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ARTICLE INFO ABSTRACT

Dataset link: https://grde.bafg.de/, https://ges Compound floods may happen in low-lying estuarine environments when sea level above normal tide co-occurs
1a787883612.wordpress.com/, https://bmcnol with high river flow. Thus, comprehensive flood risk assessments for estuaries should not only account for the
dy.earth.miami.edu/tropics/oni/, https://clim individual hazard arising from each environmental variable in isolation, but also for the case of bivariate

atedataguide.ucar.edu/climate-data/hurrell-no
rth-atlantic-oscillation-nao-index-station-based
/, https://github.com/bgeorgios/BDCop4CF

hazard. Characterization of the dependence structure of the two flood drivers becomes then crucial, especially
under climatic variability and change that may affect their relationship. In this article, we demonstrate our
search for evidence of non-stationarity in the dependence between river discharge and storm surge along

Keywords: the East and Gulf coasts of the United States, driven by large-scale climate variability, particularly El-Nifio
Estuarine environments Southern Oscillation and North Atlantic Oscillation (NAO). Leveraging prolonged overlapping observational
River discharge records and copula theory, we recover parameters of both stationary and dynamic copulas using state-of-the-
Storm surge art Markov Chain Monte Carlo methods. Physics-informed copulas are developed by modeling the magnitude

Compound floods
Bivariate hazard
Dynamic copulas
Climate patterns
Bayesian statistics

of dependence as a linear function of large-scale climate indices, i.e., Oceanic Nifio Index or NAO index. After
model comparison via suitable Bayesian metrics, we find no strong indication of such non-stationarity for
most estuaries included in our analysis. However, when non-stationarity due to these climate modes cannot
be neglected, this work highlights the importance of appropriately characterizing bivariate hazard under non-
stationarity assumption. As an example, we find that during a strong El-Nifio year, Galveston Bay, TX, is much
more likely to experience a coincidence of abnormal sea level and elevated river stage.

1. Introduction in comparison with purely fluvial or ocean-driven estuarine floods.

This was the case, for example, with Hurricane Harvey (2017), which

Coastal floods are widely considered to be among the most devastat- induced a catastrophic compound flood around Galveston Bay, TX,

ing catastrophes, since they happen at areas which have a dense popu- lasting several days, due to a near coincidence of high river discharge

lation and high environmental, social and economic importance (Haigh from both Buffalo Bayou and San Jacinto River and ocean-derived
and Nicholls, 2017). At estuaries, i.e., coastal areas where rivers meet storm surge (Valle-Levinson et al., 2020; Huang et al., 2021).

The traditional approach to coastal flood risk assessment addresses
flood hazard from each driver independently, i.e., employs univari-
ate statistical modeling (Hawkes et al., 2008). This relies on the as-
sumption of no significant interactions between coastal flood drivers.
However, comprehensive flood risk management for estuarine systems
requires consideration of a probable co-occurrence (or sequence) of
flood mechanisms, e.g., river discharge and storm surge, as mentioned
earlier. Hence, it necessitates multivariate statistical modeling (Wu
et al., 2021). This becomes increasingly important considering the fact
that current research suggests that compound coastal floods might
become more frequent and/or more severe in the future, as a result of
long-term shifts in storm patterns, e.g., (extra)tropical cyclones and/or

the sea, floods may be a result of multiple hydro-meteorological factors
that can act simultaneously, not necessarily driven from a single phe-
nomenon which acts in isolation (Harrison et al., 2022). For example,
in low-lying estuarine environments, like bays that receive freshwater
inputs, so-called “compound” floods may happen due to a coincidence
of an elevated river stage and an increased sea level from, e.g., heavy
rainfall and strong winds, respectively (Moftakhari et al., 2017, 2019).
While high river discharge can also be regulated by other factors such
as rapid snowmelt or flood management operations, the simultaneous
or closely timed occurrence of inland floodwaters and ocean surge are
mainly assumed to be due to a tropical storm. Such events typically
produce floodwaters that are longer in duration and more widespread,
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upland development, among other factors (Dykstra and Dzwonkowski,
2021; Sebastian, 2022; Jafarzadegan et al., 2023). An essential part
of multivariate flood hazard modeling is the characterization of the
dependence structure of the flood drivers involved (Zhang et al., 2022;
Tripathy et al., 2024). In practice, this characterization consists of two
crucial steps: (1) the evaluation of whether there exists a statistically
significant dependence between the different variables involved, and
(2) the construction of a multivariate probability distribution that
properly models (i.e., “fits”) the data. Once these two steps have been
completed, multivariate hazard curves can be then obtained in order
to provide information about the recurrence interval, also known as
return period, of different multivariate hazard scenarios (Salvadori
et al.,, 2011). Complications in multivariate hazard modeling arise
when the dependence structure of the flood drivers does not remain
unchanged, but rather exhibits non-stationarity. This can happen, for
example, when the magnitude of dependence has been varying over
time. Nevertheless, with regard to the two steps outlined above, it
is a rather difficult task to provide statistically robust evidence that
the magnitude of dependence has been changing over the years and
to subsequently incorporate this change into the construction of the
multivariate probability distribution.

