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A B S T R A C T

Compound floods may happen in low-lying estuarine environments when sea level above normal tide co-occurs
with high river flow. Thus, comprehensive flood risk assessments for estuaries should not only account for the
individual hazard arising from each environmental variable in isolation, but also for the case of bivariate
hazard. Characterization of the dependence structure of the two flood drivers becomes then crucial, especially
under climatic variability and change that may affect their relationship. In this article, we demonstrate our
search for evidence of non-stationarity in the dependence between river discharge and storm surge along
the East and Gulf coasts of the United States, driven by large-scale climate variability, particularly El-Niño
Southern Oscillation and North Atlantic Oscillation (NAO). Leveraging prolonged overlapping observational
records and copula theory, we recover parameters of both stationary and dynamic copulas using state-of-the-
art Markov Chain Monte Carlo methods. Physics-informed copulas are developed by modeling the magnitude
of dependence as a linear function of large-scale climate indices, i.e., Oceanic Niño Index or NAO index. After
model comparison via suitable Bayesian metrics, we find no strong indication of such non-stationarity for
most estuaries included in our analysis. However, when non-stationarity due to these climate modes cannot
be neglected, this work highlights the importance of appropriately characterizing bivariate hazard under non-
stationarity assumption. As an example, we find that during a strong El-Niño year, Galveston Bay, TX, is much
more likely to experience a coincidence of abnormal sea level and elevated river stage.
1. Introduction

Coastal floods are widely considered to be among the most devastat-
ing catastrophes, since they happen at areas which have a dense popu-
lation and high environmental, social and economic importance (Haigh
and Nicholls, 2017). At estuaries, i.e., coastal areas where rivers meet
the sea, floods may be a result of multiple hydro-meteorological factors
that can act simultaneously, not necessarily driven from a single phe-
nomenon which acts in isolation (Harrison et al., 2022). For example,
in low-lying estuarine environments, like bays that receive freshwater
inputs, so-called ‘‘compound’’ floods may happen due to a coincidence
of an elevated river stage and an increased sea level from, e.g., heavy
rainfall and strong winds, respectively (Moftakhari et al., 2017, 2019).
While high river discharge can also be regulated by other factors such
as rapid snowmelt or flood management operations, the simultaneous
or closely timed occurrence of inland floodwaters and ocean surge are

ainly assumed to be due to a tropical storm. Such events typically
roduce floodwaters that are longer in duration and more widespread,
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in comparison with purely fluvial or ocean-driven estuarine floods.
This was the case, for example, with Hurricane Harvey (2017), which
induced a catastrophic compound flood around Galveston Bay, TX,
lasting several days, due to a near coincidence of high river discharge
from both Buffalo Bayou and San Jacinto River and ocean-derived
storm surge (Valle-Levinson et al., 2020; Huang et al., 2021).

The traditional approach to coastal flood risk assessment addresses
flood hazard from each driver independently, i.e., employs univari-
ate statistical modeling (Hawkes et al., 2008). This relies on the as-
sumption of no significant interactions between coastal flood drivers.
However, comprehensive flood risk management for estuarine systems
requires consideration of a probable co-occurrence (or sequence) of
flood mechanisms, e.g., river discharge and storm surge, as mentioned
earlier. Hence, it necessitates multivariate statistical modeling (Wu
et al., 2021). This becomes increasingly important considering the fact
that current research suggests that compound coastal floods might
become more frequent and/or more severe in the future, as a result of
long-term shifts in storm patterns, e.g., (extra)tropical cyclones and/or
https://doi.org/10.1016/j.advwatres.2024.104858
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data mining, AI training, and similar technologies. 
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pland development, among other factors (Dykstra and Dzwonkowski,
021; Sebastian, 2022; Jafarzadegan et al., 2023). An essential part

of multivariate flood hazard modeling is the characterization of the
dependence structure of the flood drivers involved (Zhang et al., 2022;
Tripathy et al., 2024). In practice, this characterization consists of two
crucial steps: (1) the evaluation of whether there exists a statistically
significant dependence between the different variables involved, and
(2) the construction of a multivariate probability distribution that
properly models (i.e., ‘‘fits’’) the data. Once these two steps have been
completed, multivariate hazard curves can be then obtained in order
to provide information about the recurrence interval, also known as
return period, of different multivariate hazard scenarios (Salvadori
et al., 2011). Complications in multivariate hazard modeling arise
when the dependence structure of the flood drivers does not remain
unchanged, but rather exhibits non-stationarity. This can happen, for
example, when the magnitude of dependence has been varying over
time. Nevertheless, with regard to the two steps outlined above, it
is a rather difficult task to provide statistically robust evidence that
the magnitude of dependence has been changing over the years and
to subsequently incorporate this change into the construction of the
multivariate probability distribution.

To this day, only a handful of studies, conducted on a broad spatial
scale, have explored the possibility of non-stationarity in the interplay
among factors that contribute to compound floods. For example, Wahl
et al. (2015) performed a robust statistical analysis utilizing prolonged
observational records and a sliding time window to compute the mag-
nitude of dependence between precipitation and storm surge along
the United States (US) coastline and showed that their interaction has
changed over the years. In a similar manner, Gori et al. (2022) made
use of complex physics-based models to simulate historical and pro-
jected tropical cyclone climatology over the Northeast and South(east)
US to conclude that bivariate flood hazard from precipitation and storm
surge is expected to dramatically increase by the end of this century.
Only recently, in a comprehensive observation-based study, Nasr et al.
(2023) demonstrated historical shifts in the extremal dependence be-
tween river discharge, precipitation and storm surge, linking them to
large-scale climate patterns.

