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Motivated by the work of Lubotzky, we use Galois cohomology to study the difference between the

number of generators and the minimal number of relations in a presentation of GS(k), the Galois group of

the maximal extension of a global field k that is unramified outside a finite set S of places, as k varies

among a certain family of extensions of a fixed global field Q. We define a group BS(k, A), for each

finite simple GS(k)-module A, to generalize the work of Koch and Shafarevich on the pro-ℓ completion

of GS(k). We prove that GS(k) always admits a balanced presentation when it is finitely generated. In the

setting of the nonabelian Cohen–Lenstra heuristics, we prove that the unramified Galois groups studied

by the Liu–Wood–Zureick-Brown conjecture always admit a balanced presentation in the form of the

random group in the conjecture.

1. Introduction

For a global field k and a set S of primes of k, we denote by GS(k) the Galois group of the maximal

extension of k that is unramified outside S. Determining whether G∅(k) is finitely generated and

finitely presented is a long-existing open question. It is well known by class field theory that the

abelianization of G∅(k) is finitely presented and, in particular, is finite when k is a number field. Golod

and Shafarevich [1964] constructed the first infinite ℓ-class tower group of a number field, where the

ℓ-class tower group of k is the pro-ℓ completion of G∅(k) for a prime number ℓ. The minimal numbers

of generators and relations, which are called the generator rank and relator rank, in presentations of a

pro-ℓ group is determined by its group cohomology with coefficient Fℓ. Using this idea, Koch [2002]

employed Galois cohomology to give an exact formula for the generator rank and estimate the relator

rank of the pro-ℓ completion of GS(k) when S is finite and ℓ ̸= char(k); and in particular, in such cases,

the pro-ℓ completion of GS(k) is always finitely presented.

Recently the development on the nonabelian Cohen–Lenstra program pushes us to study canonical

quotients of G∅(k) beyond the pro-ℓ completion. Let 0 be a finite group, Q the global field Q or Fq(t),

and µ(Q) the group of roots of unity of Q. For a Galois extension k/Q with Gal(k/Q) ≃ 0, define

k# to be the maximal unramified extension of k, that is split completely at places of k over∞ and of

order relatively prime to |µ(Q)||0| and char(Q) (if nonzero). Wood, Zureick-Brown and the author

[Liu et al. 2024] constructed random group models to make conjectures on the distributions for some
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families of canonical quotients Gal(k#/k) of G∅(k) as k varies among all 0-extensions of Q split

completely at ∞. Because Gal(k#/k) has (supernatural) order prime to |0|, a homomorphic split of

Gal(k#/Q) ↠ Gal(k/Q) defines by conjugation a continuous 0 action on Gal(k#/k); and this action is

admissible (see Definition 4.1). The set of all isomorphism classes of all admissible profinite 0-groups is

closed under taking 0-equivariant quotients, and we can construct the free admissible profinite 0-group

Fn(0) on n generators (see Section 4 for its definition). For a profinite 0-group G and a finite set C of

isomorphism classes of finite 0-groups, let GC denote the pro-C completion of G with respect to C (the

definition of pro-C completions is given in Section 5 and it is different from the one that is commonly

used). The work [Liu et al. 2024] uses quotients of Fn(0) as n→∞ to construct a random group model;

this model together with the conjectures implies a surprising phenomenon of the structure of Gal(k#/k)

that was not known before: for any finite set C of finite 0-groups, the following occur with probability 1.

(1) The pro-C completion Gal(k#/k)C is a finite group.

(2) There exists a finite integer n0 depending on C, 0 and k, such that for every n g n0, Gal(k#/k)C

can be presented as the quotient of Fn(0)C by [r−1µ (r)]r∈X, µ∈0 for some subset X of Fn(0)C of

cardinality n + 1. Here, the symbol [r−1µ (r)]r∈X, µ∈0 denotes the 0-closed normal subgroup of

Fn(0)C generated by r−1µ (r) for all r ∈ X and µ ∈ 0.

The statement in (2) implies that the deficiency (i.e., the difference between the minimal number of gener-

ators and the minimal number of relations) of Gal(k#/k)C has an upper bound depending only on the order

of 0. In this paper, we prove that both (1) and (2) hold for all 0-extensions k/Q split completely above∞,

which strongly supports that the random group model in [Liu et al. 2024] is the right object to study.

Theorem 1.1. Let 0 be a nontrivial finite group and Q be either Q or Fq(t) with q relatively prime to |0|.
Let C be a finite set of isomorphism classes of finite 0-groups all of whose orders are prime to |µ(Q)||0|
and char(Q) (if nonzero). Then for a Galois extension k/Q with Galois group 0 that is split completely

over∞, we have the following isomorphism of 0-groups (0 acts on the left-hand side via 0 ≃Gal(k/Q)):

Gal(k#/k)C ≃ Fn(0)C/[r−1µ (r)]r∈X,µ∈0 (1-1)

for some positive integer n and some set X consisting of n+ 1 elements of Fn(0)C .

Let G∅,∞(k) denote the Galois group of the maximal unramified extension of k that is completely split at

every place above∞, and note that with the assumptions in Theorem 1.1 one has Gal(k#/k)C =G∅,∞(k)C.

The method we develop in this paper in fact works for GS(k)C for any finite set S of primes of k and any

global base field Q, so it can be used to study the presentation of Galois groups with restricted ramification.

In the case that k is a function field and 0 = 1 (so k = Q), building on the theorem of Lubotzky [2001],

Shusterman [2022] showed that G∅(k) admits a finite presentation in which the number of relations is

exactly the same as the number of generators (such a presentation is called a balanced presentation). Note

that, in [Shusterman 2022], the fact that G∅(k) is finitely generated follows by Grothendieck’s result on

the geometric fundamental group of a smooth projective curve defined over a finite field, but when k is
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a number field, whether G∅(k) is finitely generated or not is unknown. We prove an analogous result

regarding the number field case.

Theorem 1.2. Let k be a number field and S a finite set of places of k. If GS(k) is topologically generated

by n elements, then it admits a finite presentation on n generators and [k :Q] + n relations.

We also apply our methods to the situations that are not considered in Theorem 1.1. We study the

presentation of the pro-ℓ completion of G∅,∞(k) for a Galois 0-extension k/Q in two exceptional cases:

(i) Q is a number field not containing the ℓ-th roots of unity and we do not make any assumptions on

the ramification of∞ in k (Section 11.1).

(ii) Q is a global field containing the ℓ-th roots of unity (Section 11.2).

When considering the ℓ-parts of class groups, it has been known for a long time that the Cohen–Lenstra

heuristics need to be corrected in these two cases (see [Cohen and Martinet 1987; Malle 2010]). In each

of these two cases, we use our method to compute an upper bound for the deficiency of G∅,∞(k) at the

pro-ℓ level, and then show why the Liu–Wood–Zureick-Brown conjecture doesn’t work in these two

exceptional cases. This computation of deficiencies also provides insights of how the random group

model should be modified in these two cases.

1.1. Method of the proof. The bulk of this paper is devoted to establishing the techniques for proving

Theorem 1.1. Motivated by [Lubotzky 2001], we first translate the question to understanding the Galois

cohomology groups. In Section 3, we construct the free profinite 0-group Fn(0) on n generators, and,

for a finitely generated profinite 0-group G, we study the minimal number of relations of a presentation

defined by a 0-equivariant surjection Ã : Fn(0)↠G. The minimal number of relations is closely related to

the multiplicities of the finite irreducible Gì0-modules appearing as quotients of ker(Ã) (Definition 3.1).

In Lemma 3.2, we show that for a finite simple Fℓ[G ì0]-module A with ℓ ∤ |0|, the multiplicity of A

can be computed by a formula involving dimFℓ
H 2(G ì0, A)− dimFℓ

H 1(G ì0, A). So when restricted

to the category of profinite 0-groups whose order is prime to |0|, by using these multiplicities, we obtain

formulas for the minimal number of relations of the presentation F ′n(0) ↠ G ′, where F ′n(0) and G ′

are the maximal pro-prime-to-|0| quotients of Fn(0) and G respectively (Propositions 3.4 and 3.7). In

particular, the formulas provide an upper bound for the minimal number of relations of this presentation

using dimFℓ
H 2(G, A)0 − dimFℓ

H 1(G, A)0, where 0 acts on the cohomology groups by conjugation.

These upper bound formulas set up the strategy of the proof of Theorem 1.1. Building upon it, we

explore the multiplicities of admissible presentations Fn(0) ↠ G in Section 4 and the multiplicities of

pro-C presentations in Section 5, where we obtain formulas that will be directly applied to the proof of

Theorem 1.1. Then in Section 6, we define the height of a group and show in Proposition 6.3 that there is

an upper bound for the heights of pro-C groups (not necessarily finitely generated) when C is a finite set.

Then Theorem 6.4 proves the finiteness of GS(k)C when S is a finite set of primes of k and C is a finite

set of finite groups, which confirms the phenomenon (1).
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Therefore, in order to prove Theorem 1.1, we need to deal with the Galois cohomology groups. In a

more general setting, assuming that Q is an arbitrary global field, that k/Q is a Galois extension with

Gal(k/Q)≃ 0, and that S is a finite set of primes of k, we want to understand

¶k/Q,S(A) := dimFℓ
H 2(GS(k), A)0 − dimFℓ

H 1(GS(k), A)0 (1-2)

for all prime integers ℓ relatively prime to |0| and char(Q), and all finite simple Fℓ[Gal(kS/Q)]-modules A.

In (1-2), the set S needs to be k/Q-closed to ensure that kS/Q is Galois (see the definition of the

k/Q-closed sets in Section 2), and the 0 action on the cohomology groups is defined via the conjugation

by Gal(k/Q). In Section 7, we prove a generalized version of the global Euler–Poincaré characteristic

formula (Theorem 7.1), from which we can compute ¶k/Q,S when S is nonempty and contains the primes

above∞ and ℓ if Q is a number field. The proof basically follows the original proof of the global Euler–

Poincaré characteristic formula, but taking the 0 actions into account creates many technical difficulties.

In the work of Koch, when dealing with the case that A= Fℓ and S does not satisfy the assumptions in

Theorem 7.1, the abelian group BS(k) plays an important role in the computation of dimFℓ
H i (GS(k), Fℓ)

for i = 1, 2, and is defined to be the Pontryagin dual of the Kummer group

VS(k)= ker
(

k×/k×ℓ→
∏
p∈S

k×p /k×ℓ
p ×

∏
p ̸∈S

k×p /Upk×ℓ
p

)
,

where kp is the completion of k at p and Up is the group of units of kp. In Definition 8.1, we define a

group BS(k, A) in a cohomological way as

coker
( ∏
p∈S

H 1(kp, A)×
∏
p ̸∈S

H 1
nr (kp, A)→ H 1(k, A′)(

)
,

in order to generalize Koch’s work to compute ¶k/Q,S(A) by replacing the trivial module Fℓ with an

arbitrary finite simple module A. The definition of BS(k, A) agrees with that of BS(k) when A = Fℓ

(Proposition 8.3). However, Koch’s argument does not directly apply to BS(k, A), because it uses the

Hasse principle for Fℓ but the Hasse principle for arbitrary global fields and arbitrary Galois modules has

not been proven (the Hasse principle holds for k and A if the Shafarevich group X
1(k, A) is trivial). In

Section 8, we modify Koch’s work to overcome this obstacle, and show that most properties of BS(k)

also hold for BS(k, A). In particular, one example, clearly showing that the failure of the Hasse principle

makes a difference, is that there is a natural embedding X
2
S(k, A) ↪→ BS(k, A) for A = Fℓ but not for

arbitrary A (Proposition 8.5 and Remark 8.6). In Section 9, we explicitly compute ¶k/Q,S(A) for all S by

applying the results from Sections 7 and 8, and then we prove Theorem 1.2. In Section 10, we give the

proof of Theorem 1.1. Finally, in Section 11, we apply our methods to the exceptional cases (i) and (ii)

of Theorem 1.1. The proof of Theorem 1.1 uses results from Section 3 to Section 9; and the proof of

Theorem 1.2 uses results from Sections 3, 7, 8, and 9.

1.2. Previous works. For an odd prime ℓ, the Cohen–Lenstra heuristics [1984] give predictions of the

distribution of ℓ-primary parts of the class groups Cl(k) as k varies over quadratic number fields. Friedman

and Washington [1989] formulated an analogous conjecture for global function fields. The probability
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measure used for the conjectural distributions in the Cohen–Lenstra heuristics matches the one defined by

the random abelian group

lim
n→∞

Z
·n
ℓ /(n+ u random relations), (1-3)

where the random relations are taken with respect to the Haar measure, and u is chosen to be 0 and 1

respectively when k varies among imaginary quadratic fields and real quadratic fields. Ellenberg and

Venkatesh [2010] theoretically explained the random group model (1-3) and the value of u, by view-

ing Cl(k) as the cokernel of the map sending the S-units of k to the group of fractional ideals of k generated

by S with S running along an ascending sequence of finite sets of primes of k. Boston, Bush and Hajir

[Boston et al. 2017; 2021] extended the Cohen–Lenstra heuristics to a nonabelian setting considering the

distribution of ℓ-class tower groups (for odd ℓ). In their work, the probability measure in the heuristics

is defined by a random pro-ℓ group generalizing (1-3), and the value of u (which is the deficiency in

this setting) is obtained by applying Koch’s argument. Notably, the moment versions of the function

field analogs of the Cohen–Lenstra heuristics and the Boston–Bush–Hajir heuristics are both proven; see

[Ellenberg et al. 2016; Boston and Wood 2017]. In [Liu et al. 2024], we constructed the random 0-group

lim
n→∞

Fn(0)/[r−1µ (r)]r∈X,µ∈0, (1-4)

where X is a set of n+ u random elements of Fn(0). We showed that the moment proven in the function

field case matches the moment of the probability measure defined by (1-4) exactly when u = 1. With

this evidence, we conjectured that the random group (1-4) gives the distribution of Gal(k#/k) in both the

function field case and the number field case. Theorem 1.1 explains the theoretical reason behind u = 1

in the Liu–Wood–Zureick-Brown conjecture.

Regarding the exceptional case (i), Cohen and Martinet [1987] provided a modification for the case

that Q = Q and k/Q varies among imaginary 0-extensions whose decomposition subgroup at ∞ is

a fixed (conjugacy class of) subgroup of 0. Wang and Wood [2021] proved some results about the

probability measures described in the Cohen–Martinet heuristics. From these works, one can see that the

decomposition subgroup 0∞ at∞ of k/Q crucially affects the probability measures. In Lemma 11.1, we

explicitly compute the upper bounds of multiplicities in a pro-ℓ admissible 0-presentation of G∅(k)(ℓ),

which shows how the multiplicities are determined by 0∞. Then in Corollary 11.2 and Remark 11.3,

we prove that, when k/Q is an imaginary quadratic field, G∅(k)(ℓ) can be achieved by a random group

model which defines a probability measure agreeing with the Boston–Bush–Hajir heuristics.

For the exceptional case (ii), when the base field Q contains the ℓ-th roots of unity, we give upper bounds

for multiplicities in Lemma 11.4 and Corollary 11.5, which suggests that the distributions of G∅,∞(k)(ℓ)

should be different between the function field case and the number field case (Remark 11.6(2)). This

difference is not surprising, as Malle [2010] observed that his conjecture regarding the class groups

of number fields does not easily match the result for function fields. So the upper bounds obtained in

Corollary 11.5 support Malle’s observation. The phenomenon related to the presence of the roots of unity

has been numerically computed in [Malle 2008; 2010], and the random matrices in this setting and their
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relation with function field counting has been studied in [Katz and Sarnak 1999; Achter 2006; 2008;

Garton 2015; Adam and Malle 2015]. A correction for roots of unity, provided with empirical evidence,

is presented in [Wood 2019].

1.3. Other applications and further questions. We expect that the techniques established in this paper will

have many interesting and important applications. For example, the author applies the results in this paper

to the following work. In [Liu 2022], the exceptional case (ii) is studied, where the moment conjecture in

the number field case is inspired by the computation of ¶k/Q,∅(A) similar to Section 11.2. In [Liu 2024],

the abelian group BS(k, A) is used to study the embedding problems with restricted ramification, which

will be crucial for the forthcoming work on the generalized Cohen–Lenstra–Martinet–Gerth conjectures.

There are many further questions we would like to understand. First, the techniques in this paper work

for any finite set S of primes. So we would like to ask whether the random group models (in the abelian,

pro-ℓ and pro-C versions) can also be applied to predict the distributions of GS(k) as k/Q varies among

certain families of 0-extensions. Secondly, the group BS(k, A), which is the generalization of BS(k)

that we construct in Section 8, has its own interest, because it could be applied to extend our knowledge

of GS(k) from the pro-ℓ completion to the whole group, and moreover, it bounds the Shafarevich group

via (see Proposition 8.5)

#X2
S(k, A)f #BS(k, A). (1-5)

We emphasize here that understanding when #X2
∅(k, A) = #B∅(k, A) holds can help us determine

whether our upper bound of multiplicities is sharp or not (see how the inequality (1-5) is used in the proof

of Proposition 9.4). Last but not least, the techniques established in Sections 3, 4 and 5, which use group

cohomology to understand the presentation of a 0-group, are purely group theoretical and independent of

the number theory background, so we hope that they could have other interesting applications.