To this day, only a handful of studies, conducted on a broad spatial
scale, have explored the possibility of non-stationarity in the interplay
among factors that contribute to compound floods. For example, Wahl
et al. (2015) performed a robust statistical analysis utilizing prolonged
observational records and a sliding time window to compute the mag-
nitude of dependence between precipitation and storm surge along
the United States (US) coastline and showed that their interaction has
changed over the years. In a similar manner, Gori et al. (2022) made
use of complex physics-based models to simulate historical and pro-
jected tropical cyclone climatology over the Northeast and South(east)
US to conclude that bivariate flood hazard from precipitation and storm
surge is expected to dramatically increase by the end of this century.
Only recently, in a comprehensive observation-based study, Nasr et al.
(2023) demonstrated historical shifts in the extremal dependence be-
tween river discharge, precipitation and storm surge, linking them to
large-scale climate patterns.

There appears to be, in addition, a shortage of scientific liter-
ature concerning a realistic and physically meaningful modeling of
the possibly varying dependence structure of compound flood drivers;
the majority of studies published on the matter have let multivariate
distributions co-vary with time, i.e., an abstract quantity not directly
linked to the physical mechanisms that may drive compound floods. As
an example, Razmi et al. (2022) employed a multivariate distribution to
simultaneously model extreme sea level and precipitation in New York
City, US, allowing for a time-dependent change in the magnitude of
their correlation. In an analogous manner, Pirani and Najafi (2023) uti-
lized time-varying multivariate distributions to model the dependence
structure of fluvial, pluvial and oceanic drivers of compound floods
along the Canadian coasts. Similarly, Wang et al. (2023) captured
changes in the multivariate distribution of concurrent precipitation and
storm surge in Ho Chi Minh City, Vietnam, by using time-dependent
parameters of a multivariate distribution.

To the best of our knowledge, there has yet to be a study that com-
bines an evaluation of varying interactions between compound flood
drivers with a pragmatic approach to dependence structure modeling.
For this reason, here we develop a parsimonious framework to simul-
taneously search for non-stationary dependence between co-occurring
flood variables as well as model their multivariate distribution. Specif-
ically, we leverage long overlapping records of river discharge and
storm surge, originating from major estuaries along the East and Gulf
coasts of the US, in order to obtain stationary and dynamic multivariate
distributions using advanced Bayesian techniques. The use of pertinent
large-scale climate indices for modeling dynamic conditions allows us
to provide a physically meaningful interpretation of changes, if any, in
the dependence magnitude, in contrast to the use of time as an abstract
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covariate. Lastly, Bayesian model intercomparison through appropriate
metrics casts light on whether there is evidence for a non-stationary
dependence. Along the way, we show how parametric uncertainty in
the multivariate distribution can be reduced by formulating a mean-
ingful and informative prior distribution, within the Bayesian context,
that is based on the variability of observed dependence between river
discharge and storm surge. Also, we highlight the implications of inap-
propriate bivariate hazard quantification under stationarity assumption
for estuaries where the dependence indeed co-varies with large-scale
climatic phenomena. The rest of this article is organized as follows:
Section 2 describes the different data sources used and the statistical
methods employed, concluding with a diagram which describes our
overall methodological framework. Section 3 includes the results of
our analysis along with discussions and interpretations of them, while
our study is finalized in Section 4 where we outline methodological
limitations of our work as well as suggestions for future research.

2. Datasets and methodology
2.1. River discharge and storm surge data

Average daily river discharge data were firstly downloaded from
the Global Runoff Data Center (GRDC). We then quality-constrained
the river discharge data from GRDC by keeping years of record with
> 80% of non-missing entries. In addition, we downloaded hourly
measurements of still water level (SWL) from tide stations along the
East and Gulf coasts of the US, which are archived at the latest version
of the GESLA database (Haigh et al., 2023). Next, to obtain the storm
surge, which is essentially the only meteorological, and thus stochastic,
component of SWL (Serafin et al., 2017), we conducted a tidal harmonic
analysis. Specifically, we predicted the tidal level, including mean sea
level (MSL), and subtracted it from SWL to extract the random non-
tidal residual, or else, surge. The tidal harmonic analysis was carried
out on an annual basis to discount the effect of MSL rise and involved
60 influential tidal constituents, analogous to the work of Boumis
et al. (2024). Similar to discharge, the time series of hourly surge was
quality-controlled by removing years for which > 20% of the data
were missing. We made sure that the corresponding tide gauges are
in close proximity to the respective estuaries where the river data
pertain to (“great-circle” distance < 250 km), considering also the
interconnectivity of sea levels. Finally, we matched the time resolution
of the two datasets by extracting the maximum hourly surge per day
and kept estuaries for which the overlapping observational record was
longer than 50 years. The latter resulted in a total of ten river gauge
and tide station combinations from nine estuaries distributed along
the East and Gulf coasts of the US; these were used for further anal-
yses. Table 1 summarizes information about the estuaries under study,
including river gauge and tide station geographic location, as well
as the “great-circle” distance (km) between them. At this point, it is
worth mentioning that our study site selection, particularly in terms of
river gauge location, does not account for upstream human operations
which can modulate river discharge and thus can artificially influence
dependence (refer to ‘“Methodological limitations and conclusion”).

2.2. Large-scale climate indices

To model a physics-informed varying magnitude of dependence (see
Section 2.4), we utilized historic monthly Oceanic Nifio Index (ONTI)
values that are hosted online from the University of Miami. ONI is a
popular and widely used metric to identify the warm (or cool) anomaly
of sea-surface temperature in the central-to-eastern equatorial Pacific
Ocean with respect to historic normal conditions (Glantz and Ramirez,
2020). In other words, ONI is used to define the phase of El-Nino
Southern Oscillation (ENSO) that is known to have teleconnections all
around the globe, including the Southeast and Gulf coasts of the US
which are under consideration in this study (Taschetto et al., 2020). For
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Table 1
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Geographical information of estuaries under study and approximate “great-circle” distance (km) between river gauges and respective tide stations.