There appears to be, in addition, a shortage of scientific liter-
ature concerning a realistic and physically meaningful modeling of
the possibly varying dependence structure of compound flood drivers;
the majority of studies published on the matter have let multivariate
distributions co-vary with 𝑡𝑖𝑚𝑒, i.e., an abstract quantity not directly
linked to the physical mechanisms that may drive compound floods. As
an example, Razmi et al. (2022) employed a multivariate distribution to
simultaneously model extreme sea level and precipitation in New York
City, US, allowing for a time-dependent change in the magnitude of
their correlation. In an analogous manner, Pirani and Najafi (2023) uti-
lized time-varying multivariate distributions to model the dependence
structure of fluvial, pluvial and oceanic drivers of compound floods
along the Canadian coasts. Similarly, Wang et al. (2023) captured
changes in the multivariate distribution of concurrent precipitation and
storm surge in Ho Chi Minh City, Vietnam, by using time-dependent
parameters of a multivariate distribution.

To the best of our knowledge, there has yet to be a study that com-
bines an evaluation of varying interactions between compound flood
drivers with a pragmatic approach to dependence structure modeling.
For this reason, here we develop a parsimonious framework to simul-
taneously search for non-stationary dependence between co-occurring
flood variables as well as model their multivariate distribution. Specif-
cally, we leverage long overlapping records of river discharge and
torm surge, originating from major estuaries along the East and Gulf
oasts of the US, in order to obtain stationary and dynamic multivariate

distributions using advanced Bayesian techniques. The use of pertinent
large-scale climate indices for modeling dynamic conditions allows us
to provide a physically meaningful interpretation of changes, if any, in

he dependence magnitude, in contrast to the use of 𝑡𝑖𝑚𝑒 as an abstract

2 
covariate. Lastly, Bayesian model intercomparison through appropriate
etrics casts light on whether there is evidence for a non-stationary
ependence. Along the way, we show how parametric uncertainty in

the multivariate distribution can be reduced by formulating a mean-
ingful and informative prior distribution, within the Bayesian context,
that is based on the variability of observed dependence between river
ischarge and storm surge. Also, we highlight the implications of inap-

propriate bivariate hazard quantification under stationarity assumption
for estuaries where the dependence indeed co-varies with large-scale
climatic phenomena. The rest of this article is organized as follows:
Section 2 describes the different data sources used and the statistical
methods employed, concluding with a diagram which describes our
overall methodological framework. Section 3 includes the results of
our analysis along with discussions and interpretations of them, while
our study is finalized in Section 4 where we outline methodological
limitations of our work as well as suggestions for future research.

2. Datasets and methodology

2.1. River discharge and storm surge data

Average daily river discharge data were firstly downloaded from
the Global Runoff Data Center (GRDC). We then quality-constrained
the river discharge data from GRDC by keeping years of record with
> 80% of non-missing entries. In addition, we downloaded hourly
measurements of still water level (SWL) from tide stations along the
East and Gulf coasts of the US, which are archived at the latest version
of the GESLA database (Haigh et al., 2023). Next, to obtain the storm
surge, which is essentially the only meteorological, and thus stochastic,
component of SWL (Serafin et al., 2017), we conducted a tidal harmonic
nalysis. Specifically, we predicted the tidal level, including mean sea
evel (MSL), and subtracted it from SWL to extract the random non-
idal residual, or else, surge. The tidal harmonic analysis was carried
ut on an annual basis to discount the effect of MSL rise and involved
0 influential tidal constituents, analogous to the work of Boumis
t al. (2024). Similar to discharge, the time series of hourly surge was
uality-controlled by removing years for which ≥ 20% of the data
ere missing. We made sure that the corresponding tide gauges are

in close proximity to the respective estuaries where the river data
pertain to (‘‘great-circle’’ distance < 250 km), considering also the
nterconnectivity of sea levels. Finally, we matched the time resolution

of the two datasets by extracting the maximum hourly surge per day
and kept estuaries for which the overlapping observational record was
longer than 50 years. The latter resulted in a total of ten river gauge
and tide station combinations from nine estuaries distributed along
he East and Gulf coasts of the US; these were used for further anal-

yses. Table 1 summarizes information about the estuaries under study,
including river gauge and tide station geographic location, as well
s the ‘‘great-circle’’ distance (km) between them. At this point, it is

worth mentioning that our study site selection, particularly in terms of
river gauge location, does not account for upstream human operations
which can modulate river discharge and thus can artificially influence
dependence (refer to ‘‘Methodological limitations and conclusion’’).

2.2. Large-scale climate indices

To model a physics-informed varying magnitude of dependence (see
Section 2.4), we utilized historic monthly Oceanic Niño Index (ONI)
values that are hosted online from the University of Miami. ONI is a
popular and widely used metric to identify the warm (or cool) anomaly
of sea-surface temperature in the central-to-eastern equatorial Pacific
Ocean with respect to historic normal conditions (Glantz and Ramirez,
2020). In other words, ONI is used to define the phase of El-Niño
Southern Oscillation (ENSO) that is known to have teleconnections all
around the globe, including the Southeast and Gulf coasts of the US

which are under consideration in this study (Taschetto et al., 2020). For
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able 1
eographical information of estuaries under study and approximate ‘‘great-circle’’ distance (km) between river gauges and respective tide stations.
Estuary River gauge Longitude Latitude Tide station Longitude Latitude Distance

Upper New York Bay Hudson River −73.69 42.75 The Battery, NY −74.01 40.70 230
Merrimack Estuary Merrimack River −71.30 42.65 Boston, MA −71.05 42.36 38
Upper Chesapeake Bay Susquehanna River −76.18 39.66 Baltimore, MD −76.58 39.27 55
Lower Chesapeake Bay Potomac River −77.13 38.95 Washington, D.C. −77.02 38.78 21
Winyah Bay Pee Dee River −79.55 34.20 Charleston, SC −79.92 32.78 162
Tybee Roads Estuary Savannah River −81.27 32.53 Fort Pulaski, GA −80.90 32.04 65
Tampa Bay Alafia River −82.21 27.87 St. Petersburg, FL −82.63 27.76 43
Pensacola Bay Escambia River −87.23 30.97 Pensacola, FL −87.21 30.40 63
Galveston Bay Buffalo Bayou −95.61 29.76 Galveston Pier 21, TX −97.79 29.31 217
San Antonio Bay Guadalupe River −97.01 28.79 Rockport, TX −97.05 28.02 86
𝑣
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our application, we specifically obtained historic annual Oceanic Niño
ndices by averaging monthly values. Additionally, we downloaded

station-based yearly values of the North Atlantic Oscillation (NAO)
index which are archived online at the National Center for Atmospheric
Research. The NAO index, which is indicative of the difference in
normalized sea-level pressure between Lisbon, Portugal, and Reykjavík,
Iceland, is relevant for the under-study estuaries in the Northeast coasts
of the US, as this climate phenomenon has been linked to intense
weather systems over the North Atlantic (Hurrell et al., 2003; Hurrell
and Deser, 2010).