In this paper, we only study the maximal prime-to-|0| quotient of G∅,∞(k) for a Galois 0-extension

k/Q, and one can see that this “prime-to-|0|” requirement is necessary in almost every crucial step. We

would like to ask if the ideas of this paper can be generalized to the |0|-part of G∅,∞(k) too.

2. Notation and preliminaries

2.1. Profinite groups and modules. In this paper, groups are always profinite groups and subgroups are

always closed subgroups. For a group G, a G-group is a group with a continuous G action. If x1, . . .

are elements of a G-group H, we write [x1, . . . ] for the closed normal G-subgroup of H topologically

generated by x1, . . . . If H is a G-group, then we write H ìG for the semidirect product induced by the G

action on H, and its multiplication rule is given by (h1, g1)(h2, g2)= (h1g1(h2), g1g2) for h1, h2 ∈ H and

g1, g2 ∈ G. Morphisms of G-groups are G-equivariant group homomorphisms. We write ≃G to represent

isomorphism of G-groups, write HomG to represent the set of G-equivariant homomorphisms, and define

G-subgroup and G-quotient accordingly. For a G-group H, we say a set of elements G-generates H if H

is the smallest closed G-subgroup containing this set. We say that H is an irreducible G-group if it is a

nontrivial G-group and has no proper, nontrivial normal G-subgroups. For a positive integer n, a pro-n′
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group is a group such that every finite quotient has order relatively prime to n. The pro-n′ completion

of G is the inverse limit of all pro-n′ quotients of G. For a prime ℓ, we denote the pro-ℓ and the pro-ℓ′

completions of G by G(ℓ) and G(ℓ′) respectively.

For a group G and a commutative ring R, we denote by R[G] the completed R-group ring of G. We

use the following notation of G-modules:

Mod(G)= the category of isomorphism classes of finite G-modules,

Mod(R[G])= the category of isomorphism classes of finite R[G]-modules,

Modn(G)= the category of isomorphism classes of finite Z/nZ[G]-modules.

For a prime integer ℓ and a finite Fℓ[G]-module A, we define hG(A) to be the Fℓ-dimension of

HomG(A, A). We consider the Grothendieck group K ′0(R[G]), which is the abelian group generated by

the set {[A] | A ∈Mod(R[G])} and the relations

[A] − [B] + [C] = 0

arising from each exact sequence 0→A→B→C→0 of modules in Mod(R[G]). For A,B∈Mod(R[G]),
the tensor product A¹R B endowed with the diagonal action of G is an element of Mod(R[G]). Then

K ′0(R[G]) becomes a ring by linear extensions of the product [A][B] = [A¹R B]. If H is a subgroup

of G, then the action of taking induced modules IndH
G defines a map from K ′0(R[H ]) to K ′0(R[G]), which

we will also denote by IndH
G .

Let ℓ denote a prime integer. If H is a pro-ℓ′ subgroup of G, then it follows by the Schur–Zassenhaus

theorem that H 1(H, A)= 0 for any A ∈Modℓ(G), and hence taking the H -invariants is an exact functor

on Modℓ(G). Moreover, when G is a pro-ℓ′ group, Modℓ(G) is the free abelian group generated by the

isomorphism classes of finite simple Fℓ[G]-modules, and elements [A] and [B] of K ′0(Fℓ[G]) are equal if

and only if A and B are isomorphic as Fℓ[G]-modules. For an abelian group A, we let A( denote the

Pontryagin dual of A.

2.2. Galois groups and Galois cohomology. For a field k, we write k for a fixed choice of separable

closure of k, and write Gk for the absolute Galois group Gal(k/k). For a finite Gk-module A, we let

A′=Hom(A, k×). Let k/Q be a finite Galois extension of global fields. When v is a prime of the field Q,

we define Sv(k) to be the set of all primes of k lying above v. Note that the function field Fq(t) has an

infinite place defined by the valuation | · |∞ := qdeg( · ), but this infinite place is nonarchimedean. We

define S∞(k) to be the set of all archimedean places of k, so it is the empty set if k is a function field. For

a number field k, we let SR(k) and SC(k) denote the set of all real archimedean places and the set of all

imaginary archimedean places of k respectively. We let G∅,∞(k) denote the Galois group of the maximal

unramified extension of k that is split completely at every prime above∞. So if k is a number field, then

G∅,∞(k) is G∅(k). If k is a function field, then G∅,∞(k) is the quotient of G∅(k) by the decomposition

subgroups of k at primes above∞.

Let S be a set of places of k. We let kS denote the maximal extension of k that is unramified outside S,

and denote Gal(kS/k) by GS(k) or just GS when the choice of k is clear. The set S is called k/Q-closed
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if Sv(k) either is contained in S or intersects emptily with S for any prime v of Q. When S is k/Q-closed,

it is not hard to check by Galois theory that kS is Galois over Q, and hence each element of Gal(k/Q)

defines an outer automorphism of GS(k). We let

N(S)= {n ∈ N | n ∈O×k,S},

where O
×
k,S is the ring of S-integers of k. Explicitly, if k is a number field, then N(S) consists of the

natural numbers such that ordp(n)= 0 for all p ̸∈ S; and if k is a function field, then N(S) is the set of all

natural numbers prime to char(k). For a group G, we define

ModS(G)= the category of finite G-modules whose order is in N(S).

In particular, if Q is a function field, then ModS(G) consists of modules of order prime to char(Q).

Let k be a global field, and p a prime of k. The completion of k at p is denoted by kp, and the

absolute Galois group and its inertia subgroup of kp are denoted by Gp(k) and Tp(k) respectively. When

the choice of k is clear, we denote Gp(k) and Tp(k) by Gp and Tp. Let k/Q be a Galois extension

of global fields. For a prime v of Q and a prime p ∈ Sv(k), the Galois group of kp/Qv, denoted by

Galp(k/Q), is the decomposition subgroup of Gal(k/Q) at p. The subgroups Galp(k/Q) are conjugate

to each other in Gal(k/Q) for all p ∈ Sv(k), so we write Galv(k/Q) for a chosen representative of this

conjugacy class. For a group G and an A ∈Mod(G), we write H i (G, A) and Ĥ i (G, A) for the group

cohomology and the Tate cohomology respectively. For a field k, we define H i (k, A) := H i (Gk, A)

and Ĥ i (k, A) := Ĥ i (Gk, A). Let A be a module in Mod(G Q), where G Q is the absolute Galois group

of Q. The Galois group Gal(k/Q) acts on H i (k, A) by conjugation. The conjugation map commutes

with inflations, restrictions, cup products and connecting homomorphisms in a long exact sequence,

and hence it is naturally compatible with spectral sequences and duality theorems used in the paper.

For a prime v of Q, we consider the Gal(k/Q) action on
⊕

p∈Sv(k) H i (kp, A) defined by the action on⊕
p∈Sv(k) H i (kp, Res

G Q

Gv(Q) A). In other words, Gal(k/Q) acts on
⊕

p∈Sv(k) H i (kp, A) by the permutation

action on Sv(k) and by the Galp(k/Q)-conjugation on each summand. We similarly define the Gal(k/Q)

action on the product when each of the local summands is H i (Tp, A) or the unramified cohomology group

H i
nr (kp, A) := im

(
H i (Gp/Tp, ATp)

inf−→ H i (Gp, A)
)
. In particular, the product of restriction maps for v

H i (k, A)→
⊕

p∈Sv(k)

H i (kp, A)

respects the Gal(k/Q) actions. Moreover, one can check that

⊕
p∈Sv(k)

H i (kp, A)∼= Ind
Galq(k/Q)

Gal(k/Q) H i (kq, A)

as Gal(k/Q)-modules for any q ∈ Sv(k). The same statement holds for the Tate cohomology groups. For

a set S of places of k, we use the following notation for Shafarevich groups:

X
i (k, A)= ker

(
H i (k, A)→

∏
p all places

H i (kp, A)
)
, X

i
S(k, A)= ker

(
H i (GS(k), A)→

∏
p∈S

H i (kp, A)
)
,
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and we set

′∏
p∈S

H 1(kp, A) :=
{
( fp)p∈S ∈

∏
p∈S

H 1(kp, A)

∣∣∣ fp is unramified for all but finitely many primes in S
}
.

2.3. List of notation appearing in multiple sections.

• Fn(0): free profinite 0-group on n generators (defined in Section 3).

• F ′n(0): pro-|0|′ completion of Fn(0).

• Fn(0): free admissible 0-group on n generators (defined in Section 4).

• m(É, 0, H, A): multiplicity of A associated to a 0-equivariant surjection É to the 0-group H (defined

in Definition 3.1).

• m(n, 0, G, A): multiplicity of A associated to a pro-|0|′ 0-equivariant surjection F ′n(0)→G (defined

in Definition 3.6).

• mad(n, 0, G, A): multiplicity of A associated to an admissible 0-presentation Fn(0)→ G (defined

in Definition 4.3).

• mC
ad(n, 0, G, A): multiplicity of A associated to a level-C admissible 0-presentation Fn(0)C→ GC

(defined in Proposition 5.4).

• Çk/Q,S(A): Euler characteristic (defined in Section 7).

• ¶k/Q,S(A) := dimFℓ
H 2(GS(k), A)Gal(k/Q)− dimFℓ

H 1(GS(k), A)Gal(k/Q) (defined in Definition 9.1).

• ϵk/Q,S(A): an invariant associated to the Galois module A (defined Proposition 9.4)

3. Presentations of finitely generated profinite 0-groups

Let Fn(0) denote the free profinite 0-group on n generators defined in [Liu et al. 2024]. Explicitly, Fn(0)

is the free profinite group on {xi,µ | i = 1, . . . , n and µ ∈ 0} together with a 0-action defined by

Ã(xi,µ )= xi,Ãµ for all µ ∈ 0.

If G is a profinite 0-group that is 0-generated by g1, . . . , gn , then there is a unique surjective 0-equivariant

homomorphism Fn(0)→ G defined by sending xi,Id0
to gi for each i . So the universal property holds

for Fn(0), and that is why Fn(0) is the free pro-0-group on n generators (namely, the generators

are x1,Id0
, . . . , xn,Id0

).

When the choice of 0 is clear, we will denote Fn(0) simply by Fn . Let G be a finitely generated

0-group. Then when n is sufficiently large, there exists a short exact sequence

1→ N → Fn ì0
Ã−→ G ì0→ 1, (3-1)

where Ã is defined by mapping 0 identically to 0, and {xi,10
}ni=1 to a set of n elements of G that

generates G under the 0 action. Note that (3-1) can be viewed as a presentation of the group G that is

compatible with 0 actions, and we will call it a 0-presentation of G. The minimal number of relations in
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the presentation (3-1), which is one of the main objects studied in this paper, is related to the multiplicities

of the irreducible Fn ì0-quotients of N. We define the multiplicity as follows, and one can find that this

quantity is similarly defined in [Lubotzky 2001; Liu and Wood 2020; Liu et al. 2024].

Definition 3.1. Given a short exact sequence 1→ ker É→ E É−→ H → 1 of 0-groups, we let M be the

intersection of all maximal proper E ì0-normal subgroups of ker É, and let N = ker É/M and E = E/M.

Then one can show that N is a direct product of finite irreducible E ì0-groups. For any finite irreducible

Eì0-group A, we define m(É, 0, H, A) to be the multiplicity of A appearing in N . When the multiplicity

is infinite, we let m(É, 0, H, A)=∞. When É refers to the surjection E ì0→ H ì0 induced by the

0-equivariant surjection E→ H, we use the notation m(É, 0, H, A) instead of m(É|E , 0, H, A) for the

sake of convenience.

Consider the short exact sequence (3-1). Let M be the intersection of all maximal proper Fnì0-normal

subgroups of N, and define R = N/M and F = Fn/M (i.e., R and F are N and E in Definition 3.1) for

the short exact sequence (3-1). Then we obtain a short exact sequence

1→ R→ F ì0→ G ì0→ 1.

Note that F ì0 acts on R by conjugation, and maps the factor Am(Ã,0,G,A) of R to itself. When A is

abelian, then the conjugation action on A by elements in R is trivial, so the F ì0 action on A factors

through G ì0, and hence A is a finite simple G ì0-module.

Lemma 3.2. Using the notation above, if A is a finite simple G ì0-module such that gcd(|0|, |A|)= 1,

then
m(Ã, 0, G, A)= n dimFℓ

A− À(A)+ dimFℓ
H 2(G ì0, A)− dimFℓ

H 1(G ì0, A)

hGì0(A)
,

where ℓ is the exponent of A and À(A) := dimFℓ
A0/AGì0.

Remark 3.3. When 0 is the trivial group, the lemma is [Lubotzky 2001, Lemma 5.3]

Proof. Applying the inflation-restriction exact sequence to (3-1), we obtain

0→ H 1(G ì0, AN )→ H 1(Fn ì0, A)→ H 1(N, A)Gì0→ H 2(G ì0, AN )→ H 2(Fn ì0, A). (3-2)

Also by gcd(|A|, |0|) = 1, the Hochschild–Serre spectural sequence E i j = H i (0, H j (Fn, A)) =⇒
H i+ j (Fn ì0, A) degenerates, so we have that

H 2(Fn ì0, A)∼= H 2(Fn, A)0,

which is trivial because Fn is a free profinite group. Note that N acts trivially on A, so

H 1(N, A)Gì0 = HomFnì0(N, A)= HomGì0(Am(Ã,0,G,A), A)

because A is a simple Fℓ[G ì0]-module and m(Ã, 0, G, A) is the maximal integer such that Am(Ã,0,G,A)

is an Fn ì0-equivariant quotient of N. Then it follows that

dimFℓ
H 1(N, A)Gì0 = m(Ã, 0, G, A) dimFℓ

HomGì0(A, A).

Thus, by (3-2) it suffices to show dimFℓ
H 1(Fn ì0, A)= n dimFℓ

A− À(A).
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Elements of H 1(Fn ì 0, A) correspond to the A-conjugacy classes of homomorphic sections of

Aì (Fn ì0)
Ä−→ Fn ì0. We write every element of Fn ì0 in the form of (x, µ ) for x ∈ Fn and µ ∈ 0,

and similarly, write elements of A ì (Fn ì0) as (a; x, µ ) for a ∈ A, x ∈ Fn and µ ∈ 0. Then Ä maps

(a; x, µ ) to (x, µ ) for any a, x and µ . Note that a section of Ä is completely determined by the images

of (xi,10
, 1) and (1, µ ) for i = 1, . . . , n and µ ∈ 0, where xi,10

’s are the 0-generators of Fn defined at

the beginning of this section. Since gcd(|A|, |0|)= 1, we have H 1(0, A)= 0 by the Schur–Zassenhaus

theorem, which implies that the restrictions of all the sections of Ä to the subgroup 0 are conjugate

to each other by A. So we only need to study the A-conjugacy classes of sections of Ä which map

(1, µ ) to (1; 1, µ ) for any µ ∈ 0, and such sections are totally determined by the images of (xi,10
, 1)

for i = 1, . . . , n. Let s1 and s2 be two distinct sections of this type. Under the multiplication rule of

semidirect product, the conjugation of (a; x, µ ) by an element ³ ∈ A is

(³−1; 1, 1)(a; x, µ )(³; 1, 1)= (³−1 · a · (x, µ )(³); x, µ )

= (³−1 · (x, µ )(³); 1, 1)(a; x, µ ),

where the last equality is because A is abelian. Therefore, because of the assumption that s1(1, µ ) =
s2(1, µ ) = (1; 1, µ ) for any µ ∈ 0, we see that s1 and s2 are A-conjugate if and only if there exists

³ ∈ A0/AGì0 such that s2(x, µ )= (³−1 · (x, µ )(³); 1, 1)s1(x, µ ) for any x , µ . So

#{A-conjugacy classes of sections of Ä} = |A0/AGì0|−1
n∏

i=1

#Ä−1(xi,10
, 1)

= |A0/AGì0|−1|A|n,
which proves that dimFℓ

H 1(Fn ì0, A)= n dimFℓ
A− dimFℓ

(A0/AGì0). □

In this paper, instead of the 0-presentations in the form of (3-1), we want to study the presentations of

pro-|0|′ completions of 0-groups. Recall that the pro-|0|′ completion of a group G is the inverse limit of

all finite quotients of G whose order is prime to |0|. We denote the pro-|0|′ completions of Fn(0) and G

by F ′n(0) and G ′ respectively, and write F ′n for F ′n(0) when the choice of 0 is clear. Then F ′n and G ′

naturally obtain 0 actions from Fn and G, and we have a short exact sequence

1→ N ′→ F ′n ì0
Ã ′−→ G ′ì0→ 1, (3-3)

induced by (3-1), which will be called a |0|′-0-presentation of G ′.

Proposition 3.4. Use the notation above. Let A be a finite simple G ′ì0-module, and denote the exponent

of A by ℓ. If ℓ divides |0|, then m(Ã ′, 0, G ′, A)= 0. Otherwise,

m(Ã ′, 0, G ′, A)= n dimFℓ
A− À(A)+ dimFℓ

H 2(G ′ì0, A)− dimFℓ
H 1(G ′ì0, A)

hG ′ì0(A)
(3-4)

f n dimFℓ
A− À(A)+ dimFℓ

H 2(G, A)0 − dimFℓ
H 1(G, A)0

hGì0(A)
. (3-5)

where in (3-5) A is viewed as a G ì0-module via the surjection G ì0→G ′ì0. Moreover, the equality

in (3-5) holds if H 2(ker(G→ G ′), Fℓ)= 0.
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Remark 3.5. We see from (3-5) that the multiplicity m(Ã ′, 0, G ′, A) depends on n, 0, G and A, but not

on the choice of the quotient map Ã ′.

