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Presentations of Galois groups of maximal extensions
with restricted ramification

Yuan Liu

Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the
number of generators and the minimal number of relations in a presentation of G g(k), the Galois group of
the maximal extension of a global field k that is unramified outside a finite set S of places, as k varies
among a certain family of extensions of a fixed global field Q. We define a group Bg(k, A), for each
finite simple G g(k)-module A, to generalize the work of Koch and Shafarevich on the pro-£ completion
of Gs(k). We prove that G s(k) always admits a balanced presentation when it is finitely generated. In the
setting of the nonabelian Cohen-Lenstra heuristics, we prove that the unramified Galois groups studied
by the Liu—Wood—Zureick-Brown conjecture always admit a balanced presentation in the form of the
random group in the conjecture.

1. Introduction

For a global field k and a set S of primes of k, we denote by G (k) the Galois group of the maximal
extension of k that is unramified outside S. Determining whether G4 (k) is finitely generated and
finitely presented is a long-existing open question. It is well known by class field theory that the
abelianization of G (k) is finitely presented and, in particular, is finite when k is a number field. Golod
and Shafarevich [1964] constructed the first infinite £-class tower group of a number field, where the
£-class tower group of k is the pro-£ completion of G (k) for a prime number £. The minimal numbers
of generators and relations, which are called the generator rank and relator rank, in presentations of a
pro-¢ group is determined by its group cohomology with coefficient F,. Using this idea, Koch [2002]
employed Galois cohomology to give an exact formula for the generator rank and estimate the relator
rank of the pro-¢ completion of G g(k) when S is finite and £ # char(k); and in particular, in such cases,
the pro-¢ completion of Gg(k) is always finitely presented.

Recently the development on the nonabelian Cohen—Lenstra program pushes us to study canonical
quotients of G (k) beyond the pro-£ completion. Let I' be a finite group, Q the global field Q or [, (7),
and p(Q) the group of roots of unity of Q. For a Galois extension k/Q with Gal(k/Q) >~ I', define
k* to be the maximal unramified extension of k, that is split completely at places of k over oo and of
order relatively prime to |u(Q)||I'| and char(Q) (if nonzero). Wood, Zureick-Brown and the author
[Liu et al. 2024] constructed random group models to make conjectures on the distributions for some
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families of canonical quotients Gal(k*/k) of Gg(k) as k varies among all I™-extensions of Q split
completely at oo. Because Gal(k¥/k) has (supernatural) order prime to |T'|, a homomorphic split of
Gal(k*/ Q) — Gal(k/ Q) defines by conjugation a continuous I' action on Gal(k*/k); and this action is
admissible (see Definition 4.1). The set of all isomorphism classes of all admissible profinite I"-groups is
closed under taking ['-equivariant quotients, and we can construct the free admissible profinite I'-group
Fn(I') on n generators (see Section 4 for its definition). For a profinite I"-group G and a finite set C of
isomorphism classes of finite I-groups, let G¢ denote the pro-C completion of G with respect to C (the
definition of pro-C completions is given in Section 5 and it is different from the one that is commonly
used). The work [Liu et al. 2024] uses quotients of F,,(I") as n — 00 to construct a random group model;
this model together with the conjectures implies a surprising phenomenon of the structure of Gal(k*/k)
that was not known before: for any finite set C of finite I'-groups, the following occur with probability 1.

(1) The pro-C completion Gal(k*/k)C is a finite group.

(2) There exists a finite integer n¢ depending on C, I" and k, such that for every n > ng, Gal(k¥/ k)¢
can be presented as the quotient of Fn (D) by [r! v (r)]rex, yer for some subset X of F, (€ of
cardinality n 4+ 1. Here, the symbol [r_l)/(r)]re x, yer denotes the I'-closed normal subgroup of
Fn(I')¢ generated by r 'y (r) forall r € X and y € T.

The statement in (2) implies that the deficiency (i.e., the difference between the minimal number of gener-
ators and the minimal number of relations) of Gal(k*/ k)¢ has an upper bound depending only on the order
of I'. In this paper, we prove that both (1) and (2) hold for all I-extensions k/ Q split completely above oo,
which strongly supports that the random group model in [Liu et al. 2024] is the right object to study.

Theorem 1.1. Let I' be a nontrivial finite group and Q be either Q or F,(t) with g relatively prime to |I|.
Let C be a finite set of isomorphism classes of finite I'-groups all of whose orders are prime to |u(Q)||T|
and char(Q) (if nonzero). Then for a Galois extension k/Q with Galois group T that is split completely
over 00, we have the following isomorphism of T -groups (I' acts on the left-hand side via I" >~ Gal(k/Q)):

Gal(k*/ k)¢ = Fo (D) /lr™ 'y (Nrex.yer (1-1)
for some positive integer n and some set X consisting of n + 1 elements of F,(I')C.

Let Gz (k) denote the Galois group of the maximal unramified extension of k that is completely split at
every place above 0o, and note that with the assumptions in Theorem 1.1 one has Gal(k*/ k)¢ = G@,oo(k)c.
The method we develop in this paper in fact works for Gs(k)C for any finite set S of primes of k and any
global base field Q, so it can be used to study the presentation of Galois groups with restricted ramification.
In the case that k is a function field and I = 1 (so k = Q), building on the theorem of Lubotzky [2001],
Shusterman [2022] showed that G4 (k) admits a finite presentation in which the number of relations is
exactly the same as the number of generators (such a presentation is called a balanced presentation). Note
that, in [Shusterman 2022], the fact that G 4 (k) is finitely generated follows by Grothendieck’s result on
the geometric fundamental group of a smooth projective curve defined over a finite field, but when £ is
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a number field, whether G4 (k) is finitely generated or not is unknown. We prove an analogous result
regarding the number field case.

Theorem 1.2. Let k be a number field and S a finite set of places of k. If G s(k) is topologically generated
by n elements, then it admits a finite presentation on n generators and [k : Q] + n relations.

We also apply our methods to the situations that are not considered in Theorem 1.1. We study the
presentation of the pro-£ completion of G4 (k) for a Galois I'-extension k/Q in two exceptional cases:

(i) Q is a number field not containing the ¢-th roots of unity and we do not make any assumptions on
the ramification of oo in k (Section 11.1).

(i1) Q is a global field containing the £-th roots of unity (Section 11.2).

When considering the £-parts of class groups, it has been known for a long time that the Cohen—Lenstra
heuristics need to be corrected in these two cases (see [Cohen and Martinet 1987; Malle 2010]). In each
of these two cases, we use our method to compute an upper bound for the deficiency of G4 (k) at the
pro-¢ level, and then show why the Liu—Wood—-Zureick-Brown conjecture doesn’t work in these two
exceptional cases. This computation of deficiencies also provides insights of how the random group
model should be modified in these two cases.

1.1. Method of the proof. The bulk of this paper is devoted to establishing the techniques for proving
Theorem 1.1. Motivated by [Lubotzky 2001], we first translate the question to understanding the Galois
cohomology groups. In Section 3, we construct the free profinite I'-group F,(I') on n generators, and,
for a finitely generated profinite ['-group G, we study the minimal number of relations of a presentation
defined by a I™-equivariant surjection 7 : F,,(I') — G. The minimal number of relations is closely related to
the multiplicities of the finite irreducible G x I"'-modules appearing as quotients of ker(;r) (Definition 3.1).
In Lemma 3.2, we show that for a finite simple F;[G x I']-module A with ¢4 |T'|, the multiplicity of A
can be computed by a formula involving dimg, H*(G x T, A) —dimg, H'(G x T, A). So when restricted
to the category of profinite I'-groups whose order is prime to |I"|, by using these multiplicities, we obtain
formulas for the minimal number of relations of the presentation F,(I') — G’, where F,(I') and G’
are the maximal pro-prime-to-|I"| quotients of F, (I") and G respectively (Propositions 3.4 and 3.7). In
particular, the formulas provide an upper bound for the minimal number of relations of this presentation
using dimg, H(G, A)' — dimg, H'(G, A)", where T" acts on the cohomology groups by conjugation.
These upper bound formulas set up the strategy of the proof of Theorem 1.1. Building upon it, we
explore the multiplicities of admissible presentations F,(I") — G in Section 4 and the multiplicities of
pro-C presentations in Section 5, where we obtain formulas that will be directly applied to the proof of
Theorem 1.1. Then in Section 6, we define the height of a group and show in Proposition 6.3 that there is
an upper bound for the heights of pro-C groups (not necessarily finitely generated) when C is a finite set.
Then Theorem 6.4 proves the finiteness of G s(k)¢ when S is a finite set of primes of k and C is a finite
set of finite groups, which confirms the phenomenon (1).
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Therefore, in order to prove Theorem 1.1, we need to deal with the Galois cohomology groups. In a
more general setting, assuming that Q is an arbitrary global field, that k/Q is a Galois extension with
Gal(k/Q) ~ T, and that S is a finite set of primes of k, we want to understand

8k/0.5(A) :=dimg, H*(Gg(k), AT —dimg, H' (Gs(k), A)F (1-2)

for all prime integers £ relatively prime to |I'| and char(Q), and all finite simple F,[Gal(ks/Q)]-modules A.
In (1-2), the set S needs to be k/Q-closed to ensure that kg/Q is Galois (see the definition of the
k/Q-closed sets in Section 2), and the I" action on the cohomology groups is defined via the conjugation
by Gal(k/Q). In Section 7, we prove a generalized version of the global Euler—Poincaré characteristic
formula (Theorem 7.1), from which we can compute 8;/p, s when S is nonempty and contains the primes
above oo and £ if Q is a number field. The proof basically follows the original proof of the global Euler—
Poincaré characteristic formula, but taking the I" actions into account creates many technical difficulties.

In the work of Koch, when dealing with the case that A = [, and S does not satisfy the assumptions in
Theorem 7.1, the abelian group Gg(k) plays an important role in the computation of dimy, H H(Gs(k), Fp)
for i =1, 2, and is defined to be the Pontryagin dual of the Kummer group

Vg (k) :ker(kX/kXZ = TTR /K % TT k;/Upk;‘f),
pes peES
where k;, is the completion of k at p and U, is the group of units of k,. In Definition 8.1, we define a
group Gg(k, A) in a cohomological way as
coker( [T H' (kp, 4) x TT Hl(ky, A) > H'(k, A)Y),
pes peEs

in order to generalize Koch’s work to compute ;0 s(A) by replacing the trivial module [, with an
arbitrary finite simple module A. The definition of Gg(k, A) agrees with that of Gs(k) when A = [,
(Proposition 8.3). However, Koch’s argument does not directly apply to Bg(k, A), because it uses the
Hasse principle for [, but the Hasse principle for arbitrary global fields and arbitrary Galois modules has
not been proven (the Hasse principle holds for k and A if the Shafarevich group III! (k, A) is trivial). In
Section 8, we modify Koch’s work to overcome this obstacle, and show that most properties of B (k)
also hold for Gg(k, A). In particular, one example, clearly showing that the failure of the Hasse principle
makes a difference, is that there is a natural embedding Hl%(k, A) — Bg(k, A) for A = [, but not for
arbitrary A (Proposition 8.5 and Remark 8.6). In Section 9, we explicitly compute &/, s(A) for all S by
applying the results from Sections 7 and 8, and then we prove Theorem 1.2. In Section 10, we give the
proof of Theorem 1.1. Finally, in Section 11, we apply our methods to the exceptional cases (i) and (ii)
of Theorem 1.1. The proof of Theorem 1.1 uses results from Section 3 to Section 9; and the proof of
Theorem 1.2 uses results from Sections 3, 7, 8, and 9.

1.2. Previous works. For an odd prime ¢, the Cohen—Lenstra heuristics [1984] give predictions of the
distribution of £-primary parts of the class groups Cl(k) as k varies over quadratic number fields. Friedman
and Washington [1989] formulated an analogous conjecture for global function fields. The probability
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measure used for the conjectural distributions in the Cohen—Lenstra heuristics matches the one defined by
the random abelian group

lim Z2"/(n + u random relations), (1-3)
n—oo

where the random relations are taken with respect to the Haar measure, and u is chosen to be 0 and 1
respectively when k varies among imaginary quadratic fields and real quadratic fields. Ellenberg and
Venkatesh [2010] theoretically explained the random group model (1-3) and the value of u, by view-
ing Cl(k) as the cokernel of the map sending the S-units of k to the group of fractional ideals of k generated
by S with § running along an ascending sequence of finite sets of primes of k. Boston, Bush and Hajir
[Boston et al. 2017; 2021] extended the Cohen—Lenstra heuristics to a nonabelian setting considering the
distribution of £-class tower groups (for odd £). In their work, the probability measure in the heuristics
is defined by a random pro-£ group generalizing (1-3), and the value of u (which is the deficiency in
this setting) is obtained by applying Koch’s argument. Notably, the moment versions of the function
field analogs of the Cohen-Lenstra heuristics and the Boston—-Bush—Hajir heuristics are both proven; see
[Ellenberg et al. 2016; Boston and Wood 2017]. In [Liu et al. 2024], we constructed the random I'-group

Tim Fu(D)/lr™ 'y (M ]rex.yer (1-4)

where X is a set of n 4+ u random elements of 7, (I"). We showed that the moment proven in the function
field case matches the moment of the probability measure defined by (1-4) exactly when u = 1. With
this evidence, we conjectured that the random group (1-4) gives the distribution of Gal(k*/k) in both the
function field case and the number field case. Theorem 1.1 explains the theoretical reason behind u = 1
in the Liu—Wood—-Zureick-Brown conjecture.

Regarding the exceptional case (i), Cohen and Martinet [1987] provided a modification for the case
that O = Q) and k/Q varies among imaginary [™-extensions whose decomposition subgroup at oo is
a fixed (conjugacy class of) subgroup of I'. Wang and Wood [2021] proved some results about the
probability measures described in the Cohen—Martinet heuristics. From these works, one can see that the
decomposition subgroup I', at co of k/Q crucially affects the probability measures. In Lemma 11.1, we
explicitly compute the upper bounds of multiplicities in a pro-£ admissible I’-presentation of G4 (k)(¢),
which shows how the multiplicities are determined by I's,. Then in Corollary 11.2 and Remark 11.3,
we prove that, when k/Q is an imaginary quadratic field, G & (k)(£) can be achieved by a random group
model which defines a probability measure agreeing with the Boston—Bush—Hajir heuristics.

For the exceptional case (ii), when the base field Q contains the £-th roots of unity, we give upper bounds
for multiplicities in Lemma 11.4 and Corollary 11.5, which suggests that the distributions of G 4 o0 (k)(£)
should be different between the function field case and the number field case (Remark 11.6(2)). This
difference is not surprising, as Malle [2010] observed that his conjecture regarding the class groups
of number fields does not easily match the result for function fields. So the upper bounds obtained in
Corollary 11.5 support Malle’s observation. The phenomenon related to the presence of the roots of unity
has been numerically computed in [Malle 2008; 2010], and the random matrices in this setting and their



840 Yuan Liu

relation with function field counting has been studied in [Katz and Sarnak 1999; Achter 2006; 2008;
Garton 2015; Adam and Malle 2015]. A correction for roots of unity, provided with empirical evidence,
is presented in [Wood 2019].

