have yielded insightful results. Among these

methods, RNNs and specifically LSTM architectures have

demonstrated superior performance across multiple perfor-

mance metrics. These findings underscore the suitability of

RNN-based approaches, particularly LSTM, as robust security

measures for real-time application in NoC systems. By lever-

aging the inherent capability of LSTM networks to capture

temporal dependencies and patterns in sequential data, such

approaches exhibit enhanced sensitivity to detect anomalous

thermal behavior indicative of potential attacks. Furthermore,

the effectiveness of these methods in accurately identifying

and mitigating security threats at runtime highlights their

potential for proactive defense mechanisms in NoC environ-

ments, thus enhancing the resilience and security posture of

these critical systems.

B. Hyperparameter Tuning

To optimize a model, it is necessary to fine-tune its hy-

perparameters to minimize testing errors. Each classifier uses

a unique number and variety of these parameters. Having

experimenting with various permutations and combinations of

optimal parameters, including the number of hidden layers,

neurons per layer, dropout rates, batch size, learning rate,

activation functions, and loss functions, we have successfully

optimized neural network models to minimize the loss metric.

Table IV illustrates the key parameters of the optimal neural

network models. In particular, the number of hidden layers

ranged from 1 to 20. The dropout rate varied from 0.1 to

0.8 in increments of 0.1, and the number of neurons per

hidden layer was set between 1 and 100. Additionally, the

activation functions for each layer included Linear, Tanh, Relu,

and Sigmoid. The learning rates were chosen from 0.1, 0.01,

and 0.001. The classification loss function was Binary Cross-

entropy, and the Adam optimizer was employed.

V. CONCLUSIONS

The susceptibility of NoCs to thermal Denial-of-Service

(DoS) attacks presents a formidable challenge to system relia-

bility and security. Through the development and evaluation of

a NoC traffic dataset (the so-called NoCSNet), we presented

a pioneering approach for analyzing NoC traffic using Deep

Neural Networks (DNNs). We have demonstrated the efficacy

of our framework in fortifying data transmission security in

the face of thermal-based attacks. In our future work, we

plan to deploy HDL design of NoCSNet to develop hardware-

accelerated run-time component of attack detection and also

an appropriate countermeasure.
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