Proof. It is clear that if ℓ divides |0|, then m(Ã ′, 0, G ′, A)= 0. For the rest of the proof, assume ℓ ∤ |0|.
We consider the commutative diagram

Fn ì0 G ì0

F ′n ì0 G ′ì0

Ä ϖ

Ã

ÄG

Ã ′

where each of the vertical maps is taking the |0|′-completion of the first component in semidirect

product. If U is a maximal proper F ′n ì 0-normal subgroup of ker Ã ′ such that ker Ã ′/U ≃G ′ì0 A,

then its full preimage Ä−1(U ) in Fn ì0 is a maximal proper Fn ì0-normal subgroup of ker ϖ with

ker ϖ/Ä−1(U )≃G ′ì0 A. So by definition of multiplicities, we have that m(Ã ′, 0, G, A)fm(ϖ, 0, G, A).

On the other hand, because gcd(|A|, |0|)= 1, if V is a maximal proper Fn ì0-normal subgroup of ker ϖ

with ker ϖ/V ≃G ′ì0 A, then Fn ì0 ↠ (Fn/V )ì0 factors through Ä, and hence we have shown that

m(Ã ′, 0, G, A)= m(ϖ, 0, G, A). Because ϖ defines a 0-presentation of G ′, by Lemma 3.2 we obtain

the equality (3-4).

Let W denote ker ÄG = ker(G → G ′). Because G ′ is the pro-|0|′ completion of G and ℓ ∤ |0|, the

pro-ℓ completion of W is trivial. So as W acts trivially on A, we have that H 1(W, A) = 0. Then by

considering the Hochschild–Serre spectral sequence associated to

1→W → G ì0→ G ′ì0→ 1,
we see that

H 1(G ′ì0, A)∼= H 1(G ì0, A) and H 2(G ′ì0, A) ↪→ H 2(G ì0, A).

where the latter embedding is an isomorphism if H 2(W, A)=0. Note that H 2(W, A)=H 2(W, Fℓ)
· dimFℓ

A

because W acts trivially on A.

Finally, since gcd(|A|, |0|)= 1, we have that H i (0, A)= 0 for any i g 1, and hence by the Hochschild–

Serre spectral sequence of
1→ G→ G ì0→ 0→ 1

we have that H i (G ì0, A)∼= H i (G, A)0 for any i . Therefore, we have

dimFℓ
H 1(G ′ì0, A)= dimFℓ

H 1(G, A)0 and dimFℓ
H 2(G ′ì0)f dimFℓ

H 2(G, A)0,

where the equality holds if H 2(W, Fℓ)= 0. □

By Remark 3.5, we can define the multiplicities as follows.

Definition 3.6. Let 0 be a finite group, G ′ a finitely generated pro-|0|′ 0-group, and A a finite irreducible

G ′ì0-group. Assume that there exists a 0-equivariant surjection Ã ′ : F ′n→G ′. We define m(n, 0, G ′, A)

to be m(Ã ′, 0, G ′, A).

When A is abelian, m(n, 0, G ′, A) is bounded above by (3-5). The next proposition proves that the

minimal number of relators in the presentation Ã ′ is determined by m(n, 0, G ′, A) for all abelian A.
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Proposition 3.7. Consider the short exact sequence (3-3). The minimal number of generators of ker Ã ′ as

a closed normal 0-subgroup of F ′n is

sup
ℓ ∤ |0|

sup
A: finite simple

Fℓ[G ′ì0]-modules

⌈
dimFℓ

H 2(G ′ì0, A)− dimFℓ
H 1(G ′ì0, A)− À(A)

dimFℓ
A

⌉
+ n. (3-6)

Moreover, this minimal number is

sup
ℓ ∤ |0|

sup
A: finite simple

Fℓ[G ′ì0]-modules

⌈
dimFℓ

H 2(G, A)0 − dimFℓ
H 1(G, A)0 − À(A)

dimFℓ
A

⌉
+ n (3-7)

and the equality holds if H 2(ker(G→ G ′), Fℓ)= 0.

Proof. We let M be the intersection of all maximal proper F ′n ì0-normal subgroups of ker Ã ′, and let

R= ker Ã ′/M and F = F ′n/M. Then R is isomorphic to a direct product of finite irreducible Fì0-groups

whose orders are coprime to |0|. A set of elements of ker Ã ′ generates ker Ã ′ as a normal subgroup of

F ′n ì0 if and only if their images generate R as a normal subgroup of F ì0.

For positive integer m, r and a finite irreducible Fì0-group A, by [Liu and Wood 2020, Corollaries 5.9

and 5.10], one can compute the probability that the F ì0-closed group generated by r random elements

of Am is the whole Am . Note that this probability is positive if and only if Am can be generated by r

elements as a F ì 0-group. It follows that the minimal number of elements generating Am as an

F ì0-group is
{

1 if A is nonabelian,⌈
mhFì0(A)

dimFℓ
A

⌉
if A is abelian, where ℓ is the exponent of A.

Recall that if A is an abelian simple factor appearing in R, then the Fì0 action on A factors through G ′ì0,

since the conjugation action of R on A is trivial. Therefore, by the argument above and [Liu and Wood

2020, Corollary 5.7], the minimal number of generators of R as an F ì0-group is

sup
ℓ ∤ |0|

sup
A: finite simple

Fℓ[G ′ì0]-modules

⌈
m(n, 0, G ′, A)hG ′ì0(A)

dimFℓ
A

⌉
.

Then the proposition follows by Proposition 3.4 and the fact that hGì0(A)= hG ′ì0(A). □

To end this section. we give a lemma that will be used later.

Lemma 3.8. Let E, F and G be 0-groups such that there exist 0-equivariant surjections ³ : E → F,

´ : F→ G and a 0-equivariant homomorphic section s : F→ E of ³. Let Ã = ´ ◦³.

E F G³

Ã

´
s

Let A be a finite simple G ì0-module. Then m(Ã, 0, G, A)= m(³, 0, F, A)+m(´, 0, G, A).
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Proof. We first show m(Ã, 0, G, A)g m(³, 0, F, A)+m(´, 0, G, A). By definition, the map ´ factors

through an extension G̃ of G satisfying the exact sequence

1→ Am(´,0,G,A)→ G̃→ G→ 1.

Denote the composition of ³ and the quotient map F→ G̃ by Ä1 : E→ G̃. Similarly, Ã factors through

an extension F̃ of F with kernel Am(³,0,F,A). Because the section s identifies E as the semidirect product

ker ³ì s(F), we see that F̃ has to be isomorphic to the semidirect product Am(³,0,F,A) ì F. Note that the

action of F ì0 on A factors through G ì0 (and similarly, factors through G̃ ì0). So by composing

with the surjection ´, we have a 0-equivariant quotient map

Ä2 : E→ Am(³,0,F,A) ìG.

Because Ä2 factors through Am(³,0,F,A)ì G̃, we have the following fiber product diagram of 0-equivariant

quotients of E :

Am(³,0,F,A) ì G̃ = E/ ker Ä1 ∩ ker Ä2 G̃ = E/ ker Ä1

Am(³,0,F,A) ìG = E/ ker Ä2 G = E/ ker Ä1 ker Ä2

So the diagram shows m(Ã, 0, G, A)g m(³, 0, F, A)+m(´, 0, G, A).

Let S be the set of all maximal proper E ì0-normal subgroups U of ker Ã with ker Ã/U ≃Gì0 A.

To prove the equality in the lemma, it suffices to show that, for each U ∈ S,

ker Ä1 ∩ ker Ä2 = ker Ä1 ∩ ker Ä2 ∩U, (3-8)

because (3-8) together with the preceding paragraph implies that ∩U∈SU = ker Ä1 ∩ ker Ä2.

Let U ∈ S. If ker ³ ¢ U, then ³(U ) is a maximal proper F ì 0-normal subgroup of ker ´ such

that ker ´/³(U ) ≃Gì0 A, so ker Ä1 ¢ U and therefore (3-8) holds. Otherwise, ker ³ ̸¢ U. Then

ker ³/(ker ³ ∩U ) ≃Gì0 (ker ³ ·U )/U = ker Ã/U ≃Gì0 A and similarly ker Ä1/(ker Ä1 ∩U ) ≃Gì0 A,

and we have the quotient map

E/ ker ³ ∩U ≃ Aì F→ E/ ker Ä1 ∩U ≃ Aì G̃.

The domain of this quotient map is a quotient of F̃ and the target is a quotient of E/(ker Ä1 ∩ ker Ä2).

Then we see that ker Ä1 ∩U £ ker Ä1 ∩ ker Ä2; thus we prove (3-8) in this case. □

4. Presentations of finitely generated profinite admissible 0-groups

We first recall the definition of the admissible 0-groups and the free admissible 0-groups in [Liu et al. 2024].

Definition 4.1. A profinite 0-group G is called admissible if it is 0-generated by elements {g−1µ (g) |
g ∈ G, µ ∈ 0} and is of order prime to |0|.
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Recall that for each positive integer n, we defined F ′n to be the pro-|0|′ completion of Fn . We

set yi,µ to be the image in F ′n of the generators xi,µ of Fn , and therefore F ′n is the free pro-|0|′ group

on {yi,µ | i = 1, . . . , n and µ ∈ 0}, where Ã ∈ 0 acts on F ′n by Ã(yi,µ )= yi,Ãµ . We fix a generating set

{µ1, . . . , µd} of the finite group 0 throughout the paper. We set yi := yi,id0
and define Fn(0) to be the

closed 0-subgroup of F ′n that is generated as a 0-subgroup by the elements

{y−1
i µ j (yi ) | i = 1, . . . , n and j = 1, . . . , d}.

We will denote Fn(0) by Fn when the choice of 0 is clear. The following is a list of properties of Fn(0)

proven in [Liu et al. 2024, Lemma 3.1, Corollary 3.8 and Lemma 3.9]:

(1) Fn is an admissible 0-group and it does not depend on the choice of the generating set {µ1, . . . , µd}.

(2) There is a 0-equivariant quotient map Än : F ′n → Fn such that the composition of the inclusion

Fn ¢ F ′n with Än is the identity map on Fn .

(3) Define a set function for any 0-group G

Y : G→ Gd , g 7→ (g−1µ1(g), g−1µ2(g), . . . , g−1µd(g)).

Then the function

Y (G)n→ Hom0(Fn, G)

taking (Y (g1), . . . , Y (gn)) to the restriction of the map F ′n→ G with yi 7→ gi is a bijection.

Let G be an admissible 0-group with a 0-presentation defined by Fn ì0
Ã−↠ G ì0 such that the

reduced map F ′n ì0
Ã ′−↠ G ì0 satisfies that

G is 0-generated by coordinates of Y (yi ), i = 1, . . . , n. (4-1)

Under the condition (4-1), the restriction of Ã ′ to the admissible subgroup Fn of F ′n is surjective, so Ã ′

that factors through the quotient map Än : F ′n→ Fn in (2) above. We let Ãad = Ã ′|Fnì0 and obtain a short

exact sequence

1→ N → Fn ì0
Ãad−→ G ì0→ 1, (4-2)

and we call it an admissible 0-presentation of G.

Similarly to the previous section, we are interested in the multiplicities of the simple factors appearing

as the quotients of N.

Lemma 4.2. Let G be an admissible 0-group with an admissible 0-presentation (4-2) and A a finite

simple G ì0-module with gcd(|A|, |0|)= 1. Then

m(Ãad, 0, G, A)= m(n, 0, G, A)−m(n, 0,Fn, A).
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Proof. We let Än : F ′n→ Fn be the quotient map described in property (2). Let ϖ be the composition of

the following 0-equivariant surjections and then ϖ defines a |0|′-0-presentation of G. Let º : Fn→ F ′n
be the natural embedding. Then we have the diagram

F ′n Fn G,Än

ϖ

Ãad|Fn

º

The lemma follows by Lemma 3.8. □

Definition 4.3. Let G be a 0-group with an admissible 0-presentation (4-2). For a finite simple G ì0-

module A with gcd(|A|, |0|) = 1, we define mad(n, 0, G, A) to be m(Ãad, 0, G, A). By Lemma 4.2,

mad(n, 0, G, A)= m(n, 0, G, A)−m(n, 0,Fn, A) does not depend on the choice of Ãad.

Lemma 4.4. Let A be a finite simple Fn ì0-module such that gcd(|A|, |0|)= 1. Then

dimFℓ
H 1(Fn ì0, A)= n dimFℓ

(A/A0)− À(A).

Proof. We use the idea in the proof of Lemma 3.2. Elements of H 1(Fn ì 0, A) correspond to the

A-conjugacy classes of homomorphic sections of Aì (Fn ì0)
Ä−→ Fn ì0. We use (g, µ ) to represent

elements of Fn ì0, and (a; g, µ ) to represent elements of Aì(Fn ì0). Again, by the Schur–Zassenhaus

theorem, we only need to count the A-conjugacy classes of sections of Ä that maps (1; 1, µ ) to (1, µ ). In

other words, we only need to study the A-conjugacy classes of 0-equivariant sections of AìFn→ Fn .

By property (3) of Fn , there is a bijection Y (AìFn)
n→Hom0(Fn, AìFn) taking (Y (g1), . . . , Y (gn))

to the restriction of the map F ′n→ AìFn with yi 7→ gi . For a 0-equivariant section s of AìFn→ Fn ,

the elements s(y−1
i µ j (yi )) in AìFn must map to y−1

i µ j (yi )∈Fn for each i = 1, . . . , n and j = 1, . . . , d .

Therefore, the 0-equivariant sections of AìFn→ Fn are in one-to-one correspondence with elements in

Y (AìFn)
n which map to (Y (y1), . . . , Y (yn)) ∈ Y (Fn)

n under the natural quotient map AìFn→ Fn

on each component.

Let’s consider Y (yi ) and its preimages in Y (A ìFn). Note that there is also a natural embedding

Y (Fn) ↪→ Y (A ìFn) defined by the obvious section of split extension A ìFn ↠ Fn . So we can fix a

g ∈ A ìFn such that Y (g) is the image of Y (yi ) under this embedding, and then Y (g) is a preimage

of Y (yi ) under ϕ, where ϕ is the quotient map (AìFn)
d → Fd

n . The self-bijection

(AìFn)
d → (AìFn)

d , (a1, . . . , ad) 7→ (ga1µ1(g)−1, . . . , gadµd(g)−1)

maps Y (AìFn) to itself and ϕ−1(Y (yi )) to Ad . Thus,

#Y (AìFn)∩ϕ−1(Y (yi ))= #Y (AìFn)∩ Ad = #Y (A)= |A/A0|,

where the second equality above uses [Liu et al. 2024, Lemma 3.4] and the last uses [Liu et al. 2024,

Lemma 3.5]. So we’ve shown that there are |A/A0| elements in Y (A ìFn) mapping to Y (yi ), and it

follows that the number of 0-equivariant sections of AìFn→ Fn is |A/A0|n .
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Finally, recall that two sections s1, s2 of A ì (Fn ì 0)→ Fn ì 0 are A-conjugate if and only if

s1(g, µ )= (³−1 · (g, µ )(³); 1, 1)s1(g, µ ) for some ³ ∈ A0/AFnì0, by the computation in the proof of

Lemma 3.2. Therefore,

#H 1(Fn ì0, A)= |A/A0|n
|A0/AFnì0| . □

Corollary 4.5. Under the assumptions in Lemma 4.2, we have

mad(n, 0, G, A)= m(n, 0, G, A)− n dimFℓ
A0

hGì0(A)
.

Proof. By Proposition 3.4 and Lemma 4.4, we have

m(n, 0,Fn, A)= n dimFℓ
A0 + dimFℓ

H 2(Fn, A)0

hGì0(A)
.

Note that, forgetting the 0-action, Fn is a projective profinite group, because by definition it is a closed

subgroup of the free pro-|0|′ group F ′n. So H 2(Fn, A)= 0, and then the corollary follows immediately

by Lemma 4.2. □

We point out in the next lemma that A0 is strictly smaller than A when G ì0 acts nontrivially on A.

Lemma 4.6. If G is an admissible 0-group and A is a G ì0-group such that 0 acts trivially on A, then

G ì0 acts trivially on A.

Proof. The G ì0 action on A induces a group homomorphism G ì0→ Aut(A). So it suffices to show

that 0 is not contained in any proper normal subgroup of G ì0. Suppose M is a proper normal subgroup

containing 0. Then B := (G ì 0)/M is a 0-quotient of G and 0 acts trivially on B. However, G is

admissible, so is generated by elements g−1µ (g) for g ∈ G and µ ∈ 0. Then the images of all g−1µ (g)

in the 0-quotient B generate B but each of these images is 1, and hence we obtain the contradiction. □

5. Presentations of finitely generated profinite 0-groups of level C

Let C be a set of isomorphism classes of finite 0-groups. The variety of 0-groups generated by C is

defined to be the smallest set C of isomorphism classes of 0-groups containing C that is closed under

taking finite direct products, 0-quotients and 0-subgroups. For a given 0-group G, we define the pro-C

completion of G to be
GC = lim←−−

M
G/M,

where the inverse limit runs over all closed normal 0-subgroups M of G such that the 0-group G/M is

contained in C. We call a 0-group G level C if GC = G.