2.3. Bivariate sampling and rank correlation coefficient

We followed a two-way conditional sampling approach in order
to extract co-occurring discharge (𝑄) and surge (𝑆) with at least one
variable being extreme. Particularly, we extracted annual maxima of
the first, i.e., conditioning variable and then the respective maximum
value of the second, i.e., conditioned variable with a lag of +/- 1 to
10 days; we refer to pairs where surge is conditioned on discharge as
Q_S, while reversely we denote pairs where discharge is conditioned
on surge as S_Q. We chose to investigate long time lags, up to 10 days,
as we did not correct for the travel time between the location where
discharge is being measured and the outlet of the estuary where river
flow meets sea water. This approach is in-line with earlier works that
nvestigated bivariate dependence between river discharge and storm
urge, e.g., Nasr et al. (2021). Besides, compound floods can have

cumulative effects even when the events occur on different days but
within a short time window; the latter event can affect recovery actions
taken in response to the former event. Once the corresponding two-way
conditional samples were collected, we then quantified the magnitude
of dependence between river discharge and storm surge by computing
the Kendall’s 𝜏 rank correlation coefficient and its significance (Abdi,
2007). We opted for Kendall’s 𝜏 instead of Pearson’s linear correlation
coefficient, because the former can capture a non-linear dependency as
well. Lastly, we decided to work with either Q_S or S_Q pairs and the
optimal time lag which altogether yielded the maximum statistically
significant Kendall’s 𝜏 rank coefficient.

2.4. Dependence structure modeling with Bayesian (dynamic) copulas

Characterizing the dependence structure of river discharge and
storm surge means constructing a joint probability distribution for
the two random variables 𝑄 and 𝑆. To do so, we employed copula
theory (Salvadori and De Michele, 2004, 2007; Durante and Sempi,
2010) which has been used in many different scientific fields, in-
cluding the hydroclimatic domain (Tootoonchi et al., 2022). A copula
(𝐶) is a mathematical function that connects a bivariate distribution
to the underlying cumulative marginals; its significant advantage is
that it does so without any constraint on the family or form of the
marginals (Czado, 2019). According to Sklar’s theorem (Sklar, 1959),
the bivariate distribution 𝐹𝑄𝑆 with marginals 𝐹𝑄 and 𝐹𝑆 can be written
as:

−1 −1
𝐶(𝑢, 𝑣) = 𝐹𝑄𝑆 (𝐹𝑄 (𝑢), 𝐹𝑆 (𝑣)) (1)

3 
where 𝐶 ∈ [0, 1]2 is a 2-dimensional copula, which in the case of abso-
lutely continuous distributions is unique. Here, 𝑢 and 𝑣 are transformed
variables of river discharge (𝑄) and storm surge (𝑆), such that 𝑢 = 𝐹𝑄(𝑞)
and 𝑣 = 𝐹𝑆 (𝑠), respectively. An empirical copula approximation can be
defined as:

𝐶̃(𝑢, 𝑣) = 1
𝑛 + 1

𝑛
∑

𝑖=1
𝐼{𝑢𝑖≤𝑢,𝑣𝑖≤𝑣} (2)

with 𝑢 and 𝑣 expressed as:

𝑢 = 𝐹𝑄(𝑞) = 1
𝑛 + 1

𝑛
∑

𝑖=1
𝐼{𝑞𝑖≤𝑞} (3)

= 𝐹𝑆 (𝑠) = 1
𝑛 + 1

𝑛
∑

𝑖=1
𝐼{𝑠𝑖≤𝑠} (4)

where {(𝑞𝑖, 𝑠𝑖) ∶ 𝑖 = 1,… , 𝑛} is the bivariate sample of size 𝑛 and 𝐼(⋅) is
n indicator function.

The empirical copula modulates the choice of a suitable theoretical,
r else, parametric copula. There are various theoretical copulas, each
ith distinct characteristics, that can capture the structure and strength
f dependence between two random variables (Vogl et al., 2012).
he most widely used families of theoretical copulas are the so-called

‘Archimedean’’ and ‘‘Elliptical’’ copulas (Tootoonchi et al., 2020). For
ur analysis, we chose to work with three popular Archimedean copu-

las, i.e., Frank, Gumbel and Clayton, which all together can be used
o assess different dependence structures where the strength of de-
endence might (or might not) be concentrated either in the upper
r lower tail (refer to next paragraph). These copulas, in contrast to
lliptical, have closed-form expressions, their parameter can be directly
onnected to Kendall’s 𝜏 (see below) and are easier to sample from.
pecifically, the bivariate Frank copula function is given by:

𝐶
Frank

(𝑢, 𝑣) = −1
𝛿
log( 1

1 − 𝑒−𝛿
[(1 − 𝑒−𝛿) − (1 − 𝑒−𝛿∗𝑢)(1 − 𝑒−𝛿∗𝑣)]) (5)

where the copula parameter 𝛿 ∈ (−∞,∞)⧵{0}, and as 𝛿 → 0+, it leads to
the independence copula. Note that there exists a closed-form equation
that directly links Kendall’s 𝜏 with 𝛿 (Frees and Valdez, 1998):

𝜏 = 1 − 4
𝛿
+ 4 ∗ 𝐷1(𝛿)

𝛿
(6)

where 𝐷1(𝛿) is the first-order Debye function expressed as follows:

𝐷1(𝛿) = ∫

𝛿

0

𝑥∕𝛿
𝑒𝑥 − 1𝑑 𝑥. (7)

The other two bivariate copula functions, i.e., Gumbel and Clayton, are
provided in Text S1.

