
Date of publication October 2024, date of current version October 18, 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3484663

CG-CNN: Self-Supervised Feature
Extraction Through Contextual Guidance
and Transfer Learning
OLCAY KURSUN1, AHMAD PATOOGHY2, (SENIOR, IEEE), PEYMAN POURSANI2, OLEG V.
FAVOROV3
1Department of Computer Science, Auburn University at Montgomery, AL 36117, USA (e-mail: okursun@aum.edu)
2Department of Computer Systems Technology, North Carolina A&T State University, Greensboro, NC 27411, USA (e-mail: apatooghy@ncat.edu,
pjpoursani@aggies.ncat.edu)
3Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC, 27599 USA (e-mail: favorov@email.unc.edu)

Corresponding author: Ahmad Patooghy (e-mail: apatooghy@ncat.edu).

ABSTRACT Contextually Guided Convolutional Neural Networks (CG-CNNs) employ self-supervision
and contextual information to develop transferable features across diverse domains, including visual, tactile,
temporal, and textual data. This work showcases the adaptability of CG-CNNs through applications to
various datasets such as Caltech and Brodatz textures, the VibTac-12 tactile dataset, hyperspectral images,
and challenges like the XOR problem and text analysis. In text analysis, CG-CNN employs an innovative
embedding strategy that utilizes the context of neighboring words for classification, while in visual and
signal data, it enhances feature extraction by exploiting spatial information. CG-CNN mimics the context-
guided unsupervised learning mechanisms of biological neural networks and it can be trained to learn
its features on limited-size datasets. Our experimental results on natural images reveal that CG-CNN
outperforms comparable first-layer features of well-known deep networks such as AlexNet, ResNet, and
GoogLeNet in terms of transferability and classification accuracy. In text analysis, CG-CNN learns word
embeddings that outperform traditional models like Word2Vec in tasks such as the 20 Newsgroups text
classification. Furthermore, ongoing development involves training CG-CNN on outputs from another CG-
CNN to explore multi-layered architectures, aiming to construct more complex and descriptive features.
This scalability and adaptability to various data types underscore the potential of CG-CNN to handle a wide
range of applications, making it a promising architecture for tackling diverse data representation challenges.

INDEX TERMS Deep Learning, Contextual Guidance, Unsupervised Learning, Transfer Learning, Feature
Extraction, Pluripotency.

I. INTRODUCTION

Deep learning approach has led to great excite-
ment and success in AI in recent years Alzubaidi
et al. (2021); Fisher et al. (2023); Goodfellow et al.
(2016); LeCun et al. (2015); Ravi et al. (2017);
Zhao et al. (2019). With the advances in computing
power, the availability of manually labeled large
data sets, and a number of incremental technical
improvements, deep learning has become an impor-
tant tool for machine learning involving big data
Gao et al. (2020); Goodfellow et al. (2016); Hu

et al. (2023); Zhao et al. (2019). Deep Convolutional
Neural Networks (CNNs), organized in series of
layers of computational units, use local-to-global
pyramidal architecture to extract progressively more
sophisticated features in the higher layers based on
the features extracted in the lower ones Goodfellow
et al. (2016); Zhao et al. (2019). Such incrementally
built-up features underlie the remarkable perfor-
mance capabilities of deep CNNs.

When deep CNNs are trained on gigantic datasets
to classify millions of data into thousands of classes,

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 1

ar
X

iv
:2

10
3.

01
56

6v
3

 [c
s.C

V
]

19
 O

ct
 2

02
4

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

the features extracted by the intermediate hidden
layers – as opposed to either the raw input vari-
ables or the task-specific complex features of the
highest layers – come to represent efficiently the
objective content of the data Bengio (2012); Gao
et al. (2020); Iman et al. (2023); Mukhopadhyay
et al. (2023); Zhu et al. (2023). Such objectively
significant and thus inferentially powerful features
can be used not only in the classification task for
which they were developed, but in other similar
classification tasks as well. In fact, having such
features can reduce complexity of learning new
pattern recognition tasks Favorov & Ryder (2004).
Indeed, taking advantage of this in the process
known as transfer learning Chen et al. (2023); Gao
et al. (2020); Goyal & Sharma (2023); Iman et al.
(2023); Poyatos et al. (2023); Salehi et al. (2023);
Tang & Xie (2023); Unver & Sener (2023); Yosin-
ski et al. (2014); Zhu et al. (2023) helps extract
broad-purpose features to preprocess the raw in-
put data and boost the efficiency and accuracy of
special-purpose machine learning classifiers trained
on smaller datasets Bengio (2012); Goodfellow
et al. (2016); Priya & Padmapriya (2023); Zhao
et al. (2019). Transfer learning is accomplished by
first training a “base” broad-purpose network on
a big-data task and then transferring the learned
features/weights to a special-purpose “target” net-
work trained on new classes of a generally smaller
“target” dataset Yosinski et al. (2014).

Learning generalizable representations is im-
proved with data augmentation, by incorporating
variations of the training set datasets using pre-
defined transformations Shorten & Khoshgoftaar
(2019). Feature invariances, which have long been
known to be important for regularization Iman et al.
(2023); Zhu et al. (2023), can also be promoted
by such means as mutual information maximiza-
tion Favorov & Ryder (2004); Hjelm et al. (2019),
or by penalizing the derivative of the output with
respect to the magnitude of the transformations to
incorporate a priori information about the invari-
ances Simard et al. (1992), or by creating auxiliary
tasks for unlabeled data Dosovitskiy et al. (2014);
Ghaderi & Athitsos (2016).

Although supervised deep CNNs are good at
extracting pluripotent inferentially powerful trans-
ferable features, they require big labeled datasets
with detailed external training supervision. Also, the
backpropagation of the error all the way down to
early layers can be problematic as the error signal
weakens (a phenomenon known as the gradient
vanishing Arjovsky & Bottou (2017)). To avoid

these difficulties, in this paper we describe a self-
supervised approach for learning pluripotent trans-
ferable features in a single CNN layer without re-
liance on feedback from higher layers and without
a need for big labeled datasets. We demonstrate
the use of this approach on two examples of a
single CNN layer trained first on natural RGB image
datasets and then on hyperspectral data images. Of
course, there is a limit to sophistication of fea-
tures that can be developed on raw input patterns
by a single CNN layer. However, more complex
and descriptive pluripotent features can be built by
stacking multiple CNN layers, each layer developed
in its turn by using our proposed approach on the
outputs of the preceding layer(s).

Self-supervised learning enables models to learn
rich representations from unlabeled data, particu-
larly in scenarios where labeled data are scarce or
costly to obtain. This method operates by creating
a pretext task, such as predicting part of the data
from other parts, to learn general features that can
be beneficial for downstream tasks. The efficacy
of self-supervised learning hinges significantly on
the contextual information, the situational data that
surrounds and adds meaning to the primary data
features. This contextual guidance helps in learn-
ing features that are more useful for the arbitrary
down-stream prediction tasks on the data. Creating
and learning to discriminate self-supervised con-
textual meta-classes is an exhaustive task to be
performed in one pass and transfer learning helps
self-supervision. Transfer learning allows a model
trained to perform well for one prediction prob-
lem (source domain) to serve as a starting point
for a related but different problem (target domain).
By integrating self-supervised learning with contex-
tual guidance and transfer learning, the proposed
methodology allows the large set of contextual
classes to be broken into smaller source domain
tasks that can be iteratively used to train features
across varied tasks.

This paper expands on our previous work Kur-
sun et al. (2022); Kursun & Favorov (2019); Kur-
sun et al. (2023) by enhancing and demonstrating
the robustness and applicability of the Contextu-
ally Guided Convolutional Neural Networks (CG-
CNN). The new contributions include:

• The contextually guided model has been ex-
tended to handle datasets from different modal-
ities, further showcasing its versatility as a
generic feature extraction and transfer learning
approach.

• New experiments on various datasets, includ-

2 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

ing text classification with the 20 Newsgroups
dataset, and the tactile VibTac-12 dataset have
been added. These additions demonstrate CG-
CNN’s ability to adapt to both structured and
unstructured data across different modalities.

• We have introduced a new methodology for
estimating the usefulness of CNN features,
advancing the theoretical framework of our
approach and offering a new metric, "transfer
utility," which quantifies the effectiveness of
the CG-CNN in various self-supervised learn-
ing settings.

• We have added a demonstration of the model’s
performance on the classical XOR prob-
lem. This provides deeper insights into the
model’s capability to develop features with
high pluripotency and transfer utility.

In Section 2, we briefly review transfer learning
and neurocomputational antecedents of our unsu-
pervised feature extraction approach. In Section 3,
we present the proposed Contextually Guided CNN
(CG-CNN) method and a measure of its transfer
utility. We present experimental results in Section
4 and conclude the paper in Section 5.

II. BACKGROUND ON TRANSFERABLE
FEATURE EXTRACTION
Deep CNNs apply successive layers of convolution
(Conv) operations, each of which is followed by
nonlinear functions such as the sigmoidal or ReLU
activation functions and/or max-pooling. These suc-
cessive nonlinear transformations help the network
extract gradually more nonlinear and more infer-
ential features. Besides their extraordinary classi-
fication accuracy on very large datasets, the deep
learning approaches have received attention due to
the fact that the features extracted in their first
layers have properties similar to those extracted
by real neurons in the primary visual cortex (V1).
Discovering features with these types of receptive
fields are now expected to the degree that obtaining
anything else causes suspicion of poorly chosen
hyperparameters or a software bug Yosinski et al.
(2014).