We want to emphasize that we do not require C to be closed under taking group extensions, and it

is different from most of works in the literature about completions of groups. For example, if we set C

to be the set containing only the group Z/ℓZ with the trivial 0 action, then GC is the maximal quotient

of G that is isomorphic to a direct product of Z/ℓZ on which 0 acts trivially. If we want GC to give us
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the pro-ℓ completion of G, then we need to let C contain all the finite 0-groups of order a power of ℓ.

Similarly, GC is the pro-|0|′ completion of G if C consists of all finite 0-groups of order prime to |0|.

Lemma 5.1. Let F, G be 0-groups and É : F → G a 0-equivariant surjection. Let C be a set of

isomorphism classes of finite 0-groups, and ϕ the pro-C completion map F → FC . Then we have the

following commutative diagram of 0-equivariant surjections:

F G

FC GC

É

ϕ ³

ÉC

where ÉC is the quotient map by ϕ(ker É).

Proof. By the set-up, im ÉC naturally fits into the right-lower position of this diagram, so it’s enough

to show that im ÉC ≃ GC . First, im ÉC is a quotient of G and a quotient of FC , so it is of level C and

hence is a quotient of GC . On the other hand, we consider the natural pro-C completion map ³ : G→ GC ,

and the composition ³ ◦ É : F → GC . Because GC is of level C, it follows that ker(³ ◦ É) § ker ϕ.

Also, because ker É ¦ ker(³ ◦ É), we have that im(³ ◦ É) = GC is a quotient of F/(ker É ker ϕ) =
(F/ ker ϕ)/(ker É/ ker É∩ ker ϕ)= FC/ ker ÉC = im ÉC . So we have proved that im ÉC ≃ GC . □

Definition 5.2. For any 0-equivariant surjection É : F→ G, we define the pro-C completion of É to be

ÉC : FC→ GC in Lemma 5.1.

Corollary 5.3. Under the assumptions in Lemma 5.1, for any finite simple GC ì0-module A, we have

m(ÉC, 0, GC, A)f m(É, 0, G, A).

Proof. By definition of ÉC , ker ÉC is the quotient of ker É by ker É∩ ker ϕ, and we denote this quotient

map by Æ : ker É→ ker ÉC . If N is a maximal proper FC ì 0-normal subgroup of ker ÉC such that

ker ÉC/N ≃ A as GC ì0-modules, then its preimage Æ−1(N ) in F is a maximal proper F ì0-normal

subgroup of ker É with ker É/Æ−1(N )≃ A. The corollary follows by the definition of the multiplicity. □

Proposition 5.4. Let G be an admissible 0-group, C a set of isomorphism classes of finite 0-groups and A

a finite simple GC ì0-module with gcd(|A|, |0|)= 1. Then, for a fixed positive integer n such that there

exists an admissible 0-presentation of G as (4-2), the multiplicity m(ÃC
ad, 0, GC, A) does not depend on

the choice of Ãad, and so we denote m(ÃC
ad, 0, GC, A) by mC

ad(n, 0, G, A). Then

mC
ad(n, 0, G, A)f mad(n, 0, G, A).

Moreover, if mad(n, 0, G, A) is finite, then the equality holds for sufficiently large C.

Proof. Since A is finite, we can find a finite set C1 ¢ C of isomorphism classes of finite 0-groups such that

the map GCì0→Aut(A) induced by the GCì0 action on A factors through GC1 ì0, and hence A is a

simple GC1 ì0-module. Let C1¢ C2¢ · · · be an ascending sequence of finite sets of isomorphism classes
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of finite 0-groups with ∪Ci = C. For each i f j, we have that m(Ã
Ci
ad, 0, GCi , A)f m(Ã

C j

ad , 0, GC j , A)f
m(ÃC

ad, 0, GC, A) by Corollary 5.3, and hence

m(ÃC
ad, 0, GC, A)= lim

i→∞
m(Ã

Ci
ad, 0, GCi , A).

Since Ci is a finite set of 0-groups, [Liu et al. 2024, Remark 4.9] shows that the multiplicity m(Ã
Ci
ad,0,GCi , A)

does not depend on the choice of Ãad. So we obtained that m(ÃC
ad, 0, GC, A) also does not depend on the

choice of Ãad. The inequality in the proposition follows by m(ÃC
ad, 0, GC, A)f m(Ãad, 0, G, A).

The last statement in the proposition then automatically follows because

mad(n, 0, G, A)= sup
D: finite set
of 0-groups

mD
ad(n, 0, G, A). □

6. The heights of pro-C groups

Definition 6.1. For a finite group H, we define h(H) to be the smallest integer n such that there exists a

length-n sequence of normal subgroups of H,

1= H0 ◁ H1 ◁ · · ·◁ Hn = H,

where Hi+1/Hi is isomorphic to a direct product of minimal normal subgroups of H/Hi . We define the

height of H to be

ĥ(H)=max{h(U ) |U is a subquotient of H}.

For a profinite group H, the height is defined as

ĥ(H)= sup
U : finite

quotient of H

ĥ(U ).

Lemma 6.2. Let G and H be two finite groups. Then ĥ(G× H)=max{ĥ(G), ĥ(H)}.

Proof. Note that a subquotient of G or H is a subquotient of G× H, so ĥ(G× H)gmax{ĥ(G), ĥ(H)}.
It suffices to show that h(U )fmax{ĥ(G), ĥ(H)} for any subquotient U of G× H . Each subquotient U

of G× H is a quotient of a subgroup V of G× H. Then because a sequence of normal subgroups of V

induces a sequence of normal subgroups of U, and a minimal normal subgroup is mapped to a product of

minimal normal subgroups or the trivial subgroup under any quotient map. We see that h(U )f h(V ), so

we only need to show that h(V )fmax{ĥ(G), ĥ(H)} for any subgroup V ¢ G× H.

We let ProjG and ProjH be the projections mapping G × H to G and H respectively, and denote

VG = ProjG(V ) and VH = ProjH (V ). Then ProjG ×ProjH maps V injectively into VG×VH . Let n denote

max{ĥ(G), ĥ(H)}, and then there exists a sequence

1◁ VG,1× VH,1 ◁ VG,2× VH,2 ◁ · · ·◁ VG,n × VH,n = VG × VH .

of normal subgroups of VG × VH of length n, where {V∗,i } for ∗ = G or H is a sequence of normal

subgroups of V∗ such that V∗,i+1/V∗,i is a direct product of minimal normal subgroups of V∗/V∗,i .
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Assume that A is a minimal normal subgroup of VG × VH contained in VG,1× VH,1 such that A∩ V ̸= 1.

Since V is a subgroup of VG ×VH , we have that A∩V is normal in V. Then ProjG ×ProjH sends A∩V

to a normal subgroup of VG×VH that is contained in ProjG ×ProjH (A)¢ VG,1×VH,1. We see that A∩V

is A, because A∩ V ̸= 1 and A is minimal normal in VG × VH . In particular, A∩ V is a minimal normal

subgroup of V, because otherwise ProjG would map a minimal normal subgroup of V contained in A∩V

to a normal subgroup of VG that is properly contained in A which contradicts to the assumption that A

is minimal normal. Thus, we have shown that V ∩ (VG,1× VH,1) is a direct product of minimal normal

subgroups of V. Then by induction on i , we see that {Vi := V ∩ (VG,i × VH,i )}ni=1 forms a sequence of

normal subgroups of V such that Vi+1/Vi is a direct product of minimal normal subgroups of V/Vi , and

hence h(V )fmax{ĥ(G), ĥ(H)}. □

Proposition 6.3. Let 0 be a finite group and C a finite set of isomorphism classes of finite 0-groups. For

any 0-group G, we have that ĥ(GC) is at most

ĥC :=max{ĥ(H) | H ∈ C}.
Proof. By definition of ĥ(GC), it suffices to prove ĥ(G)f ĥC for any G ∈ C. So we just need to show that

the three actions,

(1) taking 0-quotients,

(2) taking 0-subgroups, and

(3) taking finite direct products,

do not produce groups with larger value of ĥ. For the first two actions, it is obvious that if H is a

0-quotient or a 0-subgroup of G, then it is a quotient or a subgroup of G by forgetting the 0 actions, and

hence ĥ(H)f ĥ(G) by definition of heights. The last action follows by Lemma 6.2. □

We finish this section by applying Proposition 6.3 to prove the following number theory theorem.

Theorem 6.4. Let k/Q be a Galois global field extension with Gal(k/Q)≃ 0 and S a finite k/Q-closed

set of places of k. Let C be a finite set of isomorphism classes of finite 0-groups. Then GS(k)C is a

finite group.

Proof. By Proposition 6.3, we have that

h := ĥ(GS(k)C)f ĥC

is finite. So there exists a sequence of normal subgroups of GS(k)C ,

1= H0 ◁ H1 ◁ · · ·◁ Hh = GS(k)C,

such that Hi+1/Hi is isomorphic to a direct product of minimal normal subgroups of Hh/Hi . Note that

each of the minimal normal subgroups is a (not necessarily finite) direct product of isomorphic finite

simple groups. So, for each i , Hi+1/Hi as a group is a direct product of finite simple groups. On the

other hand, GS(k)C is a quotient of GS(k), so is the Galois group of an extension of k that is unramified

outside S. Therefore, Hi+1/Hi is the Galois group of an extension Ki/Ki+1 of some intermediate fields

between kS and k. We denote by Si the set of primes of Ki lying above S.
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For a prime P of Ki , the local absolute Galois group GP(Ki ) is finitely generated, so there are finitely

many Galois extensions of (Ki )P having a fixed Galois group. Then for a simple group E , there exists

an integer NE,P(Ki ) for each P ∈ Si , such that any Galois extension of (Ki )P whose Galois group is a

subgroup of E has discriminant at most NE,P(Ki ). Let NE,S(Ki ) denote the product
∏

P∈Si
NE,P(Ki ).

By the Hermite-Minkowski theorem (see [Goss 1996, Theorem 8.23.5(3)] for the function field version

of this theorem), for each finite simple group E , there are only finitely many extensions of Ki that have

Galois group E and of discriminant at most NE,S(Ki ). Therefore, there are finitely many extensions

of Ki that are of Galois group E and unramified outside Si .

Since C is finite, there are only finitely many simple groups that appear as composition factors of

groups in C (see [Liu and Wood 2020, Corollary 6.12]). Now we consider the tower of extensions Ki .

Note that Kh = k and Gal(Kh−1/Kh)≃ Hh/Hh−1. By the above argument, we conclude that Hh/Hh−1 is

a direct product of finite simple groups, that there are finitely many choices of these finite simple groups,

and that for each of them there are finitely many copies of this simple group appearing in Hh/Hh−1. So

we obtain that Hh/Hh−1 is finite, and hence Kh−1 is a finite extension of k. By induction, we see that

Hi+1/Hi is finite for each i = h− 1, . . . , 0, and it follows that GS(k)C is finite. □

7. A generalized version of global Euler–Poincaré characteristic formula

Throughout this section, we let k/Q be a finite Galois extension of global fields, and S be a finite nonempty

k/Q-closed set of primes of k such that S∞(k)¦ S. For each A ∈Mod(Gal(kS/Q)), we define

Çk/Q,S(A)= #H 2(GS(k), A)Gal(k/Q)#H 0(GS(k), A)Gal(k/Q)

#H 1(GS(k), A)Gal(k/Q)
,

where Gal(k/Q) acts on H i (GS(k), A) by conjugation. We will prove the following theorem.

Theorem 7.1. Use the assumption at the beginning of this section. If A ∈ModS(Gal(kS/Q)) has order

prime to [k : Q], then

Çk/Q,S(A)= #
( ⊕

v∈S∞(Q)

Ĥ 0(Qv, A′)
)/

#
( ⊕

v∈S∞(Q)

H 0(Qv, A′)
)
.

Remark 7.2. (1) If k is a function field, then the theorem says that Çk/Q,S(A)= 1 since S∞(k)=∅.

(2) When k = Q, the theorem is exactly the global Euler–Poincaré characteristic formula [Neukirch et al.

2008, Theorem (8.7.4)].

(3) When Q is a number field, a similar result is proven in [Clozel et al. 2008, Lemma 2.3.3].

7.1. Preparation for the proof.

Lemma 7.3. Let G be a profinite group and U an open normal subgroup of G. Let H be an open subgroup

of G and V denote U ∩ H. Then H/V is naturally a subgroup of G/U, and for an H-module A we have

H i (U, IndH
G A)∼= Ind

H/V
G/U H i (V, A)

as G/U-modules for each i g 0.
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Proof. Under the quotient map G ↠ G/U, H/V is the image of H, so it is a subgroup of G/U. Then

IndH
G A = IndUH

G IndH
UH A =

⊕
Ã∈G/UH

Ã(IndH
UH A),

where we denote by Ã(IndH
UH A) the ÃUHÃ−1-module, whose underlying group is IndH

UH A and the

action of Ä ∈ ÃUHÃ−1 is given by a 7→ Ã−1ÄÃa. So

H i (U, IndH
G A)=

⊕
Ã∈G/UH

H i (U, Ã (IndH
UH A))

=
⊕

Ã∈G/UH
Ã∗H

i (U, IndH
UH A)

= Ind
H/V
G/U H i (U, IndH

UH A), (7-1)

where the second equality follows by U⊴G and the definition of the conjugation action Ã∗ on cohomology

groups, and the last equality is because the quotient map G→ G/U maps a set of representatives of

G/UH to a set of representatives of (G/U )/(H/V ). Since A is an H -module, UH acts on IndV
U A, and

moreover, it follows by V = H ∩U that IndV
U A = IndH

UH A as UH -modules. So we have the following

identity of H/V -modules:

H i (U, IndH
UH A)= H i (U, IndV

U A)∼= H i (V, A), (7-2)

where the last isomorphism follows by Shapiro’s lemma. The lemma follows from (7-1) and (7-2). □

For the rest of this section, we assume S is a nonempty k/Q-closed set of primes of k containing S∞
and let G = Gal(kS/Q) and U = GS(k). For each open subgroup H of Gal(kS/Q) we let V = U ∩ H

and K be the fixed field of V, and define a map

ϕH,S :Mod(H)→ K ′0(Z[H/V ]),

A 7→ [H 0(V, A)] − [H 1(V, A)] + [H 2(V, A)] −
[ ⊕
P∈S∞(K )

Ĥ 0(KP, A′)
](
+

[ ⊕
P∈S∞(K )

H 0(KP, A′)
](

,

where H/V acts on
⊕

P∈S∞(K ) H 0(KP, A′) (similarly on Tate cohomology) by its permutation action

on S∞(K ) and by the GalP(K/Q) ∩ H on each summand, and the Pontryagin dual is taking on the

classes of K ′0(Z[H/V ]).

Lemma 7.4. Using the notation above, we have the following isomorphisms of G/U-modules for any

A ∈Mod(H): ⊕
p∈S∞(k)

H 0(kp, IndH
G A)∼= Ind

H/V
G/U

⊕
P∈S∞(K )

H 0(KP, A), (7-3)

⊕
p∈S∞(k)

Ĥ 0(kp, IndH
G A)∼= Ind

H/V
G/U

⊕
P∈S∞(K )

Ĥ 0(KP, A). (7-4)

Proof. It suffices to fix a v ∈ S∞(Q) and prove (7-3) and (7-4) for places above v. For each p ∈ Sv(k),

IndH
G A as a Gv(Q)-module has the following canonical decomposition (see [Neukirch et al. 2008, §1.5,

Example 5]):

ResG
Gv

IndH
G A =

⊕
Ã∈Gv\G/H

Ind
Gv∩Ã HÃ−1

Gv
Ã ResH

Ã−1GvÃ∩H A. (7-5)
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If v splits completely in k/Q, then Galv(k/Q) = 1 and Gp(k) = Gv(Q). So we have the following

identities of Galv(k/Q)-modules:

H 0(kp, IndH
G A)=

⊕
Ã∈Gv\G/H

H 0(Gv ∩ Ã HÃ−1, Ã ResH
Ã−1GvÃ∩H A)

=
⊕

Ã∈Gv\G/H
Ã∗H

0(ÃGvÃ
−1 ∩ H, ResH

Ã−1GvÃ∩H A), (7-6)

where the first equality uses (7-5) and Shapiro’s lemma, and the second follows by definition of

the conjugation action on cohomology groups. We let L denote the fixed field of H. Then, the set

{ÃGpÃ−1 ∩ H | Ã ∈ Gp\G/H} is exactly the set {Gw(L) | w ∈ Sv(L)}. Therefore, we have the identity of

abelian groups (hence of Galv(k/Q)-modules since Galv(k/Q)= 1)

H 0(kp, IndH
G A)=

⊕
w∈Sv(L)

H 0(Lw, A),

and hence ⊕
p∈Sv(k)

H 0(kp, IndH
G A)= Ind1

G/U

( ⊕
w∈Sv(L)

H 0(Lw, A)
)

(7-7)

because the Gal(k/Q)-action on this direct sum is determined by its permutation action on places above v.

On the other hand, because K = kL , the assumption that v splits completely in k/Q implies that w splits

completely in K for any w ∈ Sv(L) and then we obtain

⊕
P∈Sv(K )

H 0(KP, A)= Ind1
H/V

( ⊕
w∈Sv(L)

H 0(Lw, A)
)
. (7-8)

Thus, (7-7) and (7-8) prove (7-3) in this case. The isomorphism in (7-4) can be proven using the exactly

same argument.