For each bivariate sample, we performed a goodness-of-fit test to
assess whether the dependence structure could be parameterized by
a Frank copula, which constitutes the null hypothesis. This was done
by computing the test statistic 𝑆𝑛 as described in Genest et al. (2009),
with its 𝑝-value obtained using a parametric bootstrap approach with
𝑁 = 500 bootstrap replications. The rationale behind undertaking this
test as a first step of bivariate modeling is that the Frank copula is
symmetric and does not exhibit tail dependence, which makes it suit-
able for modeling variables where joint occurrences of extreme values

(either high or low) are not more probable than joint occurrences
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f moderate values. Conversely, the Gumbel copula is asymmetric
nd exhibits upper tail dependence, making it suitable for modeling
ariables where joint occurrences of high values are more probable
han joint occurrences of moderate or low values. Similarly, the Clayton
opula is asymmetric and exhibits lower tail dependence, making it
uitable for modeling variables where joint occurrences of low values

are more probable than joint occurrences of moderate or high values.
hus, the Frank copula’s lack of tail dependence makes it a good initial
hoice for modeling balanced bivariate dependence structures, where
xtreme joint occurrences are not expected to be biased towards either
ail. Besides, the unconstrained support of Frank copula’s parameter
𝛿 ∈ 𝑅 ⧵ {0}), allows us to construct informative prior distributions
n the context of Bayesian analysis more easily (see Section 3.3). In
ases where we rejected the null hypothesis, we instead performed
he goodness-of-fit test using the Gumbel and Clayton copulas to de-
ide which of the two functions is more suitable for modeling the
ependence structure.

Once a suitable copula function was selected for each bivariate
ample, we next retrieved the model parameter (𝛿), indicative of the
agnitude of dependence, for both a stationary copula and a dynamic

opula. Specifically, we modeled a physics-informed copula by allowing
he parameter 𝛿 to linearly co-vary with a large-scale climatic pattern
𝐶 𝑙 𝑖𝑚𝑎𝑡𝑒_𝐼 𝑛𝑑 𝑒𝑥) as follows:

= 𝑏 +𝑤 ∗ 𝐶 𝑙 𝑖𝑚𝑎𝑡𝑒_𝐼 𝑛𝑑 𝑒𝑥 (8)

here 𝑏 is the bias term and 𝑤 is the weight term, while 𝐶 𝑙 𝑖𝑚𝑎𝑡𝑒_𝐼 𝑛𝑑 𝑒𝑥
an be either ONI or NAO index in this analysis. It is important
o note again here that we search for non-stationarity induced only
y these particular climate modes. This variable, i.e., 𝐶 𝑙 𝑖𝑚𝑎𝑡𝑒_𝐼 𝑛𝑑 𝑒𝑥
ould in general be selected based on the hypothesized driver of non-
tationarity and so the framework is flexible to be implemented under
ther teleconnections which might be more relevant for other coastal

regions. Copula parameters in this analysis were recovered by means
of Bayesian inference to properly quantify parametric uncertainty and
facilitate its reduction via prior distribution analysis (refer to Sec-
tion 3.3). In particular, for the case of a stationary copula, the Bayes’
rule can be applied to express the posterior distribution of 𝛿 given 𝑢
and 𝑣 as follows:

𝑝(𝛿|𝑢, 𝑣)
⏟⏞⏟⏞⏟
posterior

∝ 𝑐(𝑢, 𝑣|𝛿)
⏟⏞⏟⏞⏟
likelihood

𝑝(𝛿)
⏟⏟⏟

prior

(9)

where 𝑐(𝑢, 𝑣) = 𝜕2𝐶(𝑢,𝑣)
𝜕 𝑢𝜕 𝑣 denotes the copula density function. Similarly,

when modeling a physics-informed copula, the posterior distribution of
𝑏, 𝑤) given 𝑢 and 𝑣 is:

𝑝(𝑏, 𝑤|𝑢, 𝑣)
⏞⏞⏞⏟⏞⏞⏞⏟
posterior

∝ 𝑐(𝑢, 𝑣|𝑏, 𝑤)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

likelihood

𝑝(𝑏, 𝑤)
⏟⏟⏟

prior

. (10)

or stationary copulas, we initially chose 𝑝(𝛿) to be a completely
ninformative improper prior, i.e., 𝑈 (−∞,∞), 𝑈 [1,∞), or 𝑈 (0,∞),
or Frank, Gumbel, and Clayton, respectively. Similarly, for dynamic
opulas, we selected 𝑈 (−∞,∞) as a prior distribution for both 𝑏 and
, assuming 𝑝(𝑏, 𝑤) = 𝑝(𝑏)𝑝(𝑤), rejecting samples which led to 𝛿 < 1 or
≤ 0 for Gumbel and Clayton, respectively (see text S1). The rationale
ehind these uninformative flat priors is that we generally do not know
ow 𝛿 is distributed. Besides, such priors exempt us from performing
 prior sensitivity analysis. Because the left hand-side expression in
oth Eqs. (9) & (10) does not admit to a closed-form known probability
ensity function, we approximated the posterior distribution utilizing
amiltonian Monte Carlo (HMC) (Betancourt, 2017; Thomas and Tu,
021), which is an advanced variant of Markov Chain Monte Carlo
MCMC). We employed four parallel HMC chains each initialized at
 different start point. The total number of iterations was 𝑀 = 4 ×
, 000 = 16,000, with half of them considered as warm-up phase.
e then assessed convergence to the target density by computing two
idely used metrics, namely, the split-𝑅̂ and the effective sample size
𝑛𝑒𝑓 𝑓 ) (Vehtari et al., 2021), as well as by visual inspection of trace
lots. Bayesian inference was done with the use of Stan (Gelman et al.,
015) and its R interface, i.e., rstan.
 t

4 
.5. Bayesian model comparison

To facilitate comparison between stationary and dynamic copulas
ithin the Bayesian context, we then employed two metrics which
re particularly suitable when different models have been obtained
ia MCMC simulation. Specifically, we computed both the Deviance
nformation Criterion (DIC) (Spiegelhalter et al., 2002) and the Widely
pplicable Information Criterion (WAIC) (Watanabe and Opper, 2010).