Pluripotent features developed in deep CNN lay-
ers on large datasets can be used in new classi-
fication tasks to preprocess the raw input data to
boost the accuracy of the machine learning classifier
Gao et al. (2020); Zhu et al. (2023). That is, a base
network is first trained on a “base" task (typically
with a big dataset), then the learned features/weights
are transferred to a second network to be utilized
for learning to classify a “target" dataset Yosinski

et al. (2014). The learning task of the target network
can be a new classification problem with different
classes. The base network’s pluripotent features will
be most useful when the target task does not come
with a large training dataset. When the target dataset
is significantly smaller than the base dataset, transfer
learning serves as a powerful tool for learning to
generalize without overfitting.

The transferred layers/weights can be updated
by the second network (starting from a good ini-
tial configuration supplied by the base network) to
reach more discriminatory features for the target
task; or the transferred features may be kept fixed
(transferred weights can be frozen) and used as a
form of preprocessing. The transfer is expected to be
most advantageous when the features transferred are
pluripotent ones; in other words, suitable for both
base and target tasks. The target network will have a
new output layer for learning the new classification
task with the new class labels; this final output layer
typically uses softmax to choose the class with the
highest posterior probability.

Biological neural networks like cortical areas
making up the sensory cortex (similar to deep
CNNs) are organized in a modular and hierarchi-
cal architecture Hawkins et al. (2017). Column-
shaped modules (referred to as columns) making
up a cortical area work in parallel performing in-
formation processing that resembles a convolutional
block (convolution, rectification, and pooling) of a
deep CNN. Each column of a higher-level cortical
area builds its more complex features using as input
the features of a local set of columns in the lower-
level cortical area. Thus, as we go into higher areas
these features become increasingly more global and
nonlinear, and thus more descriptive Favorov &
Kursun (2011); Favorov & Ryder (2004); Priya &
Padmapriya (2023).

Unlike deep CNNs, cortical areas do not rely
on error backpropagation for learning what features
should be extracted by their neurons. Instead, corti-
cal areas rely on some local guiding information in
optimizing their feature selection. While local, such
guiding information nevertheless promotes feature
selection that enables insightful perception and suc-
cessful behavior. The prevailing consensus in the-
oretical neuroscience is that such local guidance
comes from the spatial and temporal context in
which selected features occur Favorov & Ryder
(2004). The reason why contextually selected fea-
tures turn out to be behaviorally useful is because
they are chosen for being predictably related to
other such features extracted from non-overlapping

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 3

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

sensory inputs and this means that they capture the
orderly causal dependencies in the outside world
origins of these features Favorov & Ryder (2004);
Kursun & Favorov (2024); Phillips et al. (1995).

III. CONTEXTUALLY GUIDED CONVOLUTIONAL
NEURAL NETWORK (CG-CNN)
A. BASIC DESIGN
In this paper we apply the cortical context-guided
strategy of developing pluripotent features in indi-
vidual cortical areas to individual CNN layers. To
explain our approach, suppose we want to develop
pluripotent features in a particular CNN layer (per-
forming convolution + ReLU + pooling) on a given
data repository. We set up a three-layer training
system (Figure 1) as:

1) The Input layer, which might correspond to
a 2-dimensional field of raw pixels (i.e., a
3D tensor with two axes specifying row and
column and one axis for the color channels)
or the 3D tensor that was outputed by the
preceding CNN layer with already developed
features;

2) The CNN layer (“Feature Generator”), whose
features we aim to develop;

3) The Classifier layer, a set of linear units fully
connected with the output units of the CNN
layer, each unit (with softmax activation) rep-
resenting one of the training classes in the
input patterns.

As in standard CNNs, during this network’s training
the classification errors will be backpropagated and
used to adjust connection weights in the Classifier
layer and the CNN layer. List of the symbols used
in the rest of this section are summarized in Table 1.

While eventually (after its training) this CNN
layer might be used as a part of a deep CNN
to discriminate some particular application-specific
classes of input patterns, during the training period
the class labels will have to be assigned to the
training input patterns internally; i.e., without any
outside supervision. Adopting the cortical contex-
tual guidance strategy, we can create a training class
by picking at random a set of neighboring window
patches (Figure 1). Being close together or even
overlapping, such patches will have a high chance of
showing the same object and those that do will share
something in common (i.e., the same context). Other
randomly chosen locations in the dataset – giving
us other training classes – will likely come from
other objects and at those locations the neighboring
window patches will have some other contexts to
share. We can thus create a training dataset X =

TABLE 1: List of Symbols

Symbol Description
a the width of the input bitmap data patches
ACG(C) transferable classification accuracy
b the number of channels (e.g., red-green-blue) of

the input bitmap data patches
C the number of contextual groups
d the number of feature maps (the features ex-

tracted from the a× a× b input tensor
g the extent of the spatial translation within contex-

tual groups
N the number of randomly chosen data patches in

each contextual group
rt one-hot vector for the class label of xt, where

rtc = 1 if and only if xt ∈ contextual group c
s the stride of the convolutions
U Transfer Utility, estimates the pluripotency of the

learned convolutional features
Vl softmax weights of Layer-5 for contextual group

l ∈ {1, 2, . . . , C} for the current task of discrim-
inating C groups (each softmax unit has d input
connections coming from y)

w the kernel size of the convolutions
Wj convolutional weights of unit j in Layer-2 (each

unit/feature has w × w × b input connections)
xt data patch number t used as input to CG-CNN
XE the training dataset formed by xt data patches

(1 ≤ t ≤ C × N) from C contextual groups
with N patches in each group

XM the dataset formed similarly as XE, which is
used after the E-step for estimating the goodness-
of-fit, ACG, of the current Layer-2 weights W .
It is also used for updating the Layer-2 weights
(Wnew) in the M-step

yt the d-dimensional feature vector computed as the
output of the CNN layer

ytj the response of unit/feature j in the CNN layer
with j ∈ {1, 2, . . . , d}

ztl the response of output unit l in the Classifier layer
to the input pattern xt (estimate of the probability
that xt belongs to contextual group l)

{xt | 1 ≤ t ≤ CN} of C × N class-labeled
input patterns by treating C sets of N neighboring
window patches – each set drawn from a different
randomly picked data location – as belonging to
C training classes, uniquely labeled from 1 to C.
These inputs are small a × a × b tensors, a × a
patches (feature-maps) with b features. We will refer
to each such class of neighboring data patches as a
“contextual group.”

Upon a presentation of a particular input pattern
xt from the training dataset X, the response of the
CNN layer is computed as:

ytj = MaxPool([Wj ∗ xt]+) (1)

where ytj is the response of output unit j in the
CNN layer with d units (i.e., yj is CNN’s feature
j, where 1 ≤ j ≤ d), Wj is the input connection
weights of that unit (each unit has w × w × b

4 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

-

Database access

Patches self-labelled
from ! local contexts Training

A patch from local
context " (1 ≤ " ≤ !) Input layer

Conv. + ReLU +
Pooling Feature generation

Softmax Classification

-

Error
Error

pa
tc
h
cla

ss
 la
be

l (
")

Task-2

Task-1

Database of broader
context recordings

Fabric-4

Sparkle paper-1

Moquette-2

Fabric-2

(a) (b)

FIGURE 1: (a) Class-defining contextual groups of data patches. Each patch is shown as a small rectangular
box superimposed on one of the database of recordings. Neighboring patches constitute a contextual group
and during network training are treated as belonging to the same class. During network training, locations of
contextual groups are picked at random. Two tasks and four groups per task are shown on this photo with
three patches in each (C = 4 and N = 3). (b) CG-CNN architecture.

input connections), symbol * denotes convolution
operation, and [.]+ = max{., 0} denotes the ReLU
operation. Next, the response of the Classifier layer
is computed by the softmax operation as:

ztl =
exp (Vl · yt)∑C
c=1 exp (Vc · yt)

(2)

where ztl is the response of output unit l in the
Classifier layer (expressing the probability of this
input pattern xt belonging to class l), yt = [ytj]

d
j=1

is the d-dimensional feature vector computed as the
output of the CNN layer, and Vl is the vector of
connection weights of that unit from all the d units
of the CNN layer.

During training, connection weights W and V are
adjusted by error backpropagation so as to maxi-
mize the log-likelihood (whose negative is the loss
function):

L
(
V,W

∣∣X)
=

CN∑
t=1

C∑
c=1

rtc log z
t
c (3)

where rtc ∈ 0, 1 indicates whether input pattern xt

belongs to class c.

Table 1, listed in alphabetical order, provides the
nomenclature of symbols used in our description of
the CG-CNN algorithm.

B. ITERATIVE TRAINING ALGORITHM

If we want to develop pluripotent features in the
CNN layer that will capture underlying contextual
regularities in the data collections, it might be neces-
sary to create tens of thousands of contextual groups
for the network’s training Dosovitskiy et al. (2014);
Ghaderi & Athitsos (2016). We can avoid the com-
plexity of training the system simultaneously on so
many classes by using an alternative approach, in
which training is performed over multiple iterations,
with each iteration using a different small sample
of contextual groups as training classes Finn et al.
(2017). That is, in each iteration a new small (e.g.,
C = 100) number of contextual groups is drawn
from the database and the system is trained to
discriminate them. Once this training is finished, a
new small number of contextual groups is drawn
and training continues in the next iteration on these
new classes without resetting the already developed

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 5

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

CNN connection weights.
For such iterative training of the CG-CNN sys-

tem, we use an expectation-maximization (EM) al-
gorithm Alpaydin (2014); Do & Batzoglou (2008).
The EM iterations alternate between performing
an expectation (E) step and a maximization (M)
step. At each EM iteration, we create a new train-
ing dataset X = {xt | 1 ≤ t ≤ CN} of C × N
self-class-labeled input patterns and randomly parti-
tion it into two subsets; one subset XE to be used in
the E-step, the other subset XM to be used in the M-
step. Next, we perform the E-step, which involves
keeping W connection weights from the previous
EM iteration (Wold), while training V connections
of the Classifier layer on the newly created XE sub-
set so as to maximize its log-likelihood L (Eq. 3):

E-step: Vnew = argmax
V

L
(
V,Wold

∣∣XE

)
(4)

Next, we perform the M-step, which involves
holding the newly optimized V connection weights
fixed, while updating W connections of the CNN
layer on the XM subset so as to maximize log-
likelihood L one more time:

M-step: Wnew = argmax
W

L
(
Vnew,W

∣∣XM

)
(5)

Overall, EM training iterations help CG-CNN
take advantage of transfer learning and make it
possible to learn pluripotent features using a small
number of classes in the Classifier layer (each soft-
max unit in this layer represents one class). By con-
tinuing to update the CNN layer weights W , while
the contextual groups to be discriminated by the
Classifier keep changing with every EM iteration,
CG-CNN spreads the potentially high number of
contextual groups (classes) needed for learning data
archive contextual regularities into multiple itera-
tions Finn et al. (2017). The proposed EM algorithm
for training CG-CNN achieves an efficient approach
to learning the regularities that define contextual
classes, which otherwise would theoretically require
a C value in orders of tens of thousands Dosovitskiy
et al. (2014).