Estuary River gauge Longitude Latitude Tide station Longitude Latitude Distance
Upper New York Bay Hudson River -73.69 42.75 The Battery, NY -74.01 40.70 230
Merrimack Estuary Merrimack River -71.30 42.65 Boston, MA -71.05 42.36 38
Upper Chesapeake Bay Susquehanna River -76.18 39.66 Baltimore, MD -76.58 39.27 55
Lower Chesapeake Bay Potomac River -77.13 38.95 Washington, D.C. -77.02 38.78 21
Winyah Bay Pee Dee River —-79.55 34.20 Charleston, SC -79.92 32.78 162
Tybee Roads Estuary Savannah River -81.27 32.53 Fort Pulaski, GA —80.90 32.04 65
Tampa Bay Alafia River -82.21 27.87 St. Petersburg, FL -82.63 27.76 43
Pensacola Bay Escambia River —-87.23 30.97 Pensacola, FL -87.21 30.40 63
Galveston Bay Buffalo Bayou -95.61 29.76 Galveston Pier 21, TX -97.79 29.31 217
San Antonio Bay Guadalupe River -97.01 28.79 Rockport, TX —97.05 28.02 86

our application, we specifically obtained historic annual Oceanic Nifio
Indices by averaging monthly values. Additionally, we downloaded
station-based yearly values of the North Atlantic Oscillation (NAO)
index which are archived online at the National Center for Atmospheric
Research. The NAO index, which is indicative of the difference in
normalized sea-level pressure between Lisbon, Portugal, and Reykjavik,
Iceland, is relevant for the under-study estuaries in the Northeast coasts
of the US, as this climate phenomenon has been linked to intense
weather systems over the North Atlantic (Hurrell et al., 2003; Hurrell
and Deser, 2010).

2.3. Bivariate sampling and rank correlation coefficient

We followed a two-way conditional sampling approach in order
to extract co-occurring discharge (Q) and surge (S) with at least one
variable being extreme. Particularly, we extracted annual maxima of
the first, i.e., conditioning variable and then the respective maximum
value of the second, i.e., conditioned variable with a lag of +/- 1 to
10 days; we refer to pairs where surge is conditioned on discharge as
QS, while reversely we denote pairs where discharge is conditioned
on surge as S Q. We chose to investigate long time lags, up to 10 days,
as we did not correct for the travel time between the location where
discharge is being measured and the outlet of the estuary where river
flow meets sea water. This approach is in-line with earlier works that
investigated bivariate dependence between river discharge and storm
surge, e.g., Nasr et al. (2021). Besides, compound floods can have
cumulative effects even when the events occur on different days but
within a short time window; the latter event can affect recovery actions
taken in response to the former event. Once the corresponding two-way
conditional samples were collected, we then quantified the magnitude
of dependence between river discharge and storm surge by computing
the Kendall’s r rank correlation coefficient and its significance (Abdi,
2007). We opted for Kendall’s = instead of Pearson’s linear correlation
coefficient, because the former can capture a non-linear dependency as
well. Lastly, we decided to work with either Q S or S Q pairs and the
optimal time lag which altogether yielded the maximum statistically
significant Kendall’s 7 rank coefficient.

2.4. Dependence structure modeling with Bayesian (dynamic) copulas

Characterizing the dependence structure of river discharge and
storm surge means constructing a joint probability distribution for
the two random variables Q and S. To do so, we employed copula
theory (Salvadori and De Michele, 2004, 2007; Durante and Sempi,
2010) which has been used in many different scientific fields, in-
cluding the hydroclimatic domain (Tootoonchi et al., 2022). A copula
(C) is a mathematical function that connects a bivariate distribution
to the underlying cumulative marginals; its significant advantage is
that it does so without any constraint on the family or form of the
marginals (Czado, 2019). According to Sklar’s theorem (Sklar, 1959),
the bivariate distribution Fg with marginals F, and Fg can be written
as:

Cu,v) = Fos(Fy' W), F5' (v) €h)

where C € [0, 1]? is a 2-dimensional copula, which in the case of abso-
lutely continuous distributions is unique. Here, u and v are transformed
variables of river discharge (Q) and storm surge (5), such that u = F(q)
and v = F(s), respectively. An empirical copula approximation can be
defined as:

n
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with u and v expressed as:
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where {(g;,s;) : i = 1,...,n} is the bivariate sample of size n and I(-) is

an indicator function.

The empirical copula modulates the choice of a suitable theoretical,
or else, parametric copula. There are various theoretical copulas, each
with distinct characteristics, that can capture the structure and strength
of dependence between two random variables (Vogl et al., 2012).
The most widely used families of theoretical copulas are the so-called
“Archimedean” and “Elliptical” copulas (Tootoonchi et al., 2020). For
our analysis, we chose to work with three popular Archimedean copu-
las, i.e., Frank, Gumbel and Clayton, which all together can be used
to assess different dependence structures where the strength of de-
pendence might (or might not) be concentrated either in the upper
or lower tail (refer to next paragraph). These copulas, in contrast to
Elliptical, have closed-form expressions, their parameter can be directly
connected to Kendall’s = (see below) and are easier to sample from.
Specifically, the bivariate Frank copula function is given by:
1€ (@0) =~ log(—— [(1 = ) = (1 = 757)(1 = %)) ®)
where the copula parameter § € (—o0, )\ {0}, and as 56 — 0%, it leads to
the independence copula. Note that there exists a closed-form equation
that directly links Kendall’s = with § (Frees and Valdez, 1998):

4 D, (5)
=1l—-=44% — 6
T 3 + 4 % 5 (6)
where D, (6) is the first-order Debye function expressed as follows:
5

3
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The other two bivariate copula functions, i.e., Gumbel and Clayton, are
provided in Text S1.