1.3. Other applications and further questions. We expect that the techniques established in this paper will
have many interesting and important applications. For example, the author applies the results in this paper
to the following work. In [Liu 2022], the exceptional case (ii) is studied, where the moment conjecture in
the number field case is inspired by the computation of &x/p & (A) similar to Section 11.2. In [Liu 2024],
the abelian group Gg(k, A) is used to study the embedding problems with restricted ramification, which
will be crucial for the forthcoming work on the generalized Cohen—Lenstra—Martinet—Gerth conjectures.

There are many further questions we would like to understand. First, the techniques in this paper work
for any finite set S of primes. So we would like to ask whether the random group models (in the abelian,
pro-£ and pro-C versions) can also be applied to predict the distributions of Gg(k) as k/Q varies among
certain families of ['-extensions. Secondly, the group Gg(k, A), which is the generalization of Gg(k)
that we construct in Section 8, has its own interest, because it could be applied to extend our knowledge
of G (k) from the pro-¢ completion to the whole group, and moreover, it bounds the Shafarevich group

via (see Proposition 8.5)
#1113 (k, A) < #Bs(k, A). (1-5)

We emphasize here that understanding when #Hl%a (k, A) = #Bbg(k, A) holds can help us determine
whether our upper bound of multiplicities is sharp or not (see how the inequality (1-5) is used in the proof
of Proposition 9.4). Last but not least, the techniques established in Sections 3, 4 and 5, which use group
cohomology to understand the presentation of a I'-group, are purely group theoretical and independent of
the number theory background, so we hope that they could have other interesting applications.

In this paper, we only study the maximal prime-to-|I"| quotient of G4 (k) for a Galois I'-extension
k/Q, and one can see that this “prime-to-|I"|” requirement is necessary in almost every crucial step. We
would like to ask if the ideas of this paper can be generalized to the |I'|-part of Gz (k) too.

2. Notation and preliminaries

2.1. Profinite groups and modules. In this paper, groups are always profinite groups and subgroups are
always closed subgroups. For a group G, a G-group is a group with a continuous G action. If x, ...
are elements of a G-group H, we write [x, ... ] for the closed normal G-subgroup of H topologically
generated by x1, . ... If H is a G-group, then we write H x G for the semidirect product induced by the G
action on H, and its multiplication rule is given by (h1, g1)(h2, g2) = (h181(h2), g182) for hy, hr, € H and
g1, &2 € G. Morphisms of G-groups are G-equivariant group homomorphisms. We write 2~ to represent
isomorphism of G-groups, write Homg to represent the set of G-equivariant homomorphisms, and define
G-subgroup and G-quotient accordingly. For a G-group H, we say a set of elements G-generates H if H
is the smallest closed G-subgroup containing this set. We say that H is an irreducible G-group if it is a
nontrivial G-group and has no proper, nontrivial normal G-subgroups. For a positive integer n, a pro-n’
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group is a group such that every finite quotient has order relatively prime to n. The pro-n" completion
of G is the inverse limit of all pro-n’ quotients of G. For a prime £, we denote the pro-£ and the pro-¢’
completions of G by G(£) and G (') respectively.

For a group G and a commutative ring R, we denote by R[G] the completed R-group ring of G. We
use the following notation of G-modules:

Mod(G) = the category of isomorphism classes of finite G-modules,
Mod(R[G]) = the category of isomorphism classes of finite R[G]-modules,
Mod, (G) = the category of isomorphism classes of finite Z/nZ[G]-modules.

For a prime integer ¢ and a finite F,[G]-module A, we define hg(A) to be the Fy-dimension of
Homg (A, A). We consider the Grothendieck group K{)(R[G]), which is the abelian group generated by
the set {[A] | A € Mod(R[G])} and the relations

[A]=[B]+[C]=0

arising from each exact sequence 0 - A — B — C — 0 of modules in Mod(R[G]). For A, B € Mod(R[G]),
the tensor product A ® g B endowed with the diagonal action of G is an element of Mod(R[G]). Then
K((R[G]) becomes a ring by linear extensions of the product [A][B] =[A ®@g B]. If H is a subgroup
of G, then the action of taking induced modules Indg defines a map from K(’)(R[H D to K()(R[G]), which
we will also denote by Ind.

Let ¢ denote a prime integer. If H is a pro-¢’ subgroup of G, then it follows by the Schur-Zassenhaus
theorem that H'(H, A) = 0 for any A € Mod,(G), and hence taking the H-invariants is an exact functor
on Mod,(G). Moreover, when G is a pro-£ group, Mod(G) is the free abelian group generated by the
isomorphism classes of finite simple F,[G]-modules, and elements [A] and [B] of Ké([F@[G]) are equal if
and only if A and B are isomorphic as F;[G]-modules. For an abelian group A, we let AY denote the
Pontryagin dual of A.

2.2. Galois groups and Galois cohomology. For a field k, we write k for a fixed choice of separable
closure of k, and write G for the absolute Galois group Gal(k/k). For a finite Gy-module A, we let
A’ =Hom(A, k*). Let k/Q be a finite Galois extension of global fields. When v is a prime of the field Q,
we define S, (k) to be the set of all primes of k lying above v. Note that the function field [, (¢) has an
infinite place defined by the valuation | - |« := ¢%&("), but this infinite place is nonarchimedean. We
define So (k) to be the set of all archimedean places of k, so it is the empty set if & is a function field. For
a number field k, we let Sg(k) and Sc (k) denote the set of all real archimedean places and the set of all
imaginary archimedean places of k respectively. We let G4 (k) denote the Galois group of the maximal
unramified extension of k that is split completely at every prime above co. So if k is a number field, then
Gg.00(k) is Gg(k). If k is a function field, then G4 oo (k) is the quotient of G4 (k) by the decomposition
subgroups of k at primes above co.

Let S be a set of places of k. We let kg denote the maximal extension of k that is unramified outside S,
and denote Gal(ks/k) by Gg(k) or just Gs when the choice of k is clear. The set S is called k/Q-closed
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if S, (k) either is contained in S or intersects emptily with S for any prime v of Q. When S is k/ Q-closed,
it is not hard to check by Galois theory that kg is Galois over Q, and hence each element of Gal(k/ Q)
defines an outer automorphism of Gg(k). We let

N(S) = {neN|ne0Of),

where (9,? ¢ 1s the ring of S-integers of k. Explicitly, if k is a number field, then N(S) consists of the
natural numbers such that ord,(n) =0 for all p € S; and if & is a function field, then N(S) is the set of all
natural numbers prime to char(k). For a group G, we define

Mods(G) = the category of finite G-modules whose order is in N(S).

In particular, if Q is a function field, then Mods(G) consists of modules of order prime to char(Q).
Let k be a global field, and p a prime of k. The completion of k at p is denoted by kp, and the
absolute Galois group and its inertia subgroup of k, are denoted by G, (k) and 7, (k) respectively. When
the choice of k is clear, we denote G,(k) and 7,(k) by G, and 7,. Let k/Q be a Galois extension
of global fields. For a prime v of Q and a prime p € §,(k), the Galois group of k,/Q,, denoted by
Galy(k/Q), is the decomposition subgroup of Gal(k/Q) at p. The subgroups Gal,(k/ Q) are conjugate
to each other in Gal(k/ Q) for all p € S, (k), so we write Gal, (k/Q) for a chosen representative of this
conjugacy class. For a group G and an A € Mod(G), we write H' (G, A) and ﬁi(G, A) for the group
cohomology and the Tate cohomology respectively. For a field k, we define H' (k, A) := H'(Gy, A)
and H' (k, A) = ﬁi(Gk, A). Let A be a module in Mod(G ), where G g is the absolute Galois group
of Q. The Galois group Gal(k/Q) acts on H'(k, A) by conjugation. The conjugation map commutes
with inflations, restrictions, cup products and connecting homomorphisms in a long exact sequence,
and hence it is naturally compatible with spectral sequences and duality theorems used in the paper.
For a prime v of Q, we consider the Gal(k/Q) action on @pe S, (k) Hi (ky, A) defined by the action on
PByes,w H' (ky, Resg () A). In other words, Gal(k/ Q) acts on @, 4, H' (kp, A) by the permutation
action on S, (k) and by the Gal, (k/Q)-conjugation on each summand. We similarly define the Gal(k/ Q)
action on the product when each of the local summands is H' (7p, A) or the unramified cohomology group
Hr’;r (kp, A) := im(H"(gp/ﬂ,, ATr) Anf, Hi(gp, A)). In particular, the product of restriction maps for v

H'(k, A)— @ H'(ky, A)
peSy, (k)

respects the Gal(k/ Q) actions. Moreover, one can check that

Galq(k/ Q)

D H'(kp, A) =Indgyly o)

peSy (k)

H' (kg, A)
as Gal(k/Q)-modules for any ¢ € S, (k). The same statement holds for the Tate cohomology groups. For

a set S of places of k, we use the following notation for Shafarevich groups:

Ik, A =ker(H (k, A) > [T H' (K, ). sk, A) =ker( H'(Gs(k), A)—> [ H' (kp, 4)).
p all places pes
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and we set

/
I1 Hl(kp, A) = {(fp)peS eJ] Hl(kp, A) | f, is unramified for all but finitely many primes in S}.
peS pesS

2.3. List of notation appearing in multiple sections.

e F,(I"): free profinite I-group on n generators (defined in Section 3).

e F/(I'): pro-|T"|" completion of F,(T").

o F,(I'): free admissible I'-group on n generators (defined in Section 4).

o« m(w, I, H, A): multiplicity of A associated to a [-equivariant surjection w to the I"-group H (defined
in Definition 3.1).

e m(n, T, G, A): multiplicity of A associated to a pro-|I"| I'-equivariant surjection F, (I') — G (defined
in Definition 3.6).

e my(n, I', G, A): multiplicity of A associated to an admissible I™-presentation F,,(I") — G (defined
in Definition 4.3).

. mgd(n, I, G, A): multiplicity of A associated to a level-C admissible I™-presentation Fo(D)¢ = G°
(defined in Proposition 5.4).

* Xk/0,5(A): Euler characteristic (defined in Section 7).

* 8k/0,5(A) :=dimg, H*(Gg(k), A)SI*/Q) — dimg, H'(Gs(k), A)SI*/ D (defined in Definition 9.1).

* €;/0,5(A): an invariant associated to the Galois module A (defined Proposition 9.4)

3. Presentations of finitely generated profinite I'-groups

Let F,,(I") denote the free profinite I'-group on n generators defined in [Liu et al. 2024]. Explicitly, F,(I")
is the free profinite group on {x;, |i =1,...,n and y € I'} together with a I'-action defined by

o(xiy) =xisy, forally eTl.

If G is a profinite I'-group that is I-generated by g1, . . ., g, then there is a unique surjective I™-equivariant
homomorphism F,(I") — G defined by sending x; 14 to g; for each i. So the universal property holds
for F,(I"), and that is why F,(I") is the free pro-I-group on n generators (namely, the generators
are X 1dps - - - » xn,]dr).

When the choice of I' is clear, we will denote F,(I") simply by F,. Let G be a finitely generated
I'-group. Then when 7 is sufficiently large, there exists a short exact sequence

l1>N—->F,xI' 5> GxI —1, 3-1)

where 7 is defined by mapping I'" identically to T, and {x;.}7_, to a set of n elements of G that
generates G under the I" action. Note that (3-1) can be viewed as a presentation of the group G that is
compatible with I" actions, and we will call it a I'-presentation of G. The minimal number of relations in
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the presentation (3-1), which is one of the main objects studied in this paper, is related to the multiplicities
of the irreducible F,, x I'-quotients of N. We define the multiplicity as follows, and one can find that this
quantity is similarly defined in [Lubotzky 2001; Liu and Wood 2020; Liu et al. 2024].

Definition 3.1. Given a short exact sequence 1 — kerw — E 2> H — 1 of I-groups, we let M be the
intersection of all maximal proper E x I'-normal subgroups of ker w, and let N =kerw/M and E = E /M.
Then one can show that N is a direct product of finite irreducible E x I"-groups. For any finite irreducible
E xT-group A, we define m(w, I', H, A) to be the multiplicity of A appearing in N. When the multiplicity
is infinite, we let m(w, I, H, A) = co. When o refers to the surjection £ X I' — H x I" induced by the
I'-equivariant surjection £ — H, we use the notation m(w, I, H, A) instead of m(w|g, I, H, A) for the
sake of convenience.

Consider the short exact sequence (3-1). Let M be the intersection of all maximal proper F, x I"-normal
subgroups of N, and define R = N/M and F = F,/M (i.e., R and F are N and E in Definition 3.1) for
the short exact sequence (3-1). Then we obtain a short exact sequence

l1>R—->FxI'->GxI'—1.

Note that F x I" acts on R by conjugation, and maps the factor A”"I'G:4) of R to itself. When A is
abelian, then the conjugation action on A by elements in R is trivial, so the F' x I" action on A factors
through G x I', and hence A is a finite simple G X I'-module.

Lemma 3.2. Using the notation above, if A is a finite simple G X I'-module such that gcd(|T'|, |A]) =1,

then ndimg, A —&(A) +dimg, HX(G x T, A) — dimg, H'(G x T, A)

thF(A) ’
where £ is the exponent of A and £(A) = dimg, AT JAGHT,

m(r,I,G, A) =

Remark 3.3. When I is the trivial group, the lemma is [Lubotzky 2001, Lemma 5.3]
Proof. Applying the inflation-restriction exact sequence to (3-1), we obtain
0—> H' (GxT,AY) > H'(F, xT, A) > H'(N, A)°" - H*(G «T, AN) > H*(F, xT, A). (3-2)

Also by ged(]A|, [T'|) = 1, the Hochschild-Serre spectural sequence EY = H!(T', H/(F,, A)) =
HitI(F, xT, A) degenerates, so we have that

H?(F, X T, A) Z H?(F,, A)',
which is trivial because F), is a free profinite group. Note that N acts trivially on A, so
H'(N, A)%*" = Homp, «r (N, A) = Homg i (A" 164, 4)

because A is a simple F¢[G x [']-module and m (7w, I, G, A) is the maximal integer such that A LGA)
is an F,, x I'-equivariant quotient of N. Then it follows that

dimg, H'(N, AT = m (7, T, G, A) dimg, Homg (A, A).
Thus, by (3-2) it suffices to show dimg, H' (F,xT,A) =n dimp, A — £(A).
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Elements of H!(F, x T, A) correspond to the A-conjugacy classes of homomorphic sections of
Ax (F, xT) £ F, xI". We write every element of F,, x I" in the form of (x, y) forx € F, and y € T,
and similarly, write elements of A x (F,, xI") as (a; x,y) fora € A, x € F,, and y € I"'. Then p maps
(a; x,y) to (x, y) for any a, x and y. Note that a section of p is completely determined by the images
of (xj1.,1)and (1, y) fori =1,...,n and y € I', where x; ;.’s are the I'-generators of F, defined at
the beginning of this section. Since gcd(|A|, |[I'|) = 1, we have H I, A) =0 by the Schur—Zassenhaus
theorem, which implies that the restrictions of all the sections of p to the subgroup I' are conjugate
to each other by A. So we only need to study the A-conjugacy classes of sections of p which map
(1,y) to (1; 1, y) for any y € I', and such sections are totally determined by the images of (x; 1., 1)
fori =1,...,n. Let 51 and s, be two distinct sections of this type. Under the multiplication rule of
semidirect product, the conjugation of (a; x, y) by an element o € A is

@ 5L D@x, )@l D= a @y (@:xy)
= (@ " ()@ L D@ x,y),
where the last equality is because A is abelian. Therefore, because of the assumption that s1(1, y) =

s2(1,y) = (1; 1, y) for any y € I', we see that s; and s, are A-conjugate if and only if there exists
o € AT /JAS>T such that s, (x, y) = (@' (x, y)(@); 1, D)s;(x, y) for any x, y. So

n
#{ A-conjugacy classes of sections of p} = |AF/AGNF|_1 I1 #p_l(xi,lp, 1)
i=1
— |AF/AG>4F|71|A|}'I’
which proves that dimg, H'(F, x ', A) = ndimg, A — dimg, (AT /AG*T). 0

In this paper, instead of the ['-presentations in the form of (3-1), we want to study the presentations of
pro-|I"|" completions of I'-groups. Recall that the pro-|T"|” completion of a group G is the inverse limit of
all finite quotients of G whose order is prime to |I"|. We denote the pro-|I"|" completions of F,,(I") and G
by F,(I') and G’ respectively, and write F, for F,(I") when the choice of I is clear. Then F, and G’
naturally obtain I' actions from F, and G, and we have a short exact sequence

1> N > F xT' ™5 G xT' — 1, (3-3)
induced by (3-1), which will be called a |I"|'-T"-presentation of G'.