To monitor the progress of CG-CNN training
across EM iterations – so as to be able to de-
cide when to stop it – we can at each EM iter-
ation compute the network’s current classification
accuracy. Since we are interested in transferability
of the CNN-layer features, such accuracy evalua-
tion should be performed after the E-step, when
Classifier-layer connections V have been optimized

on the current iteration’s task (using the XE subset
of input patterns), but before optimization of CNN-
layer connections W (which were transferred from
the previous EM iteration). Furthermore, classifica-
tion accuracy should be tested on the new, XM,
subset of input patterns. Such classification accu-
racy can be expressed as the fraction of correctly
classified test (XM) input patterns. We will refer to
such classification accuracy of CG-CNNs with task-
specific Classifier weights V but transferred CNN
feature weights W as “transferable classification
accuracy” and use it in Section 4 as an indicator of
the usefulness of context-guided CNN features on a
new task:

A =
1

|XM|

|XM|∑
t=1

[
argmax rtc

c
= argmax ztc

c

]
(6)

where the argmax operators return the indices of the
expected and predicted classes of xt, respectively;
and [i = j] is the Kronecker delta function (ex-
pressed using the Iverson bracket notation) used to
compare the expected and predicted classes.

As will be detailed further in Section 4, no partic-
ular CNN architecture is required for applying the
CG-CNN training procedures. In Algorithm 1, we
formulate the CG-CNN algorithm using a generic
architecture (that somewhat resembles AlexNet be-
cause GoogLeNet, for example, does not use ReLU
but it uses another layer called BatchNorm). Re-
gardless of the particulars of the chosen architecture,
CG-CNN accepts a small a× a× b tensor as input.
Although CG-CNN can be applied repeatedly to
extract higher level features on top of the features
extracted in the previous layer as mentioned at the
beginning of this section, in this paper, focusing on
CG-CNN’s first application to data directly, b simply
denotes the number of color bands, i.e. b = 3 for
RGB image data, and a denotes the width of the re-
semblance patches that form the contextual groups.
The kernel size of the convolutions and the stride are
denoted by w and s, respectively. In CNNs, pooling
operations, e.g. MaxPool, are used to subsample
(that leads to the pyramidal architecture) the feature
maps. A 75% reduction is typical, which is achieved
via pooling with a kernel size of 3 and stride of 2,
which gives us a = w+2s. For example, if w = 11
and s = 4 for the convolutions (as in AlexNet),
then a = 19. That is, CG-CNN’s Feature Generator
(the CNN layer) learns to extract d features (e.g.,
d = 64) that most contextually and pluripotently
represent any given a × a data image patch. Note
that at this level CG-CNN is not trying to solve an

6 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

Algorithm 1 The proposed CG-CNN method for
learning broad-purpose transferable features

1: CG-CNN = [
2: // the Input layer
3: Layer-1: InputLayer(input_size = a× a× b)
4: // the CNN layer (Feature Generator)
5: Layer-2: ConvLayer(kernel_size = w×w×b,

output_size = d, stride = s)
6: Layer-3: ReLULayer
7: Layer-4: y = MaxPool(kernel_size = 3× 3)
8: // the Classifier layer (Discriminator)
9: Layer-5: z = Softmax(output_size = C)

10:]
11: Randomly initialize Layer-2 weights W
12: repeat// Start a new EM iteration
13: // Create New Task
14: // Populate a new dataset, X with C classes

and N instances per class
15: for c = 1 to C do
16: Pick a random a×a window as the seed
17: Spatial Contextual Guidance:
18: Randomly slide the seed ±g pixels to

create N instances of class-c.
19: Color-based Contextual Guidance:
20: Random 10% color-jitter to perturb

brightness, contrast, saturation, and hue. 50%
are converted to grayscale.

21: end for
22: Split X into the E-dataset and M-dataset
23: // E-step:
24: Set learning rate of Layer-2 to 0
25: Randomly initialize Layer-5
26: Train Layer-5 using E-dataset to get Vnew

27: Compute Accuracy, A, using Vnew and W
on M-dataset

28: // M-step:
29: Set learning rate of Layer-5 to 0
30: Restore learning rate for W of Layer-2
31: Fine-tune W by using the M-dataset
32: until A converges

actual classification problem and is only learning
a powerful local representation; only a pyramidal
combination of these powerful local features can be
used to describe a data big enough to capture real-
world object class.

C. PLURIPOTENCY ESTIMATION OF CNN
FEATURES
EM training of CG-CNN aims to promote pluripo-
tency of features learned by the CNN layer; i.e.,
their applicability to new classification tasks. Ide-

ally, pluripotency of a given set of learned features
would be measured by applying them to a compre-
hensive repertoire of potential classification tasks
and comparing their performance with that of: (1)
naïve CNN-Classifiers, whose CNN-layer connec-
tion weights are randomly assigned (once randomly
assigned for a given task, these W weights are never
updated as in extreme learning machines Wang et al.
(2022); Glorot & Bengio (2010) present a state-of-
the-art weight initialization method); and (2) task-
specific CNN-Classifiers, whose CNN-layer con-
nections are specifically trained on each tested task.
The more pluripotent the CG features, the greater
their classification performance compared to that
of random features and the closer they come to
the performance of task-specific features. Such a
comprehensive comparison, however, is not practi-
cally possible. Instead, we can resort to estimating
pluripotency on a more limited assortment of tasks,
such as for example discriminating among newly
created contextual groups (as was done in EM train-
ing iterations). Regardless of the C-parameter used
in the CG-CNN training tasks, these test tasks will
vary in their selection of contextual groups as well
as the number (C) of groups.

The expected outcome is graphically illustrated in
Figure 2, plotting expected classification accuracy
of CNN-Classifiers with random, task-specific, and
CG features as a function of the number of test
classes. When the testing tasks have only one class,
all three classifiers will have perfect accuracy. With
increasing number of classes in a task, classification
accuracy of random-feature classifiers will decline
most rapidly, while that of task-specific classifiers
will decline most slowly, although both will even-
tually converge to zero. CG-feature classifiers will
be in-between. According to this plot, the benefit
of using CG features is reflected in the area gained
by the CG-feature classifiers in the plot over the
baseline established by random-feature classifiers.
Normalizing this area by the area gained by task-
specific classifiers over the baseline, we get a mea-
sure of “Transfer Utility” of CG features:

U =

∑∞
C=1 E

[
ACG(C)

]
−

∑∞
C=1 E

[
Arandom(C)

]∑∞
C=1 E

[
Aspecific(C)

]
−

∑∞
C=1 E

[
Arandom(C)

]
(7)

where Arandom(C), Aspecific(C), and ACG(C) are
classification accuracies of CNN-Classifiers with
random, task-specific, and CG features, respec-
tively, on tasks involving discrimination of C con-
textual groups (Eq. 6).

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 7

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

FIGURE 2: Transfer Utility of CG-CNN features
is based on the area under the curve of the test
accuracy ACG as a function of the number of test
classes C. Accuracies obtained using the random
and task-specific CNN features, Arandom(C) and
Aspecific(C) are also shown as they are used in
Eq. 7 to quantify the Transfer Utility, U . The ex-
pectation of the test accuracies is computed over a
number of tasks generated for each value of C.

D. SOURCES OF CONTEXTUAL GUIDANCE
While in our presentation of CG-CNN so far we
have explained the use of contextual guidance on
an example of spatial proximity, using neighboring
data patches to define training/testing classes, any
other kind of contextual relations can also be used
as a source of guidance in developing CNN-layer
features. Temporal context is one such rich source.
Frequency domain context is another source, most
obviously in speech recognition, while in Section
4 we exploit it in a form of hyperspectral imaging.
More generally, any natural phenomena in which a
core of indigenous causally influential factors are
reflected redundantly in multivariable raw sensor
data will have contextual regularities, which might
be possible to use to guide feature learning in the
CNN layer.

With regard to spatial-proximity-based contextual
grouping, it is different from data augmentation
used in deep learning Dosovitskiy et al. (2014). Data
augmentation does shift input data patches a few
pixels in each direction to create more examples
of a known object category (such as a car or an
animal); however, for a contextual group, we do not
have such object categories to guide the placement
of data patches and we take patches over a much
larger range pixels from the center of the contextual
group. Training CG-CNN using short shifts (similar
to data-augmentation) does not lead to tuning to V1-
like features because other/suboptimal features can
also easily cluster heavily overlapping data patches.