The first metric is given by the following expression:

𝐷 𝐼 𝐶 = −2 ∗ log[𝑐(𝑢, 𝑣|𝜃̂𝐵 𝑎𝑦𝑒𝑠)] + 2 ∗ 𝑝𝐷 𝐼 𝐶 (11)

𝑝𝐷 𝐼 𝐶 = 2 ∗ (log[𝑐(𝑢, 𝑣|𝜃̂𝐵 𝑎𝑦𝑒𝑠)] − 1
𝐾

𝐾
∑

𝑘=1
log[𝑐(𝑢, 𝑣|𝜃𝑘)]) (12)

where 𝜃 denotes the parameter(s) of the model, i.e., 𝛿 or (𝑏, 𝑤), for
stationary and dynamic copulas, respectively, while 𝑐(𝑢, 𝑣|𝜃) is the joint
predictive copula density evaluated at 𝜃. 𝜃̂𝐵 𝑎𝑦𝑒𝑠 is the posterior mean(s),
𝑘 is the 𝑘th sample from the posterior distribution via HMC, and

is the total number of post-warm-up MCMC iterations, i.e., 𝐾 =
− 8000 = 8000. The formula for the second metric is shown below:

𝑊 𝐴𝐼 𝐶 = −2 ∗
𝑛
∑

𝑖=1
log[ 1

𝐾

𝐾
∑

𝑘=1
𝑐(𝑢𝑖, 𝑣𝑖|𝜃𝑘)] + 2 ∗ 𝑝𝑊 𝐴𝐼 𝐶 (13)

𝑝𝑊 𝐴𝐼 𝐶 = 2 ∗
𝑛
∑

𝑖=1
(log[ 1

𝐾

𝐾
∑

𝑘=1
𝑐(𝑢𝑖, 𝑣𝑖|𝜃𝑘)] − 1

𝐾

𝐾
∑

𝑘=1
log[𝑐(𝑢𝑖, 𝑣𝑖|𝜃𝑘)]) (14)

Both metrics, DIC and WAIC, provide a measure of within-sample
predictive accuracy. However, the latter can also be viewed as an
approximation to leave-one-out cross-validation since it averages over
the entire posterior distribution (see Eqs. (13)–(14)) instead of relying
on a point estimate, i.e., 𝜃̂𝐵 𝑎𝑦𝑒𝑠, like the former (refer to Eqs. (11)–
(12)) (Gelman et al., 2014). Models with lower DIC and WAIC values
should be generally preferred over models whose corresponding metrics
re greater. The entire methodological procedure (i.e., Sections 2.1 to
.5) is summarized as a diagram shown in Fig. 1. Note that the ‘‘No’’
ath in the first orange ellipsis encompasses also the case where a
tatistically significant negative correlation is detected. In this situation,
ather than using multivariate modeling to account for the negative
ivariate dependence, we recommend opting for univariate modeling.
his more conservative approach helps to avoid underestimating the
azard that may result from either flood driver individually, which is
mportant for engineering applications such as construction of either
luvial or coastal flood defenses.

. Results and discussion

.1. Dependence between river discharge and storm surge

Table 2 shows the maximum Kendall’s 𝜏, the respective type of
pairs (𝑄_𝑆 or 𝑆_𝑄) and the optimal time lag for each estuary of our
nalysis; the number of pairs is also shown for reference. For most
stuaries, rank correlation coefficients were found to be rather low,
.e., ≤ 0.24, while the optimal time lag was quite short, i.e., 1 or 2
ays. Higher coefficients were obtained for Upper Chesapeake Bay and

Tampa Bay, i.e., 0.33 and 0.31, respectively, while Lower Chesapeake
ay displayed the greatest Kendall’s 𝜏 with a value of 0.67. This might
e partially due to the fact the Potomac River’s flux into Chesapeake
ay is significantly influenced by the downstream boundary dominated
y tidal processes. However, all rank correlation coefficients were
ound to be significantly different than zero at the 90% confidence
evel (Table 2). This finding suggests that there is indeed a statistically
ignificant positive dependence between river discharge (𝑄) and storm
urge (𝑆) for the estuaries under study. On the contrary, the reverse
ype of pairs for most estuaries showed a statistically insignificant
orrelation at the 90% confidence level (see Table S1).

The Frank copula appeared to be an adequate mathematical func-
ion that can model the dependence structure of variables 𝑄 and 𝑆
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Fig. 1. Diagram of the methodological procedure to check for and model non-stationarity in the dependence structure of compound flood drivers.
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or almost all estuaries. Specifically, based on the 𝑆𝑛 test statistic
Table 2), we failed to reject the null hypothesis that the bivariate data
riginate from a Frank copula (𝛼 = 0.10), for all but one estuary. In
articular, for Lower Chesapeake Bay, we derived a very small 𝑝-value
<0.05) suggesting that the Frank copula does not provide a good fit;
n the contrary, for the same estuary, we failed to reject a Gumbel
opula. These results should not come as a surprise since they are in
ccordance with a mere visual inspection of the bivariate data in the
seudo-observation domain (Figures S1 and S2). The scattered pairs of
and 𝑣, observed for most estuaries under study, indicate an overall

ow positive dependence not concentrated at either tail, as opposed
o Lower Chesapeake Bay where it is obvious that the dependence
etween 𝑄 and 𝑆 is more pronounced at the upper tail (see top right
anel in Figure S1).
 o

5 
Conclusively, here we argue that when dependence is indeed de-
ected, the employment of a Frank copula is often a pragmatic and
ufficient choice for modeling the dependence structure of co-occurring
iver discharge and storm surge, as demonstrated earlier. Most of the
ime, the characteristics (physical, morphological, etc.) of estuarine
ystems, in conjunction with a relatively short observational record, do
ot allow for strong upper- or lower-tail dependence to be detected, as
t is the case with Lower Chesapeake Bay.