Proposition 3.4. Use the notation above. Let A be a finite simple G’ x I'-module, and denote the exponent
of A by L. If £ divides |T'|, then m(zt’, T, G', A) = 0. Otherwise,

ndimg, A —&(A) +dimp, H*(G' x T, A) —dimy, H'(G' x T, A)

m(n/’ 1—1’ G/’ A) — hG F(A) (3'4)
Y
_ ndimg, A —§(A) +dimg, H(G, A —dimg, H'(G, A)" (3-5)
= hGur (A) '

where in (3-5) A is viewed as a G X I'-module via the surjection G xI' — G’ x I'. Moreover, the equality
in (3-5) holds if H?(ker(G — G'), F;) = 0.
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Remark 3.5. We see from (3-5) that the multiplicity m(r/, T', G, A) depends on n, I', G and A, but not

on the choice of the quotient map 7.

Proof. 1t is clear that if £ divides |I'|, then m (', T', G, A) = 0. For the rest of the proof, assume ¢ 1 |T'|.
We consider the commutative diagram

Fo,xT —2% GxT

lp % ipc

F/xT —%% G'xT
where each of the vertical maps is taking the |I"|’-completion of the first component in semidirect
product. If U is a maximal proper F, x I'-normal subgroup of ker 7’ such that kern’'/U ~¢ 1 A,
then its full preimage p~!(U) in F, x T is a maximal proper F, x I"-normal subgroup of ker zz with
ker @ /p ' (U) ~g w1 A. So by definition of multiplicities, we have that m (7, T, G, A) <m(w, T, G, A).
On the other hand, because gcd(|A|, |['|) =1, if V is a maximal proper F, x I'-normal subgroup of ker =
with kerw /V ~g w1 A, then F, x " — (F,/V) x T factors through p, and hence we have shown that
m(n’, T, G, A) =m(w, T, G, A). Because w defines a I-presentation of G’, by Lemma 3.2 we obtain
the equality (3-4).

Let W denote ker pg = ker(G — G’). Because G’ is the pro-|I"'|" completion of G and ¢ 1 ||, the

pro-£ completion of W is trivial. So as W acts trivially on A, we have that H'(W, A) = 0. Then by
considering the Hochschild—Serre spectral sequence associated to

1>W—>GxI'>G x> 1,
we see that

HY(G'xT,A)ZH' (GxT,A) and H*(G' xT,A)— H*(G xT,A).

where the latter embedding is an isomorphism if H?(W, A) =0. Note that H>(W, A) = H*(W, F;)® dimg, A
because W acts trivially on A.
Finally, since ged(|A|, |T'|) = 1, we have that H' (", A) =0 for any i > 1, and hence by the Hochschild—

Serre spectral sequence of
l1-G—->GxI'>T—>1

we have that H' (G x T, A) = H'(G, A)" for any i. Therefore, we have
dimp, H'(G' x T, A) = dimg, H'(G, A)Y and dimp, H*(G' x T) < dimy, H*(G, A)",
where the equality holds if H>(W, F,) = 0. O
By Remark 3.5, we can define the multiplicities as follows.

Definition 3.6. Let I" be a finite group, G’ a finitely generated pro-|T"|’ I'-group, and A a finite irreducible
G’ x T'-group. Assume that there exists a I-equivariant surjection 7" : F, — G’. We define m(n, I', G, A)
tobe m(’, T, G/, A).

When A is abelian, m(n, I', G, A) is bounded above by (3-5). The next proposition proves that the
minimal number of relators in the presentation 7’ is determined by m(n, I', G’, A) for all abelian A.
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Proposition 3.7. Consider the short exact sequence (3-3). The minimal number of generators of ker '’ as
a closed normal T'-subgroup of F,, is

dimy, H*(G' x T, A) —dimy, H' (G’ x T, A) —&(A

sup sup ’71 Fe ( ) .1 Fe ( ) —&( )—‘+n (3-6)
L4|T|  A: finite simple dlm[FeA

F¢[G’ xT"]-modules

Moveover, this minimal number is
dimg, H*(G, A)¥ —dimg, H' (G, A)T —£(A
wp  sup { b, H(G, )" — dimy, H'(G, A)" —&( )%n a7
40| A: finite simple dlm[FZA

F¢[G’ xT"]-modules
and the equality holds isz(ker(G — G, Fp) =0.

Proof. We let M be the intersection of all maximal proper F, x I"-normal subgroups of ker 7/, and let
R=kern'/M and F = F, /M. Then R is isomorphic to a direct product of finite irreducible F x I'-groups
whose orders are coprime to |I'|. A set of elements of ker 7" generates ker 7" as a normal subgroup of
F, x T if and only if their images generate R as a normal subgroup of F x I'.

For positive integer m, r and a finite irreducible F x I"-group A, by [Liu and Wood 2020, Corollaries 5.9
and 5.10], one can compute the probability that the F' x I"-closed group generated by r random elements
of A" is the whole A™. Note that this probability is positive if and only if A™ can be generated by r
elements as a F' x I'-group. It follows that the minimal number of elements generating A” as an
F x I'-group is

1 if A is nonabelian,
[M—‘ if A is abelian, where £ is the exponent of A.
dimg, A

Recall that if A is an abelian simple factor appearing in R, then the F' xT" action on A factors through G’ x T,
since the conjugation action of R on A is trivial. Therefore, by the argument above and [Liu and Wood
2020, Corollary 5.7], the minimal number of generators of R as an F x ['-group is

m(nv Fa G/$ A)hG/X]F(A)
dim[pl A '

sup sup
£4|T|  A: finite simple
F¢[G’xT"]-modules

Then the proposition follows by Proposition 3.4 and the fact that hgwr(A) = hg 1 (A). ]
To end this section. we give a lemma that will be used later.

Lemma 3.8. Let E, F and G be I'-groups such that there exist I'-equivariant surjections « : E — F,

B : F — G and a I'-equivariant homomorphic section s : F — E of a. Let m = foq.

S
EZ3F—Ltyc

g

Let A be a finite simple G x I'-module. Then m(zw, ', G, A) =m(e, ', F, A)+m(B8, T, G, A).
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Proof. We first show m(w,I', G, A) > m(e, I, F, A) + m(B, T, G, A). By definition, the map B factors
through an extension G of G satisfying the exact sequence

1 > AmMBL.GA & 6 1.

Denote the composition of « and the quotient map F — G by p;: E — G. Similarly, = factors through
an extension F of F with kernel A"@I"F.4)_ Because the section s identifies E as the semidirect product
kera x s(F), we see that F has to be isomorphic to the semidirect product A”@-F:4) 5 F. Note that the
action of F x I" on A factors through G x I' (and similarly, factors through G xT). So by composing
with the surjection 8, we have a I'-equivariant quotient map

02 E — AM@LEA) o G

Because p;, factors through A™@FA4) 5 G, we have the following fiber product diagram of I'-equivariant
quotients of E:

AM@.EA) o G = E/ker p1 Nker pp —» G = E/ ker p;

l |

AmM@UEA) s G = E/ker p ———% G = E/ ker p; ker p,

So the diagram shows m(x, I, G, A) > m(a, T, F, A) +m(B, T, G, A).
Let S be the set of all maximal proper E x I'-normal subgroups U of ker w with kerw/U ~gxr A.
To prove the equality in the lemma, it suffices to show that, for each U € S,

ker p; Nker p, = ker py Nker p, N U, (3-8)

because (3-8) together with the preceding paragraph implies that NyecsU = ker p; Nker ps.

Let U € S. If kerae C U, then o(U) is a maximal proper F x I'-normal subgroup of ker 8 such
that ker 8/a(U) ~g«r A, so kerp; C U and therefore (3-8) holds. Otherwise, kerae ¢ U. Then
kera/(kera NU) ~gur (kera - U)/U =kern/U ~gxr A and similarly ker p;/(ker py NU) ~gxr A,
and we have the quotient map

E/keraNU ~AXF — E/kerplﬂU:Axé.

The domain of this quotient map is a quotient of F and the target is a quotient of E/(ker p; Nker p7).
Then we see that ker py N U D ker p; Nker py; thus we prove (3-8) in this case. O
4. Presentations of finitely generated profinite admissible I'-groups
We first recall the definition of the admissible I™-groups and the free admissible I'-groups in [Liu et al. 2024].

Definition 4.1. A profinite [-group G is called admissible if it is I'-generated by elements {g 'y (g) |
g € G,y €I'} and is of order prime to |I'|.
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Recall that for each positive integer n, we defined F, to be the pro-|I'|" completion of F,. We
set y;, to be the image in F, of the generators x; ,, of F,, and therefore F, is the free pro-|T'|" group
on{yi,|i=1,...,nand y €'}, where o € T acts on F, by o (yi,) = yi.o,,. We fix a generating set
{y1, ..., yaq} of the finite group I' throughout the paper. We set y; := y; iq; and define 7, (I") to be the
closed I'-subgroup of F, that is generated as a I-subgroup by the elements

7y li=1,...,nand j=1,...,d}.

We will denote F,(I") by F,, when the choice of I is clear. The following is a list of properties of F,(I")
proven in [Liu et al. 2024, Lemma 3.1, Corollary 3.8 and Lemma 3.9]:

(1) F, is an admissible I'-group and it does not depend on the choice of the generating set {y1, ..., y4}.

(2) There is a I-equivariant quotient map p, : F, — F, such that the composition of the inclusion
Fn C F, with p, is the identity map on F,.

(3) Define a set function for any I"-group G
Y:G—> G g (7@ g ). 8 vale))

Then the function

Y(G)" — Homr (F,, G)
taking (Y (g1), ..., Y (gn)) to the restriction of the map F, — G with y; — g; is a bijection.

Let G be an admissible I'-group with a I-presentation defined by F, x I' = G x I" such that the
reduced map F, x T’ s G « T satisfies that

G is I'-generated by coordinates of Y (y;), i=1,...,n. 4-1)

Under the condition (4-1), the restriction of 7’ to the admissible subgroup F, of F, is surjective, so 7’
that factors through the quotient map p, : F, — F, in (2) above. We let ag = 7’| £, «r and obtain a short

exact sequence
l>N—>F, x2S Gxl -1, (4-2)

and we call it an admissible I'-presentation of G.
Similarly to the previous section, we are interested in the multiplicities of the simple factors appearing
as the quotients of N.

Lemma 4.2. Let G be an admissible T'-group with an admissible T'-presentation (4-2) and A a finite
simple G x I'-module with gcd(|A|, |T'|) = 1. Then

m(ﬂada F7 Gv A) = m(na F7 G, A) _m(na F7 Fns A)
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Proof. We let p, : F, — F, be the quotient map described in property (2). Let @ be the composition of
the following I'-equivariant surjections and then o defines a |I'|’-I-presentation of G. Let ¢ : F,, — F,
be the natural embedding. Then we have the diagram

L

Tadl 7
/ A n
F, o Jn > G,

The lemma follows by Lemma 3.8. (]

Definition 4.3. Let G be a ['-group with an admissible ['-presentation (4-2). For a finite simple G x I'"-
module A with gcd(JA[, |[T']) = 1, we define myq(n, I', G, A) to be m(mag, I', G, A). By Lemma 4.2,
maa(n, I, G, A)=m@n,T’,G, A) —m(n, ', F,, A) does not depend on the choice of 4.

Lemma 4.4. Let A be a finite simple F, x I'-module such that gcd(|A|, |[T'|) = 1. Then
dimg, H'(F, x T, A) = ndimg,(A/A") — £(A).

Proof. We use the idea in the proof of Lemma 3.2. Elements of H'!(F, x I', A) correspond to the
A-conjugacy classes of homomorphic sections of A x (F, x I') 2> F, x I". We use (g, y) to represent
elements of F, x I', and (a; g, y) to represent elements of A x (F,, xI"). Again, by the Schur—Zassenhaus
theorem, we only need to count the A-conjugacy classes of sections of p that maps (1; 1, y) to (1, y). In
other words, we only need to study the A-conjugacy classes of [-equivariant sections of A x F,, — F,.

By property (3) of F;,, there is a bijection Y (A x F,,)"* — Homp (F,,, A X F,) taking (Y (g1), ..., Y(gx))
to the restriction of the map F, — A x F, with y; > g;. For a I'-equivariant section s of A x F,, — F,,
the elements s(yi_l)/j(yi)) in A X F,, must map to yl._lyj(y,-) € F,foreachi=1,...,nand j=1,...,d.
Therefore, the I™-equivariant sections of A x F,, — F, are in one-to-one correspondence with elements in
Y (A x F,)"* which map to (Y (y1), ..., Y (y,)) € Y(F,)" under the natural quotient map A X< F,, = F,
on each component.

Let’s consider Y (y;) and its preimages in Y (A x F,,). Note that there is also a natural embedding
Y (F,) — Y (A x F,) defined by the obvious section of split extension A x F,, — F,. So we can fix a
g € A X F, such that Y (g) is the image of Y (y;) under this embedding, and then Y (g) is a preimage
of Y (y;) under ¢, where ¢ is the quotient map (A F)d— ]-",f. The self-bijection

AxF) = (AxF) (ar,...,a0) — (gayi(e)~", ..., gaava(g)™"
maps Y (A x F,) to itself and ¢ ' (Y (y;)) to A¢. Thus,
#Y(AXF) N ' (Y (1) = #Y (A x F) N AT =#Y(A) = |A/AT],

where the second equality above uses [Liu et al. 2024, Lemma 3.4] and the last uses [Liu et al. 2024,
Lemma 3.5]. So we’ve shown that there are |A/A"| elements in Y (A x F,) mapping to Y (y;), and it
follows that the number of I-equivariant sections of A x F;,, — F, is |[A/A"|".
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Finally, recall that two sections sy, sp of A X (F, x I') — F, x I are A-conjugate if and only if
s1(g,y) = (@ ' (g, y)(@); 1, 1)s1(g, y) for some o € AT /A7 by the computation in the proof of
Lemma 3.2. Therefore,
|A/AT)"

_. O
|AI‘/A]~'n><1I‘|

#H'(F, x T, A) =

Corollary 4.5. Under the assumptions in Lemma 4.2, we have
(T, G, A) = m(n, T, G, Ay — "-dimee A7

Maya\n, 1, ) =mn,1, ) - T N
a hGxr(A)

Proof. By Proposition 3.4 and Lemma 4.4, we have

ndimg, AT + dimg, H?(F,, A)F
thlF(A) ‘

Note that, forgetting the [™-action, F,, is a projective profinite group, because by definition it is a closed

m(n’ F? Fns A) =

subgroup of the free pro-|T"|’ group F.. So H*(Fy, A) =0, and then the corollary follows immediately
by Lemma 4.2. (I

We point out in the next lemma that A is strictly smaller than A when G x I" acts nontrivially on A.