For each bivariate sample, we performed a goodness-of-fit test to
assess whether the dependence structure could be parameterized by
a Frank copula, which constitutes the null hypothesis. This was done
by computing the test statistic .S, as described in Genest et al. (2009),
with its p-value obtained using a parametric bootstrap approach with
N = 500 bootstrap replications. The rationale behind undertaking this
test as a first step of bivariate modeling is that the Frank copula is
symmetric and does not exhibit tail dependence, which makes it suit-
able for modeling variables where joint occurrences of extreme values
(either high or low) are not more probable than joint occurrences
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of moderate values. Conversely, the Gumbel copula is asymmetric
and exhibits upper tail dependence, making it suitable for modeling
variables where joint occurrences of high values are more probable
than joint occurrences of moderate or low values. Similarly, the Clayton
copula is asymmetric and exhibits lower tail dependence, making it
suitable for modeling variables where joint occurrences of low values
are more probable than joint occurrences of moderate or high values.
Thus, the Frank copula’s lack of tail dependence makes it a good initial
choice for modeling balanced bivariate dependence structures, where
extreme joint occurrences are not expected to be biased towards either
tail. Besides, the unconstrained support of Frank copula’s parameter
(6 € R\ {0}), allows us to construct informative prior distributions
in the context of Bayesian analysis more easily (see Section 3.3). In
cases where we rejected the null hypothesis, we instead performed
the goodness-of-fit test using the Gumbel and Clayton copulas to de-
cide which of the two functions is more suitable for modeling the
dependence structure.

Once a suitable copula function was selected for each bivariate
sample, we next retrieved the model parameter (), indicative of the
magnitude of dependence, for both a stationary copula and a dynamic
copula. Specifically, we modeled a physics-informed copula by allowing
the parameter § to linearly co-vary with a large-scale climatic pattern
(Climate_Index) as follows:

6 =b+ w * Climate_Index ®

where b is the bias term and w is the weight term, while Climate_I'ndex
can be either ONI or NAO index in this analysis. It is important
to note again here that we search for non-stationarity induced only
by these particular climate modes. This variable, i.e., Climate_Index
could in general be selected based on the hypothesized driver of non-
stationarity and so the framework is flexible to be implemented under
other teleconnections which might be more relevant for other coastal
regions. Copula parameters in this analysis were recovered by means
of Bayesian inference to properly quantify parametric uncertainty and
facilitate its reduction via prior distribution analysis (refer to Sec-
tion 3.3). In particular, for the case of a stationary copula, the Bayes’
rule can be applied to express the posterior distribution of § given u
and v as follows:

p(Slu, v) & c(u,v|8) p(d) 9
—— ——
posterior likelihood  prior

2 )
where c(u,v) = % denotes the copula density function. Similarly,
when modeling a physics-informed copula, the posterior distribution of
(b, w) given u and v is:

p(b, wlu, v) o c(u, v|b, w) p(b, w) . 10$)
—
posterior likelihood  prior

For stationary copulas, we initially chose p(5) to be a completely
uninformative improper prior, i.e., U(—o0, ), U[l, ), or U(0, ),
for Frank, Gumbel, and Clayton, respectively. Similarly, for dynamic
copulas, we selected U(—o0, o) as a prior distribution for both 5 and
w, assuming p(b, w) = p(b)p(w), rejecting samples which led to § < 1 or
6 < 0 for Gumbel and Clayton, respectively (see text S1). The rationale
behind these uninformative flat priors is that we generally do not know
how § is distributed. Besides, such priors exempt us from performing
a prior sensitivity analysis. Because the left hand-side expression in
both Egs. (9) & (10) does not admit to a closed-form known probability
density function, we approximated the posterior distribution utilizing
Hamiltonian Monte Carlo (HMC) (Betancourt, 2017; Thomas and Tu,
2021), which is an advanced variant of Markov Chain Monte Carlo
(MCMC). We employed four parallel HMC chains each initialized at
a different start point. The total number of iterations was M = 4 x
4,000 = 16,000, with half of them considered as warm-up phase.
We then assessed convergence to the target density by computing two
widely used metrics, namely, the split-R and the effective sample size
(n, 7 /-) (Vehtari et al., 2021), as well as by visual inspection of trace
plots. Bayesian inference was done with the use of Stan (Gelman et al.,
2015) and its R interface, i.e., rstan.
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2.5. Bayesian model comparison

To facilitate comparison between stationary and dynamic copulas
within the Bayesian context, we then employed two metrics which
are particularly suitable when different models have been obtained
via MCMC simulation. Specifically, we computed both the Deviance
Information Criterion (DIC) (Spiegelhalter et al., 2002) and the Widely
Applicable Information Criterion (WAIC) (Watanabe and Opper, 2010).
The first metric is given by the following expression:

DIC = -2 s logle(u, 0|0 g,,0)] +2 * ppre a1
K
5 1
Ppic =2 % (ogle(u, 0lfpe,,)] = - Y logle(w. 0]6*)]) (12)
k=1

where 0 denotes the parameter(s) of the model, i.e., § or (b, w), for
stationary and dynamic copulas, respectively, while c(u, v|0) is the joint
predictive copula density evaluated at 9. 6 Bayes 1S the posterior mean(s),
6% is the kth sample from the posterior distribution via HMC, and
K is the total number of post-warm-up MCMC iterations, i.e., K =
M — 8000 = 8000. The formula for the second metric is shown below:

n K

1

WAIC = -2 % Z logl - Z (u;, 0,10 +2 % pyrarc 13)
i=1 k=1

n K K
pwasc =2+ Roglge X etuulob) = % Flogleturloh) 19
Both metrics, DIC and WAIC, provide a measure of within-sample
predictive accuracy. However, the latter can also be viewed as an
approximation to leave-one-out cross-validation since it averages over
the entire posterior distribution (see Egs. (13)—(14)) instead of relying
on a point estimate, i.e., @Bam, like the former (refer to Egs. (11)-
(12)) (Gelman et al., 2014). Models with lower DIC and WAIC values
should be generally preferred over models whose corresponding metrics
are greater. The entire methodological procedure (i.e., Sections 2.1 to
2.5) is summarized as a diagram shown in Fig. 1. Note that the “No”
path in the first orange ellipsis encompasses also the case where a
statistically significant negative correlation is detected. In this situation,
rather than using multivariate modeling to account for the negative
bivariate dependence, we recommend opting for univariate modeling.
This more conservative approach helps to avoid underestimating the
hazard that may result from either flood driver individually, which is
important for engineering applications such as construction of either
fluvial or coastal flood defenses.

3. Results and discussion
3.1. Dependence between river discharge and storm surge

Table 2 shows the maximum Kendall’s 7, the respective type of
pairs (Q_S or S_Q) and the optimal time lag for each estuary of our
analysis; the number of pairs is also shown for reference. For most
estuaries, rank correlation coefficients were found to be rather low,
i.e., < 0.24, while the optimal time lag was quite short, i.e., 1 or 2
days. Higher coefficients were obtained for Upper Chesapeake Bay and
Tampa Bay, i.e., 0.33 and 0.31, respectively, while Lower Chesapeake
Bay displayed the greatest Kendall’s = with a value of 0.67. This might
be partially due to the fact the Potomac River’s flux into Chesapeake
Bay is significantly influenced by the downstream boundary dominated
by tidal processes. However, all rank correlation coefficients were
found to be significantly different than zero at the 90% confidence
level (Table 2). This finding suggests that there is indeed a statistically
significant positive dependence between river discharge (Q) and storm
surge (S) for the estuaries under study. On the contrary, the reverse
type of pairs for most estuaries showed a statistically insignificant
correlation at the 90% confidence level (see Table S1).

The Frank copula appeared to be an adequate mathematical func-
tion that can model the dependence structure of variables QO and §
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Fig. 1. Diagram of the methodological procedure to check for and model non-stationarity in the dependence structure of compound flood drivers.

for almost all estuaries. Specifically, based on the S, test statistic
(Table 2), we failed to reject the null hypothesis that the bivariate data
originate from a Frank copula (¢ = 0.10), for all but one estuary. In
particular, for Lower Chesapeake Bay, we derived a very small p-value
(<0.05) suggesting that the Frank copula does not provide a good fit;
on the contrary, for the same estuary, we failed to reject a Gumbel
copula. These results should not come as a surprise since they are in
accordance with a mere visual inspection of the bivariate data in the
pseudo-observation domain (Figures S1 and S2). The scattered pairs of
u and v, observed for most estuaries under study, indicate an overall
low positive dependence not concentrated at either tail, as opposed
to Lower Chesapeake Bay where it is obvious that the dependence
between Q and S is more pronounced at the upper tail (see top right
panel in Figure S1).

Conclusively, here we argue that when dependence is indeed de-
tected, the employment of a Frank copula is often a pragmatic and
sufficient choice for modeling the dependence structure of co-occurring
river discharge and storm surge, as demonstrated earlier. Most of the
time, the characteristics (physical, morphological, etc.) of estuarine
systems, in conjunction with a relatively short observational record, do
not allow for strong upper- or lower-tail dependence to be detected, as
it is the case with Lower Chesapeake Bay.

3.2. (Non-)stationarity of dependence between river discharge and storm
surge

After running HMC for both stationary and dynamic copulas we
obtained n,,, values of > 2000 and split-R values of ~ 1 meaning
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Type (Q_S or S_Q) and number of pairs along with the optimal time lag (days) which resulted to the maximum rank correlation coefficient
(Kendall’s 7) for each estuary under study. The statistical significance (p-value) of the Kendall’s = and the S, test statistic (Frank copula) is also

shown.
Estuary Pairs # Pairs Time lag (days) Kendall’s ¢ P-value (Kendall’s 7) P-value (S,)
Upper New York Bay [0\ 68 2 0.19 <0.05 >0.10
Merrimack Estuary oS 97 1 0.24 <0.05 >0.10
Upper Chesapeake Bay .S 52 1 0.33 <0.05 >0.10
Lower Chesapeake Bay .S 87 1 0.67 <0.05 <0.05
Winyah Bay S0 80 8 0.14 <0.10 >0.10
Tybee Roads Estuary S0 78 4 0.14 <0.10 >0.10
Tampa Bay S0 71 2 0.31 <0.05 >0.10
Pensacola Bay Qs 82 1 0.24 <0.05 >0.10
Galveston Bay oS 68 2 0.19 <0.05 >0.10
San Antonio Bay S0 59 1 0.19 <0.05 >0.10

Table 3

Deviance Information Criterion (DIC) and Widely Applicable Information Criterion (WAIC) as computed for both stationary and dynamic models. Posterior means and 90% credible
intervals of parameters § (stationary copula), b and w (dynamic copula) are also shown. Estuaries with an asterisk indicate cases where a dynamic copula is preferred over a

stationary, based on both DIC and WAIC metrics.