Otherwise, v is ramified in k/Q, so Galv(k/Q)≃ Z/2Z, Gp(k)= 1 and GP(K )= 1 for each p ∈ Sv(k)

and P ∈ Sv(K ). Then (7-4) automatically follows because of Ĥ 0(kp, IndH
G A)= Ĥ 0(KP, A)= 0. The set

of right cosets G/H naturally acts on Sv(L), and moreover, for any w ∈ Sv(L) and Ã1, Ã2 ∈ G/H, Ã−1
1 Ã2

is contained in Gw(L) ¢ Gal(K/L) if and only if Ã1(w) = Ã2(w). So by (7-5), we have the following

identities of Galp(k/Q)-modules:

H 0(kp, IndH
G A)= ResG

Gv(Q) IndH
G A =

⊕
w∈SR(L)

Aw·
⊕

w∈SC(L)

(Aw· Ä Aw),

where Aw := ResH
Gw(L) A and Ä denotes the nontrivial element in Galv(k/Q). So we have the following

identity of Gal(k/Q)-modules:

⊕
p∈Sv(k)

H 0(kp, IndH
G A)=

⊕
w∈SR(L)

Ind
Galv(k/Q)

Gal(k/Q) Aw·
⊕

w∈SC(L)

Ind1
Gal(k/Q) Aw. (7-9)

Finally, because w ∈ Sv(L) is imaginary if and only if Galw(K/L)= 1, we have
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Ind
H/V
G/U

⊕
P∈Sv(K )

H 0(KP, A)= Ind
H/V
G/U

( ⊕
w∈Sv(L)

⊕
P∈Sw(K )

Aw

)

= Ind
H/V
G/U

( ⊕
w∈SR(L)

Ind
Galw(K/L)

Gal(K/L) Aw·
⊕

w∈SC(L)

Ind1
Gal(K/L) Aw

)

=
⊕

w∈SR(L)

Ind
Galv(k/Q)

Gal(k/Q) Aw·
⊕

w∈SC(L)

Ind1
Gal(k/Q) Aw. (7-10)

Thus, (7-3) follows by (7-9) and (7-10). □

The corollary below immediately follows by Lemmas 7.3, 7.4 and the fact IndH
G A′ = (IndH

G A)′.

Corollary 7.5. For any open subgroup H of G and A ∈Mod(H), we have

ϕG,S(IndH
G A)≃ Ind

H/V
G/U ϕH,S(A).

Lemma 7.6. The map ϕG,S is additive on short exact sequences of modules in ModS(G).

Proof. Denote GS(k) by GS . Let 0→ A1 → A2 → A3 → 0 be an exact sequence of finite modules

in ModS(G). By considering the associated long exact sequence of group cohomology, we have the

following identity of elements in K ′0(Z[Gal(k/Q)]):
2∑

i=0

3∑
j=1

(−1)i+ j+1[H i (GS, A j )] =
4∑

i=3

3∑
j=1

(−1)i+ j [H i (GS, A j )] + [¶H 4(GS, A3)], (7-11)

where ¶ denotes the connecting map H i→ H i+1 (or Ĥ i→ Ĥ i+1 for Tate cohomology groups) in the long

exact sequence. By [Neukirch et al. 2008, Theorem (8.6.10)(ii)], for i g 3 and any j, the restriction map

H i (GS, A j )→
⊕

p∈SR(k) H i (kp, A j ) is an isomorphism. Note that for p ∈ SR(k), we have Gp(k)= Z/2Z,

so by [Neukirch et al. 2008, Propositions (1.7.1) and (1.7.2)] we have

4∑
i=3

3∑
j=1

(−1)i+ j [H i (GS, A j )] =
4∑

i=3

3∑
j=1

(−1)i+ j
[ ⊕
p∈SR(k)

H i (kp, A j )
]

=
∑

p∈SR(k)

0∑
i=−1

3∑
j=1

(−1)i+ j [Ĥ i (kp, A j )] = 0.

So (7-11) gives

2∑
i=0

3∑
j=1

(−1)i+ j+1[H i (GS, A j )] = [¶H 4(GS, A3)]

=
[ ⊕
p∈SR(k)

¶H 4(kp, A3)
]
=

[ ⊕
p∈SR(k)

¶ Ĥ 0(kp, A3)
]

=
[ ⊕
p∈SR(k)

ker(Ĥ 1(kp, A1)→ Ĥ 1(kp, A2))
]

=
[ ⊕
p∈SR(k)

coker(Ĥ 1(kp, A′2)→ Ĥ 1(kp, A′1))
](

=
[ ⊕
p∈SR(k)

¶ Ĥ 1(kp, A′1)
](

, (7-12)
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where the fourth and last equalities use the long exact sequence of Tate cohomology groups, and the fifth

uses the local duality theorem [Neukirch et al. 2008, Theorem (7.2.17)]. On the other hand, again by

[Neukirch et al. 2008, Propositions (1.7.1) and (1.7.2)], the long exact sequence induced by

0→ A′3→ A′2→ A′1→ 0 (7-13)

implies

3∑
j=1

(−1) j+1
[ ⊕
p∈SR(k)

Ĥ 0(kp, A′j )
]
=

3∑
j=1

(−1) j+1
[ ⊕
p∈SR(k)

Ĥ 1(kp, A′j )
]

=
3∑

j=1

(−1) j+1
[ ⊕
p∈SR(k)

H 0(kp, A′j )
]
+

[ ⊕
p∈SR(k)

¶H 1(kp, A′1)
]
, (7-14)

where the last equality follows by the long exact sequence of group cohomology induced by (7-13).

Therefore, combining (7-12) and (7-14), we obtain

ϕG,S(A1)−ϕG,S(A2)+ϕG,S(A3)= 0. □

Lemma 7.7. If ℓ∈N(S) is a prime, then we have the following identities of elements in K ′0(Fℓ[Gal(K/Q)])
for any Galois extension K of Q with k(µℓ)¢ K ¢ kS:

[H 0(Gal(kS/K ), µℓ)] = [µℓ],
[H 1(Gal(kS/K ), µℓ)] = [O×K,S/ℓ] + [ClS(K )[ℓ]],

[H 2(Gal(kS/K ), µℓ)] = [ClS(K )/ℓ] − [Fℓ] +
[ ⊕
P∈S\S∞(K )

Fℓ

]
+

[ ⊕
P∈S∞(K )

Ĥ 0(GP, Fℓ)
]
,

where ClS(K ) is the S-class group of K, ClS(K )[ℓ] is the ℓ-torsion subgroup of ClS(K ), and O
×
K ,S/ℓ and

ClS(K )/ℓ denote the maximal exponent-ℓ quotients of O×K ,S and ClS(K ) respectively.

Proof. The lemma follows directly from the claims (i)–(iii) in the proof of [Neukirch et al. 2008,

Theorem 8.7.4]. Though the proof of those claims only shows these identities when each terms are treated

as Grothendieck group elements of Gal(K/k)-modules, one can check that the ideas there work generally

for the base field Q instead of k. □

Proof of Theorem 7.1. For any G-module A and v ∈ S∞(Q),

⊕
p∈Sv(k)

H 0(kp, A′)∼= Ind
Galp(k/Q)

Gal(k/Q) H 0(kp, A′)

as Gal(k/Q)-modules, where p on the right-hand side is an arbitrarily chosen place in Sv(k). So by

Shapiro’s lemma, we have

( ⊕
p∈Sv(k)

H 0(kp, A′)
)Gal(k/Q) ∼= H 0(kp, A′)Galp(k/Q) = H 0(Qv, A′). (7-15)
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If Galp(k/Q)=Z/2Z, then Ĥ 0(kp, A′)= Ĥ 0(Qv, A′)=0 because |A′| has to be odd as gcd(|A|, [k :Q])=1.

If Galp(k/Q)= 1, then Ĥ 0(kp, A′)= Ĥ 0(Qv, A′). So

( ⊕
p∈Sv(k)

Ĥ 0(kp, A′)
)Gal(k/Q) ∼= Ĥ 0(kp, A′)Galp(k/Q)

= Ĥ 0(Qv, A′). (7-16)

Note that for any M ∈ Mod(Gal(k/Q)), we have (M()Gal(k/Q) = HomGal(k/Q)(M, Q/Z) ≃ MGal(k/Q).

When M has order prime to [k :Q], MGal(k/Q) and MGal(k/Q) are isomorphic. So the Gal(k/Q)-invariants of

( ⊕
p∈Sv(k)

H 0(kp, A′)
)(

and
( ⊕
p∈Sv(k)

Ĥ 0(kp, A′)
)(

are H 0(Qv, A′) and Ĥ 0(Qv, A′) respectively.

We let R denote the ring
∏

p∤[k:Q] Zp. Let 2 : K ′0(R[Gal(k/Q)])→ Z be the map defined by sending

the class [A] to the size of AGal(k/Q), which is a group homomorphism because taking Gal(k/Q)-invariants

is an exact functor in the category of R[Gal(k/Q)]-modules. So we want to show that 2 ◦ ϕG,S is the

zero map when restricted to modules in ModS(Gal(kS/Q)) with order prime to [k : Q]. By Lemma 7.6

we just need to show

2 ◦ϕG,S(K ′0(Fℓ[Gal(E/Q)]))= 0 (7-17)

for any prime integer ℓ ∈ N(S) with ℓ ∤ [k : Q] and any finite extension E of k that is Galois over Q.

Because the codomain of the map 2 is free, (7-17) is equivalent to the vanishing of 2 ◦ ϕG,S on the

torsion-free part of K ′0(Fℓ[Gal(E/Q)]). Note that, by [Neukirch et al. 2008, Lemma (7.3.4)], the Q-linear

space K ′0(Fℓ[Gal(E/Q)])¹Z Q is generated by classes in the form of IndC
Gal(E/Q) A, where C runs over

all cyclic subgroups of Gal(E/Q) of order prime to ℓ and A runs over classes of K ′0(Fℓ[C]). For such C

and A, we denote by C the full preimage of C in G = Gal(kS/Q), and then by Corollary 7.5 and

IndC
Gal(E/Q) A= IndC

G A, we have that 2◦ϕG,S(IndC
G A)= 0 if and only if 2◦ϕC,S(A)= 0. By setting G

to be C , U to be C ∩U, Q to be (kS)
C and k to be (kS)

C∩U , we finally reduce the problem to the

statement that we will prove in the rest of this section:

2 ◦ϕG,S(A)= 0 for all A ∈Modℓ(G) such that k(A)/Q is

a cyclic extension of Q of order relatively prime to ℓ. (7-18)

We let K = k(A, µℓ). So under the assumption in (7-18), we have that Gal(K/Q) is an abelian group of

order relatively prime to ℓ, in which case the Hochschild–Serre spectral sequence for the group extension

1→ Gal(kS/K )→ Gal(kS/k)→ Gal(K/k)→ 1

and the module A degenerates, and then for each i g 0 we have that

H i (Gal(kS/k), A)∼= H i (Gal(kS/K ), A)Gal(K/k). (7-19)
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We first consider the module A = µℓ, then K = k(µℓ) and we let G = Gal(K/Q). As ℓ ∤ Gal(K/Q),

in both the number field case (by [Neukirch et al. 2008, Corollary (8.7.3)]) and the function field case

(by a standard argument using the divisor group), we have that

[O×K ,S/ℓ] =
[ ⊕
P∈S(K )

Fℓ

]
+ [µℓ] − [Fℓ]

in K ′0(Fℓ[G]). Then since [ClS(K )[ℓ]] = [ClS(K )/ℓ] as they are the kernel and the cokernel of the map

ClS(K )
×ℓ−→ ClS(K ), by Lemma 7.7 we have

2∑
i=0

(−1)i [H i (Gal(kS/K ), µℓ)] =
[ ⊕
P∈S∞(K )

Ĥ 0(KP, Fℓ)
]
−

[ ⊕
P∈S∞(K )

H 0(KP, Fℓ)
]
, (7-20)

and hence ϕG,S(µℓ) = 0 follows easily by (7-19) and by the arguments in the first paragraph of this

subsection. Thus 2 ◦ϕG,S(µℓ)= 0.

For a general finite module A ∈Modℓ(G), we again let K = k(A, µℓ) and G =Gal(K/Q). We define

Ç :Modℓ(G)→ K ′0(Fℓ[G]), M 7→
2∑

i=0

(−1)i [H i (Gal(kS/K ), M)].

Because A and µℓ are both trivial Gal(kS/K )-modules, the pairing

µℓ×Hom(A′, Fℓ)→ Hom(A′, µℓ)= A, (·, f ) 7→ (x 7→ · f (x))

defines G-isomorphisms via the cup product

H i (Gal(kS/K ), µℓ)¹Z Hom(A′, Fℓ)
∼−→ H i (Gal(kS/K ), A).

So we have Ç(A)= [A′(]Ç(µℓ), and hence by (7-20) we have

Ç(A)= [A′(]
([ ⊕

P∈S∞(K )

Ĥ 0(KP, Fℓ)
]
−

[ ⊕
P∈S∞(K )

H 0(KP, Fℓ)
])

.

If Q is a function field, then (7-18) follows immediately after taking the G-invariants on both sides above.

For the rest of the proof we consider the number field case. Let S−∞(Q) be the set of archimedean

places of Q lying below the imaginary places of K if ℓ= 2, and be the set S∞(Q) if ℓ is odd. One can

check by definition of Ĥ 0 that for any module M ∈Modℓ(G) (for example, M = A′ and M = Fℓ), we have

[ ⊕
P∈S∞(K )

Ĥ 0(KP, M)
]
−

[ ⊕
P∈S∞(K )

H 0(KP, M)
]
=

∑
v∈S−∞(Q)

−[Ind
Gv

G
M],

where the group Gv is the decomposition subgroup Gv(K/Q). Also, note that (Ind
Gv

G
Fℓ)¹Z M∼= Ind

Gv

G
M

for any M ∈Modℓ(G) and that

(Ind
Gv

G
M)G = H 0(G, Ind

Gv

G
M)= H 0(Gv, M)= MGv .
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So we have

2 ◦ϕG,ℓ(A)= #
( 2∑

i=0

(−1)i [H i (GS(k), A)] −
[ ⊕
p∈S∞(k)

Ĥ 0(kp, A′)
](
+

[ ⊕
p∈S∞(k)

H 0(kp, A′)
]()Gal(k/Q)

= #
(
Ç(A)−

[ ⊕
P∈S∞(K )

Ĥ 0(KP, A′)
](
+

[ ⊕
P∈S∞(K )

H 0(KP, A′)
]()G

=
∑

v∈S−∞(Q)

#
(
−[A′(][Ind

Gv

G
Fℓ] + [Ind

Gv

G
A′](

)G

=
∑

v∈S−∞(Q)

#
(
−[Ind

Gv

G
A′(] + [Ind

Gv

G
A′](

)G = 0,

completing the proof of Theorem 7.1. □

8. Definition and properties of BS(k, A)

Throughout this section, we assume that k/Q is a finite Galois extension of global fields, and that S is a

k/Q-closed set of primes of k (not necessarily nonempty or containing S∞).

Let p be a prime of the global field k. We let Gp = Gp(k) and Tp = Tp(k). Recall that for a Gp-module

A of order not divisible by char(k), the unramified cohomology group is defined to be

H i
nr (kp, A)= im(H i (Gp/Tp, ATp)→ H i (kp, A)),

where the map is the inflation map. Then we consider the following homomorphism of cohomology groups:

∏
p∈S

H 1(kp, A)×
∏
p ̸∈S

H 1
nr (kp, A) ↪→

∏
p

H 1(kp, A) ∼−→
∏
p

H 1(kp, A′)(→ H 1(k, A′)(. (8-1)

The first map is the natural embedding of cohomology groups. The second map is an isomorphism

because of the local Tate duality theorem [Neukirch et al. 2008, Theorems 7.2.6 and 7.2.17]. The last

map is defined by the Pontryagin dual of the product of restriction map H 1(k, A′)→ H 1(kp, A′) for each

prime p of k. In particular, the restriction of the composition of the last two maps in (8-1) to the restricted

product is the map ∏
p

′H 1(kp, A)→ H 1(k, A′)(

used in the long exact sequence of Poitou–Tate [Neukirch et al. 2008, (8.6.10)(i)]. Here the restricted

product
∏′

p H 1(kp, A) is the subgroup of
∏

p H 1(kp, A) consisting of all (xp) such that xp ∈ H 1
nr (kp, A)

for almost all p.

Definition 8.1. For a global field k, a set S of primes of k, and A ∈Mod(Gk) of order not divisible by

char(k), we define

BS(k, A)= coker
( ∏
p∈S

H 1(kp, A)×
∏
p ̸∈S

H 1
nr (kp, A)→ H 1(k, A′)(

)
,

where the map is the composition of maps in (8-1).
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Remark 8.2. (1) When A is a finite G Q-module and S is k/Q-closed, the maps in (8-1) are compatible

with the conjugation action of Gal(k/Q) on cohomology groups, so BS(k, A) is naturally a Gal(k/Q)-

module.

(2) Using the language of the Selmer groups, BS(k, A) is the Pontryagin dual of the Selmer group of the

Galois module A′ consisting of elements of H 1(k, A′) that have images inside the subgroup

∏
p∈S

1×
∏
p ̸∈S

ker(H 1(kp, A′)→ H 1
nr (kp, A)()¢

∏
p

H 1(kp, A′).

under the product of local restriction maps.