.2. (Non-)stationarity of dependence between river discharge and storm
urge

After running HMC for both stationary and dynamic copulas we
btained 𝑛 values of > 2000 and split-𝑅̂ values of ∼ 1 meaning
𝑒𝑓 𝑓
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Table 2
Type (𝑄_𝑆 or 𝑆_𝑄) and number of pairs along with the optimal time lag (days) which resulted to the maximum rank correlation coefficient
(Kendall’s 𝜏) for each estuary under study. The statistical significance (𝑝-value) of the Kendall’s 𝜏 and the 𝑆𝑛 test statistic (Frank copula) is also
shown.

Estuary Pairs # Pairs Time lag (days) Kendall’s 𝜏 𝑃 -value (Kendall’s 𝜏) 𝑃 -value (𝑆𝑛)

Upper New York Bay 𝑄_𝑆 68 2 0.19 <0.05 >0.10
Merrimack Estuary 𝑄_𝑆 97 1 0.24 <0.05 >0.10
Upper Chesapeake Bay 𝑄_𝑆 52 1 0.33 <0.05 >0.10
Lower Chesapeake Bay 𝑄_𝑆 87 1 0.67 <0.05 <0.05
Winyah Bay 𝑆_𝑄 80 8 0.14 <0.10 >0.10
Tybee Roads Estuary 𝑆_𝑄 78 4 0.14 <0.10 >0.10
Tampa Bay 𝑆_𝑄 71 2 0.31 <0.05 >0.10
Pensacola Bay 𝑄_𝑆 82 1 0.24 <0.05 >0.10
Galveston Bay 𝑄_𝑆 68 2 0.19 <0.05 >0.10
San Antonio Bay 𝑆_𝑄 59 1 0.19 <0.05 >0.10
Table 3
Deviance Information Criterion (DIC) and Widely Applicable Information Criterion (WAIC) as computed for both stationary and dynamic models. Posterior means and 90% credible
intervals of parameters 𝛿 (stationary copula), 𝑏 and 𝑤 (dynamic copula) are also shown. Estuaries with an asterisk indicate cases where a dynamic copula is preferred over a
stationary, based on both DIC and WAIC metrics.

Estuary WAICstationary DICstationary 𝛿 WAICdynamic DICdynamic 𝑤 𝑏

Upper New York Bay −3.10 −3.13 1.75 (0.47, 3.03) −1.10 −1.14 0.03 (−0.60, 0.71) 1.72 (0.41, 3.07)
Merrimack Estuary −10.30 −10.16 2.17 (1.12, 3.23) −8.70 −8.49 0.16 (−0.38, 0.69) 2.23 (1.18, 3.30)
Upper Chesapeake Bay* −11.30 −11.44 3.44 (1.86, 5.06) −13.30 −12.91 0.73 (0.07, 1.42) 3.54 (2.09, 5.10)
Lower Chesapeake Bay −128.50 −128.30 3.18 (2.73, 3.66) −126.90 −126.46 −0.05 (−0.27, 0.18) 3.21 (2.76, 3.70)
Winyah Bay* −1.10 −1.15 1.25 (0.08, 2.38) −1.80 −2.17 2.14 (0.08, 4.14) 1.27 (0.14, 2.40)
Tybee Roads Estuary −1.70 −1.43 1.30 (0.16, 2.44) −1.10 −0.69 −1.42 (−3.44, 0.55) 1.29 (0.11, 2.46)
Tampa Bay −13.80 −13.89 3.10 (1.81, 4.42) −12.00 −12.25 0.92 (−1.68, 3.69) 3.01 (1.68, 4.32)
Pensacola Bay −8.20 −8.69 2.42 (1.20, 3.70) −5.60 −7.18 −0.86 (−3.01, 1.21) 2.40 (1.16, 3.63)
Galveston Bay* −2.70 −2.89 1.74 (0.44, 3.05) −6.80 −7.38 3.78 (1.31, 6.32) 1.90 (0.56, 3.27)
San Antonio Bay −2.10 −2.08 1.70 (0.32, 3.10) −0.60 −1.68 1.69 (−0.42, 3.95) 1.79 (0.36, 3.18)
that the algorithm successfully converged to the target densities. For
eference, the climate index used as a linear covariate for parameter
, i.e., used for modeling a physics-informed copula (Eq. (8)), is given
n Table S2 for each estuary of our analysis. Table 3 displays mean
arameter (𝛿, 𝑏 and 𝑤) estimates along with their uncertainty, which
s expressed here as 90% credible intervals; DIC and WAIC metrics
re also presented in the same table for both models, i.e., stationary
nd dynamic. Our results revealed that a physics-informed copula, as
odeled with ONI and NAO index covariates, provides a better model

or only 3/10 estuaries under study. On the contrary, a stationary
arameter 𝛿 yielded a more suitable fit for most estuaries. Notably,
here is an agreement among DIC and WAIC metrics that a dynamic

copula is more appropriate for capturing the dependence structure of
stuarine river discharge and storm surge at Galveston Bay, Upper

Chesapeake Bay and Winyah Bay, only. The same finding is also evident
y examining the posterior distribution of parameter 𝑤, a distribution
hich summarizes the effect of the corresponding climate index on the
agnitude of dependence. Specifically, for cases where the stationary

opula was deemed more suitable, the posterior of 𝑤 spanned regions
f both positive and negative samples, hence encompassing zero (see
able 3). In practice, this means that there is no clear indication as
er what the effect of the covariate is (it can be either positive or
egative), while there is also the chance of it being negligible, i.e., zero.
ppositely, for estuaries where a dynamic copula provided a superior

it, the credible intervals of parameter 𝑤 covered regions of positive
amples, only (refer to Table 3), suggesting that a greater value of the
espective climate index leads to a stronger dependence. Overall, our
nalysis indicated that there is no strong evidence for non-stationarity
n the dependence between co-occurring river discharge and storm
urge along the majority of the estuaries examined, particularly due
o ENSO or NAO. It is important to note, however, that this finding
s subject to the type of bivariate data employed and the choice of
ovariate (Table S2) used for capturing and modeling non-stationarity
see discussions on methodological limitations in Section 4).
6 
3.3. Uncertainty of stationary copula parameter and Kendall’s 𝜏-informed
prior distribution