Lemma 4.6. If G is an admissible I'-group and A is a G X I'-group such that I acts trivially on A, then
G x T acts trivially on A.

Proof. The G x I" action on A induces a group homomorphism G x I' — Aut(A). So it suffices to show
that I" is not contained in any proper normal subgroup of G x I'. Suppose M is a proper normal subgroup
containing I'. Then B := (G x I')/M is a I'-quotient of G and I" acts trivially on B. However, G is
admissible, so is generated by elements g~'y (g) for g € G and y € I'. Then the images of all g~!y (g)
in the I'-quotient B generate B but each of these images is 1, and hence we obtain the contradiction. [

5. Presentations of finitely generated profinite I'-groups of level C

Let C be a set of isomorphism classes of finite [-groups. The variety of I'-groups generated by C is
defined to be the smallest set C of isomorphism classes of I-groups containing C that is closed under
taking finite direct products, I'-quotients and I"-subgroups. For a given I'-group G, we define the pro-C
completion of G to be

G° =1imG/M,

—
M

where the inverse limit runs over all closed normal I'-subgroups M of G such that the I"-group G/M is
contained in C. We call a I'-group G level C if G¢ = G.

We want to emphasize that we do not require C to be closed under taking group extensions, and it
is different from most of works in the literature about completions of groups. For example, if we set C
to be the set containing only the group Z/£Z with the trivial I" action, then G is the maximal quotient
of G that is isomorphic to a direct product of Z/£Z on which T acts trivially. If we want G to give us
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the pro-¢ completion of G, then we need to let C contain all the finite I-groups of order a power of ¢.
Similarly, G is the pro-|I"|" completion of G if C consists of all finite I-groups of order prime to |T'|.

Lemma 5.1. Let F, G be I'-groups and w : F — G a T'-equivariant surjection. Let C be a set of
isomorphism classes of finite T-groups, and ¢ the pro-C completion map F — FC. Then we have the

following commutative diagram of T'-equivariant surjections:

F—2%G

ol
F¢ 2%y ¢
where € is the quotient map by ¢ (ker w).

Proof. By the set-up, im »® naturally fits into the right-lower position of this diagram, so it’s enough

to show that im w® ~ GC. First, im »°

is a quotient of G and a quotient of FC, so it is of level C and
hence is a quotient of GC. On the other hand, we consider the natural pro-C completion map « : G — G,
and the composition « o w : F — G°. Because G is of level C, it follows that ker(« o w) 2 ker ¢.
Also, because kerw C ker(a o w), we have that im(« o @) = G€ is a quotient of F/(kerwker¢p) =

(F/ker¢)/(ker w/ ker w Nker ) = F¢/ker o© = im . So we have proved that im ¢ ~ G°. O

Definition 5.2. For any I™-equivariant surjection w : F — G, we define the pro-C completion of w to be
o€ : F¢ — G¢ in Lemma 5.1.

Corollary 5.3. Under the assumptions in Lemma 5.1, for any finite simple G x T'-module A, we have
m(@®, T, G¢, A) <m(w, T, G, A).

Proof. By definition of w®, ker «C is the quotient of ker w by ker w Nker ¢, and we denote this quotient
map by ¢ : kerw — kerw®. If N is a maximal proper F¢ x I'-normal subgroup of ker w® such that
kerw’/N ~ A as G® x I'-modules, then its preimage ¢! (N) in F is a maximal proper F x I'-normal
subgroup of ker w with ker w/¢ ' (N) ~ A. The corollary follows by the definition of the multiplicity. [J

Proposition 5.4. Let G be an admissible TI'-group, C a set of isomorphism classes of finite I'-groups and A
a finite simple G¢ x I'-module with gcd(|A|, |T'|) = 1. Then, for a fixed positive integer n such that there
exists an admissible I'-presentation of G as (4-2), the multiplicity m(nfd, T, G°, A) does not depend on
the choice of g, and so we denote m(ngd, I, G¢, A) by mgd(n, I, G, A). Then

mgd(ns F’ G7 A) E mad(n» Fa G’ A)
Moreover, if myq(n, I, G, A) is finite, then the equality holds for sufficiently large C.

Proof. Since A is finite, we can find a finite set C; C C of isomorphism classes of finite I'-groups such that
the map G¢ x I" — Aut(A) induced by the G¢ x T" action on A factors through G°' x I, and hence A is a
simple G x I'-module. Let C; C C, C - - - be an ascending sequence of finite sets of isomorphism classes
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of finite I"-groups with UC; = C. For each i < j, we have that m(nii, I, G, A) < m(nfé ,T[,GC,A) <
m (&, T, G¢, A) by Corollary 5.3, and hence
m(x$, T, G, A) = lim m(z&, T, G%, A).

11—

Since C; is a finite set of I™-groups, [Liu et al. 2024, Remark 4.9] shows that the multiplicity m(rrf(j ,I,G% A)
does not depend on the choice of ,q. So we obtained that m(nacd, I, G¢, A) also does not depend on the
choice of m,q. The inequality in the proposition follows by m(nfd, I, G¢, A) <m(my, T, G, A).

The last statement in the proposition then automatically follows because

mu(n, T, G, A)= sup mD»n,T,G,A). 0
D: finite set
of I"-groups

6. The heights of pro-C groups

Definition 6.1. For a finite group H, we define h(H) to be the smallest integer n such that there exists a
length-n sequence of normal subgroups of H,

l1=Hy<H{«---<H,=H,

where H;1/H; is isomorphic to a direct product of minimal normal subgroups of H/H;. We define the
height of H to be
G(H) =max{h(U) | U is a subquotient of H}.

For a profinite group H, the height is defined as

A

h(H)= sup  H(U).
U': finite
quotient of H

Lemma 6.2. Let G and H be two finite groups. Then G(G x H) = max{G(G), G(H)}.

Proof. Note that a subquotient of G or H is a subquotient of G x H, so G(G x H) > max{G(G), G(H)}.
It suffices to show that h(U) < max{f)(G), G(H )} for any subquotient U of G x H. Each subquotient U
of G x H is a quotient of a subgroup V of G x H. Then because a sequence of normal subgroups of V
induces a sequence of normal subgroups of U, and a minimal normal subgroup is mapped to a product of
minimal normal subgroups or the trivial subgroup under any quotient map. We see that h(U) < h(V), so
we only need to show that h(V) < max{G(G), G(H)} for any subgroup V C G x H.

We let Proj; and Projy be the projections mapping G x H to G and H respectively, and denote
Ve =Proj; (V) and Vg =Projg (V). Then Proj; x Proj, maps V injectively into Vi X Vg. Let n denote
max{ﬁ(G), G(H )}, and then there exists a sequence

1« VG,l X VH,l < VG’2 X VH,2<]--~ < VG,n X VH,n = VG x Vy.

of normal subgroups of Vi x Vg of length n, where {V, ;} for *x = G or H is a sequence of normal
subgroups of V, such that V, ;+1/ Vs is a direct product of minimal normal subgroups of V,/V, ;.
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Assume that A is a minimal normal subgroup of Vs x Vg contained in V1 X Vg such that ANV # 1.
Since V is a subgroup of Vi x Vg, we have that ANV is normal in V. Then Proj; x Projy sends ANV
to a normal subgroup of Vi x Vp that is contained in Proj; x Proj, (A) C Vg1 X Va,1. We see that ANV
is A, because ANV # 1 and A is minimal normal in Vs x Vg. In particular, A NV is a minimal normal
subgroup of V, because otherwise Proj; would map a minimal normal subgroup of V contained in ANV
to a normal subgroup of Vi that is properly contained in A which contradicts to the assumption that A
is minimal normal. Thus, we have shown that V N (Vg1 x Vg 1) is a direct product of minimal normal
subgroups of V. Then by induction on i, we see that {V; :== V N (Vg; x Vg ;)}7_, forms a sequence of
normal subgroups of V such that V; 1/ V; is a direct product of minimal normal subgroups of V/V;, and
hence h(V) < max{h(G), h(H)}. O
Proposition 6.3. Let I' be a finite group and C a finite set of isomorphism classes of finite I'-groups. For
any I'-group G, we have that G(Gc) is at most
be ;= max{h(H) | H € C}.

Proof. By definition of G(GC), it suffices to prove G(G) < 6(; forany G € C. So we just need to show that
the three actions,

(1) taking I'-quotients,

(2) taking I'-subgroups, and

(3) taking finite direct products,
do not produce groups with larger value of 6 For the first two actions, it is obvious that if H is a

I'-quotient or a I™-subgroup of G, then it is a quotient or a subgroup of G by forgetting the I" actions, and
hence G(H ) < G(G) by definition of heights. The last action follows by Lemma 6.2. O

We finish this section by applying Proposition 6.3 to prove the following number theory theorem.
Theorem 6.4. Let k/Q be a Galois global field extension with Gal(k/Q) >~ T and S a finite k/ Q-closed
set of places of k. Let C be a finite set of isomorphism classes of finite T-groups. Then Gg(k)C is a
finite group.

Proof. By Proposition 6.3, we have that
h:=h(Gs(k)) <be
is finite. So there exists a sequence of normal subgroups of G (k),
l=Hy<H << Hy,=Gg(k)F,

such that H;/H; is isomorphic to a direct product of minimal normal subgroups of Hj,/H;. Note that
each of the minimal normal subgroups is a (not necessarily finite) direct product of isomorphic finite
simple groups. So, for each i, H;,1/H; as a group is a direct product of finite simple groups. On the
other hand, G5(k)€ is a quotient of Gs(k), so is the Galois group of an extension of k that is unramified
outside S. Therefore, H;1/H; is the Galois group of an extension K;/K; | of some intermediate fields
between kg and k. We denote by S; the set of primes of K; lying above S.



Presentations of Galois groups of maximal extensions with restricted ramification 855

For a prime ‘P of K;, the local absolute Galois group Gz (K;) is finitely generated, so there are finitely
many Galois extensions of (K;)q having a fixed Galois group. Then for a simple group E, there exists
an integer N 3 (K;) for each °B € §;, such that any Galois extension of (K;)y whose Galois group is a
subgroup of E has discriminant at most Ng g3(K;). Let Ng s(K;) denote the product H‘BeSi Ng g (K;).
By the Hermite-Minkowski theorem (see [Goss 1996, Theorem 8.23.5(3)] for the function field version
of this theorem), for each finite simple group E, there are only finitely many extensions of K; that have
Galois group E and of discriminant at most Ng_s(K;). Therefore, there are finitely many extensions
of K; that are of Galois group E and unramified outside S;.

Since C is finite, there are only finitely many simple groups that appear as composition factors of
groups in C (see [Liu and Wood 2020, Corollary 6.12]). Now we consider the tower of extensions K;.
Note that K;, =k and Gal(Kj—1/K}p) >~ Hy,/Hy,—. By the above argument, we conclude that H;,/Hj_1 is
a direct product of finite simple groups, that there are finitely many choices of these finite simple groups,
and that for each of them there are finitely many copies of this simple group appearing in Hy/Hp_1. So
we obtain that Hy,/Hj,_ is finite, and hence Kj_; is a finite extension of k. By induction, we see that
H;1/H; is finite foreachi = h — 1, ..., 0, and it follows that Gs(k)C is finite. O

7. A generalized version of global Euler—Poincaré characteristic formula

Throughout this section, we let k/ Q be a finite Galois extension of global fields, and S be a finite nonempty
k/Q-closed set of primes of k such that S, (k) € S. For each A € Mod(Gal(ks/Q)), we define

#Hz(Gs(k),A)Gal(k/Q)#HO(GS(k),A)Gal(k/Q)
#H'(Gg(k), A)Gak/O) :

where Gal(k/Q) acts on H' (Gg(k), A) by conjugation. We will prove the following theorem.

Xk/0,s(A) =

Theorem 7.1. Use the assumption at the beginning of this section. If A € Modgs(Gal(ks/Q)) has order
prime to [k : Q], then

wrosM =#( @ A0 A [# @ HQ. A)).

VES(Q) VES(Q)
Remark 7.2. (1) If k is a function field, then the theorem says that x,0 s(A) =1 since S (k) = @.

(2) When k = Q, the theorem is exactly the global Euler—Poincaré characteristic formula [Neukirch et al.
2008, Theorem (8.7.4)].

(3) When Q is a number field, a similar result is proven in [Clozel et al. 2008, Lemma 2.3.3].

7.1. Preparation for the proof.
Lemma 7.3. Let G be a profinite group and U an open normal subgroup of G. Let H be an open subgroup
of G and 'V denote U N H. Then H/V is naturally a subgroup of G/ U, and for an H-module A we have

H' (U, Indfl A) = Indg); H'(V, A)

as G/ U-modules for each i > 0.
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Proof. Under the quotient map G — G/ U, H/V is the image of H, so it is a subgroup of G/U. Then

Indf A = Ind%¥ Ind!,, A = g/BUH o (Indgjy A),
[AS

where we denote by o(IndgH A) the 0 UHo ~'-module, whose underlying group is IndgH A and the

1

action of Tt € cUHo ™! is given by a — o~ 'toa. So

H'U,Ind2 A= @ H (U, odndl, A)
0eG/UH

= @ o.H'(U,Ind, A)
0eG/UH

=1Indg); H'(U. Indfl, A), (7-1)

where the second equality follows by U <G and the definition of the conjugation action o, on cohomology
groups, and the last equality is because the quotient map G — G /U maps a set of representatives of
G/UH to a set of representatives of (G/U)/(H/V). Since A is an H-module, UH acts on Ind,‘; A, and
moreover, it follows by V = H N U that Ind}, A =Ind¥,, A as UH-modules. So we have the following
identity of H/V-modules:

H'(U,Ind,; A) = H (U, Ind}, A) = H'(V, A), (7-2)

where the last isomorphism follows by Shapiro’s lemma. The lemma follows from (7-1) and (7-2). O

For the rest of this section, we assume § is a nonempty k/Q-closed set of primes of k containing Seo
and let G = Gal(ks/Q) and U = G (k). For each open subgroup H of Gal(ks/Q) welet V=UNH
and K be the fixed field of V, and define a map

¢n,s - Mod(H) — Ko(Z[H/ V),

Ar—>[HO(V,A)]—[HI(V,A)]—F[HZ(V,A)]—[ D ﬁO(Km,A’)]er[ D HO(qu,A’)]
PeSeo(K) PeS(K)

\%
’

where H/V acts on EB‘BE sk H O(qu, A’) (similarly on Tate cohomology) by its permutation action
on S (K) and by the Galy(K/Q) N H on each summand, and the Pontryagin dual is taking on the
classes of K{(Z[H/V]).