Another source of contextual information that we
utilize in this paper for extracting features from
color data images is based on multiple pixel-color

representations (specifically, RGB and grayscale).
Instead of using a feature-engineering approach that
learns to extract color features and grayscale fea-
tures separately, as in Alzubaidi et al. (2021), we
use a data-engineering approach by extending the
contextual group formation to the color and gray
versions of the data image windows: For every con-
textual group, some of the RGB data image patches
are converted to grayscale. This helps our network
develop both gray and color features as needed for
maximal transfer utility: if the training is performed
only on gray data images, even though the neurons
might have access to separate RGB color chan-
nels, whose weights are randomly initialized and
the visualization of feature weights initially looks
colorful, they all gradually move towards gray fea-
tures. Using no grayscale data images leads to all-
color features automatically. For our experiments in
Section 4, the probability for the random grayscale
transformation was set to 0.5. That is, we converted
50% of the data image patches in each contextual
group from color to gray, which led to emergence of
gray-level features in addition to color ones.

IV. EXPERIMENTAL RESULTS
A. DEMONSTRATION ON THE XOR PROBLEM
The XOR problem stands as a fundamental example
to demonstrate the importance of extracting non-
linear features and the effectiveness of multilayer
networks. In addressing this problem, our method
showcases its robust representational capacity, en-
hancing the variety of nonlinear mappings that can
be captured. This capacity is akin to the principles
seen in Radial Basis Function (RBF) networks or
the concept of pluripotency (high Rademacher com-
plexity) Favorov & Kursun (2011), emphasizing the
preservation of nuanced neighborhood structures
within the data. We utilize synthetic data to illustrate
the efficacy of our approach, underscoring that its
success is not reliant on convolutional processes
or image data, which are common in CNN appli-
cations. Instead, this demonstration highlights how
our methodology can discern patterns and learn
relationships in data that are not inherently image-
based, showcasing its adaptability and broader ap-
plicability beyond the conventional scope of image-
focused neural networks. As outlined in Figure 3.a,
this subsection presents the CG-CNN approach to
solving the XOR problem through transfer learning,
beginning with self-supervision on a task involving
classification of random blobs, followed by fine-
tuning for the XOR classification problem.

The initial phase of our experiment involved

8 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

(a) (b)

FIGURE 3: (a) Illustration of the CG-CNN architecture applied to the input space of the XOR dataset; (b)
the XOR dataset represented using Gaussian blobs with a standard deviation of 0.1.

training a neural network in a self-supervised man-
ner on a dataset comprising randomly generated
blobs (shown in Figure 3.b). Each blob represented
a distinct class, and the goal was to classify points
into their respective blobs. This task was designed to
encourage the model to learn rich feature represen-
tations that capture the underlying structure of the
data space.

Our model architecture for this phase included
two hidden layers with 20 neurons each, incorporat-
ing sigmoid activation functions. The output layer
for this multi-class self-supervised task utilized a
softmax activation function. Even though the num-
ber of output neurons (the number of classes in
a task) changes, the hidden layers gradually learn
features that can lead to better starting point than
random initialization in order to obtain higher av-
erage classification accuracy (i.e. Transfer Utility)
with shorter training on limited training data. We
also integrated Dropout layers with a 0.1 dropout
rate subsequent to each hidden layer in our model
for regularization and to prevent over-reliance on
particular features, thereby promoting generaliza-
tion for all the models (even more so for the task-
specific ones). By randomly deactivating a subset
of neurons during training, Dropout ensures that
different neurons are activated across iterations, re-
ducing the likelihood of the model entirely losing
previously learned information (catastrophic forget-

FIGURE 4: The transferable classification loss and
accuracy are depicted in the left and right panels,
respectively. As the network is exposed to more
tasks, there is an evident emergence of a power-
ful representation, characterized by progressively
lower loss and higher accuracy on self-supervised
tasks that indicates a growing Transfer Utility. The
smooth curve denotes the running average.

ting) from the previous self-supervised tasks. This
approach helps preserve valuable features learned
during the initial phase of training when the model
is subsequently adapted to new tasks.

Upon completing the self-supervised learning
phase, Figure 4 presents a sample run, the model
develops nonlinear features of the input space that
are capable of distinguishing between various blob
regions (as shown and compared in Figures 5 and
6). We leveraged these learned features for the XOR

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 9

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

FIGURE 5: The task-specific features for the XOR
dataset are tailored exclusively for solving the XOR
problem and are not general-purpose. Unlike self-
supervised learning methods, these features do not
aim to develop versatile attributes applicable across
a broader range of tasks.

problem (Figure 3) as a canonical example of a non-
linearly separable dataset. To adapt the model for
the XOR problem, we modified the output layer to
consist of a single neuron with a sigmoid activa-
tion function. Transferring the previously learned
features, improved the model’s ability to learn the
XOR pattern. Our comparisons of the accuracy and
loss of the CG-CNN based model with the random
model and the task-specific model exemplifies the
Figure 2. In Table 2, we present the average and
standard deviation of accuracy and loss for 30 runs
with 100 tasks and 4 to 7 blobs in each task.

B. DEMONSTRATION ON NATURAL IMAGES
To demonstrate the feasibility of CG-CNN in devel-
oping pluripotent features using a limited number
of images without any class-labels, we employed
images from the Caltech-101 dataset Bansal et al.
(2023). Specifically, we utilized images from the
face class to emphasize that the proposed algorithm
operates without external supervision (having dif-
ferent classes such as human faces versus animals
etc) for feature discrimination. This dataset com-
prised 435 color images with sizes around 400×600
pixels. We used half of these images to train CG-
CNN and develop its features, and the other half to
evaluate the pluripotency of these features. Adapt-
ing the description given in Figure 1, we applied
the CG-CNN self-training by extracting smaller
patches (e.g., 19×19 pixels) from these images as
seeds and then creating a group from each sees by
extracting nearby patches (shifting) and applying
data augmentation techniques such as color-jitter

FIGURE 6: CG-CNN, trained on 20 diverse tasks
(excluding the XOR task), learns to distinguish any
patch of space from others and effectively partitions
the input space more diversely. The features have the
capacity to easily learn the XOR problem as well.

and RGB-to-grayscale transformations. Each group
was distinctively represented by a different class
label, developed without relying on external super-
vision. The classes generated vary with each EM
iteration, gradually enhancing the model’s ability to
find discriminatory features. Since our CG-CNN al-
gorithm can be used with any CNN architecture, we
applied it to AlexNet, ResNet, and GoogLeNet ar-
chitectures. In its first convolutional block, AlexNet
performs Conv+ReLU+MaxPool. This first block
has d = 64 features, with a kernel size of 11 × 11
(i.e., w = 11) and a stride s = 4 pixels. ResNet
performs Conv+BatchNorm+ReLU+MaxPool in its
first block, with d = 64 features, kernel size of
7 × 7, and stride s = 2 pixels. GoogLeNet in
its first block also has d = 64 features, 7 × 7
kernels, and stride s = 2. However, GoogLeNet per-
forms Conv+BatchNorm+MaxPool. All three archi-
tectures use MaxPool with a kernel size of 3×3 and
a stride s = 2. Therefore, the viewing window of a
MaxPool unit is 19 pixels for AlexNet and 11 pixels
for ResNet and GoogLeNet. (Note that although we
could enrich these architectures by adding drop-out
and/or local response normalization to adjust lateral
inhibition, we chose not to do such optimizations in
order to show that pluripotent features can develop
solely under contextual guidance.)

We used a moderate number of contextual groups
(C = 100) for the CG-CNN training. For selecting
data patches for each contextual group, the param-
eter g – used in Algorithm 1 to slide the seed
window for spatial contextual guidance – was set
to g = 25 pixels. Thus, each contextual group had
(2 × 25 + 1)2 = 2601 distinct patch positions. We

10 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

TABLE 2: Performance of models on the XOR
Problem. Means and standard deviations over 30
runs are reported.

Model Accuracy Loss
CG-CNN Base with
Top-Layer Trained
Only

0.9793 ±
0.0555

0.3678 ±
0.0852

Randomly-Initialized
Base with Top-Layer
Trained Only

0.4987 ±
0.0503

0.6952 ±
0.0020

Task-Specific (Early-
Stopped)

0.6447 ±
0.0856

0.6734 ±
0.0298

Task-Specific (Highly
Trained)

0.9993 ±
0.0036

0.0011 ±
0.0028

FIGURE 7: Visualizations of the 11 × 11 weights
of the 64 features in the CNN layer of CG-CNN
after 1, 5, 20, 50, and 100 EM iterations. Also
shown are the weights of the 64 features in the first
layer of AlexNet. While even after 20 EM iterations
the features are still quite crude, the features at
iterations 50 and 100 are sharp and almost identical
and resemble AlexNet features.

also used color jitter and color-to-gray conversion to
enrich contextual groups (see Section 3.4).

We used PyTorch open source machine learning
framework Raschka et al. (2022) to implement CG-
CNN. Experiments were performed on a worksta-
tion with Intel i7-9700K 3.6GHz CPU with 32
GB RAM and NVIDIA GeForce RTX 2080 GPU
with 8GB GDDR6 memory. In each EM training
iteration, we used 10 epochs for the E-step and 10
epochs for the M-step. On the workstation used for
the experiments, for C = 100, each EM iteration
takes about two minutes. CG-CNN takes around 100
minutes to converge in about 50 iterations. Both
the SGD (stochastic gradient descent) and Adam
Kingma & Ba (2017) optimizers can reduce time.
Adam helps cut down the runtime by reducing the
number of epochs down to one epoch with mini-
batch updates. Increasing the number of EM itera-
tions was more helpful than increasing the number

FIGURE 8: Visualizations of the 7 × 7 weights of
the 64 features in the CNN layer of CG-CNN after
100 EM iterations, as well as 64 features in the first
layer of GoogLeNet, ResNet-101, and ResNet-18.

of epochs in one iteration. With these improve-
ments, 50 EM iterations took about 10 minutes, dur-
ing which the Transferable Classification Accuracy,
as formulated in Equation 6, initially starts around
30% and displays an upward trend throughout the
training, specifically it rises quickly in the first
few EM iterations and then slowly converges to a
stable level around 60%. With each EM iteration,
the network’s features become progressively more
defined and more resembling visual cortical features
(gratings, Gabor-like features, and color blobs) as
well as features extracted in the early layers of
deep learning architectures AlexNet, GoogLeNet,
and ResNet (see Figures 7 and 8).