Given now that a stationary Frank copula can be used to properly
model the dependence structure of river discharge and storm surge
for most estuaries, as we showed earlier, it seems tempting to investi-
gate possible ways for reducing estimation uncertainty and narrowing
down credible intervals of parameter 𝛿 (Table 3). In fact, this type
of parametric uncertainty is a major source of ambiguity in bivariate
hazard curves, and consequently in bivariate hazard scenarios, which
are critical for coastal flood risk assessments. Thus, efforts to minimize
the uncertainty surrounding 𝛿 are very important. This is particularly
useful for estuaries with a smaller number of bivariate pairs, which
are consequently expected to exhibit higher uncertainty in the copula
parameter.

Here we showcase a way to narrow down credible intervals of
parameter 𝛿 by employing a rational Kendall’s 𝜏-informed prior distri-
bution instead of the typical 𝑈 (−∞,∞). For demonstration purposes, we
choose to focus on San Antonio Bay which has a very small bivariate
sample size of 𝑛 = 59 ‘‘𝑆_𝑄’’ pairs (Table 2). For this estuary, we
found the mean value of parameter 𝛿 to be 1.70, while its 90% credible
interval was (0.32, 3.10) (Table 3), based on the uninformative uniform
prior. To derive a new meaningful and informative prior instead,
we first bootstrapped bivariate samples with replacement for 1000
replications, keeping the sample size same as the original, i.e., 𝑛 =
59. For each replication, we then computed a respective Kendall’s 𝜏
and utilizing Eq. (6) we derived a corresponding 𝛿 parameter. This
eventually led to a total of 1000 samples of parameter 𝛿, which we
finally used in order to fit a distribution with Maximum Likelihood
Estimation (MLE). Fig. 2 shows the histogram of these samples as well
as a MLE-derived normal probability density that has an estimated
mean of 𝜇 = 1.76 and a standard deviation of 𝜎 = 0.90. This distribution,
i.e., Normal(1.76, 0.90), constitutes a Kendall’s 𝜏-informed prior for
parameter 𝛿 that naturally reflects the expected variability in observed
dependence between river discharge and storm surge at San Antonio
Bay. After Bayesian inference with the new prior distribution, we

obtained a mean parameter estimate of 𝛿 = 1.73, which is very close
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Fig. 2. Histogram of 𝛿 samples derived using Eq. (6) after bootstrap analysis of
endall’s 𝜏 for San Antonio Bay (light green bars with orange dashed lines). A normal
robability density obtained via Maximum Likelihood Estimation is also shown (red
olid line).

o the mean estimate using 𝑈 (−∞,∞) as a prior distribution. However,
he 90% credible interval was narrowed down to (0.73, 2.74). This
inding highlights the fact that deriving a Kendall’s 𝜏-informed prior, as
utlined here, can successfully reduce copula parametric uncertainty,
ven for cases where the bivariate sample size is relatively small.
his smaller uncertainty is crucial from a practical point of view, as
xplained earlier.

.4. Implications of non-stationarity for bivariate hazard scenarios

In occasions where a dynamic copula fits the data better, it is worth
xploring what are the implications of inappropriate bivariate hazard
uantification under an assumption of stationarity. For this reason, here
e turn our focus on Galveston Bay, where both DIC and WAIC metrics

learly suggested that a dynamic copula whose parameter 𝛿 co-varies
ith ONI provides a superior fit than a stationary copula (Table 3).
pecifically, for this estuary, we constructed and contrasted bivariate
azard curves based on both a stationary Frank copula with 𝛿 = 1.74
nd a dynamic copula with 𝑤 = 3.78 and 𝑏 = 1.90 (Table 3). The
ynamic copula was based on a strong El-Niño year (ONI = 1.45),
imilar to the year 2015 CE. For the construction of smooth curves,
s opposed to empirical, marginal distributions were fitted to both
ariables 𝑄 and 𝑆 originating from the empirical bivariate sample.
articularly, since the bivariate sample for that estuary was of type

‘𝑄_𝑆’’, we employed a Generalized Extreme Value (GEV) distribution
or river discharge and an Asymmetric Laplace (AL) distribution for
urge. The cumulative probability functions for both GEV and AL
istributions are shown in Text S2. The latter distribution was preferred
or modeling surge, instead of a typical Gamma distribution, due to
he fact that when 𝑆 is not the conditioning variable, it is possible
o observe a negative surge for a combination of annual maximum
ischarge and the respective maximum surge within +/- 1 to 10 days.
oth distributions were obtained by means of MLE and they provided a
ood fit to the respective empirical data (see Figures S3 and S4). Fig. 3
isplays our bivariate hazard curves, both dynamic and stationary, with
he red arrow highlighting an observed compound event which had
= 125 m3∕s and 𝑆 = 0.60 m. It is shown here that this compound

vent has a bivariate return period (‘‘AND’’ scenario, see Salvadori et al.
2016) for definition of bivariate return periods) of roughly 𝑇 = 25
ears during a strong El-Niño year (left panel), but the exact same event
as an approximate return period of 𝑇 = 80 years under stationarity
7 
ssumption (right panel). For estuaries where there is evidence for non-
tationarity in the dependence structure of river discharge and storm
urge, our analysis highlights the fact that stationary bivariate hazard
urves could severely underestimate the likelihood of an event which
an potentially lead to compound flooding, highly dependent on the
ear. In general, for cases where we found that a dynamic copula
s more suitable, it appears that the likelihood of compound events
ets higher with increasing signals of the respective large-scale climate
attern; see, e.g., the positive effects (i.e., posterior of 𝑤) of ONI or
AO index at Galveston Bay, Upper Chesapeake Bay and Winyah Bay

Table 3).