Estuary WAIC,i,ionary DICqationary ) WAICqynamic DICqynamic w b

Upper New York Bay -3.10 -3.13 1.75 (0.47, 3.03) -1.10 -1.14 0.03 (-0.60, 0.71) 1.72 (0.41, 3.07)
Merrimack Estuary -10.30 -10.16 2.17 (1.12, 3.23) -8.70 —-8.49 0.16 (-0.38, 0.69) 2.23 (1.18, 3.30)
Upper Chesapeake Bay* -11.30 -11.44 3.44 (1.86, 5.06) -13.30 -12.91 0.73 (0.07, 1.42) 3.54 (2.09, 5.10)
Lower Chesapeake Bay —-128.50 -128.30 3.18 (2.73, 3.66) -126.90 -126.46 —0.05 (-0.27, 0.18) 3.21 (2.76, 3.70)
Winyah Bay* -1.10 -1.15 1.25 (0.08, 2.38) -1.80 -2.17 2.14 (0.08, 4.14) 1.27 (0.14, 2.40)
Tybee Roads Estuary -1.70 -1.43 1.30 (0.16, 2.44) -1.10 —-0.69 —1.42 (-3.44, 0.55) 1.29 (0.11, 2.46)
Tampa Bay -13.80 -13.89 3.10 (1.81, 4.42) -12.00 -12.25 0.92 (-1.68, 3.69) 3.01 (1.68, 4.32)
Pensacola Bay -8.20 -8.69 2.42 (1.20, 3.70) -5.60 -7.18 —0.86 (-3.01, 1.21) 2.40 (1.16, 3.63)
Galveston Bay* -2.70 -2.89 1.74 (0.44, 3.05) —6.80 -7.38 3.78 (1.31, 6.32) 1.90 (0.56, 3.27)
San Antonio Bay -2.10 -2.08 1.70 (0.32, 3.10) —-0.60 -1.68 1.69 (-0.42, 3.95) 1.79 (0.36, 3.18)

that the algorithm successfully converged to the target densities. For
reference, the climate index used as a linear covariate for parameter
8, i.e., used for modeling a physics-informed copula (Eq. (8)), is given
in Table S2 for each estuary of our analysis. Table 3 displays mean
parameter (5, b and w) estimates along with their uncertainty, which
is expressed here as 90% credible intervals; DIC and WAIC metrics
are also presented in the same table for both models, i.e., stationary
and dynamic. Our results revealed that a physics-informed copula, as
modeled with ONI and NAO index covariates, provides a better model
for only 3/10 estuaries under study. On the contrary, a stationary
parameter § yielded a more suitable fit for most estuaries. Notably,
there is an agreement among DIC and WAIC metrics that a dynamic
copula is more appropriate for capturing the dependence structure of
estuarine river discharge and storm surge at Galveston Bay, Upper
Chesapeake Bay and Winyah Bay, only. The same finding is also evident
by examining the posterior distribution of parameter w, a distribution
which summarizes the effect of the corresponding climate index on the
magnitude of dependence. Specifically, for cases where the stationary
copula was deemed more suitable, the posterior of w spanned regions
of both positive and negative samples, hence encompassing zero (see
Table 3). In practice, this means that there is no clear indication as
per what the effect of the covariate is (it can be either positive or
negative), while there is also the chance of it being negligible, i.e., zero.
Oppositely, for estuaries where a dynamic copula provided a superior
fit, the credible intervals of parameter w covered regions of positive
samples, only (refer to Table 3), suggesting that a greater value of the
respective climate index leads to a stronger dependence. Overall, our
analysis indicated that there is no strong evidence for non-stationarity
in the dependence between co-occurring river discharge and storm
surge along the majority of the estuaries examined, particularly due
to ENSO or NAO. It is important to note, however, that this finding
is subject to the type of bivariate data employed and the choice of
covariate (Table S2) used for capturing and modeling non-stationarity
(see discussions on methodological limitations in Section 4).

3.3. Uncertainty of stationary copula parameter and Kendall’s z-informed
prior distribution

Given now that a stationary Frank copula can be used to properly
model the dependence structure of river discharge and storm surge
for most estuaries, as we showed earlier, it seems tempting to investi-
gate possible ways for reducing estimation uncertainty and narrowing
down credible intervals of parameter § (Table 3). In fact, this type
of parametric uncertainty is a major source of ambiguity in bivariate
hazard curves, and consequently in bivariate hazard scenarios, which
are critical for coastal flood risk assessments. Thus, efforts to minimize
the uncertainty surrounding é are very important. This is particularly
useful for estuaries with a smaller number of bivariate pairs, which
are consequently expected to exhibit higher uncertainty in the copula
parameter.