To compare pluripotency of CG-CNN features to
pluripotency of AlexNet, ResNet, and GoogLeNet
features, we used the Transfer Utility approach de-
scribed in Section 3.3 (see Figure 2 and Eq. 7) and
tested classification accuracy of CNN-Classifiers
equipped with random, task-specific, and CG fea-
tures, as well as pretrained AlexNet, GoogLeNet,
and ResNet features, on new contextual groups/-
classes drawn from the test set that were not used
during the training of CG-CNN. These classification
accuracy estimates are plotted in Figure 9 as a
function of the number of test classes C in each
classification task. As the two plots in Figure 9
show, the curves generated with CG-CNN features
lay slightly more than halfway between the curves

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 11

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

FIGURE 9: Transfer Utility of GC-CNN features, demonstrated following the format of Figure 2. (A) 11×11
pixel features. Average Classification Accuracies of CNN-Classifiers with task-specific, random, and CG
features (Aspecific, Arandom, and ACG; black, blue, and red curves, respectively) are plotted as a function
of the number of contextual classes used in a classification task. For a comparison, also plotted is the average
Classification Accuracy of CNN-Classifiers with Pool-1 features of the pretrained AlexNet (green curve). (B)
7×7 pixel features. Average Classification Accuracies of CNN-Classifiers with task-specific (black), random
(blue), and CG (red) features are plotted as a function of the number of test classes. For a comparison, also
plotted are the average Classification Accuracies of CNN-Classifiers with Pool-1 features of the pretrained
GoogLeNet (green), ResNet-101 (magenta), and ResNet-18 (yellow) networks.

generated with random and task-specific features,
indicating substantial degree of transfer utility. Most
importantly, CG-CNN curves match or even exceed
the curves generated with features taken from deep
CNN systems, which are acknowledged – as re-
viewed in Sections 1 and 2.1 – to have desirable
levels of transfer utility.

C. DEMONSTRATION ON TEXTURE
CLASSIFICATION
As an additional test of pluripotency of CG-CNN
features, we applied them to a texture classification
task. Texture is a key element of human visual
perception and texture classification is a challenging
computer vision task, utilized in applications rang-
ing from biomedical image analysis to industrial
automation and remote sensing Anam & Rushdi
(2019). For this test, we used the Brodatz dataset
Brodatz (1966) of 13 texture data images, in which
each data image shows a different natural texture
and is 512 × 512 pixels in size (Figure 10). To
compare with AlexNet (which has 11 × 11 pixel
features, stride s = 4, and therefore pooled window
size of 19 × 19 pixels), we trained classifiers to
discriminate textures in 19 × 19 pixel Brodatz data
patches. To compare with GoogLeNet and ResNet
(which have 7 × 7 pixel features, stride s = 2, and
therefore pooled window size of 11 × 11 pixels),
we trained other classifiers to discriminate textures
in 11 × 11 pixel Brodatz image data patches. For
either of these two window sizes, we subdivided

each 512× 512 texture image data into 256 32× 32
subregions and picked 128 training data patches at
random positions within 128 of these subregions,
and other 128 test data patches at random positions
within the remaining 128 subregions. This selection
process ensured that none of the training and test
data patches overlapped to any degree, while sam-
pling all the data territories.

Using the 128 × 13 = 1664 training data
patches, we trained CNN-Classifiers equipped with
either CG-CNN features (previously developed on
Caltech-101 data images, as described above in Sec-
tion 4.1), or AlexNet, GoogLeNet, or ResNet fea-
tures. Note that these features were not updated dur-
ing classifier training; i.e., they were transferred and
used “as is” in this texture classification task. For
additional benchmarking comparison, to gauge the
difficulty of this texture classification task, we also
applied some standard machine learning algorithms
Fernandez-Delgado et al. (2014), including Deci-
sion Trees and Random Forests, Linear and RBF
SVMs, Logistic Regression, Naive Bayes, MLP
(Multi-Layer Perceptron), and K-NN (K-Nearest
Neighbor).

These classifiers are straightforward to optimize
without requiring many hyperparameters. For their
implementation (including optimization/validation
of the classifier hyperparameters), we used scikit-
learn Python module for machine learning Raschka
et al. (2022). For MLP, we used a single hidden layer
with ReLU activation function (we used 64 hidden

12 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

FIGURE 10: Brodatz texture data. Shown are 8
representative 19 × 19 pixel extracts from each of
the 13 512× 512 pixel images in the dataset.

units in the layer to keep the complexity similar
to that of CG-CNN). We used the default value
for the regularization parameter (C = 1) for our
SVMs and the automatic scaling for setting the RBF
radius for RBF-SVM. We used K = 1 neighbor
and the Euclidean distance metric for K-NN. For
the random forest classifier, we used 100 trees as
the number of estimators in the forest.

All the classifiers were tested on the data patches
from the test set, not used in classifier training.
There are a total of 128 × 13 = 1664 test data
patches. The accuracies of the classifiers are listed
in Table 3. According to this table, all the CNN-
classifiers with transferred features had very similar
texture classification accuracies, with CG features
giving the best performance. All the other classifiers
performed much worse, indicating non-trivial nature
of this classification task. These results demonstrate
the superiority of using the transfer learning ap-
proach, with transferred features taken from CG-
CNN or Pool-1 of pretrained deep networks.

D. DEMONSTRATION ON HYPERSPECTRAL
IMAGES
Unlike color image processing that uses a large
image window with a few color channels (grayscale
or RGB), Hyperspectral Image (HSI) analysis typ-
ically aims at classification of a single pixel char-
acterized by a high number of spectral channels
(bands). Typically, HSI datasets are small, and ap-
plication of supervised deep learning to such small
datasets can result in overlearning, not yielding
pluripotent task-transferrable HSI-domain features
Sellami et al. (2019). To improve generalization, the
supervised classification can benefit from unsuper-
vised feature extraction of a small number of more
complex/informative features than the raw data in
the spectral channels. In this section, we demon-
strate the usefulness of the features extracted by the

TABLE 3: Texture classification accuracies of 12
classifiers on 13 textures taken from the Brodatz
(1966) dataset. Listed are means and standard de-
viations of the means computed over 10 test runs.

Method 11× 11 field 19× 19 field
CG-CNN 63.3 ± 0.7 74.3 ± 0.9
AlexNet 72.2 ± 0.7
GoogLeNet 62.2 ± 1.1
ResNet-101 61.6 ± 0.9
ResNet-18 61.5 ± 0.9
RBF-SVM 53.6 ± 0.9 62.9 ± 0.9
Naive Bayes 39.3 ± 1.0 49.4 ± 0.8
Random Forest 34.7 ± 1.3 35.0 ± 1.5
MLP 33.6 ± 0.7 30.7 ± 0.6
K-NN 28.6 ± 0.9 29.2 ± 0.8
Linear-SVM 23.3 ± 1.2 28.0 ± 1.9
LR 22.8 ± 1.5 25.1 ± 0.6

proposed CG-CNN algorithm on two well-known
HSI datasets Grana et al. (2018): (i) The Indian
Pines dataset comprises a 145 × 145 pixel image
data with 224 spectral bands in the 400-2500 nm
range, including 16 classes such as crops, grass, and
woods; (ii) The Salinas dataset features a 512× 217
pixel HSI image data, also with 224 spectral bands,
encompassing 16 classes like vegetables, bare soils,
and vineyards.

To evaluate the quality of CG-CNN features on
the hyperspectral data, the CG-CNN architecture
presented in Algorithm 1 was used with the follow-
ing parameters: a = 3 pixels, b = 200 bands for
Indian Pines and 204 bands for Salinas (after dis-
carding water absorption bands), d = 30 features,
w = 1 pixel (i.e., each convolution uses only the
bands of a single pixel), C = 20 contextual groups,
g = 2 pixels for the extent of the spatial contextual
guidance, and only 10 EM iterations. In training of
CG-CNN, the class labels of the HSI pixels were not
used; instead, local groups of pixels (controlled by
the g parameter) were treated as training classes, as
described in Section 3.4. CG-CNN learns to repre-
sent its input HSI data patch, which is a hypercube
of size 3×3×200, in such a way that the data patch
and its neighboring windows/positions (obtained by
shifting it g = ±2 pixels in each direction) can
be maximally discriminable from other contextual
groups centered elsewhere. Note that only a total
of (2 × 2 + 1)2 = 25 data patches are created for
each contextual group. We subsequently employed
the extracted features as inputs for a Random Forest
classifier. While the potential of multiple iterations
of CG-CNN to produce even more descriptive and
highly nonlinear features is acknowledged, this re-
mains an avenue for future research due to its addi-
tional complexities. The primary focus of this study

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 13

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

TABLE 4: Comparison of RF Model Performance
on the Indian Pines and Salinas Datasets.