Proposition 8.3. If A = Fℓ is the trivial Gk-module with ℓ ̸= char(k), then BS(k, Fℓ) is the Pontryagin

dual of the Kummer group

VS(k, ℓ)= ker
(

k×/k×ℓ→
∏
p∈S

k×p /k×ℓ
p ×

∏
p ̸∈S

k×p /Upk×ℓ
p

)
.

Proof. By the class field theory, we have

H 1(k, µℓ)∼= k×/k×ℓ, H 1(kp, µℓ)∼= k×p /k×ℓ
p , and H 1

nr (kp, Fℓ)
( ∼= k×p /Upk×ℓ

p .

Then the proposition follows directly from Definition 8.1. □

The following lemma is a generalization of [Neukirch et al. 2008, Lemma(10.7.4)(i)]

Lemma 8.4. Let k/Q be a finite Galois extension of global fields, T § S be k/Q-closed sets of primes

of k, and A ∈Mod(Gal(kS/Q)) be of order not divisible by char(k). Then we have the following exact

sequence that is compatible with the conjugation by Gal(k/Q):

H 1(GS(k), A) ↪→ H 1(GT (k), A)→
⊕

p∈T \S
H 1(Tp(k), A)Gp(k)→ BS(k, A) ↠ BT (k, A).

Proof. We consider the commutative diagram

X
1(k, A)

H 1(GS, A) H 1(k, A) H 1(GkS , A)GS

∏
p∈S

′H 1(kp, A)×
∏
p ̸∈S

H 1
nr (kp, A)

∏
p

′H 1(kp, A)
⊕
p ̸∈S

H 1(Tp, A)Gp

H 1(k, A′)( H 1(k, A′)(

BS(k, A) X
2(k, A′)

The exactnesses of the second row and the third row follow from the Hochschild–Serre spectral sequence,

and last arrow in the third row is surjective because of the fact that H 2
nr (Gp, A)= 0 as Gp/Tp ≃ Ẑ when p
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is nonarchimedean and 1 when p is archimedean. The exact sequence of the first column follows from

the definition of BS(k, A), and the second column follows from the long exact sequence of Poitou–Tate

[Neukirch et al. 2008, (8.6.10)]. The right vertical map is injective since GkS is generated by the inertia

groups of primes outside S.

We consider the map H 1(k, A)→
⊕

p ̸∈S H 1(Tp, A)Gp in the diagonal of the square diagram on the

right. Since H 1(GS, A) is the kernel of this map and X
1(k, A) is contained in this kernel, the top dashed

arrow exists and is injective. Then by diagram chasing, we have an exact sequence

X
1(k, A) ↪→ H 1(GS, A)→

′∏
p∈S

H 1(kp, A)×
∏
p ̸∈S

H 1
nr (kp, A)→ H 1(k, A′)(↠ BS(k, A). (8-2)

We apply the snake lemma to the diagram

∏
p∈S

′H 1(kp, A)×
∏
p ̸∈S

H 1
nr (kp, A) H 1(k, A′)(

∏
p∈T

′H 1(kp, A)×
∏
p ̸∈T

H 1
nr (kp, A) H 1(k, A′)(

⊕
p∈T \S

H 1(Tp, A)Gp

where the horizontal map above is from (8-2), and we obtain the exact sequence

H 1(GS, A)

X
1(k, A)

↪→ H 1(GT , A)

X
1(k, A)

→
⊕

p∈T \S
H 1(Tp, A)Gp→ BS(k, A) ↠ BT (k, A).

Note that the inflation map H 1(GS, A) ↪→ H 1(GT , A) maps the submodule X
1(k, A) to itself, because

X
1(k, A) is the kernel of H 1(G∗, A)→

∏
p H 1(kp, A) for ∗ = S, T. Therefore we proved the exact

sequence in the lemma, and it is naturally compatible with the conjugation action by Gal(k/Q). □

Proposition 8.5. Let k/Q be a finite Galois extension of global fields and S a k/Q-closed set of primes of

k. Then for any A ∈Mod(Gal(kS/Q)) of order not divisible by char(k), we have the following inequality

of elements in K ′0(Gal(k/Q)):

[X2
S(k, A)] f [BS(k, A)].

Proof. We consider the commutative diagram

H 1(GS, A) ↪→ H 1(k, A)→ H 1(kS, A)GS H 2(GS, A) H 2(k, A)

∏
p∈S

H 2(kp, A)
∏
p

H 2(kp, A)

³ ´

ÄS Ä (8-3)



Presentations of Galois groups of maximal extensions with restricted ramification 865

where the first row is the Hochschild–Serre long exact sequence of 1→ GkS → Gk→ GS→ 1. Because

im ³ = ker ´ ¦ ker Ä ◦´ = ker ÄS =X
2
S(k, A), we have an exact sequence

H 1(GS, A) ↪→ H 1(k, A)→ H 1(GkS , A)GS →X
2
S(k, A) ↠ ´(X2

S(k, A)).

Comparing this exact sequence to Lemma 8.4 using T = {all primes}, we have

H 1(k, A) H 1(kS, A)GS X
2
S(k, A) ´(X2

S(k, A))

H 1(k, A)
⊕
p ̸∈S

H 1(Tp, A)Gp BS(k, A) B{all primes}(k, A)

So by the vertical injection above, we have ker ´ ↪→ N := ker(BS(k, A)→ B{all primes}(k, A)). By the

diagram in (8-3), we have ´(ker ÄS)¦ ker Ä, which means ´(X2
S(k, A))¦X

2(k, A). Also, note that by

Definition 8.1 and the Poitou–Tate duality we have B{all primes}(k, A)=X
1(k, A′)( ∼=X

2(k, A). Then

we consider the two short exact sequence

0→ ker ´→X
2
S(k, A)→ ´(X2

S(k, A))→ 0,

0→ N → BS(k, A)→ B{all primes}(k, A)→ 0,

Because ker ´ ↪→ N, ´(X2
S(k, A)) ↪→ B{all primes}(k, A) and every map respects the conjugation action

by Gal(k/Q), we have the desired inequality [X2
S(k, A)] f [BS(k, A)]. □

Remark 8.6. When A = Fℓ is the trivial module, then B{all primes}(k, Fℓ) vanishes [Neukirch et al. 2008,

Proposition 9.1.12(ii)], so there is an embedding X
2
S(k, Fℓ) ↪→ BS(k, Fℓ). However, for an arbitrary A,

Proposition 8.5 does not give such an embedding.

Lemma 8.7. Let k be a global field and S a set of primes of k containing S∞(k). Then for any

A ∈ModS(GS(k)) of order not divisible by char(k), we have X
1
S(k, A′)∼= BS(k, A)(.

Proof. We consider the commutative diagram

∏
p

H 1(kp, A′)
∏
p∈S

H 1(kp, A′)×
∏
p ̸∈S

H 1(Tp, A′)Gp

∏
p

H 1(kp, A)(
∏
p∈S

H 1(kp, A)(×
∏
p ̸∈S

H 1
nr (kp, A)(

∼ ∼

where the two vertical arrows are isomorphisms by the Tate local duality theorem and its consequence

that H 1(Tp, A′)Gp ∼−→ H 1
nr (kp, A)( when A is unramified at p and # tor(A) is prime to the characteristic
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of the residue field of kp (see the proof of [Neukirch et al. 2008, Theorem 7.2.15]). Then by definition,

we have

BS(k, A)( = ker
(

H 1(k, A′)→
∏
p∈S

H 1(kp, A)(×
∏
p ̸∈S

H 1
nr (kp, A)(

)

= ker
(

H 1(k, A′)→
∏
p∈S

H 1(kp, A′)×
∏
p ̸∈S

H 1(Tp, A′)Gp

)
.

So by applying the snake lemma to the commutative diagram

X
1
S(k, A′) H 1(GS, A′)

∏
p∈S

H 1(kp, A′)

BS(k, A)( H 1(k, A′)
∏
p∈S

H 1(kp, A′)×
∏
p ̸∈S

H 1(Tp, A′)Gp

H 1(kS, A′)GS
∏
p ̸∈S

H 1(Tp, A′)Gp

we obtain the desired isomorphism X
1
S(k, A′) ∼−→ BS(k, A)(. □

Corollary 8.8. For any set S of primes of a global field k and any A ∈Mod(GS(k)) of order not divisible

by char(k), we have that BS(k, A) is finite.

Proof. Define T = S ∪ S∞(k)∪ S|A|(k). By applying Lemma 8.4, we have

⊕
p∈T \S

H 1(Tp, A)Gp→ BS(k, A) ↠ BT (k, A). (8-4)

Since A∈ModT (GT ), by Lemma 8.7 and [Neukirch et al. 2008, Theorem 8.6.4], we have that BT (k, A)(∼=
X

1
T (k, A′) is finite. Also note that H 1(kp, A) is finite [Neukirch et al. 2008, Theorem 7.1.8(iv)] and

H 1(Tp, A)Gp is a quotient of H 1(kp, A). Thus, the direct product
∏

p∈T \S H 1(Tp, A)Gp is finite, and hence

the corollary follows by (8-4). □

9. Determination of ¶k/ Q,S(A)

Definition 9.1. Let k/Q be a finite Galois extension of global fields, S a finite k/Q-closed set of primes

of k, ℓ ̸= char(k) a prime integer not dividing [k : Q], and A ∈Modℓ(Gal(kS/Q)). We define

¶k/Q,S(A)= dimFℓ
H 2(GS(k), A)Gal(k/Q)− dimFℓ

H 1(GS(k), A)Gal(k/Q).

We will use the notation and assumption in Definition 9.1 throughout this section. When ℓ ∈N(S) and

S∞(k)¢ S, by Theorem 7.1, we have our first case for which ¶k/Q,S(A) can be determined.

Proposition 9.2. Assume ℓ ∈ N(S) and S £ S∞(k) is nonempty. Then

¶k/Q,S(A)=
∑

v∈S∞(Q)

(
dimFℓ

Ĥ 0(Qv, A′)− dimFℓ
H 0(Qv, A′)

)
− dimFℓ

AGal(kS/Q).
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So in this section, we will consider the cases that are not covered by Proposition 9.2. In Section 9.1,

we will deal with the case that Q is a function field and S = ∅, and obtain a formula for ¶k/Q,∅(A)

(Proposition 9.3). Then in Section 9.2, we will give an upper bound of ¶k/Q,S(A) when k is a number

field with Sℓ(k)∪ S∞(k) ̸¢ S (Proposition 9.4). In Section 9.2, we will prove Theorem 1.2 by setting

k = Q and applying Propositions 9.2 and 9.4.

9.1. Function field case with S = ∅.

Proposition 9.3. Assume k and Q are function fields. Let g= g(k) be the genus of the curve corresponding

to k.

(1) If g = 0, then ¶k/Q,∅(A)=− dimFℓ
AGal(k∅/Q).

(2) If g > 0, then ¶k/Q,∅(A)= dimFℓ
(A′)Gal(k∅/Q)− dimFℓ

AGal(k∅/Q).

Proof. When g= 0, we have G∅(k)∼= Ẑ by [Neukirch et al. 2008, Corollary 10.1.3(i)]. So H 2(G∅, A)= 0

as Ẑ has cohomological dimension 1 and H 1(G∅, A)∼= AG∅
by [Neukirch et al. 2008, Proposition 1.7.7(i)].

Then we see that

¶k/Q,∅(A)=− dimFℓ
(AG∅

)Gal(k/Q) =− dimFℓ
(AG∅

)Gal(k/Q) =− dimFℓ
AGal(k∅/Q),

where the second equality uses ℓ ∤ [k : Q], so we proved (1).

For the rest, we assume g > 0. Let » be the finite field of constants of k and C = Gal(»/»)∼= Ẑ. Then

there exists an exact sequence, for each j ,

H j (G∅(k»), A)C ↪→ H j (G∅(k»), A)
Frob−1−−−−→ H j (G∅(k»), A) ↠ H j (G∅(k»), A)C , (9-1)

where Frob is the Frobenius action on the cohomology groups defined by conjugation. Note that

Gal(k»/Q) acts on cohomology groups in (9-1), and

1→ C ∼= Gal(k»/k)→ Gal(k»/Q)→ Gal(k/Q)→ 1

is a central group extension because Gal(k/Q) acts trivially on the generator Frob of C . So the map

Frob−1 in (9-1) respects the Gal(k»/Q) actions. It follows that H j (G∅(k»), A)C and H j (G∅(k»), A)C

are in the same class in K ′0(Fℓ[Gal(k»/Q)]), and hence they are in the same class in K ′0(Fℓ[Gal(k/Q)]).
Because ℓ ∤ [k : Q] implies Fℓ[Gal(k/Q)] is semisimple, we have

H j (G∅(k»), A)C ≃ H j (G∅(k»), A)C (9-2)

as Gal(k/Q)-modules. Therefore, as C is cyclic,

H 1(C, H j (G∅(k»), A))≃ Ĥ−1(C, H j (G∅(k»), A))≃ H j (G∅(k»), A)C

≃ H 0(C, H j (G∅(k»), A)) (9-3)

as Gal(k/Q)-modules. Then we consider the Hochschild–Serre spectral sequence

E i j
2 = H i (C, H j (G∅(k»), A))⇒ H i+ j (G∅(k), A).
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As C has cohomological dimension 1, E i j
2 = 0 for each i > 1, and hence by [Neukirch et al. 2008,

Lemma 2.1.3(ii)] we have the following exact sequence for every j g 1:

H 1(C, H j−1(G∅(k»), A)) ↪→ H j (G∅(k), A) ↠ H 0(C, H j (G∅(k»), A)). (9-4)

Note that G∅(k) has strict cohomological ℓ-dimension 3 by [Neukirch et al. 2008, Corollary 10.1.3(ii)].

Then as ℓ ∤ [k : Q], taking Gal(k/Q)-invariants is exact on (9-4), and by computing the alternating sum

of (9-4) for j = 1, 2, 3 and applying (9-3), we have

3∑
j=1

(−1) j dimFℓ
H j (G∅(k), A)Gal(k/Q) =− dimFℓ

H 1(C, H 0(G∅(k»), A))Gal(k/Q)

=− dimFℓ
H 0(C, H 0(G∅(k»), A))Gal(k/Q)

=− dimFℓ
H 0(Gal(k∅/Q), A).

Also, [Neukirch et al. 2008, Corollary 10.1.3(ii)] shows that G∅(k) is a Poincaré group of dimension 3 with

dualizing module µ, so we have a functorial isomorphism H 3(G∅(k), A)∼= H 0(G∅(k), A′)(. Combining

the above computations, we see that

¶k/Q,∅(A)= dimFℓ
(H 0(G∅(k), A′)()Gal(k/Q)− dimFℓ

H 0(Gal(k∅/Q), A)

= dimFℓ
H 0(G∅(k), A′)Gal(k/Q)− dimFℓ

H 0(Gal(k∅/Q), A)

= dimFℓ
(A′)Gal(k∅/Q)− dimFℓ

AGal(k∅/Q),

where the second equality is because the Gal(k/Q)-invariants of M and M( have the same dimension

for any M ∈Modℓ(Gal(k/Q)). □

9.2. Number field case with Sℓ ∪ S∞ ̸¢ S.

Proposition 9.4. Assume k and Q are number fields. Let T = S ∪ Sℓ(k)∪ S∞(k). Then

¶k/Q,S(A)f logℓ(Çk/Q,T (A))+ dimFℓ
(A′)Gal(kT /Q)− dimFℓ

AGal(kS/Q)+ ϵk/Q,S(A),

where ϵk/Q,S(A)=−
∑

v∈I logℓ ∥#A∥v1 with

I = {v ∈ Sℓ(Q) such that Sv(k) ̸¢ S}.

In particular, when S =∅, the equality holds if and only if X2
∅(k, A) and B∅(k, A) are in the same class

of K ′0(Fℓ[Gal(k/Q)]).
Remark 9.5. For an arbitrary S, the equality holds if and only if the equalities in (9-5) hold. So when

S ̸=∅, if the equality holds then [X2
∅(k, A)] = [B∅(k, A)], but the converse is false.

Proof. First of all, by definition of X2
S and Proposition 8.5, we have the following inequalities of elements

in K ′0(Fℓ[Gal(k/Q)]):

[H 2(GS, A)] f [X2
S(k, A)] +

[ ⊕
p∈S

H 2(kp, A)
]
f [BS(k, A)] +

[ ⊕
p∈S

H 2(kp, A)
]
. (9-5)

1∥x∥v = q− ordv(x) where q is the cardinality of the residue field of v and ordv is the additive valuation with value group Z.
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By applying Lemma 8.4, we have

[BS(k, A)] − [H 1(GS, A)] = [BT (k, A)] − [H 1(GT , A)] +
[ ⊕
p∈T \S

H 1(Tp, A)Gp

]
. (9-6)

Since T contains Sℓ(k)∪ S∞(k), it follows that [BT (k, A)] = [X2
T (k, A)] by Lemma 8.7 and the Poitou–

Tate duality theorem. Also, note that the long exact sequence of Poitou–Tate [Neukirch et al. 2008,

(8.6.10)] induces an exact sequence

X
2
T (k, A) ↪→ H 2(GT , A)→

⊕
p∈T

H 2(kp, A) ↠ H 0(GT , A′)(.

Therefore

[BT (k, A)] = [H 2(GT , A)] + [H 0(GT , A′)(] −
[ ⊕
p∈T

H 2(kp, A)
]
. (9-7)

Combining (9-5), (9-6) and (9-7), we have

[H 2(GS, A)] − [H 1(GS, A)]
f [H 2(GT , A)] − [H 1(GT , A)] + [H 0(GT , A′)(] +

[ ⊕
p∈T \S

H 1(Tp, A)Gp

]
−

[ ⊕
p∈T \S

H 2(kp, A)
]
.