Here we showcase a way to narrow down credible intervals of
parameter 6 by employing a rational Kendall’s r-informed prior distri-
bution instead of the typical U(—o0, o). For demonstration purposes, we
choose to focus on San Antonio Bay which has a very small bivariate
sample size of n = 59 “S_Q” pairs (Table 2). For this estuary, we
found the mean value of parameter 6 to be 1.70, while its 90% credible
interval was (0.32, 3.10) (Table 3), based on the uninformative uniform
prior. To derive a new meaningful and informative prior instead,
we first bootstrapped bivariate samples with replacement for 1000
replications, keeping the sample size same as the original, i.e,, n =
59. For each replication, we then computed a respective Kendall’s =
and utilizing Eq. (6) we derived a corresponding & parameter. This
eventually led to a total of 1000 samples of parameter 5, which we
finally used in order to fit a distribution with Maximum Likelihood
Estimation (MLE). Fig. 2 shows the histogram of these samples as well
as a MLE-derived normal probability density that has an estimated
mean of y = 1.76 and a standard deviation of ¢ = 0.90. This distribution,
i.e., Normal(1.76, 0.90), constitutes a Kendall’s r-informed prior for
parameter § that naturally reflects the expected variability in observed
dependence between river discharge and storm surge at San Antonio
Bay. After Bayesian inference with the new prior distribution, we
obtained a mean parameter estimate of 6 = 1.73, which is very close
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Fig. 2. Histogram of & samples derived using Eq. (6) after bootstrap analysis of
Kendall’s = for San Antonio Bay (light green bars with orange dashed lines). A normal
probability density obtained via Maximum Likelihood Estimation is also shown (red
solid line).

to the mean estimate using U(—oo, o0) as a prior distribution. However,
the 90% credible interval was narrowed down to (0.73, 2.74). This
finding highlights the fact that deriving a Kendall’s z-informed prior, as
outlined here, can successfully reduce copula parametric uncertainty,
even for cases where the bivariate sample size is relatively small.
This smaller uncertainty is crucial from a practical point of view, as
explained earlier.

3.4. Implications of non-stationarity for bivariate hazard scenarios

In occasions where a dynamic copula fits the data better, it is worth
exploring what are the implications of inappropriate bivariate hazard
quantification under an assumption of stationarity. For this reason, here
we turn our focus on Galveston Bay, where both DIC and WAIC metrics
clearly suggested that a dynamic copula whose parameter § co-varies
with ONI provides a superior fit than a stationary copula (Table 3).
Specifically, for this estuary, we constructed and contrasted bivariate
hazard curves based on both a stationary Frank copula with § = 1.74
and a dynamic copula with w = 3.78 and b = 1.90 (Table 3). The
dynamic copula was based on a strong El-Nifio year (ONI = 1.45),
similar to the year 2015 CE. For the construction of smooth curves,
as opposed to empirical, marginal distributions were fitted to both
variables O and S originating from the empirical bivariate sample.
Particularly, since the bivariate sample for that estuary was of type
“Q_S”, we employed a Generalized Extreme Value (GEV) distribution
for river discharge and an Asymmetric Laplace (AL) distribution for
surge. The cumulative probability functions for both GEV and AL
distributions are shown in Text S2. The latter distribution was preferred
for modeling surge, instead of a typical Gamma distribution, due to
the fact that when S is not the conditioning variable, it is possible
to observe a negative surge for a combination of annual maximum
discharge and the respective maximum surge within +/- 1 to 10 days.
Both distributions were obtained by means of MLE and they provided a
good fit to the respective empirical data (see Figures S3 and S4). Fig. 3
displays our bivariate hazard curves, both dynamic and stationary, with
the red arrow highlighting an observed compound event which had
0 = 125 m?*/s and S = 0.60 m. It is shown here that this compound
event has a bivariate return period (“AND” scenario, see Salvadori et al.
(2016) for definition of bivariate return periods) of roughly T = 25
years during a strong El-Nifio year (left panel), but the exact same event
has an approximate return period of 7 = 80 years under stationarity
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assumption (right panel). For estuaries where there is evidence for non-
stationarity in the dependence structure of river discharge and storm
surge, our analysis highlights the fact that stationary bivariate hazard
curves could severely underestimate the likelihood of an event which
can potentially lead to compound flooding, highly dependent on the
year. In general, for cases where we found that a dynamic copula
is more suitable, it appears that the likelihood of compound events
gets higher with increasing signals of the respective large-scale climate
pattern; see, e.g., the positive effects (i.e., posterior of w) of ONI or
NAO index at Galveston Bay, Upper Chesapeake Bay and Winyah Bay
(Table 3).

4. Methodological limitations and conclusion

In this work, we have searched for evidence of a varying de-
pendence between estuarine river discharge and storm surge across
the East and Gulf coasts of the US, driven by large-scale climate
variability as expressed by ENSO and NAO. To this end, we devel-
oped a framework employing widely used Archimedean copulas, a
goodness-of-fit test, state-of-the-art algorithms for Bayesian inference
and informative Bayesian model comparison metrics, and we showed
that for most estuaries examined here there is no strong indication of
such non-stationarity. As part of our analysis, we also showed that, in
practice, most of the time a Frank copula can sufficiently capture the
dependence structure of river discharge and storm surge. In addition,
we illustrated a useful way to reduce parametric uncertainty by em-
ploying a Kendall’s r-informed prior distribution for the Frank copula
parameter. Finally, through construction of bivariate hazard curves,
we discussed the implications of ignoring non-stationarity when our
framework suggests otherwise, concluding that during years where the
signal from ENSO or NAO is strong, there is a higher chance of events
that may cause compound flooding at certain estuaries. Our analysis
does come, nevertheless, with limitations which we also discuss in the
next paragraphs.