Feature Type Indian
Pines Salinas

Only Central Pixel with Orig-
inal Bands (b Features) 86.3 ± 0.7 94.9 ± 0.1

Bands from 3 × 3 Neighbor-
hood Merged (9× b Features) 91.2 ± 0.3 95.1 ± 0.2

CG-CNN from 3 × 3 Neigh-
borhood (30 Features Total) 96.2 ± 0.6 97.6 ± 0.2

is to showcase the improvement attained with these
features compared to the raw ones (original bands).
The use of Random Forest (RF) introduces ample
nonlinearity Fernandez-Delgado et al. (2014), from
which the original (raw) features can greatly benefit.
However, it is observed that inputs derived from
CG-CNN offer superior performance when used
with RF, owing to their richer and more complex
feature representation. This underscores the effec-
tiveness of CG-CNN features in enhancing the RF
classifier’s performance as shown in Table 4. The
results are averaged over 10 runs using a 70-30
split (excluding unlabeled pixels), with the default
n_estimators=100 hyperparameter for the Random
Forest classifier. CG-CNN’s ability to learn robust
embeddings through self-supervision not only en-
hances the accuracy of the downstream classifier
but also enables faster training and testing times by
reducing the number of features. This simplification
is particularly beneficial for real-time applications.

E. DEMONSTRATION ON VIBTAC-12
VIBROTACTILE TEXTURE SIGNAL
CLASSIFICATION
In this section, we study the performance of CG-
CNN on a different dataset i.e., VibTac-12 Kursun &
Patooghy (2020b) which is a dataset of vibrotactile
signals collected from a 3-dimensional accelerome-
ter sensor (MMA-7660 from NXP Company NXP
Semiconductor (2012)). The signals are recorded
as a probe scratches a rotating drum covered with
various textures, simulating the sense of touch in
humans. The diameter of the drum is 7 cm and it
rotates at a linear speed of 5 cm s−1 which was
chosen as a typical touch velocity. For each of the 12
textures, a 20-second recording is collected that cor-
responds to nearly five rotations of the drum. This
dataset was collected and published in our previous
work Kursun & Patooghy (2020a,b) using commer-
cial off-the-shelf embedded boards and electrical
components (AVR-based embedded boards, stepper
motors, etc.) as well as our own designed and 3D

printed mechanical components (including the ro-
tating drum glued with different texture strips). The
collected tactile dataset has 12 texture classes and
Figure 11 shows an exemplary subset of texture
strips that were used for the experiments. Textures
include sandpapers of various grits, Velcro strips
with various thicknesses, aluminum foil, and rubber
bands of various stickiness.

In this study, we employ CG-CNN as a semi-
supervised approach to tackle the classification chal-
lenges posed by the VibTac-12 dataset, integrating
both supervised and unsupervised learning phases
using the Expectation-Maximization (EM) method-
ology. The experiments use labeled examples from
classes 1-10 and unlabeled examples from classes
11 and 12 to evaluate the transferability and ef-
fectiveness of the learned features across different
sensory signals.

During the semi-supervised learning phase, the
model leverages EM cycles to form meta-classes
based on contextual similarities among data patches
while simultaneously predicting class labels (when
available). The process begins by selecting a seed
data patch for each meta-class and expanding these
meta-classes using additional input patches through
data augmentation. An additional softmax layer at-
tempts to predict the true class labels. In the E-step,
two discriminators (softmax classifiers) are trained
while keeping the feature extractor frozen, and in
the M-step, the features are fine-tuned while the
discriminators remain static. At the end of each M-
step, a new EM iteration begins, creating a new
task with a refreshed set of labeled and unlabeled
examples.

Once the pretraining is completed, fine-tuning
commences on a few labeled examples from classes
11 and 12, with the features frozen to evaluate
their quality for the supervised learning task. It is
important to note that self-supervised training of the
CG-CNN was conducted on entirely distinct sets for
self-supervision, training, and testing to prevent data
leakage and ensure valid experimentation. Specifi-
cally, the fine-tuning process is executed on different
segments of the signals that were not used during
EM training. The model’s classification accuracy is
then evaluated on separate segments of classes 11
and 12.

Additional details of the experiments are as fol-
lows. We used 2-second recordings, corresponding
to 400 timesteps per example, with 500 examples
per class. For pretraining, we used data from 6 to
16 seconds, leaving 0.5 to 5.5 seconds for training
on classes 11 and 12, and 16.5 to 19.5 seconds

14 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

FIGURE 11: Images of the 12 texture classes recorded in the VibTac-12 dataset Kursun & Patooghy (2020a)

for testing. The first and last 0.5 seconds were
excluded to avoid noise. During pretraining, we
defined 20 auxiliary classes and conducted 10 EM
iterations, each consisting of 20 epochs for the E-
step (training the softmax layers while keeping the
features frozen) and 20 epochs for the M-step (fine-
tuning the features). For the target task (classes 11
and 12), we used 50 labeled examples per class.
We employed a 1D Convolutional Neural Network
(CNN) for feature extraction, with the following
architecture:

Conv1D(16, kernel_size=3, strides=2)
ReLU()
BatchNormalization()
MaxPooling1D(pool_size=2)
Conv1D(32, kernel_size=3, strides=2)
ReLU()
BatchNormalization()
MaxPooling1D(pool_size=2)
Conv1D(64, kernel_size=3, strides=1)
ReLU()
Dropout(0.2)
x = GlobalMaxPool1D()
supervised_output = Softmax(10)(x)
aux_output = Softmax(C)(x)

The model consists of three convolutional layers
with 16, 32, and 64 filters, each followed by regu-
larization layers such as batch normalization, pool-
ing, and dropout. The network concludes with two
softmax outputs: one for the supervised task and one
for the auxiliary task. After pretraining with EM, we
froze the learned features and fine-tuned the model
on 50 labeled examples from classes 11 and 12.
As described above, the pretraining, finetuning, and
testing were done on separate segments to ensure no

TABLE 5: Comparisons of methods on the tar-
get domain classification on the XYZ sensor-signal
data. Results are represented as an average of 10
runs and their standard deviation.

Method Accuracy (%)

Randomly Initialized CNN (trained only on
the target domain with few labeled exam-
ples)

63.1± 8.3

CNN with Transfer Learning (features trans-
ferred from a labeled source domain)

65.0± 10.1

CG-CNN (trained using only contextual in-
formation from the source domain, fine-
tuned on few labeled target-domain exam-
ples)

83.9± 11.4

Semi-supervised CG-CNN (trained using
both labeled source data and unlabeled
target-domain data, fine-tuned on few la-
beled target-domain examples)

93.9± 5.0

data leakage.
As shown in Table 5, the features learned by

the semi-supervised CG-CNN significantly enhance
performance in the downstream classification task
with labeled data.

• Randomly Initialized CNN: Trained from
scratch on the target domain using random
initialization with only a few labeled examples.
This approach establishes a baseline perfor-
mance without leveraging any pre-learned fea-
tures. It has 8,097 learnable parameters, includ-
ing those in the binary classification output.

• CNN with Transfer Learning: This method
transfers features learned from a labeled source
domain but does not utilize contextual infor-
mation. It only benefits from the abundant la-
beled examples in the source domain, leading
to some improvements in classification accu-

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 15

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

racy on the target domain. During base train-
ing, it learns 8,682 parameters. The classifier
layer is then replaced with a binary output in-
stead of the original 10-output layer. The target
model has 8,097 learnable parameters, benefit-
ing from the initialization performed during the
base training.

• CG-CNN with Unsupervised Feature Trans-
fer: Trained using only contextual information
from the source domain without utilizing class
labels, followed by fine-tuning on a few labeled
examples from the target domain. While this
method demonstrates the effectiveness of unsu-
pervised feature learning in improving target-
domain performance, it does not take advan-
tage of the available class labels in the source
domain. It learns 9,332 parameters in the base
network, where global pooling reduces the out-
put to 64 final features. The softmax layer (with
C = 20 output neurons) is then replaced with a
single binary output layer, and the model fine-
tunes 65 parameters of this new layer for the
target task.

• Semi-Supervised CG-CNN: This approach
combines both labeled source data and unla-
beled target-domain data for training, followed
by fine-tuning on a few labeled examples from
the target domain. It achieves the highest ac-
curacy by integrating semi-supervised learn-
ing with feature transfer. This method uses
contextual information from both labeled and
unlabeled examples and leverages class labels
when they are available. It learns 9,982 param-
eters in the base network (including an extra
softmax layer utilized for the supervised exam-
ples), where global pooling reduces the output
to 64 final features. The top two softmax layers
are then replaced with a single binary output
layer, and the model fine-tunes 65 parameters
of this new layer for the target task.

F. DEMONSTRATION ON WORD EMBEDDINGS
AND TEXT CLASSIFICATION

We demonstrate the applicability of CG-CNN to
word embeddings Mikolov et al. (2013), which
transform the discrete, symbolic nature of language
into a continuous, multi-dimensional space, en-
abling neural networks to effectively process text.
To adapt CG-CNN for word embeddings, we uti-
lized the 20 Newsgroups dataset, a collection of
documents from various newsgroup discussions.
In this example, our approach not only generates
contextually-guided word embeddings from scratch

but also finetunes pre-existing embeddings to better
suit the corpus. To optimize the dataset for neural
network training, we executed the following pre-
processing steps. Tokenization, conducted using a
tokenizer configured to retain the top 10,000 unique
tokens based on frequency, ensured the model’s fo-
cus on the most relevant and prevalent terms within
the corpus. Stopwords were eliminated using the
list of the nltk library because these commonly oc-
curring words hold little to no discriminative value
for our analysis. Furthermore, tokens representing
numerical values and those comprising fewer than
three characters were removed, as they often con-
tribute negligible contextual information and can
introduce additional noise into the data. To ensure
model training with meaningful context, documents
shorter than 100 tokens (words) were discarded.
These preprocessing measures resulted in a refined
corpus of 2,961 documents with 7,811 unique to-
kens. The zero performance, which refers to the
accuracy of a naive classifier that always predicts
the majority class, was 12%. The baseline perfor-
mance when using Word2Vec involves averaging
the 300-dimensional embeddings of the words in
each document, followed by logistic regression (LR)
as the classifier. Word2Vec+LR results in a mean
accuracy of 60.89% with a standard deviation of
4.59%. Similarly, when Word2Vec feature averag-
ing is followed by a random forest (RF) classifier, it
yields a mean accuracy of 66.91% with a standard
deviation of 4.15%. All results presented in this
study are reported as averages over 10 independent
runs, using different random train-test splits for each
run to ensure the robustness and reliability of the
findings.