The dimension of Gal(k/Q)-invariants of the left-hand side above is ¶k/Q,S(A). On the right-hand side,

the dimension of Gal(k/Q)-invariants of [H 2(GT , A)] − [H 1(GT , A)] is

logℓ(Çk/Q,T (A))− dimFℓ
H 0(GT , A)Gal(k/Q) = logℓ(Çk/Q,T (A))− dimFℓ

AGal(kS/Q)

by the definition of Çk/Q,T and the assumption that A is a Gal(kS/Q)-module. Also,

dimFℓ
(H 0(GT , A′)()Gal(k/Q) = dimFℓ

H 0(GT , A′)Gal(k/Q) = dimFℓ
(A′)Gal(kT /Q).

So to prove the inequality in the proposition, it suffices to show

ϵk/Q,S(A)= dimFℓ

( ⊕
p∈T \S

H 1(Tp, A)Gp

)Gal(k/Q)

− dimFℓ

( ⊕
p∈T \S

H 2(kp, A)
)Gal(k/Q)

. (9-8)

We first consider v ∈ S∞(Q) such that Sv(k) ̸¢ S. Since Tp(k)= Gp(k), we know that H 1(Tp, A)Gp =
H 1(kp, A) for each p ∈ Sv(k). For i = 1, 2, we have

( ⊕
p∈Sv(k)

H i (kp, A)
)Gal(k/Q)

=
(
Ind

Galp(k/Q)

Gal(k/Q) H i (kp, A)
)Gal(k/Q) = H i (kp, A)Galp(k/Q) = H i (Qv, A),

where the second equality uses Shapiro’s lemma and the last one follows by the assumption that ℓ ∤ [k : Q]
and the same argument for (7-15). Therefore

dimFℓ

( ⊕
p∈Sv(k)

H 1(Tp, A)Gp

)Gal(k/Q)

− dimFℓ

( ⊕
p∈Sv(k)

H 2(kp, A)
)Gal(k/Q)

= dimFℓ
H 1(Qv, A)− dimFℓ

H 2(Qv, A),

which always equals 0 since Qv is a cyclic group [Neukirch et al. 2008, Proposition 1.7.6].
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Finally, we consider v ∈ Sℓ(Q) such that Sv(k) ̸¢ S. Because Gp/Tp is procyclic, we have that

H 1(Gp/Tp, A) ∼= AGp/Tp ; and by the same argument from (9-1) to (9-2), we have an isomorphism

H 1(Gp/Tp, A)≃ AGp/Tp= AGp that is compatible with the conjugation action by Galp(k/Q). So we see that

dimFℓ

( ⊕
p∈Sp(k)

H 1(Gp/Tp, A)
)Gal(k/Q)

= dimFℓ

(
Ind

Galp(k/Q)

Gal(k/Q) H 1(Gp/Tp, A)
)Gal(k/Q)

= dimFℓ
H 1(Gp/Tp, A)Galp(k/Q)

= dimFℓ
AGp(Q). (9-9)

Therefore, we compute

dimFℓ

( ⊕
p∈Sv(k)

H 1(Tp, A)Gp

)Gal(k/Q)

− dimFℓ

( ⊕
p∈Sv(k)

H 2(kp, A)
)Gal(k/Q)

= dimFℓ

( ⊕
p∈Sv(k)

H 1(kp, A)
)Gal(k/Q)

− dimFℓ

( ⊕
p∈Sv(k)

H 2(kp, A)
)Gal(k/Q)

− dimFℓ
AGv(Q)

= dimFℓ
H 1(kp, A)Galp(k/Q)− dimFℓ

H 2(kp, A)Galp(k/Q)− dimFℓ
AGv(Q)

= dimFℓ
H 1(Qv, A)− dimFℓ

H 2(Qv, A)− dimFℓ
AGv(Q)

=− logℓ ∥#A∥v.

The first equality above uses (9-9) and the exact sequence H 1(Gp/Tp, A) ↪→H 1(kp, A)↠ H 1(Tp, A)Gp , the

second uses the Shapiro’s lemma, the third uses the assumption that ℓ ∤ [k : Q], and the last uses the Tate’s

local Euler–Poincaré characteristic formula [Neukirch et al. 2008, Theorem 7.3.1]. We have proved (9-8).

When S = ∅, we have X
2
∅(k, A) = H 2(G∅, A), so the first inequality in (9-5) is an equality, and

hence we have the last statement in the proposition. □

Proof of Theorem 1.2. We apply the above results to the case k = Q. Let G = GS(k). Let A be a finite

simple G-module and ℓ denote the exponent of A. Since Ĥ 0(kp, A′) is naturally a quotient of H 0(kp, A′)

for each p ∈ S∞(k), we have logℓ Çk/k,T (A) f 0 for T = S ∪ Sℓ(k)∪ S∞(k). When S £ Sℓ(k)∪ S∞(k),

applying Proposition 9.2 to the case k = Q, we have ¶k/k,S(A)f 0. It follows by definition of ϵk/k,S(A)

in Proposition 9.4 that ϵk/k,S(A)f [k :Q] dimFℓ
A. Also, note that, when S ̸£ Sℓ(k)∪ S∞(k) and A ̸≃µℓ,

we have dimFℓ
(A′)GT (k)− dimFℓ

AGS(k) f 0. When S ̸£ Sℓ(k)∪ S∞(k) and A = µℓ (assume µℓ ̸≃ Fℓ),

we have dimFℓ
(A′)GT (k)− dimFℓ

AGS(k) = 1 but logℓ Çk/k,T (A)f−1. So in both cases, Proposition 9.4

shows that ¶k/k,S(A)f [k :Q] dimFℓ
A, and hence the theorem follows by Proposition 3.7. □

10. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. We assume that 0 is a nontrivial finite group, Q = Q

or Fq(t) with gcd(q, |0|)= 1, and let k/Q be a Galois extension with Gal(k/Q)≃ 0. By Theorem 6.4,

G∅(k)C is a finite 0-group when C is finite, so for a sufficiently large n there is a 0-presentation

Fn(0) → G∅(k)C . In Section 10.1, we construct a finitely generated 0-quotient G of G∅(k) such

that GC ≃ G∅(k)C as 0-groups. With the help of the group G, we employ the cohomology of G∅ to
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compute the multiplicities in a pro-C admissible 0-presentation of G∅(k)C . In Section 10.2, we compute

the multiplicities mC
ad(n, 0, G∅(k)C, A), and then compute the multiplicities mC

ad(n, 0, G∅,∞(k)C, A) for

a finite simple G∅,∞(k)C ì0-module A. Using these multiplicities, finally in Section 10.3, we show

that the kernel of a pro-C admissible 0-presentation Fn(0)C→ G∅,∞(k)C can be normally generated by

elements {r−1µ (r)}r∈X,µ∈0 with X a subset of Fn(0) of cardinality n+ 1.

Note that in Theorem 1.1, k/Q is assumed to be split completely at∞, and the 0-groups in C are of

order prime to |µ(Q)|, |0| and char(Q). However, in the proof, we do not use these assumptions until

Section 10.2. So right now, we only assume that k/Q is a Galois field extension with Gal(k/Q)≃ 0 and

that C is a finite set of isomorphism classes of finite 0-groups of order prime to |0|.

10.1. Construction of a specific finitely generated quotient of G∅(k). Because G∅(k)C is finite, when n

is sufficiently large, there exists a 0-equivariant surjection Ã : Fn(0)→ G∅(k)C , where Fn(0) is the

free profinite 0-group defined in Section 3. Then Ã factors through ÃC : Fn(0)C→ G∅(k)C as defined

in Definition 5.2.

Lemma 10.1. Use the notation above. If A is a finite simple G∅(k)C ì0-module with

m(ÃC, 0, G∅(k)C, A) > 0,

then AìG∅(k)C ∈ C.

Proof. We denote G∅(k)C by G0 for convenience purposes. If m(ÃC, 0, G0, A) > 0, then there is a

0-group extension
1→ A→ H ϖ−→ G0→ 1

such that H is a quotient of FC
n , and so H ∈ C. We let E be the fiber product H ×G0

H defined by ϖ , i.e.,

E = {(x, y) ∈ H×H |ϖ(x)=ϖ(y)}. Note that E is a subgroup of H×H, so is in C. There is a natural

diagonal embedding H ↪→ E mapping x to (x, x), and a normal subgroup {(a, 1) | a ∈ A} of E that is

isomorphic to A. From this, one can check that the diagonal subgroup H and the normal subgroup A are

disjoint and they generate E , so E ≃ Aì H where the H action on A factors through ϖ(H)= G0. So

by taking the quotient map ϖ on the subgroup H of E , we obtain that AìG0 is a quotient of E , and

therefore we proved the lemma. □

Now we fix a finite simple G∅(k)C ì0-module A with m(ÃC, 0, G∅(k)C, A) > 0, and construct the

desired quotient of G∅(k) for A. We let ϕ0 denote the quotient map G∅(k)→ G∅(k)C , and again let G0

denote G∅(k)C . We define G1 to be the quotient of G∅(k) satisfying the following 0-group extension:

1→ Am(ϕ0,0,G0,A)→ G1
ϖ0−→ G0→ 1. (10-1)

By definition of the multiplicities, G1 is well-defined. Since G1 is a quotient of G∅(k), we have that GC
1

is exactly G0. Then we claim that the extension (10-1) is “completely nonsplit” (that is, if a subgroup of

G1 maps surjectively onto G0, then it has to be G1 itself). Indeed, if it’s not completely nonsplit, then G1

has a 0-quotient isomorphic to AìG0, and hence by Lemma 10.1 we have AìG0 ∈ C, which contradicts

that GC
1 = G0.
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Similarly, we define G2, G3, . . . to be the 0-quotients of G∅(k) inductively via

1→ Am(ϕi ,0,Gi ,A)→ Gi+1
ϖi−→ Gi → 1,

where the map ϕi is the quotient map G∅(k)→ Gi . Using the argument in the previous paragraph, we

see that each of these group extensions is completely nonsplit, and GC
i = G0 for each i . Then we take the

inverse limit
G := lim←−−

i
Gi .

Then the profinite group G is the maximal extension of G0 in G∅(k) that can be obtained via group

extensions by A.

Lemma 10.2. (1) A subset of G is a generator set if and only if its image in G0 generates G0.

(2) The map Ã : Fn(0)→ G0 defined at the beginning of this subsection factors through G.

(3) Let ϕ be the natural quotient map G∅(k)→ G defined by inverse limit of ϕi . Then

HomGì0((ker ϕ)ab, A)= 0.

Proof. The group extension ϖi : Gi+1→ Gi is completely nonsplit, so any lift of a generator set of Gi is

a generator set of Gi+1. So we have (1) by taking inverse limit, and then (2) follows.

Note that G acts on the abelianization (ker ϕ)ab of ker ϕ by conjugation. Suppose that

HomGì0((ker ϕ)ab, A) ̸= 0.

Then it means that ϕ factors through a 0-equivariant group extension H of G by a kernel A. However, G

does not have such a group extension in G∅(k) by definition. So we proved (3). □

10.2. Determination of the multiplicity of A. We continue to use notation and assumptions given previ-

ously in this section. In particular, we remind the reader that A is a fixed finite simple G∅(k)C ì0-module

where 0 ≃ Gal(k/Q), and G depends on A. The goal of this subsection is to compute the multiplicity

of A in an admissible 0-presentation of G∅,∞(k)C . The 0-group G plays a very important role in this

computation.

Lemma 10.3. Let ℓ be the exponent of A and assume that ℓ ̸= char(Q) is prime to |0|. Then

dimFℓ
H 2(G, A)0 − dimFℓ

H 1(G, A)0 f ¶k/Q,∅(A).

Proof. We consider the 0-equivariant short exact sequence

1→ M→ G∅(k)
ϕ−→ G→ 1.

By the Hochschild–Serre exact sequence, we have

0→ H 1(G, A)→ H 1(G∅(k), A)→ H 1(M, A)G→ H 2(G, A)→ H 2(G∅(k), A), (10-2)

which is compatible with the conjugation action by 0. Since M acts trivially on A, we see that

H 1(M, A)Gì0 = HomGì0(Mab, A)= 0 by Lemma 10.2(3). So by taking the 0-invariants on (10-2) and
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computing the dimensions, we have that

dimFℓ
H 2(G, A)0−dimFℓ

H 1(G, A)0 f dimFℓ
H 2(G∅(k), A)0−dimFℓ

H 1(G∅(k), A)0 = ¶k/Q,∅(A). □

Starting from now, we assume that C is a finite set of isomorphism classes of finite 0-groups all

of whose orders are prime to |0|, char Q and |µ(Q)|. Let Ã̂ denote the 0-equivariant surjective map

Fn(0)→ G used in Lemma 10.2(2). Then the pro-C completion of Ã̂ is ÃC : FC
n ↠ G∅(k)C . If Q =Q,

then G∅(k)C is exactly G∅,∞(k)C . If Q is a function field, then k∅/k is not split completely at primes

over∞. Instead, G∅,∞(k) is the 0-quotient of G∅(k) obtained via modulo the decomposition subgroup

Galp(k∅/k) of one prime p of k above∞ (because 0 acts transitively on all the primes of k above∞).

Since this decomposition subgroup Galp(k∅/k) is isomorphic to Ẑ and G is a quotient of G∅(k), we

can define gn to be an element of G that is the image of one generator of Galp(k∅/k). In other words,

denoting G# the quotient of G by the 0-closed normal subgroup generated by gn , we have the diagram

Fn G G#

Fn
C G∅(k)C G∅,∞(k)C

Ã̂

Ã

ϖ

¸

/[gn]

ÃC

ϖC

¸C

(10-3)

where the vertical maps are taking pro-C completions. To make the notation consistent between the

number field and the function field cases, when Q =Q, we let gn = 1, and hence ¸ and ¸C in (10-3) are

both identity maps. First of all, we want to determine m(Ã̂, 0, G, A).

Proposition 10.4. Let ℓ be the exponent of A. Assume ℓ ̸= char(Q) is relatively prime to |µ(Q)||0|.
If Q =Q, then

m(Ã̂, 0, G, A)f (n+ 1) dimFℓ
A− dimFℓ

A0

hGì0(A)
.

If Q = Fq(t) and A ̸= µℓ, then

m(Ã̂, 0, G, A)f n dimFℓ
A− dimFℓ

A0

hGì0(A)
.

Remark 10.5. Recall that in Theorem 1.1 we assume that k/Q is split completely at∞. In the function

field case, µℓ is a Gal(k∅/Q)-module but not a Gal(k∅,∞/Q)-module, so we exclude the case that A=µℓ.

Proof. By the assumptions, we can apply Proposition 3.4 to compute the multiplicities. Because ℓ ∤ |0|,
we have for i = 1, 2 that H i (G ì0, A)= H i (G, A)0. Then by Lemma 10.3, we have

m(Ã̂, 0, G, A)f n dimFℓ
A− À(A)+ ¶k/Q,∅(A)

hGì0(A)
. (10-4)

So we just need to compute ¶k/Q,∅(A).

In the function field case, recall that A is a simple Fℓ[Gal(k∅/Q)]-module that is not µℓ, so by

Proposition 9.3 we see that ¶k/Q,∅(A) is −1 if A = Fℓ, and is 0 otherwise. So we proved the result in

function field case.
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In the number field case that Q = Q, we need to compute each of the terms in the formula in

Proposition 9.4. Let T = Sℓ(k)∪ S∞(k). In this case, ℓ is odd as µ2 ¢ Q. First, we apply Theorem 7.1

logℓ Çk/Q,T (A)=− dimFℓ
H 0(Q∞, A′)=− dimFℓ

(A′)Gal(C/R),

where the first equality uses Ĥ 0(Q∞, A′)= 0 because #G∞(Q)= 2 and [Neukirch et al. 2008, Proposi-

tion 1.6.2(a)]. Then because A is a simple Fℓ[Gal(k∅/Q)]-module, Gal(C/R) acts trivially on A, and

hence (A′)Gal(C/R)=HomGal(C/R)(A, µℓ)= 0. So we have logℓ Çk/Q,T (A)= 0. Then note that ϵk/Q,∅(A)

in the formula in Proposition 9.4 is dimFℓ
A in this case, and we obtain

¶k/Q,∅(A)f dimFℓ
HomGal(kT /Q)(A, µℓ)− dimFℓ

AGal(k∅/Q)+ dimFℓ
A,

where the right-hand side is 0 if A= Fℓ and is dimFℓ
A otherwise. So we proved the number field case. □

Lemma 10.6. Use the assumptions in Proposition 10.4. Consider the function field case and the dia-

gram (10-3). When n is sufficiently large, we have

m(ϖ, 0, G#, A)f (n+ 1) dimFℓ
A− dimFℓ

A0

hG#ì0(A)

Proof. Again, we use x1, . . . , xn to denote the generators of Fn . We can make n large to assume Ã̂(xn)= gn

(recall that the multiplicity depends on n but not on the choice of ϖ ). Then we have a commutative diagram

Fn Fn−1

G G#

¼

/[xn]
Ã̂ ϖ

Æ

¸

/[gn]

where the top map is defined by taking the quotient by the 0-closed normal subgroup generated by xn .

Note that the composition of the top and the right arrows satisfies the conditions of Lemma 3.8, so we have

m(ϖ, 0, G#, A)= m(¼, 0, Fn−1, A)+m(Æ, 0, G#, A).