Lemma 7.4. Using the notation above, we have the following isomorphisms of G /U -modules for any
A € Mod(H):

@D Hky.Indf A)=Indgy B H(Ky. A), (7-3)
peSno (k) PeSwo (K)
@ Hkky.Indf A)=Ind;);, @D H(Ky. A). (7-4)
peSao (k) PBeSw (K)

Proof. It suffices to fix a v € So(Q) and prove (7-3) and (7-4) for places above v. For each p € S, (k),
Indg A as a G, (Q)-module has the following canonical decomposition (see [Neukirch et al. 2008, §1.5,
Example 5]):

vNoHo ™!
Resg Indf A = Ege\aG/H Ind"" 7 o Rest ;A (7-5)
oEYy
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If v splits completely in k/Q, then Gal,(k/Q) =1 and G, (k) = G,(Q). So we have the following
identities of Gal,(k/Q)-modules:

Ho(kp, Indg A) = GGQG\BG/H Ho(gv N O‘HO'_I, o RCSCI;I,IQUJQH A)
— GQQ?G/H 0.H(0G,0 ' NH, Resf_lguomH A), (7-6)

where the first equality uses (7-5) and Shapiro’s lemma, and the second follows by definition of
the conjugation action on cohomology groups. We let L denote the fixed field of H. Then, the set
{ogpo*_1 NH |o €G,\G/H} is exactly the set {G,,(L) | w € §,(L)}. Therefore, we have the identity of
abelian groups (hence of Gal, (k/Q)-modules since Gal,(k/Q) =1)

HoUky, nd2 Ay = @ HL,, 4),
weSy (L)

and hence
@ H'(ky, Indf A) = Ind};, U( D HL,, A)) (7-7)
peS, (k) weS, (L)
because the Gal(k/Q)-action on this direct sum is determined by its permutation action on places above v.
On the other hand, because K = kL, the assumption that v splits completely in k/ Q implies that w splits
completely in K for any w € S, (L) and then we obtain

D H'(Ky, A =Indyy (D H(Lu, A). (7-8)
PeSy(K) weSy (L)
Thus, (7-7) and (7-8) prove (7-3) in this case. The isomorphism in (7-4) can be proven using the exactly
same argument.

Otherwise, v is ramified in k/ Q, so Gal,(k/Q) ~ Z/27Z, G,(k) =1 and Gz(K) = 1 for each p € S, (k)
and P € S, (K). Then (7-4) automatically follows because of H O(kp, Indg A)= H O(qu, A) =0. The set
of right cosets G/ H naturally acts on S, (L), and moreover, for any w € S,(L) and 01,02 € G/H, o Loy
is contained in G, (L) C Gal(K /L) if and only if o1 (w) = o2(w). So by (7-5), we have the following
identities of Galy,(k/Q)-modules:

H'(ky, Ind# A) =Resg o Indi A= D A,® D (A, DTAY),
weSr(L) weSc (L)

where A,, .= Resgw( L A and 1 denotes the nontrivial element in Gal,(k/ Q). So we have the following
identity of Gal(k/Q)-modules:

0 H Gal, (k/ Q) 1
peS, (k) weSgr(L) weSe (L)

Finally, because w € S, (L) is imaginary if and only if Gal,,(K/L) =1, we have



858 Yuan Liu

H/V H/V
mdfly @ H'KpA=mdil( & @ A,
BeSy(K) weSy (L) PeSy (K)

H/V Galy (K /L) !
:IndG/U( S IndGZl(K/L) Ay ® @D Indgy,r Aw)

weSr(L) weSc(L)
Gal, (k
= @ Indg) Av® @ Indluu o) Aw (7-10)
weSr(L) weSc(L)
Thus, (7-3) follows by (7-9) and (7-10). O

The corollary below immediately follows by Lemmas 7.3, 7.4 and the fact Indg A = (Indg A).
Corollary 7.5. For any open subgroup H of G and A € Mod(H ), we have
¢c,s(Indfl A) ~Indg ) o,5(A).
Lemma 7.6. The map ¢¢. s is additive on short exact sequences of modules in Modg(G).

Proof. Denote Gs(k) by Gg. Let 0 - A} — A, — A3z — 0 be an exact sequence of finite modules
in Modg(G). By considering the associated long exact sequence of group cohomology, we have the
following identity of elements in K(/) (Z|Gal(k/Q))):

2 3 . . 4 3 S
> S (DHHH (Gs, APl =Y. Y (=DM [H (Gs, AP+ [8H*(Gs, A3)], (7-11)

i=0j=1 i=3 j=1
where § denotes the connecting map H' — H'*! (or H' — H* for Tate cohomology groups) in the long
exact sequence. By [Neukirch et al. 2008, Theorem (8.6.10)(ii)], for i > 3 and any j, the restriction map
H'(Gs, Aj) — DBpesar) H'(ky, A;) is an isomorphism. Note that for p € Sg(k), we have G, (k) = Z/2Z,
so by [Neukirch et al. 2008, Propositions (1.7.1) and (1.7.2)] we have

L 4 3 L .
> (~DHH Gs, Apl =X XD @D Hy, A

i=3 j=I i=3 j=1 peSu (k)
= X i i(—l)"”[ﬁ"(k ANI=0
peSp(k) i=—1 j=1 ey '
So (7-11) gives

2 3 L .
> Y (=D TH (G, Aj)]1 = [8H*(Gs, A3)]

i=0 j=1 _
=| @ sH Kk, A3)] =[ B sH (ky, A3)]
- peSp (k) peSr (k)
=| P ker(ﬁl(kp, A — ﬁl(kp’ Az))]
- peSr(k)
_ R - v
=| P Coker(Hl(kp, A)) — Hl(kp, A/l))]
- peSr(k)
- R v
=[ @ 8l (. 4D]. (7-12)

- peSr(k)
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where the fourth and last equalities use the long exact sequence of Tate cohomology groups, and the fifth
uses the local duality theorem [Neukirch et al. 2008, Theorem (7.2.17)]. On the other hand, again by
[Neukirch et al. 2008, Propositions (1.7.1) and (1.7.2)], the long exact sequence induced by

0> A= A, —> A} —>0 (7-13)
implies
> j+1 770 / > j+1 7l /
S0 @ B AP = ] @ Ak A
j=1 pesSr(k) j=1 peSr(k)
3 .
=XV @ HOU A+ D H' (K AD] (7-14)
j=1 peSr(k) peSr(k)

where the last equality follows by the long exact sequence of group cohomology induced by (7-13).
Therefore, combining (7-12) and (7-14), we obtain

©G,s(A1) — @G s(A2) + @G s(A3) =0. 0

Lemma 7.7. If £ eN(S) is a prime, then we have the following identities of elements in K (F¢[Gal(K /Q)])
for any Galois extension K of Q with k(u¢) C K C ks:

[H°(Gal(ks/K), o)l = [1e],

[H' (Gal(ks/K), 1e)] = [OF 5/€1+[Cls(K)[E]],

[H%Gal(lcs/K),m)]=[01s(1<)/61—[[Fe]+[ D [Fe]+[ D ﬁ(’(gqg,[m],
PeS\Soo(K) PeSeo(K)

where Clg(K) is the S-class group of K, Clg(K)[{] is the £-torsion subgroup of Clg(K), and 0273/6 and
Cls(K) /£ denote the maximal exponent-£ quotients of (92’ g and Clg(K) respectively.

Proof. The lemma follows directly from the claims (i)—(iii) in the proof of [Neukirch et al. 2008,
Theorem 8.7.4]. Though the proof of those claims only shows these identities when each terms are treated
as Grothendieck group elements of Gal(K /k)-modules, one can check that the ideas there work generally
for the base field Q instead of k. U

Proof of Theorem 7.1. For any G-module A and v € S5 (Q),

0 ~ Galy (k/Q) 170
pega(k)H (kp,A’):IndGal*(“k/Q) H (kp,A’)

as Gal(k/Q)-modules, where p on the right-hand side is an arbitrarily chosen place in S,(k). So by
Shapiro’s lemma, we have

)Gal(k/Q)

(@ HGa) = H(ky, AYS O = HO(Q,, A). (7-15)

pesS, (k)
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If Galp(k/Q)=2/27, then ﬁo(kp,A/)=ﬁO(QU,A’)=Obecause |A’| has to be odd as gcd(|A|, [k: Q) =1.
If Gal, (k/Q) = 1, then H(k,, A’) = H*(Q,, A). So

. Gal(k/ Q) —~
( D Ho(kp,A’)) ;Ho(kp,A/)Galp(k/Q)
peS, (k) —~
= H°(Q,, A)). (7-16)

Note that for any M € Mod(Gal(k/Q)), we have (M")%1*/ Q) = Homguwk/0)(M, Q/Z) ~ Mgaw/0)-
When M has order prime to [k : Q], M Gal(k/Q) and MGaik /@) are isomorphic. So the Gal(k/Q)-invariants of

(@ H. A’))V and (@ A, A’))v
peS, (k) peSy, (k)
are H°(Q,, A’) and H°(Q,, A) respectively.

We let R denote the ring ]_[pﬂk:Q] Z,. Let ©: K|(R[Gal(k/Q)]) — Z be the map defined by sending
the class [A] to the size of AS3*/Q) which is a group homomorphism because taking Gal(k/ Q)-invariants
is an exact functor in the category of R[Gal(k/Q)]-modules. So we want to show that ® o ¢¢ s is the
zero map when restricted to modules in Modgs(Gal(ks/Q)) with order prime to [k : Q]. By Lemma 7.6
we just need to show

® 0 ¢g,s(Ko(Fe[Gal(E/Q)]) =0 (7-17)

for any prime integer £ € N(S) with £ 1 [k : Q] and any finite extension E of k that is Galois over Q.
Because the codomain of the map ® is free, (7-17) is equivalent to the vanishing of ® o ¢ s on the
torsion-free part of K(/)([Fg [Gal(E/Q)]). Note that, by [Neukirch et al. 2008, Lemma (7.3.4)], the Q-linear
space K (F¢[Gal(E/Q)]) ®z Q is generated by classes in the form of Indgal( E/Q) A, where C runs over
all cyclic subgroups of Gal(E/Q) of order prime to £ and A runs over classes of K (IF;[C]). For such C
and A, we denote by C the full preimage of C in G = Gal(ks/Q), and then by Corollary 7.5 and
Indgal( g/ A= IndS A, we have that ® 0 g s(Inds A) = 0 if and only if ® o pc s(A) = 0. By setting G
tobe C, U tobe CNU, Q tobe (ks)€ and k to be (ks)¢"V, we finally reduce the problem to the

statement that we will prove in the rest of this section:

®o¢g.s(A) =0 for all A € Mod,(G) such that k(A)/Q is
a cyclic extension of Q of order relatively prime to £. (7-18)

We let K =k(A, 1t¢). So under the assumption in (7-18), we have that Gal(K / Q) is an abelian group of
order relatively prime to £, in which case the Hochschild—Serre spectral sequence for the group extension

1 — Gal(kg/K) — Gal(kg/k) - Gal(K/k) — 1
and the module A degenerates, and then for each i > 0 we have that

H(Gal(kg/k), A) = H' (Gal(ks/K), A)CIEK/B) (7-19)
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We first consider the module A = y¢, then K = k() and we let G = Gal(K/ Q). As £ 1Gal(K/Q),
in both the number field case (by [Neukirch et al. 2008, Corollary (8.7.3)]) and the function field case
(by a standard argument using the divisor group), we have that

05 s/01=[ @ Fe]+lu-1Fa

in K 6([Fg[5]). Then since [Cls(K)[£]] = [Cls(K)/£] as they are the kernel and the cokernel of the map
Cls(K) =5 Clg(K), by Lemma 7.7 we have
2

Y (-[H Galks/K).pol = | @ H'(Kp.Fo|-| @ HKy.F)

| b oo
i=0 PESoo (K) PESoo (K)

and hence ¢g s(u¢) = 0 follows easily by (7-19) and by the arguments in the first paragraph of this
subsection. Thus ® o ¢g s(pe) =0.
For a general finite module A € Mod,(G), we again let K =k (A, u,) and G= Gal(K / Q). We define

_ _ 2 S
X :Mode(G) — Ko(F([G]), M 3 (=D'[H (Gal(ks/K), M)].
i=0

Because A and u, are both trivial Gal(kg/K)-modules, the pairing
je x Hom(A', Fg) > Hom(A', o) = A, (¢, f) = (x> /D)
defines G-isomorphisms via the cup product
H'(Gal(ks/K), u¢) ®7 Hom(A', F;) = H'(Gal(ks/K), A).

So we have x(A) = [A"]x(u¢), and hence by (7-20) we have

xW=14"(] @ AkypFo|-[ & HKyFo)).
PESoo(K) PESoo(K)
If Q is a function field, then (7-18) follows immediately after taking the G-invariants on both sides above.
For the rest of the proof we consider the number field case. Let S (Q) be the set of archimedean
places of Q lying below the imaginary places of K if £ =2, and be the set S, (Q) if £ is odd. One can
check by definition of HO that for any module M € Mod, (G) (for example, M = A’ and M =[F,), we have

[ D ﬁO(Km,M)]—[ D HO(Kq;,M)]: > —[nd M,

PESoo(K) PESoo(K) veS%(0)

where the group G, is the decomposition subgroup G, (K /Q). Also, note that (Indg” Fo)®zM = Indg” M
for any M € Mod, (G) and that

(Ind%* )6 = HO(G, nd* M) = H(G . M) = M.
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So we have

) o . v VA\Gal(k/Q)
©0pg (M) =# LD'H Gsk), M= D AU a)] +] @ HKy a)])

i=0 PESoo (k) pESea(k)

—~ Vv VNG
=#(x -] @ AKp. )] +| @ H'Ky A)])
PeSw(K) | TPese(K)

= ¥ #(~[AV]ndZ F]+ [IndZ* A'Y)¢
VESeo(Q) B B
Y #(—[IndZ A™]+[Indg" A1)
VESeo(Q)

G

=0,
completing the proof of Theorem 7.1. (I

8. Definition and properties of Bg(k, A)

Throughout this section, we assume that £/ Q is a finite Galois extension of global fields, and that S is a
k/Q-closed set of primes of k (not necessarily nonempty or containing S).

Let p be a prime of the global field k. We let G, = G, (k) and T, = T,(k). Recall that for a G,-module
A of order not divisible by char(k), the unramified cohomology group is defined to be

H,, (ky, A) =im(H' (Gy/ Ty, AT) — H'(ky, A)),
where the map is the inflation map. Then we consider the following homomorphism of cohomology groups:
[T H'(kp, A) x [] H) (ky, A) = [ H' (kp, A) = [ H' (kp, A")Y — H'(k, A")". (8-1)
pes pes p p

The first map is the natural embedding of cohomology groups. The second map is an isomorphism
because of the local Tate duality theorem [Neukirch et al. 2008, Theorems 7.2.6 and 7.2.17]. The last
map is defined by the Pontryagin dual of the product of restriction map H'(k, A") — H' (ky, A") for each
prime p of k. In particular, the restriction of the composition of the last two maps in (8-1) to the restricted

product is the map
[TH (ky, A) - H'(k, A")"
p

used in the long exact sequence of Poitou—Tate [Neukirch et al. 2008, (8.6.10)(i)]. Here the restricted
product ]_[;J H'(ky, A) is the subgroup of [, H Y(ky, A) consisting of all (x,) such that x, € H., (ky, A)
for almost all p.