. Methodological limitations and conclusion

In this work, we have searched for evidence of a varying de-
endence between estuarine river discharge and storm surge across
he East and Gulf coasts of the US, driven by large-scale climate
ariability as expressed by ENSO and NAO. To this end, we devel-
ped a framework employing widely used Archimedean copulas, a
oodness-of-fit test, state-of-the-art algorithms for Bayesian inference
nd informative Bayesian model comparison metrics, and we showed
hat for most estuaries examined here there is no strong indication of
uch non-stationarity. As part of our analysis, we also showed that, in
ractice, most of the time a Frank copula can sufficiently capture the
ependence structure of river discharge and storm surge. In addition,

we illustrated a useful way to reduce parametric uncertainty by em-
ploying a Kendall’s 𝜏-informed prior distribution for the Frank copula
parameter. Finally, through construction of bivariate hazard curves,
we discussed the implications of ignoring non-stationarity when our
ramework suggests otherwise, concluding that during years where the
ignal from ENSO or NAO is strong, there is a higher chance of events

that may cause compound flooding at certain estuaries. Our analysis
oes come, nevertheless, with limitations which we also discuss in the
ext paragraphs.

First, even though we have utilized lengthy available observational
ecords of river discharge and storm surge, the overlapping time pe-
iod is still considered rather short for us to extract many compound
vents where both variables, 𝑄 and 𝑆, are considered extremes. This
as limited our analysis to either pairs 𝑄_𝑆 or 𝑆_𝑄 (as described in
ection 2.3). As a result, these data comprise a mixture of pairs, which,
owever, do include instances were both river discharge and storm
urge are quite high (see bivariate data in Fig. 3 as an example).
onsequently, our findings of (non-)stationarity in the dependence
etween river discharge and storm surge are representative of events
hich have potential to cause a compound flood, not of actual com-
ound flood events. Besides, as mentioned earlier, very high river
ischarge measurements might as well be an artifact of upstream water
anagement operations, not a direct influence of climate variability,

nd therefore may falsify the inference on natural dependence between
he two variables. These limitations could possibly be alleviated by the
se of prolonged continuous modeled river discharge and storm surge
ata, instead of observations. The rationale behind this is that with
onger overlapping time series’ of these variables it might be possible
o obtain an adequate bivariate sample size where both 𝑄 and 𝑆 are
lways extremes, i.e., not obtained from a two-way conditional sam-
ling. In addition, most current modeled data typically reflect natural

river discharge not affected by human operations, e.g., dam control. In
uch a case, any inference on (non-)stationary dependence would be
ore closely linked to actual compound flood drivers. The simulated
ata sets, however, should preferably originate from consistent models
hat are able to preserve the dependence between river discharge and
torm surge. An idea for future research to this regard would be to
tilize reanalysis river discharge data derived from ERA5 forcings,
.e., GloFAS-ERA5 (Harrigan et al., 2020) in conjunction with a newly

developed hindcast model of storm surge that also utilizes ERA5 forc-
ings (Mentaschi et al., 2023). Ideally, these models should however
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Fig. 3. Bivariate hazard curves for Galveston Bay derived from a stationary Frank copula (right) and a dynamic Frank copula for a strong El-Niño year (left). Black dashed lines
show the continuous isolines for different return periods (‘‘AND’’ scenarios), while orange dots represent the observed 𝑄_𝑆 data with the red arrow pointing to an actual compound
event of 𝑄 = 125 m3∕s and 𝑆 = 0.60 m. Dots with light green color illustrate simulations from the bivariate distribution.
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e built upon very high-resolution DEM information and incorporate
lood protection measures to accurately capture actual compound flood
vents. The use of spatially continuous global data sets of this kind
ould also pave the way for including more estuaries, not restricted

o US coasts.
Second, the findings presented here are dependent on the covariate

sed for modeling a dynamic copula, i.e., either ONI or NAO index. In
ther words, here we have searched for a non-stationary dependence
ue to ENSO or NAO, only. Even though focusing on these large-scale
limate modes is logical from a physics point-of-view for the regions
nder study, they are non-exhaustive and thus we cannot exclude the
ossibility that other covariates, which are not used here, might have
ed to different results with respect to dynamic vs. stationary copula
omparison. In simpler terms, for an estuary where we did not detect
on-stationarity, the use of a different covariate might have uncovered

possibly different and complementary perspectives. Thus, in our future
research efforts, we would be interested in evaluating other relevant
covariates. For example, we could resort to atmospheric variables like
global mean temperature or CO2 concentration, as well as other ap-
propriate climate modes, e.g., Atlantic Multi-decadal Oscillation, which
has been shown to affect storm surge in the US Southeast (Park et al.,
2011), in order to more comprehensively assess (non-)stationarity.

Finally, another limitation of our work, which however appears
difficult to overcome, is the modeling assumption that the copula
function itself remains the same over time, but only the magnitude of
dependence is changing. In other terms, here we have simplified our
analysis, for practical reasons, by hypothesizing that non-stationarity in
the dependence structure due to ENSO or NAO, if any, originates with
 varying magnitude of dependence and not with a differing copula
unction. If, for example, a Frank copula was found to provide a good
it for the entire bivariate data set of an estuary, then it was assumed
hat it provides a good fit for any other subset of that data set. Changing
he copula function over time is a rather challenging modeling task
nd would require very long data records for a statistically robust
ssessment.

Despite the limitations outlined above, our work constitutes a novel
ddition to the current scientific literature on dependence between
stuarine compound flood drivers. It provides insights about potential
on-stationarity due to ENSO and NAO and its implications for bi-
ariate hazard quantification, as well as practical recipes for modeling
 stationary/dynamic dependence structure with reduced parametric
ncertainty in a Bayesian manner.
8 
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612.wordpress.com/. The Oceanic Niño Index is accessible through: h
tps://bmcnoldy.earth.miami.edu/tropics/oni/, whereas the North At-
antic Oscillation index can be obtained from: https://climatedataguide
ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-stat
on-based/. R and Stan scripts as well as data examples that support
he analysis presented in this article are freely available and can be
ccessed via: https://github.com/bgeorgios/BDCop4CF.
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