For the self-supervised training of CG-CNN, we
divided the entire dataset into three parts using a
stratified split to preserve class priors: 50% for
the self-supervised training set where embeddings
and features are learned without labels, 25% for
the supervised training set where these features are
mapped to the Newsgroups classes, and the remain-
ing 25% for the test set to evaluate the effectiveness
of this mapping on other unseen labeled examples.
The CG-CNN training treats each document of the
self-supervised training set as a separate meta-class,
with examples from each meta-class consisting of
text blobs that were randomly selected within that
document. However, CG-CNN uses only C classes
in an EM iteration, but not all documents at the same
time. In our experiments, we used C = 20. We
used text blobs of 20 tokens in length for this pur-
pose. We explored two methods for learning feature

16 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

TABLE 6: Configuration of a CG-CNN for fine-
tuning Word2Vec’s pre-existing word embeddings.

Layer Parameters Description

Conv
1D

filters=300,
kernel_size=1,

strides=1,
input_shape=(20, 300),

activation=’relu’

300 features,
processes tokens
independently,
no skipping of tokens,
ReLU activation

Global
MaxPool
1D

None
Outputs a single
300-dimensional vector
representing the context

Dense
units=20,

activation=’softmax’

Classifies into
20 meta-classes using
softmax

representations: fine-tuning an existing Word2Vec
embeddings and training an embedding layer from
scratch.

Fine-tuning Word2Vec: In this approach, the
aim is to fine-tune the pre-trained embeddings for
capturing patterns in the data not recognized by
the pre-trained Word2Vec model. We utilized the
sequence of 20 300-dimensional Word2Vec embed-
dings as input to a neural network comprising a
convolutional layer followed by a ReLU activa-
tion and a global max pooling layer. This setup
reduces each blob into a single 300-dimensional
vector (summarizing the context), which is then
classified into C = 20 randomly selected meta-
classes using a softmax layer. We extracted 80 blobs
(sequences of 20 tokens) for each meta-class, which
were evenly divided into two sets of 40 for the
E and M steps of the EM iterations, respectively.
After training through these EM iterations, we input
a single token into the network and captured the
output from the ReLU layer, recording this as the
newly fine-tuned 300-dimensional embedding for
that token. The specifics of the model configuration
are outlined in Table 6.

Training a New Embedding Layer: In contrast
to the fine-tuning method, this experiment utilized
a dedicated Embedding Layer instead of a Conv1D
layer. This approach aims to construct embeddings
from scratch by converting integer sequences (rep-
resenting words) into dense vectors, which are then
used to classify the context of tokens within doc-
uments. Table 7 illustrates the architecture of the
model. In this model, the Embedding layer has a
vocabulary size of 7811, with each word learned
to be mapped to a 300-dimensional vector, and it
accepts sequences of 20 tokens. GlobalMaxPool-
ing1D is applied to reduce the spatial dimensions
of the embedding output to the most significant
features for each token sequence. The Dense layer

TABLE 7: Configuration of a CG-CNN designed for
learning word embeddings from scratch.

Layer Parameters Description

Embedding
input_dim=7811,
output_dim=300,
input_length=20

Embeds 7811
tokens into 300D
vectors,
sequences of 20
tokens

Global
MaxPool
1D

None

Outputs a single
300D vector
representing the
context

Dense
units=20,

activation=’softmax’

Classifies into 20
meta-classes
using softmax

then classifies these features into one of 20 meta-
classes using a softmax activation function.

For both fine-tuning and learning from scratch,
the CG-CNN model effectively learns to distinguish
each document from all others. The features devel-
oped through this process are well-suited for doc-
ument classification, a task that is relatively easier
than distinguishing arbitrary text blobs from each
other. Both random forest and logistic regression
classifiers learn significantly better with CG-CNN
features compared to using standard Word2Vec em-
beddings. This improvement is particularly pro-
nounced when CG-CNN is used for fine-tuning
(rather than learning an embedding from scratch
with a small unlabelled dataset). For our compar-
isons, once trained, CG-CNN’s embeddings are uti-
lized similarly to those from Word2Vec. For each
document, the embeddings are averaged, and this
average is then used as input to classifiers such as
logistic regression (LR) and random forest (RF).
The performance metrics outlined below underscore
the effectiveness of CG-CNN. Using the LR classi-
fier on CG-CNN’s fine-tuned embeddings achieved
a mean accuracy of 75.36% with a standard de-
viation of 4.26%, demonstrating a significant im-
provement over the 60.89% baseline of Word2Vec.
Additionally, a CG-CNN configuration extracting
50 dimensions (instead of 300) yielded a mean LR
accuracy of 71.19%. This configuration was used
as a robustness check, effectively serving to vali-
date the model’s performance and to ensure there
were no anomalies or bugs affecting the results.
Using the RF classifier on CG-CNN’s fine-tuned
embeddings achieved a mean accuracy of 70.76%
with a standard deviation of 4.06%, demonstrating
a significant improvement over the 66.91% baseline
of Word2Vec. Additionally, using the LR classifier
on CG-CNN’s from-scratch embeddings achieved a
mean accuracy of 74.08% with a standard deviation

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 17

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

FIGURE 12: 20 Newsgroups test accuracy vs. train
size using Logistic Regression (a) and Random For-
est (b) on the original and fine-tuned embeddings.

of 1.06% and the RF classifier achieved a mean
accuracy of 71.16% with a standard deviation of
1.13%.

In a departure from the previously reported 50-
25-25 split for the unsupervised training, supervised
training, and testing sets, we now vary the pro-
portions of the training and testing sets within the
labeled data. Figure 12 illustrates the average of
10 runs for the classification accuracies of logistic
regression (LR) and random forest (RF) classifiers
using CG-CNN fine-tuning versus Word2Vec em-
beddings. This is shown as a function of the train-
size proportion, demonstrating how variations in
training data proportions affect model performance.

V. CONCLUSIONS
The Contextually Guided Convolutional Neural
Network (CG-CNN) presents a robust alternative
to traditional deep learning models by emphasiz-
ing the development of pluripotent features through
contextual guidance and transfer learning. This pa-
per builds on our previous work by showcasing
CG-CNN’s broad applicability across various do-
mains. Our experimental results, including appli-
cations to word embeddings for text classification
with the 20 Newsgroups dataset and tactile sens-
ing with the VibTac-12 dataset, demonstrate the
adaptability of CG-CNN to both structured and
unstructured data. Through its EM iterations, CG-
CNN features progressively develop greater transfer
utility—a concept formulated and defined in this
paper as the degree of usefulness when applied to
new tasks. Detailed demonstrations on the classical
XOR problem further provide deep insights into

the model’s capacity to develop features with high
transfer utility. CG-CNN features have shown supe-
rior classification accuracy compared to those from
well-known deep networks like AlexNet, ResNet,
and GoogLeNet, particularly in image-related tasks.
Moreover, when fine-tuned through self-supervision
on an unlabeled dataset, these features significantly
outperform Word2Vec in text classification tasks
on a downstream labeled test set. Overall, CG-
CNN features provide substantial advantages in en-
vironments with limited data and requiring minimal
model complexity.

The current single-layer CG-CNN, while effec-
tive, is limited in the complexity of the features
it can develop. Future enhancements might involve
expanding to a multi-layer architecture, where each
layer could be trained using local contextual guid-
ance from the outputs of preceding layers. Har-
nessing the contextual information at higher levels
within data remains a critical challenge for guiding
the development of higher-level CNN layers and
determining the contextual groups for their EM-
based training. Additionally, integrating feedback
guidance from higher to lower layers could signifi-
cantly enhance the CG-CNN model. Addressing the
issue of feature forgetting —particularly for older
tasks— remains as an unsolved issue; mechanisms
to prevent this forgetting are necessary to maintain
model efficacy over time.

ACKNOWLEDGMENT
This work was supported, in part, by the National
Science Foundation under grants No. 2003740 and
2302537. The development of the semi-supervised
learning algorithm benefited from the concep-
tual work involved in preparing NSF Grant No.
2435093, which is set to begin on November 1,
2024.

REFERENCES
Alpaydin, E. (2014). Introduction to machine learn-

ing, third edition. The MIT Press, Cambridge.
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili,

A., Duan, Y., Al-Shamma, O., Santamaría, J.,
Fadhel, M. A., Al-Amidie, M., & Farhan, L.
(2021). Review of deep learning: concepts, cnn
architectures, challenges, applications, future di-
rections. Journal of big Data, 8:1–74.

Anam, A. M. & Rushdi, M. A. (2019). Classifica-
tion of scaled texture patterns with transfer learn-
ing. Expert Systems with Applications, 120:448
– 460.

Arjovsky, M. & Bottou, L. (2017). Towards princi-

18 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

pled methods for training generative adversarial
networks. In International Conference on Neu-
ral Information Processing Systems (NIPS) 2016
Workshop on Adversarial Training. In review for
ICLR, volume 2016.