Definition 8.1. For a global field &, a set S of primes of k, and A € Mod(Gy) of order not divisible by
char(k), we define

Bs(k, A) = coker( [1 H' Gy, A) x [ H) (kp, A) — H'(k, A/)V>,
pes péS

where the map is the composition of maps in (8-1).
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Remark 8.2. (1) When A is a finite G g-module and S is k/ Q-closed, the maps in (8-1) are compatible
with the conjugation action of Gal(k/Q) on cohomology groups, so Bs(k, A) is naturally a Gal(k/Q)-
module.

(2) Using the language of the Selmer groups, Gg(k, A) is the Pontryagin dual of the Selmer group of the
Galois module A’ consisting of elements of H!(k, A’) that have images inside the subgroup

11 x [] ker(H' (ky, A") — H (ky, A)Y) C T] H' (ky, A").
peS  pgs p
under the product of local restriction maps.

Proposition 8.3. If A = [y is the trivial Gy-module with £ # char(k), then Bs(k, Fy) is the Pontryagin
dual of the Kummer group

Vs(k, £) :ker(kx/kxz — TTR /< TT k;/Upk;‘).
pes pgs
Proof. By the class field theory, we have

H'(k, po) ZR/KC H (ko) Sk kE and - H, (ky, Fo)Y Z k) Upk”.
Then the proposition follows directly from Definition 8.1. ([l
The following lemma is a generalization of [Neukirch et al. 2008, Lemma(10.7.4)(i)]

Lemma 8.4. Let k/Q be a finite Galois extension of global fields, T O S be k/Q-closed sets of primes
of k, and A € Mod(Gal(ks/Q)) be of order not divisible by char(k). Then we have the following exact
sequence that is compatible with the conjugation by Gal(k/Q):
H'(Gs(k), A) — H'(Gr(k), A) > @ H'(Ty(k), %P — Bs(k, A) — Br(k, A).
peT\S

Proof. We consider the commutative diagram
'k, A)

- ~

H'(Gs, A) < » H(k, A) ——— H'(Gyy, A)

~

[T H'(kp, A) x [] H} (ky, A) —— [T H' (kp, A) —— @ H' (T, A)%

pes pes P pesS
Hl(k, A" H''(k, A"
Bs(k, A) 12 (k, A”)

The exactnesses of the second row and the third row follow from the Hochschild-Serre spectral sequence,
and last arrow in the third row is surjective because of the fact that anr (Gp, A)=0as Gy/Ty >~ 7 when P
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is nonarchimedean and 1 when p is archimedean. The exact sequence of the first column follows from
the definition of Bg(k, A), and the second column follows from the long exact sequence of Poitou—Tate
[Neukirch et al. 2008, (8.6.10)]. The right vertical map is injective since Gy, is generated by the inertia
groups of primes outside S.

We consider the map H'(k, A) — @p ¢s H! (Tp, A)% in the diagonal of the square diagram on the
right. Since H'(Gys, A) is the kernel of this map and III' (k, A) is contained in this kernel, the top dashed
arrow exists and is injective. Then by diagram chasing, we have an exact sequence

/
'k, A) — H'(Gs, A) — [ H'(ky, A) x [ H),(kp, A) — H'(k, A") — Bs(k, A).  (8-2)
pes Pes
We apply the snake lemma to the diagram

[T H(ky, A) x [T H). (kp, A) — H'(k, A")Y
pes A ‘

[T H'(ky, A) x ] HY. (kp, A) — H'(k, A")Y
peT peT

Y

D HI(E,A)Q"
peT\S

where the horizontal map above is from (8-2), and we obtain the exact sequence

H'(Gs,A)  HYGr, A) 1
i i H' Ty, A)% — Bg(k, A) — Br(k, A).
(k. A) k. A) —>p§T9\S (Tp, A)?* — By(k, A) r(k, A)

Note that the inflation map H (Gs, A) — H' (Gr, A) maps the submodule ' (k, A) to itself, because
I (k, A) is the kernel of H'(G,, A) — I, H'(ky,, A) for x = S, T. Therefore we proved the exact
sequence in the lemma, and it is naturally compatible with the conjugation action by Gal(k/Q). ]

Proposition 8.5. Let k/Q be a finite Galois extension of global fields and S a k/ Q-closed set of primes of
k. Then for any A € Mod(Gal(ks/Q)) of order not divisible by char(k), we have the following inequality
of elements in K,(Gal(k/Q)):

[113(k, A)] < [Bs(k, A)].

Proof. We consider the commutative diagram

H'(Gg, A) — H'(k, A) — H'(ks, A)°s —%— H?*(Gg, A) LN H?(k, A)

|7 L (8-3)

[T H*(ky, A) —— [] H?(ky, A)
pes p
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where the first row is the Hochschild—Serre long exact sequence of 1 — Gy, — Gy — G5 — 1. Because
ima =ker 8 Ckerpo B =kerps= I.[I% (k, A), we have an exact sequence

H'(Gs, A) = H'(k, A) — H'(Gyy, A% — M5k, A) — BTG (k, A)).
Comparing this exact sequence to Lemma 8.4 using 7 = {all primes}, we have

H'(k, A) —— H'(ks, )9S ——— TIi(k, A) — B(IlI%(k, A))

| |

Hl (k, A) — @ Hl (7;% A)gp — Bg(k, A) — B{all primes}(ka A)
pgs
So by the vertical injection above, we have ker 8 < N :=ker(Bg(k, A) — Byai primes} (k, A)). By the
diagram in (8-3), we have B(ker ps) C ker p, which means ﬁ(Hl% (k, A)) C III%(k, A). Also, note that by
Definition 8.1 and the Poitou-Tate duality we have B primes} (k, A) = III' (k, A’)¥ = I11?(k, A). Then
we consider the two short exact sequence

O—>ker,3—>HI (k, A)—>,3(HI (k, A)) = 0,
0—> N — Bs(k, A) — B{aupﬁmes}(k, A) — 0,

Because ker § < N, ,B(H_I2 (k, A)) = Dyan primes} (k, A) and every map respects the conjugation action
by Gal(k/Q), we have the desired inequality [HI (k, A)] < [Bg(k, A)]. [l

Remark 8.6. When A = [ is the trivial module, then Bayi primes} (K, F¢) vanishes [Neukirch et al. 2008,
Proposition 9.1.12(ii)], so there is an embedding Hl_z9 (k, Fy) — Bg(k, Fy). However, for an arbitrary A,
Proposition 8.5 does not give such an embedding.

Lemma 8.7. Let k be a global field and S a set of primes of k containing Soo (k). Then for any
A € Modg(Ggs(k)) of order not divisible by char(k), we have I_Hg(k, A = DBg(k, A)V.

Proof. We consider the commutative diagram

HH (kp, A —— T[] H'(kp, A) x [] H'(Ty, AN
pes pés

]_[H (kp, A)Y —— [T H'(ky, A)Y x [] HL (ky, A)Y
pes pes

where the two vertical arrows are isomorphisms by the Tate local duality theorem and its consequence
that H' (Tp, A Ve = Hnlr (ky, A)Y when A is unramified at p and #tor(A) is prime to the characteristic
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of the residue field of &, (see the proof of [Neukirch et al. 2008, Theorem 7.2.15]). Then by definition,

we have
Bs(k, A)Y =ker(H1(k, A — [ H' (ky, A)Y x [ H (kp, A)V>
pes pes

=ker(H1(k, A — T H' (ky, A) x [] H'(Ty, A’)g").
pes peS

So by applying the snake lemma to the commutative diagram

L (k, Ay — H'(Gs, A") > [1 H' (ky, A")
" pes

A

Bs(k, A)Y —— H'(k, A') —— [] H'(ky, A") x [T H'(T,, A")%
pes pes

v ¥

H'(kg, A)Cs —n 1;[3H1(7;, A%
p

we obtain the desired isomorphism Hlls(k, A" = Bg(k, A)V. [l

Corollary 8.8. For any set S of primes of a global field k and any A € Mod(G 5(k)) of order not divisible
by char(k), we have that Bg(k, A) is finite.

Proof. Define T = SU Soo (k) U Sj4((k). By applying Lemma 8.4, we have

@ H'(Ty, A% — Bs(k, A) — Br(k, A). (8-4)
peT\S

Since A € Modr(G7), by Lemma 8.7 and [Neukirch et al. 2008, Theorem 8.6.4], we have that By (k, A)Y =
HIIT(k, A’) is finite. Also note that H' (ky, A) is finite [Neukirch et al. 2008, Theorem 7.1.8(iv)] and
H! (Tp, A)% isa quotient of H! (kp, A). Thus, the direct product ]_[peT\S H! (Tp, A)9 is finite, and hence
the corollary follows by (8-4). U

9. Determination of §;, g, s(A)

Definition 9.1. Let k/Q be a finite Galois extension of global fields, S a finite k/ Q-closed set of primes
of k, £ # char(k) a prime integer not dividing [k : Q], and A € Mod,(Gal(ks/Q)). We define

St/0.5(A) = dimg, H*(Gs(k), A)S D —dimg, H' (Gs(k), A)FH D),

We will use the notation and assumption in Definition 9.1 throughout this section. When £ € N(S) and
Soc(k) C S, by Theorem 7.1, we have our first case for which ;0 s(A) can be determined.

Proposition 9.2. Assume £ € N(S) and S D Seo (k) is nonempty. Then

St/0.s(A) =Y (dimg, H(Q,, A') —dimg, H*(Q,, A")) — dimg, ASIKs/D),
VESK(Q)
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So in this section, we will consider the cases that are not covered by Proposition 9.2. In Section 9.1,
we will deal with the case that Q is a function field and § = &, and obtain a formula for §;/g,&(A)
(Proposition 9.3). Then in Section 9.2, we will give an upper bound of §;,p s(A) when k is a number
field with Se(k) U Seo (k) ¢ S (Proposition 9.4). In Section 9.2, we will prove Theorem 1.2 by setting
k = Q and applying Propositions 9.2 and 9.4.

9.1. Function field case with S = &.

Proposition 9.3. Assume k and Q are function fields. Let g = g (k) be the genus of the curve corresponding
to k.

(1) If g = O, then Sk/Q’@(A) = — dim[pk AGal(kg/Q)-
(2) If g > 0, then 8,05 (A) = dimg, (A")0kz/D) _ dimg, AT Kke/O),

Proof. When g =0, we have G4 (k) ~7 by [Neukirch et al. 2008, Corollary 10.1.3(i)]. So H*(Gz, A) =0
as 7 has cohomological dimension 1 and H Y(Gy, A= Ag », by [Neukirch et al. 2008, Proposition 1.7.7(i)].
Then we see that

8k/0.0(A) = —dimg, (Ag,) WD = — dimg, (AG,)Ga/ ) = — dimg, AGalks/0),

where the second equality uses £ 1 [k : Q], so we proved (1).
For the rest, we assume g > 0. Let « be the finite field of constants of k and C = Gal(k /) = Z. Then
there exists an exact sequence, for each j,

H/ (Gy(kic), A)C — HI(Gy(kic), A) S22=Ls HI(Gy(kic), A) — HI (Gy(kiK), A)c, 9-1)

where Frob is the Frobenius action on the cohomology groups defined by conjugation. Note that
Gal(kic / Q) acts on cohomology groups in (9-1), and

1 — C = Gal(kic / k) — Gal(kic/ Q) — Gal(k/Q) — 1

is a central group extension because Gal(k/Q) acts trivially on the generator Frob of C. So the map
Frob —1 in (9-1) respects the Gal(kic / Q) actions. It follows that H/ (G (kic), A)¢ and H/ (G (kk), A)¢
are in the same class in K(’)([Fg [Gal(kik/Q)]), and hence they are in the same class in K(’)([Fg [Gal(k/Q))).
Because £ 1 [k : Q] implies F¢[Gal(k/Q)] is semisimple, we have

HY (Gg(kic), A = HY (G (kk), A)c 9-2)
as Gal(k/Q)-modules. Therefore, as C is cyclic,

HY(C, H (G z(kic), A)) ~ H~N(C, H (G z(kic), A)) ~ H' (G »(kic), A)c
~ HY(C, H (G y(kic), A)) (9-3)

as Gal(k/Q)-modules. Then we consider the Hochschild—Serre spectral sequence

EY = H(C, H (G (kR), A)) = H (Gy(k), A).
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As C has cohomological dimension 1, Eéj = 0 for each i > 1, and hence by [Neukirch et al. 2008,
Lemma 2.1.3(ii)] we have the following exact sequence for every j > 1:

H'(C, H ™ (Gy(ki), A)) — H/ (Gz(k), A) - H’(C, H/ (G z(kiK), A)). (9-4)

Note that G (k) has strict cohomological £-dimension 3 by [Neukirch et al. 2008, Corollary 10.1.3(ii)].
Then as £ 1 [k : Q], taking Gal(k/Q)-invariants is exact on (9-4), and by computing the alternating sum
of (9-4) for j =1, 2, 3 and applying (9-3), we have

i (—=1)/ dimg, H' (G (k), A D = _ dimp, H'(C, HY (G (ki), A))Cl*/ Q)
= = —dimg, H(C, H(G »(ki), A))G1*/O)
= —dimy, H(Gal(ky/Q), A).
Also, [Neukirch et al. 2008, Corollary 10.1.3(ii)] shows that G (k) is a Poincaré group of dimension 3 with

dualizing module u, so we have a functorial isomorphism H 3(Gyk), A= HO (G y(k), A)V. Combining
the above computations, we see that

8/0.5(A) = dimg, (H(G 5 (k), A)Y)O4E/ D _ dimg, HO(Gal(ks/ Q). A)
— dimg, H(G o (k), A)YSIE D _ dimg, HO(Gal(ks/Q), A)
= dimg, ( A/)Gal(k;z/ Q) _ dimg, A Gallkg /Q)’

where the second equality is because the Gal(k/Q)-invariants of M and M" have the same dimension
for any M € Mod,(Gal(k/Q)). O

9.2. Number field case with S;U Soc ¢ S.
Proposition 9.4. Assume k and Q are number fields. Let T = S U Sy (k) U Soo (k). Then
80,5 (A) < logy(xk/0,7(A)) + dimg, (A)FE/Q — dimg, ATIE/D 1 5(A),
where €x/0.s(A) = — Y, log, [#All," with
I = {v € S¢(Q) such that Sy(k) ¢ S}.

In particular, when S = @, the equality holds if and only if leg (k, A) and Bg(k, A) are in the same class
of Ky(Fe[Gal(k/ Q).

Remark 9.5. For an arbitrary S, the equality holds if and only if the equalities in (9-5) hold. So when
S # @, if the equality holds then [II12 (k, A)] = [By(k, A)], but the converse is false.