By the statement and the computation of H i (Fn ì0, A) in the proof of Lemma 3.2, we see that

m(¼, 0, Fn−1, A)= dimFℓ
A

hG#ì0(A)
.

So by Proposition 10.4, it suffices to prove

m(Æ, 0, G#, A)f m(Ã̂, 0, G, A), (10-5)

which will immediately follow after we prove the embedding

{
U | max. proper Fn−1 ì0-normal subgroup of ker Æ such that ker Æ/U ≃G#ì0 A

}

»
↪−→

{
V | max. proper Fn ì0-normal subgroup of ker Ã̂ such that ker Ã̂/V ≃Gì0 A

}

mapping U to ¼−1(U )∩ ker Ã̂ .
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Since ker ϖ = ker Ã̂ ker ¼, for each U in the first set, we have

ker Ã̂/(¼−1(U )∩ ker Ã̂)= ¼−1(U ) ker Ã̂/¼−1(U )= ker ϖ/¼−1(U )≃G#ì0 A,

so the map » is well-defined. Also, if V = »(U ), then

ker ϖ/V ker ¼= (ker Ã̂)(V ker ¼)/V ker ¼= ker Ã̂/(ker Ã̂ ∩ (V ker ¼)). (10-6)

Since V ¢ ker Ã̂ and ker Ã̂/V is a simple module, the last quotient is either 1 or isomorphic to A. On

the other hand, both of V and ker ¼ are contained in ¼−1(U ), so is V ker ¼. Then (10-6) implies that

V ker ¼= ¼−1(U ). So we see that if »(U1)= »(U2)= V, then ¼−1(U1)= ¼−1(U2) and hence U1 =U2.

So we conclude that » is injective. □

Proposition 10.7. Let C be a finite set of isomorphism classes of finite 0-groups all of whose orders

are prime to |µ(Q)||0| and char(Q) (if nonzero). Let A be a finite simple G∅,∞(k)C ì 0-module of

exponent ℓ ̸= char(k) relatively prime to |µ(Q)||0|. When n is sufficiently large, there exists an admissible

0-presentation Fn(0) ↠ G∅,∞(k)C , and

mC
ad(n, 0, G∅,∞(k)C, A)f mad(n, 0, G#, A)f (n+ 1)(dimFℓ

A− dimFℓ
A0)

hG∅,∞(k)Cì0(A)
.

Remark 10.8. The proposition shows that mC
ad(n, 0, G∅,∞(k)C, Fℓ)= 0. In other words, G∅,∞(k)C does

not admit any nonsplit central group extension

1→ Fℓ→ G̃ ì0→ G∅,∞(k)C ì0→ 1,

such that G̃ is of level C. This is equivalent to the solvability (i.e., the existence of the dashed arrow) of

the embedding problem

G∅,∞(k)C ì0

1 Fℓ H̃ ì0 H ì0 1

³

for any nonsplit central group extension in the lower row with H̃ of level C, and for any surjection ³. In

[Liu et al. 2024], this solvability is called the Property E of G∅,∞(k) and is proven using the classical

techniques of embedding problems. So Proposition 10.7 provides a new proof of the Property E by

counting multiplicities.

Proof. By [Liu et al. 2024, Proposition 2.2], the pro-prime-to-(|0| char Q) completion of G∅,∞(k) is an

admissible 0-group, so its 0-quotient G# is also admissible. Since G∅,∞(k)C is finite, when n is large,

there exist elements a1, . . . , an of G∅,∞(k)C such that {Y (ai )}ni=1 forms a generator sets of G∅,∞(k)C .

Note that G∅,∞(k)C is a quotient of G# as described in (10-3). We choose a preimage bi ∈ G# of ai for

each i , and then {Y (bi )}ni=1 generates G# by Lemma 10.2(1). Recall that the multiplicity does not depend

on the choice of presentation, so we assume ϖ in (10-3) maps yi ∈ Fn to bi ∈ G# for each i = 1, . . . , n.
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Then the restriction ϖ |Fn is an admissible 0-presentation of G#. We have by Corollary 4.5 that

mad(n, 0, G#, A)= m(n, 0, G#, A)− n dimFℓ
A0

hG#ì0(A)
.

Then the desired result follows by Propositions 5.4, 10.4 and Lemma 10.6. □

10.3. Existence of the presentation (1-1). Finally, we will prove that when n is sufficiently large, there

exists a subset X of FC
n containing n+ 1 elements for which the following isomorphism, which is (1-1)

in Theorem 1.1, holds:

G∅,∞(k)C ≃ Fn(0)C/[r−1µ (r)]r∈X,µ∈0.

In Proposition 10.7, we showed that when n is sufficiently large, there is an admissible 0-presentation,

denoted by
1→ N → F

C
n

ϖC

ad−−→ G∅,∞(k)C→ 1.

Let M be the intersection of all maximal proper FC
n ì0-normal subgroups of N, and define R = N/M

and F =FC
n /M. Note that because C is finite, we have that FC

n is finite [Neumann 1967, Corollary 15.72].

Then R is a finite direct product
∏t

i=1 Ami
i of finite irreducible F ì0-groups Ai . Assume Ai and A j

are not isomorphic as F ì 0-groups if i ̸= j . When a factor Ai is abelian, its multiplicity mi is

mC
ad(n, 0, G∅,∞(k)C, Ai ) computed in Proposition 10.7.

Let X be a subset of FC
n . Then the closed FC

n ì0-normal subgroup generated by {r−1µ (r)}r∈X,µ∈0
is N if and only if the closed F ì 0-normal subgroup generated by {r−1µ (r)}r∈X ,µ∈0 is R, where X

and r are the images of X and r in R respectively. Recall the properties of Fn listed at the beginning

of Section 4. Because of the property (1), in the definition of Y in (3), we can take the generator set

{µ1, . . . , µd} to be the whole group 0, then

{r−1µ (r)}r∈X,µ∈0 = Y ({r}r∈X ) and {r−1µ (r)}r∈X ,µ∈0 = Y ({r}r∈X ).

By [Liu et al. 2024, Proposition 4.3], for a fixed integer u, the probability that the images under the map Y

of n+ u random elements of R generate R as an F ì0-normal subgroup is

Prob([Y ({r1, . . . , rn+u})]Fì0 = R)

=
∏

1fift
Ai abelian

mi−1∏
j=0

(1− hFì0(Ai )
j |Y (Ai )|−n−u)

∏
1fift

Ai nonabelian

(1− |Y (Ai )|−n−u)mi .

This product in the formula is a finite product. By [Liu et al. 2024, Lemma 3.5], we have |Y (Ai )| =
|Ai |/|A0

i | for each i . Note that Lemma 4.6 shows that |Y (Ai )|> 1 when Ai is nonabelian, so the product

over nonabelian factors in the above formula is always positive. The term for an abelian factor Ai is

positive if and only if

mi f
(n+ u) logℓ |Y (Ai )|

hG∅,∞(k)Cì0(Ai )
= (n+ u)(dimFℓ

Ai − dimFℓ
A0

i )

hG∅,∞(k)Cì0(Ai )
.

Therefore, by Proposition 10.7, R can be F ì0-normally generated by the Y -values of n+ 1 elements,

and hence we finish the proof of Theorem 1.1.
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11. Exceptional cases

We will discuss the cases that are not covered by the Liu–Wood–Zureick-Brown conjecture, using the

techniques developed in this paper. In this section, the base field Q can be any global field. If Q is a

number field, we denote by r1 and r2 the number of real and pairs of complex embeddings of Q.

Again, we let 0 be a nontrivial finite group and k/Q a Galois extension of global fields with

Gal(k/Q)≃ 0, such that char(Q) and |0| are relatively prime. We assume that ℓ is a prime integer that

is not char(Q) and is prime to |0|. Recall that G∅(k)(ℓ) denotes the pro-ℓ completion of G∅(k). So

G∅(k)(ℓ) is the Galois group of the maximal unramified pro-ℓ extension of k, which we will denote

by k∅(ℓ)/k. Note that G∅(k)(ℓ) is finitely generated, because dimFℓ
H 1(k∅, Fℓ) is the minimal number

of generators of G∅(k)(ℓ) and is finite. So when n is sufficiently large, there is a 0-presentation

Ã : F ′n(0)→G∅(k)(ℓ). Moreover, we assume, throughout this section, that the ℓ-primary part of the class

group of Q is trivial. Then G∅,∞(k)(ℓ) is admissible by the proof of [Liu et al. 2024, Proposition 2.2],

and hence we can assume that the presentation Ã induces an admissible presentation, i.e., Ã ad := Ã |Fn

is surjective.

In this section, we use the assumptions above and study the multiplicities from the presentation Ã ad in

the following two cases:

(1) When Q is a number field with µℓ ̸¢ Q, and k/Q is not required to be split completely at S∞(Q)

(see Section 11.1).

(2) When Q contains the ℓ-roots of unity µℓ (see Section 11.2).

We will compare the multiplicities in these two cases with the multiplicities from Theorem 1.1, to see

why the random group model used in the Liu–Wood–Zureick-Brown conjecture cannot be applied to

these two exceptional cases.

We point out that we study only G∅(k)(ℓ) instead of G∅(k)C for a general C, simply because we

want to keep the computation easy in this section and there is no previous work discussing these two

exceptional cases beyond the distribution of ℓ-class tower groups. One can generalize the argument in

this section to any finite set C.

11.1. Other signatures. Assume Q is a number field with µℓ ̸¢ Q (so ℓ is odd), and k is a 0-extension

of Q. For each v ∈ S∞(Q), we set 0v to be the decomposition subgroup at v of the extension k/Q.

Lemma 11.1. For a finite simple Fℓ[Gal(k∅(ℓ)/Q)]-module A, we have

mad(n, 0, G∅(k)(ℓ), A)f





r1+ r2− 1 if A = Fℓ,

n+ r2+ 1 if A = µℓ,

(n+r1+r2) dimFℓ
A−

∑
v∈SR(Q) dimFℓ

A/A0v−(n+1) dimFℓ
A0

hGal(k∅(ℓ)/Q)(A)
otherwise.
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Proof. Let T be S∞(k) ∪ Sℓ(k). Since ℓ is odd, Ĥ 0(Qv, A′) = 0 for any v ∈ S∞(Q), and hence by

applying Theorem 7.1 with S = T we have

logℓ(Çk/Q,T (A))=−
∑

v∈S∞(Q)

dimFℓ
H 0(Qv, A′)

=−
∑

v∈SC(Q)

dimFℓ
A−

∑
v∈SR(Q)

dimFℓ
A/A0v .

The last equality is because:

(1) If v ∈ SC(Q), then Gv(Q)= 1 acts trivially on both µℓ and A.

(2) If v ∈ SR(Q), then Gv(Q) ≃ Z/2Z acts on µℓ as taking inverse. Since the action of Gv(Q)

on A factors through 0v, and 0v acts on A/A0v as taking inverse, we have dimFℓ
(A′)Gv(Q) =

dimFℓ
HomGv(Q)(A, µℓ)= dimFℓ

HomGv(Q)(A/A0v , µℓ)= dimFℓ
A/A0v .

By Proposition 9.4, we have

¶k/Q,S(A)f





ϵk/Q,∅(A)− r2− 1 if A = Fℓ,

ϵk/Q,∅(A)− r2− r1+ 1 if A = µℓ,

ϵk/Q,∅(A)− r2 dimFℓ
A−

∑
v∈SR(Q) dimFℓ

A/A0v otherwise,

where A can be µℓ only if µℓ ¢ k. Note that by definition, ϵk/Q,∅(A) is equal to [Q :Q] dimFℓ
A. So the

desired result follows by Proposition 3.4, Corollary 4.5, and Proposition 5.4. □

Corollary 11.2. Let k/Q be an imaginary quadratic field such that k ̸= Q(
√
−3), and µ denote the

nontrivial element of 0 = Gal(k/Q)≃ Z/2Z. For an odd prime ℓ, we have the following isomorphism

of 0-groups:
G∅(k)(ℓ)≃ Fn(0)(ℓ)/[r−1µ (r)]r∈X (11-1)

for a sufficiently large positive integer n and some set X consisting of n elements of Fn(0)(ℓ).

Remark 11.3. If we choose the n elements of set X randomly with respect to the Haar measure, then

the quotient in (11-1) gives a random group that defines a probability measure on all n-generated pro-ℓ

admissible 0-groups. By taking n→∞, there is a limit probability measure, which can be computed

using formulas in [Liu et al. 2024]. The discussion in [Liu et al. 2024, §7.2 and Theorem 7.5] shows

that this limit probability measure agrees with the probability measure used in the Boston–Bush–Hajir

heuristics [Boston et al. 2017].

Proof. When Q =Q and k is imaginary quadratic, we have r1 = 1, r2 = 0, and 0∞ = 0. Let A be a finite

simple Fℓ[Gal(k∅(ℓ)/Q)]-module. Also, µℓ ̸¢ k for any odd ℓ because k ̸= Q(
√
−3), so A ̸= µℓ. By

Lemma 11.1 , when n is sufficiently large, we have:

mad(n, 0, G∅(k)(ℓ), A)f





0 if A = Fℓ,

n(dimFℓ
A−dimFℓ

A0)

hGal(k∅(ℓ)/Q) A
otherwise.

Note that 0 ≃ Z/2Z implies that the normal subgroup of Fn(0)(ℓ)ì0 generated by Y (X) is exactly

[r−1µ (r)]r∈X . Thus, the corollary follows by [Liu et al. 2024, Proposition 4.3]. □
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11.2. When Q contains the ℓ-th roots of unity. In this subsection, we assume µℓ ¢ Q. In this case, µℓ

becomes the trivial Gal(k∅/Q)-module Fℓ, which makes the multiplicities in a presentation of G∅(k)(ℓ)

significantly different from the previous cases.

Lemma 11.4. Assume µℓ ¢ Q. For a finite simple Fℓ[Gal(k∅(ℓ)/Q)]-module A, we have

(1) If Q is a function field and the genus of k is not 0, then ¶k/Q,∅(A)= 0.

(2) If Q is a number field, then ¶k/Q,∅(A)f (r1+ r2) dimFℓ
A.

Proof. Because of the assumption µℓ ¢ Q, we have

dimFℓ
(A′)Gal(k∅/Q) = dimFℓ

(A()Gal(k∅/Q) = dimFℓ
AGal(k∅/Q) = dimFℓ

AGal(k∅/Q). (11-2)

Then the first statement follows directly by Proposition 9.3(2). For the rest we assume that Q is a number

field and let T = Sℓ(k) ∪ S∞(k). If ℓ is odd, then the assumption µℓ ¢ Q implies that Q is totally

imaginary. Then we can easily see by Theorem 7.1 that logℓ Çk/Q,T (A) = −r2 dimFℓ
A, and hence the

statement for odd ℓ follows by Proposition 9.4 and (11-2). If ℓ= 2, then we first want to compute, for

each v ∈ S∞(Q),

dimFℓ
Ĥ 0(Qv, A′)− dimFℓ

H 0(Qv, A′). (11-3)

For each v ∈ SC(Q), we have Gv(Q) = 1, and hence (11-3) becomes − dimFℓ
A. For each v ∈ SR(Q),

the assumption ℓ ∤ |0| implies that |0| is odd. So for each p ∈ Sv(k), p is real, and so is any prime

of k∅(ℓ) lying above p. Thus, Gp(k) acts trivially on A, so it also acts trivially on A′, which implies that

Ĥ 0(kp, A′)= H 0(kp, A′). Then (11-3) equals 0, and we obtain the statement for ℓ= 2 by Proposition 9.4

and (11-2). □

Then by the same arguments in Section 10, we obtain the following bounds for the multiplicity of A.

Corollary 11.5. Assume µℓ ¢ Q. When k is a function field, we assume that Q = Fq(t) for some prime

power q such that ℓ | q − 1 and k/Q is split completely at∞. Let A be a finite simple Fℓ[Gal(k∅(ℓ)/Q)]-
module. Then for a sufficiently large n, we have

mad(n, 0, G∅,∞(k)(ℓ), A)f





(n+1) dimFℓ
A−À(A)−n dimFℓ

A0

hG∅,∞(k)(ℓ)ì0(A)
if Q is a function field,

(n+r1+r2) dimFℓ
A−À(A)−n dimFℓ

A0

hG∅,∞(k)(ℓ)ì0(A)
if Q is a number field.

Remark 11.6. (1) Readers can compare the corollary with Proposition 10.7. When A = Fℓ and Q

is Q(·ℓ) or Fq(t) with ℓ | q − 1, one can check that the upper bound of the multiplicity is positive, which

suggests the failure of the Property E of G∅,∞(k). Therefore, the random group model used in the

Liu–Wood–Zureick-Brown conjecture is not expected to work in this exceptional case.

(2) If the upper bounds in Corollary 11.5 are sharp, then it also suggests that we should not expect the

coincidence of the distributions of G∅,∞(k)(ℓ) between the function field case and the number field case.
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For example, when Q =Q, ℓ= 2 or Q =Q(·3), ℓ= 3, the upper bound in the corollary equals the one

for function fields. However, when Q =Q(·ℓ) with ℓ > 3, the upper bound is

(n+ (ℓ− 1)/2) dimFℓ
A− À(A)− n dimFℓ

A0

hG∅,∞(k)(ℓ)ì0(A)
,

which is strictly larger than the upper bound for function fields.
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