Bansal, M., Kumar, M., Sachdeva, M., & Mittal, A.
(2023). Transfer learning for image classification
using vgg19: Caltech-101 image data set. Journal
of ambient intelligence and humanized comput-
ing, pages 1–12.

Bengio, Y. (2012). Deep learning of representations
for unsupervised and transfer learning. In Pro-
ceedings of ICML Workshop on Unsupervised
and Transfer Learning, pages 17–36.

Brodatz, P. (1966). Textures: A photographic album
for artists and designers. Dover Pubns.

Chen, W., Su, L., Chen, X., & Huang, Z. (2023).
Rock image classification using deep residual
neural network with transfer learning. Frontiers
in Earth Science, 10:1079447.

Do, C. B. & Batzoglou, S. (2008). What is the
expectation maximization algorithm? Nature
Biotechnology, 26(8):897–899.

Dosovitskiy, A., Springenberg, J. T., Riedmiller,
M., & Brox, T. (2014). Discriminative unsuper-
vised feature learning with convolutional neural
networks. In Advances in Neural Information
Processing Systems, pages 766–774.

Favorov, O. V. & Kursun, O. (2011). Neocortical
layer 4 as a pluripotent function linearizer. Jour-
nal of Neurophysiology, 105(3):1342–1360.

Favorov, O. V. & Ryder, D. (2004). Sinbad: A neo-
cortical mechanism for discovering environmen-
tal variables and regularities hidden in sensory
input. Biological Cybernetics, 90(3):191–202.

Fernandez-Delgado, M., Cernadas, E., Barro, S., &
Amorim, D. (2014). Do we need hundreds of
classifiers to solve real world classification prob-
lems? Journal of Machine Learning Research,
15:3133–3181.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-
agnostic meta-learning for fast adaptation of deep
networks.

Fisher, O. J., Rady, A., El-Banna, A. A., Emaish,
H. H., & Watson, N. J. (2023). Ai-assisted cot-
ton grading: Active and semi-supervised learning
to reduce the image-labelling burden. Sensors,
23(21):8671.

Gao, F., Yoon, H., Wu, T., & Chu, X. (2020). A
feature transfer enabled multi-task deep learning
model on medical imaging. Expert Systems with
Applications, 143:112957.

Ghaderi, A. & Athitsos, V. (2016). Selective un-

supervised feature learning with convolutional
neural network (s-cnn). 2016 23rd International
Conference on Pattern Recognition (ICPR).

Glorot, X. & Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural net-
works. In Teh, Y. W. & Titterington, M., editors,
Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics,
volume 9 of Proceedings of Machine Learning
Research, pages 249–256, Chia Laguna Resort,
Sardinia, Italy. JMLR Workshop and Conference
Proceedings.

Goodfellow, I., Bengio, Y., & Courville, A. (2016).
Deep learning. MIT Press, Cambridge.

Goyal, V. & Sharma, S. (2023). Texture classifica-
tion for visual data using transfer learning. Mul-
timedia Tools and Applications, 82(16):24841–
24864.

Grana, M., Veganzons, M., & Ayerdi, B.
(2018). Hyperspectral remote sensing
scenes - grupo de inteligencia computacional
(GIC). http://www.ehu.eus/ccwintco/index.php.
(Accessed on 12/22/2018).

Hawkins, J., Ahmad, S., & Cui, Y. (2017). A theory
of how columns in the neocortex enable learning
the structure of the world. Frontiers in Neural
Circuits, 11:81.

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S.,
Grewal, K., Bachman, P., Trischler, A., & Bengio,
Y. (2019). Learning deep representations by
mutual information estimation and maximization.

Hu, Z., Lin, L., Lin, W., Xu, Y., Xia, X., Peng, Z.,
Sun, Z., & Wang, Z. (2023). Machine learning
for tactile perception: Advancements, challenges,
and opportunities. Advanced Intelligent Systems,
page 2200371.

Iman, M., Arabnia, H. R., & Rasheed, K. (2023).
A review of deep transfer learning and recent
advancements. Technologies, 11(2):40.

Kingma, D. P. & Ba, J. (2017). Adam: A method for
stochastic optimization.

Kursun, O., Dinc, S., & Favorov, O. V. (2022). Con-
textually guided convolutional neural networks
for learning most transferable representations. In
2022 IEEE International Symposium on Multi-
media (ISM), pages 210–213.

Kursun, O. & Favorov, O. V. (2019). Suitabil-
ity of features of deep convolutional neural net-
works for modeling somatosensory information
processing. In Pattern Recognition and Tracking
XXX, volume 10995, pages 94 – 105. Interna-
tional Society for Optics and Photonics, SPIE.

Kursun, O. & Favorov, O. V. (2024). Sinbad

VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024 19

Kursun et al.: Accepted to IEEE ACCESS DOI: 10.1109/ACCESS.2024.3484663

origins of contextually-guided feature learning:
Self-supervision with local context for target de-
tection. In SoutheastCon 2024, pages 16–21.

Kursun, O. & Patooghy, A. (2020a). An embedded
system for collection and real-time classification
of a tactile dataset. IEEE Access, 8:97462–73.

Kursun, O. & Patooghy, A. (2020b). Vibtac-12:
Texture dataset collected by tactile sensors.

Kursun, O., Sarsekeyev, B., Hasanzadeh, M., Pa-
tooghy, A., & Favorov, O. V. (2023). Tactile
sensing with contextually guided cnns: A semisu-
pervised approach for texture classification. In
2023 Seventh IEEE International Conference on
Robotic Computing (IRC), pages 25–30.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. Nature, 521(7553):436.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.,
& Dean, J. (2013). Distributed representations
of words and phrases and their compositionality.
Advances in neural information processing sys-
tems, 26.

Mukhopadhyay, M., Dey, A., & Kahali, S. (2023).
A deep-learning-based facial expression recog-
nition method using textural features. Neural
Computing and Applications, 35(9):6499–6514.

NXP Semiconductor (2012). 3-axis orientation/-
motion detection sensor. Document Number:
MMA7660FC.

Phillips, W., Kay, J., & Smyth, D. (1995). The dis-
covery of structure by multi-stream networks of
local processors with contextual guidance. Net-
work: Computation in Neural Systems, 6(2):225–
246.

Poyatos, J., Molina, D., Martinez, A. D., Del Ser,
J., & Herrera, F. (2023). Evoprunedeeptl: An
evolutionary pruning model for transfer learning
based deep neural networks. Neural Networks,
158:59–82.

Priya, G. S. & Padmapriya, N. (2023). Pt-cnn:
A non-linear lightweight texture image classifier.
Neural Processing Letters, pages 1–25.

Raschka, S., Liu, Y. H., Mirjalili, V., & Dzhulgakov,
D. (2022). Machine Learning with PyTorch and
Scikit-Learn: Develop machine learning and deep
learning models with Python. Packt Publishing
Ltd.

Ravi, D., Wong, C., Deligianni, F., Berthelot, M.,
Andreu-Perez, J., Lo, B., & Yang, G.-Z. (2017).
Deep learning for health informatics. IEEE
Journal of Biomedical and Health Informatics,
21(1):4–21.

Salehi, A. W., Khan, S., Gupta, G., Alabduallah,
B. I., Almjally, A., Alsolai, H., Siddiqui, T., &

Mellit, A. (2023). A study of cnn and transfer
learning in medical imaging: Advantages, chal-
lenges, future scope. Sustainability, 15(7):5930.

Sellami, A., Farah, M., Riadh Farah, I., & Solaiman,
B. (2019). Hyperspectral imagery classification
based on semi-supervised 3-d deep neural net-
work and adaptive band selection. Expert Sys-
tems with Applications, 129:246 – 259.

Shorten, C. & Khoshgoftaar, T. (2019). A survey
on image data augmentation for deep learning.
Journal of Big Data, 6:1–48.

Simard, P., Victorri, B., LeCun, Y., & Denker, J.
(1992). Tangent prop - a formalism for specifying
selected invariances in an adaptive network. In
Moody, J., Hanson, S., & Lippmann, R. P., edi-
tors, Advances in Neural Information Processing
Systems, volume 4. Morgan-Kaufmann.

Tang, H. & Xie, Y. (2023). Deep transfer learning
for connection defect identification in prefabri-
cated structures. Structural Health Monitoring,
22(3):2128–2146.

Unver, H. O. & Sener, B. (2023). A novel transfer
learning framework for chatter detection using
convolutional neural networks. Journal of Intel-
ligent Manufacturing, 34(3):1105–1124.

Wang, J., Lu, S., Wang, S.-H., & Zhang, Y.-D.
(2022). A review on extreme learning ma-
chine. Multimedia Tools and Applications,
81(29):41611–41660.

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H.
(2014). How transferable are features in deep
neural networks? In Advances in Neural Infor-
mation Processing Systems, pages 3320–3328.

Zhao, Z., Zheng, P., Xu, S., & Wu, X. (2019). Object
detection with deep learning: A review. IEEE
Transactions on Neural Networks and Learning
Systems, pages 1–21.

Zhu, Z., Lin, K., Jain, A. K., & Zhou, J. (2023).
Transfer learning in deep reinforcement learning:
A survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence.

20 VOLUME DOI: 10.1109/JOURNAL.XXXX.2024.1234567, 2024

	Introduction
	Background on Transferable Feature Extraction
	Contextually Guided Convolutional Neural Network (CG-CNN)
	Basic Design
	Iterative Training Algorithm
	Pluripotency Estimation of CNN Features
	Sources of Contextual Guidance

	Experimental Results
	Demonstration on the XOR problem
	Demonstration on Natural Images
	Demonstration on Texture Classification
	Demonstration on Hyperspectral Images
	Demonstration on VibTac-12 Vibrotactile Texture Signal Classification
	Demonstration on Word Embeddings and Text Classification

	Conclusions