Proof. First of all, by definition of IH?S and Proposition 8.5, we have the following inequalities of elements
in K (F¢[Gal(k/Q)]):

[HX(Gs, )] = [k, A+ | @ H2 Uy, A)| = Bstk, DI+ D Hky, )] ©-5)
pes pes
Hix|lp = q- ordy (x) where q is the cardinality of the residue field of v and ord, is the additive valuation with value group Z.
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By applying Lemma 8.4, we have

[Bs(k, Al —[H'(Gs, A)] = [Brk, A)] - [H'(Gr, A)] + [ @ H'(T,, A)gp]. (9-6)
peT\S
Since T contains S; (k) U S (k), it follows that [Br(k, A)] = [HIZT (k, A)] by Lemma 8.7 and the Poitou—
Tate duality theorem. Also, note that the long exact sequence of Poitou-Tate [Neukirch et al. 2008,
(8.6.10)] induces an exact sequence
12 (k, A) < H*(Gr, A) > @ H*(ky, A) - H(Gr, A")".
peT

Therefore

[Br(k, A)] = [H*(Gr, A1+ [H(Gr, A)V] - [ @ H?(ky, A)]. (9-7)
peT

Combining (9-5), (9-6) and (9-7), we have

[H*(Gs, A)]—[H'(Gs, A)]

< [HX(Gr, M)~ [H'Gr. D+ [HGr, A)1+| D H' T %]~ @ HAky 4],
peT\S peT\S
The dimension of Gal(k/Q)-invariants of the left-hand side above is 6,0 s(A). On the right-hand side,
the dimension of Gal(k/Q)-invariants of [H>(Gt, A)]—[H'(Gr, A)] is

log (xx/0.7(A)) —dimg, H* (G, A)* @ =log,(xx/0.7(A)) — dimg, AGIE/Q)
by the definition of xx,o 7 and the assumption that A is a Gal(ks/Q)-module. Also,
dim[Fe (HO(GT, A/)V)Gal(k/Q) — dim[F[ HO(GT, A/)Gal(k/Q) — dimﬂil (A/)Gal(kT/Q).

So to prove the inequality in the proposition, it suffices to show

)Gal(k/Q)

Gal(k/ Q)
) . 9-8)

—dime, ( @ H(p. A)

ek/Q,s<A>=dimm( @ H' (T, A%
peT\S

peT\S
We first consider v € Soo(Q) such that S, (k) ¢ S. Since 7, (k) = Gy(k), we know that H 1(7;, A9 =
Hl(kp, A) for each p € S, (k). Fori =1, 2, we have
. Gal(k/Q)
(@ H )

peS, (k)

Galy(k/Q) 14i Gal(k i i
— (Indgep 812 HY (ky, ) = H (e, )5 O = H(Q,, A),

where the second equality uses Shapiro’s lemma and the last one follows by the assumption that £ 1 [k : O]

and the same argument for (7-15). Therefore
Gal(k/Q) Gal(k/Q)
) — dim, ( D Hk, A))

dimﬁ( @ H'(T,, A%
peSy (k)

peSy (k) . 1 : 2
=dimg, H (Q,, A) —dimg, H(Q,, A),

which always equals O since Q, is a cyclic group [Neukirch et al. 2008, Proposition 1.7.6].
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Finally, we consider v € S,(Q) such that S,(k) ¢ S. Because G,/7, is procyclic, we have that
H 1(9,J /Tps A) = Ag, ;> and by the same argument from (9-1) to (9-2), we have an isomorphism
HY(Gy/ Ty, A) > A%/Tv = A% that is compatible with the conjugation action by Gal, (k/ Q). So we see that

. Galk/Q) Gal,, (k Gal(k
dime,( @ H'(G/Ty. 4) = dimg, (Indgy' . H' G/ Ty, A)) 79
pesy (k)
' = dimg, H'(Gy/ Ty, A)%*/ @
= dimg, A9, 9-9)
Therefore, we compute
Gal(k/Q) Gal(k/ Q)
dimh( D H1(7;,A)gp) —dim[ﬁ,( D Hz(kp,A))
peSy (k) peSy (k)
Gal(k/Q) Gal(k/ Q)
:dimﬂ.( D Hl(kp,A)) —dimﬁ< D Hz(kp,A)) — dimg, A9(@
peS, (k) peSy (k)

= dimg, H' (ky, A)F®D — dimg, H?(ky, A)F*D — dimg, A9
=dimg, H!(Q,, A) — dimg, H*(Q,, A) — dimy, A9(?
= —log, [[#All,.

The first equality above uses (9-9) and the exact sequence H' (G, /Ty, A) < H'(ky, A) — H'(T,, A)%, the
second uses the Shapiro’s lemma, the third uses the assumption that £ 1 [k : O], and the last uses the Tate’s
local Euler—Poincaré characteristic formula [Neukirch et al. 2008, Theorem 7.3.1]. We have proved (9-8).

When S = &, we have I_HZ@ (k,A)=H Z(Gg, A), so the first inequality in (9-5) is an equality, and
hence we have the last statement in the proposition. (I

Proof of Theorem 1.2. We apply the above results to the case k = Q. Let G = Gg(k). Let A be a finite
simple G-module and ¢ denote the exponent of A. Since He (kyp, A”) is naturally a quotient of H O(kp, A
for each p € Soo(k), we have log, xx/x,7(A) <0 for T = §U Sp(k) U Soo (k). When § D Sp(k) U Seo (k),
applying Proposition 9.2 to the case k = Q, we have ;¢ s(A) < 0. It follows by definition of €/ s(A)
in Proposition 9.4 that €; /¢ s(A) < [k : Q] dimf, A. Also, note that, when S 2 Sy (k) U Soo (k) and A 2% g,
we have dimg, (A)7® — dimg, A9S® < 0. When S 2 Sy (k) U Soo(k) and A = u, (assume o 2 Fy),
we have dimg, (A")¢7® — dimg, A95® = 1 but log, x/k.7(A) < —1. So in both cases, Proposition 9.4
shows that 8;/« s(A) < [k : Q] dimf, A, and hence the theorem follows by Proposition 3.7. U

10. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. We assume that I" is a nontrivial finite group, Q = Q
or [, () with ged(q, |T'|) = 1, and let k/Q be a Galois extension with Gal(k/Q) >~ T". By Theorem 6.4,
Gz (k)¢ is a finite T-group when C is finite, so for a sufficiently large n there is a I'-presentation
F,(T') = Gg(k)¢. In Section 10.1, we construct a finitely generated I'-quotient G of G (k) such
that G¢ ~ G4 (k)¢ as T-groups. With the help of the group G, we employ the cohomology of G4 to
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compute the multiplicities in a pro-C admissible I'-presentation of G (k)C. In Section 10.2, we compute
the multiplicities mgd (n, T, Gz (k)¢, A), and then compute the multiplicities mgd (n, T, vaoo(k)c, A) for
a finite simple Gy (k)¢ x I'-module A. Using these multiplicities, finally in Section 10.3, we show
that the kernel of a pro-C admissible I™-presentation F, (¢ - G g’oo(k)c can be normally generated by
elements {r 'y (r)},cx.yer with X a subset of F,, (") of cardinality n + 1.

Note that in Theorem 1.1, k/Q is assumed to be split completely at co, and the I"-groups in C are of
order prime to |u(Q)|, |I'| and char(Q). However, in the proof, we do not use these assumptions until
Section 10.2. So right now, we only assume that k/Q is a Galois field extension with Gal(k/Q) ~ T and
that C is a finite set of isomorphism classes of finite I-groups of order prime to |I'|.

10.1. Construction of a specific finitely generated quotient of G (k). Because G (k) is finite, when n
is sufficiently large, there exists a [-equivariant surjection & : F,(I") — Gy (k)C, where F,(I") is the
free profinite I'-group defined in Section 3. Then 7 factors through 7€ : F,,(I")¢ — G (k)¢ as defined
in Definition 5.2.

Lemma 10.1. Use the notation above. If A is a finite simple G (k)¢ x T'-module with

m(xC, T, Gz k)¢, A) > 0,
then A x G4(k)€ € C.

Proof. We denote G4 (k)¢ by G for convenience purposes. If m(z¢, T, Gy, A) > 0, then there is a
I'-group extension
1-A—->HZ Gog— 1

such that H is a quotient of Fnc ,and so H € C. We let E be the fiber product H x G, H defined by =, i.e.,
E={(x,y)e Hx H|w(x)=w(y)}. Note that E is a subgroup of H x H, so is in C. There is a natural
diagonal embedding H < E mapping x to (x, x), and a normal subgroup {(a, 1) | a € A} of E that is
isomorphic to A. From this, one can check that the diagonal subgroup H and the normal subgroup A are
disjoint and they generate E, so E >~ A x H where the H action on A factors through @w (H) = Gg. So
by taking the quotient map @ on the subgroup H of E, we obtain that A x G is a quotient of E, and
therefore we proved the lemma. (]

Now we fix a finite simple G5 (k)¢ x I'-module A with m(w€, T, Gz k)¢, A) > 0, and construct the
desired quotient of G (k) for A. We let ¢y denote the quotient map G4 (k) — G =(k)¢, and again let G
denote G4 (k)¢. We define G to be the quotient of G (k) satisfying the following I'-group extension:

1 — AM@o.IGo, A) _ G 2% Gy — 1. (10-1)

By definition of the multiplicities, G is well-defined. Since G is a quotient of G (k), we have that G(f
is exactly Go. Then we claim that the extension (10-1) is “completely nonsplit” (that is, if a subgroup of
G maps surjectively onto G, then it has to be G itself). Indeed, if it’s not completely nonsplit, then G
has a I*-quotient isomorphic to A x Gy, and hence by Lemma 10.1 we have A x G € C, which contradicts
that G§ = Gy.
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Similarly, we define G,, G3, ... to be the I'-quotients of G4 (k) inductively via
1 — Am@RGL A G P Gy

where the map ¢; is the quotient map G (k) — G;. Using the argument in the previous paragraph, we
see that each of these group extensions is completely nonsplit, and Gl.c = Gy for each i. Then we take the
inverse limit

G :=1limG;.

—

4
Then the profinite group G is the maximal extension of Gy in G4(k) that can be obtained via group
extensions by A.

Lemma 10.2. (1) A subset of G is a generator set if and only if its image in Go generates G.
(2) The map 7 : F,,(I') — G defined at the beginning of this subsection factors through G.
(3) Let ¢ be the natural quotient map G (k) — G defined by inverse limit of ;. Then

Homg . ((ker 9)??, A) = 0.

Proof. The group extension @; : G;+1 — G; is completely nonsplit, so any lift of a generator set of G; is

a generator set of G;11. So we have (1) by taking inverse limit, and then (2) follows.
Note that G acts on the abelianization (ker ¢)?” of ker ¢ by conjugation. Suppose that
Homgr ((ker 9)®*, A) #0.
Then it means that ¢ factors through a I'-equivariant group extension H of G by a kernel A. However, G
does not have such a group extension in G z(k) by definition. So we proved (3). (I

10.2. Determination of the multiplicity of A. We continue to use notation and assumptions given previ-
ously in this section. In particular, we remind the reader that A is a fixed finite simple G4 (k)¢ x I'-module
where I' >~ Gal(k/Q), and G depends on A. The goal of this subsection is to compute the multiplicity
of A in an admissible I'-presentation of G o (k)¢. The I-group G plays a very important role in this
computation.

Lemma 10.3. Let ¢ be the exponent of A and assume that £ #~ char(Q) is prime to |I'|. Then
dimg, H*(G, A" —dimg, H' (G, A)' < 81/0.5(A).
Proof. We consider the I'-equivariant short exact sequence
1> M- Gglk) % G— 1.
By the Hochschild—Serre exact sequence, we have
0—> H' (G, A) > H' (Gz(k), A) > H' (M, A)° - H*(G, A) > H*(Gz(k), A), (10-2)

which is compatible with the conjugation action by I". Since M acts trivially on A, we see that
H'(M, AT = Homg,r(M*, A) =0 by Lemma 10.2(3). So by taking the I'-invariants on (10-2) and
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computing the dimensions, we have that
dimg, H*(G, A)' —dimg, H'(G, A" <dimg, H*(Gy(k), A" —dimg, H' (G5 (k), A)' =81/0.5(A). O

Starting from now, we assume that C is a finite set of isomorphism classes of finite I™-groups all
of whose orders are prime to |I'|, char Q and |1 (Q)|. Let & denote the I-equivariant surjective map
F,(I') = G used in Lemma 10.2(2). Then the pro-C completion of 7 is 7€ Ff - Gg(k)C. If 0 =0Q,
then G4 (k)€ is exactly G@,oo(k)c. If Q is a function field, then kg /k is not split completely at primes
over oo. Instead, G4 (k) is the I'-quotient of G (k) obtained via modulo the decomposition subgroup
Galy (ks / k) of one prime p of k above oo (because I' acts transitively on all the primes of k above 00).
Since this decomposition subgroup Galy (kg / k) is isomorphic to Zand G is a quotient of G4 (k), we
can define g, to be an element of G that is the image of one generator of Galy, (kg /k). In other words,
denoting G* the quotient of G by the I'-closed normal subgroup generated by g,, we have the diagram

w

~

%G T__ % G*

Fn . /lgn]
L \ C l (10-3)

F.¢ —% Go(h)® —— Gy (k)C

o€

where the vertical maps are taking pro-C completions. To make the notation consistent between the
number field and the function field cases, when Q = @, we let g, = 1, and hence 7 and ¢ in (10-3) are
both identity maps. First of all, we want to determine m (7, I', G, A).

Proposition 10.4. Ler ¢ be the exponent of A. Assume £ % char(Q) is relatively prime to | (Q)||T].

If O =Q, th . .
ro e (n+ 1) dimg, A — dimg, AT

thF(A)

m(w,T, G, A) <
If Q =F,(t) and A # ju¢, then

~ n dimg, A — dimg, AT
m(”? F! G’ A) S -

hGxr(A)
Remark 10.5. Recall that in Theorem 1.1 we assume that k/ Q is split completely at co. In the function

field case, u is a Gal(kz/ Q)-module but not a Gal(kz oo/ Q)-module, so we exclude the case that A = ;.
Proof. By the assumptions, we can apply Proposition 3.4 to compute the multiplicities. Because £ 1 ||,
we have for i = 1,2 that H'(G x T, A) = H (G, A)'". Then by Lemma 10.3, we have
ndimg, A —£(A) +8¢/0,0(A)

hGxr(A) '

m@, T, G, A) < (10-4)

So we just need to compute &/ o (A).

In the function field case, recall that A is a simple F,[Gal(kz/Q)]-module that is not wg, so by
Proposition 9.3 we see that §;/0,»(A) is —1 if A =F,, and is O otherwise. So we proved the result in
function field case.
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In the number field case that Q = @, we need to compute each of the terms in the formula in
Proposition 9.4. Let T = Sy(k) U Soo (k). In this case, £ is odd as uy C Q. First, we apply Theorem 7.1

10g, xk/0.7(A) = — dimg, H*(Qoo, A') = — dimg, (A")FIE/R),

where the first equality uses o 9(@u, A") =0 because #G,(Q) = 2 and [Neukirch et al. 2008, Proposi-
tion 1.6.2(a)]. Then because A is a simple F;[Gal(kz/Q)]-module, Gal(C/R) acts trivially on A, and
hence (A/)Gal(C/R) = Homggc/r) (A, ne) =0. So we have log, xx/0,7(A) =0. Then note that ;9,5 (A)
in the formula in Proposition 9.4 is dimf, A in this case, and we obtain

8t/0.0(A) < dimg, Homga,/0)(A, 1) — dimg, A%/ 4 dimg, A,
where the right-hand side is 0 if A = [, and is dimg, A otherwise. So we proved the number field case. [

Lemma 10.6. Use the assumptions in Proposition 10.4. Consider the function field case and the dia-
gram (10-3). When n is sufficiently large, we have
(n+ 1) dimg, A — dimg, AT

hgtyr(A)

Proof. Again, we use x, ..., x, to denote the generators of F,,. We can make n large to assume 7 (x,,) = g,

m(@,T,G* A) <

(recall that the multiplicity depends on 7 but not on the choice of @' ). Then we have a commutative diagram

where the top map is defined by taking the quotient by the I'-closed normal subgroup generated by x,,.
Note that the composition of the top and the right arrows satisfies the conditions of Lemma 3.8, so we have

m(w, T, G*, A) =m(, T, F,_1, A) +m(¢, T, G*, A).