First, even though we have utilized lengthy available observational
records of river discharge and storm surge, the overlapping time pe-
riod is still considered rather short for us to extract many compound
events where both variables, QO and .S, are considered extremes. This
has limited our analysis to either pairs Q_S or S_Q (as described in
Section 2.3). As a result, these data comprise a mixture of pairs, which,
however, do include instances were both river discharge and storm
surge are quite high (see bivariate data in Fig. 3 as an example).
Consequently, our findings of (non-)stationarity in the dependence
between river discharge and storm surge are representative of events
which have potential to cause a compound flood, not of actual com-
pound flood events. Besides, as mentioned earlier, very high river
discharge measurements might as well be an artifact of upstream water
management operations, not a direct influence of climate variability,
and therefore may falsify the inference on natural dependence between
the two variables. These limitations could possibly be alleviated by the
use of prolonged continuous modeled river discharge and storm surge
data, instead of observations. The rationale behind this is that with
longer overlapping time series’ of these variables it might be possible
to obtain an adequate bivariate sample size where both O and S are
always extremes, i.e., not obtained from a two-way conditional sam-
pling. In addition, most current modeled data typically reflect natural
river discharge not affected by human operations, e.g., dam control. In
such a case, any inference on (non-)stationary dependence would be
more closely linked to actual compound flood drivers. The simulated
data sets, however, should preferably originate from consistent models
that are able to preserve the dependence between river discharge and
storm surge. An idea for future research to this regard would be to
utilize reanalysis river discharge data derived from ERA5 forcings,
i.e., GlIoFAS-ERAS (Harrigan et al., 2020) in conjunction with a newly
developed hindcast model of storm surge that also utilizes ERA5 forc-
ings (Mentaschi et al., 2023). Ideally, these models should however
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Fig. 3. Bivariate hazard curves for Galveston Bay derived from a stationary Frank copula (right) and a dynamic Frank copula for a strong El-Nifio year (left). Black dashed lines
show the continuous isolines for different return periods (“AND” scenarios), while orange dots represent the observed Q_S data with the red arrow pointing to an actual compound
event of Q =125m3/s and S = 0.60m. Dots with light green color illustrate simulations from the bivariate distribution.

be built upon very high-resolution DEM information and incorporate
flood protection measures to accurately capture actual compound flood
events. The use of spatially continuous global data sets of this kind
would also pave the way for including more estuaries, not restricted
to US coasts.

Second, the findings presented here are dependent on the covariate
used for modeling a dynamic copula, i.e., either ONI or NAO index. In
other words, here we have searched for a non-stationary dependence
due to ENSO or NAO, only. Even though focusing on these large-scale
climate modes is logical from a physics point-of-view for the regions
under study, they are non-exhaustive and thus we cannot exclude the
possibility that other covariates, which are not used here, might have
led to different results with respect to dynamic vs. stationary copula
comparison. In simpler terms, for an estuary where we did not detect
non-stationarity, the use of a different covariate might have uncovered
possibly different and complementary perspectives. Thus, in our future
research efforts, we would be interested in evaluating other relevant
covariates. For example, we could resort to atmospheric variables like
global mean temperature or CO, concentration, as well as other ap-
propriate climate modes, e.g., Atlantic Multi-decadal Oscillation, which
has been shown to affect storm surge in the US Southeast (Park et al.,
2011), in order to more comprehensively assess (non-)stationarity.

Finally, another limitation of our work, which however appears
difficult to overcome, is the modeling assumption that the copula
function itself remains the same over time, but only the magnitude of
dependence is changing. In other terms, here we have simplified our
analysis, for practical reasons, by hypothesizing that non-stationarity in
the dependence structure due to ENSO or NAO, if any, originates with
a varying magnitude of dependence and not with a differing copula
function. If, for example, a Frank copula was found to provide a good
fit for the entire bivariate data set of an estuary, then it was assumed
that it provides a good fit for any other subset of that data set. Changing
the copula function over time is a rather challenging modeling task
and would require very long data records for a statistically robust
assessment.

Despite the limitations outlined above, our work constitutes a novel
addition to the current scientific literature on dependence between
estuarine compound flood drivers. It provides insights about potential
non-stationarity due to ENSO and NAO and its implications for bi-
variate hazard quantification, as well as practical recipes for modeling
a stationary/dynamic dependence structure with reduced parametric
uncertainty in a Bayesian manner.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.advwatres.2024.104858.

Data availability

Daily river discharge data used in this work can be downloaded
from GRDC via: https://grdc.bafg.de/, while hourly coastal water level
data can be obtained from GESLA-3 database via: https://gesla787883
612.wordpress.com/. The Oceanic Nifio Index is accessible through: h
ttps://bmenoldy.earth.miami.edu/tropics/oni/, whereas the North At-
lantic Oscillation index can be obtained from: https://climatedataguide
.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-stat
ion-based/. R and Stan scripts as well as data examples that support
the analysis presented in this article are freely available and can be
accessed via: https://github.com/bgeorgios/BDCop4CF.
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