By the statement and the computation of H (F,, x I, A) in the proof of Lemma 3.2, we see that

dim[pl A
m, I, Fpy, A) = ————.
hg#ur(A)
So by Proposition 10.4, it suffices to prove
m(@.T.G*, A) <m@.T. G, A), (10-5)

which will immediately follow after we prove the embedding

{U | max. proper F,,_; x I'-normal subgroup of ker ¢ such that ker¢p/U ~g# 1 A}

<> {V | max. proper F, x I'-normal subgroup of ker 7 such that ker7/V ~g.r A}

mapping U to A~ (U) Nker 7.
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Since ker @ = ker 7 ker A, for each U in the first set, we have
ker7/(A"HU) Nker®) = A~ 1(U) ker 7 /A7 (U) =kerw /A1 (U) ~geur A,
so the map « is well-defined. Also, if V =« (U), then
kerw /V ker A = (ker)(V ker A)/V ker . = ker 7w /(ker T N (V ker A)). (10-6)

Since V C ker7 and ker7/V is a simple module, the last quotient is either 1 or isomorphic to A. On
the other hand, both of V and ker A are contained in A~'(U), so is V ker A. Then (10-6) implies that
Vkerr = A~ (U). So we see that if « (U;) =k (Uz) = V, then A~ (U;) = A~ (U,) and hence U; = Us.
So we conclude that « is injective. U

Proposition 10.7. Let C be a finite set of isomorphism classes of finite I'-groups all of whose orders
are prime to | (Q)||I'| and char(Q) (if nonzero). Let A be a finite simple Gg,oo(k)c x ['-module of
exponent £ # char(k) relatively prime to |t (Q)||T'|. When n is sufficiently large, there exists an admissible
[-presentation F,(I") — G@,oo(k)c, and
(n + 1)(dimg, A — dimg, A")

"Gy o kycur (A)

mS(n, T, Gg.oo(k)C, A) < ma(n, T, G*, A) <

Remark 10.8. The proposition shows that mgd (n,T,G g’oo(k)c, F¢) = 0. In other words, G g’oo(k)c does
not admit any nonsplit central group extension

1—>[Fg—>(~}>4F—>Gg,oo(k)C>qF—>l,

such that G is of level C. This is equivalent to the solvability (i.e., the existence of the dashed arrow) of

the embedding problem
Gg.ook)¢ xT
LK
1 > Fe > HX] —— HxI — 1

for any nonsplit central group extension in the lower row with H of level C, and for any surjection «. In
[Liu et al. 2024], this solvability is called the Property E of Gz (k) and is proven using the classical
techniques of embedding problems. So Proposition 10.7 provides a new proof of the Property E by
counting multiplicities.

Proof. By [Liu et al. 2024, Proposition 2.2], the pro-prime-to-(|I"| char Q) completion of G4 (k) is an
admissible I'-group, so its I'-quotient G* is also admissible. Since Gg’oo(k)c is finite, when n is large,
there exist elements aq, ..., a, of G@,oo(k)c such that {Y (a;)}7_, forms a generator sets of Gg,oo(k)c.
Note that G @,oo(k)c is a quotient of G* as described in (10-3). We choose a preimage b; € G* of a; for
each i, and then {Y (b;)}}_, generates G* by Lemma 10.2(1). Recall that the multiplicity does not depend
on the choice of presentation, so we assume @ in (10-3) maps y; € F, to b; € G* foreachi=1,...,n.
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Then the restriction @ |7, is an admissible I-presentation of G*. We have by Corollary 4.5 that

4 4 ndimg, AT
mad(n’ F? G ’ A) = m(l’l, 1_‘7 G ’ A) T AN
hg#ur(A)
Then the desired result follows by Propositions 5.4, 10.4 and Lemma 10.6. O

10.3. Existence of the presentation (1-1). Finally, we will prove that when 7 is sufficiently large, there
exists a subset X of F containing n + 1 elements for which the following isomorphism, which is (1-1)
in Theorem 1.1, holds:

G.00(K)¢ = Fu(M/Ir 'y (N]rex.yer-

In Proposition 10.7, we showed that when # is sufficiently large, there is an admissible I'-presentation,

denoted by c
1> N— 7S 29 Gy oo (k) — 1.
Let M be the intersection of all maximal proper F< x I'-normal subgroups of N, and define R = N/M
and F = ]—f /M. Note that because C is finite, we have that ]-',f is finite [Neumann 1967, Corollary 15.72].
Then R is a finite direct product ]_[f.:l A" of finite irreducible F x I'-groups A;. Assume A; and A;
are not isomorphic as F x I'-groups if i # j. When a factor A; is abelian, its multiplicity m; is
mgd(n, I, G@’oo(k)c, A;) computed in Proposition 10.7.

Let X be a subset of ]-',‘f Then the closed ]:,f x I'-normal subgroup generated by {r 'y (r)},¢ X,yel
is N if and only if the closed F » ['-normal subgroup generated by {f‘ly(f)}fey’y or 18 R, where X
and 7 are the images of X and r in R respectively. Recall the properties of F,, listed at the beginning
of Section 4. Because of the property (1), in the definition of Y in (3), we can take the generator set
{y1, ..., va} to be the whole group I', then

r 'y Mhrexyer =Y({rkrex) and 7'y (Mlicxer = Y (Flrex)-

By [Liu et al. 2024, Proposition 4.3], for a fixed integer u, the probability that the images under the map Y
of n + u random elements of R generate R as an F x I"-normal subgroup is

Prob([Y ({r1, ..., rnrul)IFur = R)

mi—1 )
= I Il A=hrar(A)IYADIT""  TT A=Y AH[T"TH™.
I<i<t j=0 1<i<t
A; abelian A; nonabelian

This product in the formula is a finite product. By [Liu et al. 2024, Lemma 3.5], we have |Y (A;)| =
A/ |Al.F | for each i. Note that Lemma 4.6 shows that |Y (A;)| > 1 when A; is nonabelian, so the product
over nonabelian factors in the above formula is always positive. The term for an abelian factor A; is

ositive if and only if ) .
p y _ (ntwlog, [Y(A)| _ (n+w)(dimg, A; —dimg, AD)

m; =

hGyotenr(AD) "Gy o )¢ 61 (A7)
Therefore, by Proposition 10.7, R can be F' x ['-normally generated by the Y-values of n 4 1 elements,
and hence we finish the proof of Theorem 1.1.
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11. Exceptional cases

We will discuss the cases that are not covered by the Liu—Wood—Zureick-Brown conjecture, using the
techniques developed in this paper. In this section, the base field O can be any global field. If Q is a
number field, we denote by r; and r, the number of real and pairs of complex embeddings of Q.
Again, we let I' be a nontrivial finite group and k/Q a Galois extension of global fields with
Gal(k/Q) ~ I, such that char(Q) and |I"| are relatively prime. We assume that £ is a prime integer that
is not char(Q) and is prime to |I'|. Recall that G4(k)(£) denotes the pro-£ completion of G4(k). So
Gz (k)(€) is the Galois group of the maximal unramified pro-£ extension of k, which we will denote
by kz(£)/k. Note that G4 (k)(£) is finitely generated, because dimy, H (kg, Fy) is the minimal number
of generators of G4 (k)(£) and is finite. So when n is sufficiently large, there is a I'-presentation
7 F)(I') = Gg(k)(£). Moreover, we assume, throughout this section, that the £-primary part of the class
group of Q is trivial. Then G4 (k) (£) is admissible by the proof of [Liu et al. 2024, Proposition 2.2],
and hence we can assume that the presentation 7 induces an admissible presentation, i.e., 7% := 7| x,
is surjective.
dj

In this section, we use the assumptions above and study the multiplicities from the presentation 72¢ in

the following two cases:

(1) When Q is a number field with py, ¢ O, and k/Q is not required to be split completely at Soo (Q)
(see Section 11.1).

(2) When Q contains the ¢-roots of unity w, (see Section 11.2).

We will compare the multiplicities in these two cases with the multiplicities from Theorem 1.1, to see
why the random group model used in the Liu—Wood-Zureick-Brown conjecture cannot be applied to
these two exceptional cases.

We point out that we study only G (k)(£) instead of G4 (k)€ for a general C, simply because we
want to keep the computation easy in this section and there is no previous work discussing these two
exceptional cases beyond the distribution of £-class tower groups. One can generalize the argument in
this section to any finite set C.

11.1. Other signatures. Assume Q is a number field with g ¢ O (so £ is odd), and k is a I™-extension
of Q. For each v € S.(Q), we set [, to be the decomposition subgroup at v of the extension k/ Q.

Lemma 11.1. For a finite simple F,[Gal(kg(£)/ Q)]-module A, we have

ri+rn-—1 if A=Fy,

maa(n, T, Gg(k)(£), A) < n+r+1 if A=y,
ad o (), 4) = (n+ri+r)dimg, A=Y, g o dimg, A/ATY —(n+1) dime, AT _
otherwise.

hGaikg )/ 0)(A)
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Proof. Let T be So(k) U S¢(k). Since ¢ is odd, ﬁO(Qv, A") = 0 for any v € S, (Q), and hence by
applying Theorem 7.1 with S = T we have

loge(xiso.r(A) =— 3 dimg, H(Qy, A")
V€S (Q)
=— Y dimj, A— Y dimg, A/A™.
veSc(Q) veSR(Q)

The last equality is because:
(1) If v € Sc(Q), then G, (Q) = 1 acts trivially on both u, and A.

(2) If v € Sg(Q), then G,(Q) =~ Z/27Z acts on u, as taking inverse. Since the action of G,(Q)
on A factors through I'y, and I', acts on A/AF" as taking inverse, we have dimg,(A’ Y9 (@) =
dimg, Homg, (0)(A, 1¢) = dimg, Homg, () (A/A", 1g) = dimg, A/A">.

By Proposition 9.4, we have

€/0,0(A)—r2—1 if A=F,,

d/0,s(A) < €/0,5(A) —ro—ri+1 if A= pu,

€/0.5(A) —rpdimp, A=Y ¢ o dimp, A/A™  otherwise,
where A can be i, only if 1y C k. Note that by definition, €,/ »(A) is equal to [Q : @] dimf, A. So the
desired result follows by Proposition 3.4, Corollary 4.5, and Proposition 5.4. ([l

Corollary 11.2. Let k/Q be an imaginary quadratic field such that k # Q(«/—3), and y denote the
nontrivial element of I" = Gal(k/Q) ~ Z/2Z. For an odd prime £, we have the following isomorphism
of T-groups: '

Ga(k)(0) = Fo (D)D) /Ir vy (r)lrex (11-1)

for a sufficiently large positive integer n and some set X consisting of n elements of F,(I")(£).

Remark 11.3. If we choose the n elements of set X randomly with respect to the Haar measure, then
the quotient in (11-1) gives a random group that defines a probability measure on all n-generated pro-£
admissible I'-groups. By taking n — o0, there is a limit probability measure, which can be computed
using formulas in [Liu et al. 2024]. The discussion in [Liu et al. 2024, §7.2 and Theorem 7.5] shows
that this limit probability measure agrees with the probability measure used in the Boston—-Bush—Hajir
heuristics [Boston et al. 2017].

Proof. When Q = Q and k is imaginary quadratic, we have rj =1, r; =0, and ', =I". Let A be a finite
simple F,;[Gal(kg(£)/Q)]-module. Also, u, ¢ k for any odd £ because k # Q(/-3),50 A # 1e. By
Lemma 11.1 , when 7 is sufficiently large, we have:
0 if A="F,,
maa(n, I', Gz (k)(£), A) < | n(dimg, A—dimg, A")
hGag /@) A

Note that I' >~ Z /27 implies that the normal subgroup of F,,(I")(£) x I' generated by Y (X) is exactly
[r—! y (r)]rex. Thus, the corollary follows by [Liu et al. 2024, Proposition 4.3]. U

otherwise.
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11.2. When Q contains the {-th roots of unity. In this subsection, we assume w, C Q. In this case, p¢
becomes the trivial Gal(kg/Q)-module F,, which makes the multiplicities in a presentation of G g (k)(£)
significantly different from the previous cases.

Lemma 11.4. Assume p, C Q. For a finite simple F;[Gal(kx(£)/Q)]-module A, we have

(1) If Q is a function field and the genus of k is not 0, then 8,9 z(A) = 0.
(2) If Q is a number field, then 8/, (A) < (r1 +rp) dimg, A.

Proof. Because of the assumption uy C Q, we have
dimg, (A")9*e/Q) = dimg, (AY)91%*2/D = dimg, Aga, o) = dimg, ASI*e/D), (11-2)

Then the first statement follows directly by Proposition 9.3(2). For the rest we assume that Q is a number
field and let T = S;(k) U So(k). If £ is odd, then the assumption u, C Q implies that Q is totally
imaginary. Then we can easily see by Theorem 7.1 that log, x«,0,7(A) = —r; dimg, A, and hence the
statement for odd £ follows by Proposition 9.4 and (11-2). If £ =2, then we first want to compute, for
each v € S (Q),

dimg, H°(Qy, A') —dimg, H(Q,, A"). (11-3)

For each v € Sc(Q), we have G,(Q) = 1, and hence (11-3) becomes — dimy, A. For each v € Sg(Q),
the assumption £ { |T"| implies that |T'| is odd. So for each p € S,(k), p is real, and so is any prime
of kg (£) lying above p. Thus, G, (k) acts trivially on A, so it also acts trivially on A’, which implies that
H° (ky, AY=H O(kp, A’). Then (11-3) equals 0, and we obtain the statement for £ = 2 by Proposition 9.4
and (11-2). (Il

Then by the same arguments in Section 10, we obtain the following bounds for the multiplicity of A.

Corollary 11.5. Assume py C Q. When k is a function field, we assume that Q = F,(t) for some prime
power q such that £ | g — 1 and k/ Q is split completely at co. Let A be a finite simple F¢[Gal(kz(£)/Q)]-
module. Then for a sufficiently large n, we have
(n+1) dimg, A—&(A)—n dimg, A"
hG g o k) (0)xT (A)
(n+ri+ry) dimg, A—&(A)—n dimg, A"
"Gy 0 k) (0)xT (A)

if Q is a function field,

Mmad(n, I, Gz 00 (k) (£), A) <
if Q is a number field.

Remark 11.6. (1) Readers can compare the corollary with Proposition 10.7. When A = F, and Q
is Q(¢,) or F,(¢) with £ | g — 1, one can check that the upper bound of the multiplicity is positive, which
suggests the failure of the Property E of G (k). Therefore, the random group model used in the
Liu—Wood-Zureick-Brown conjecture is not expected to work in this exceptional case.

(2) If the upper bounds in Corollary 11.5 are sharp, then it also suggests that we should not expect the
coincidence of the distributions of G4 ~ (k)(£) between the function field case and the number field case.
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For example, when Q = Q, £ =2 or Q = Q(¢3), £ = 3, the upper bound in the corollary equals the one
for function fields. However, when Q = Q(¢,) with £ > 3, the upper bound is

(n+ (£ —1)/2) dimy, A — £(A) — n dimg, AT
hG o o k) @)x1 (A)

’

which is strictly larger than the upper bound for function fields.
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