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A B S T R A C T 
Moti v ated by the early excess of bright galaxies seen by JWST , we run zoom-in cosmological simulations of a massive galaxy 
at Cosmic Dawn, in a halo of 10 11 M ! at z = 9, using the hydro-gravitational code RAMSES at an ef fecti ve resolution ∼ 10 pc . 
We investigate physical mechanisms that enhance the star formation efficiencies (SFEs) at the high gas densities of the star- 
forming regions in this galaxy ( ∼ 3 × 10 3 cm −3 , ∼ 10 4 M ! pc −2 ). Our fiducial star formation recipe uses a physically moti v ated, 
turbulence-based, multi-freefall model, avoiding ad hoc extrapolation from lower redshifts. By z = 9, our simulated galaxy is 
a clumpy, thick, rotating disc with a high stellar mass ∼ 3 × 10 9 M ! and high star formation rate ∼ 50 M ! yr −1 . The high 
gas density makes supernova (SN) feedback less efficient, producing a high local SFE ! 10 per cent . The global SFE is set 
by feedback-driven outflows and only weakly correlated with the local SFE. Photoionization heating makes SN feedback more 
efficient, but the integrated SFE al w ays remains high. Intense accretion at Cosmic Dawn seeds turbulence that reduces local 
SFE, but this only weakly affects the global SFE. The star formation histories of our simulated galaxies are similar to observed 
massive galaxies at Cosmic Dawn, despite our limited resolution. We set the stage for future simulations which treat radiation 
self-consistently and use a higher ef fecti ve resolution ∼ 1 pc that captures the physics of star-forming clouds. 
Key w ords: softw are: simulations – galaxies: high-redshift – galaxies: star formation. 

1  I N T RO D U C T I O N  
The JWST has opened a new frontier for empirical constraints on 
galaxy formation models at Cosmic Dawn ( z ≥ 9), an epoch starting 
with the formation of the first stars and ending with the reionization of 
the intergalactic medium (IGM). At these redshifts, JWST ’s NIRCam 
and NIRSpec instruments probe the rest-frame ultraviolet (UV), 
where the y pro vide estimates for stellar mass and star formation rate 
(SFR). 

So far, JWST has found a growing list of galaxies at Cosmic 
Dawn with high stellar masses M ∗ ! 10 8 M ! and/or high SFRs 
Ṁ ∗ ! 1 M ! yr −1 (e.g. Finkelstein et al. 2023 ; Labb ́e et al. 2023 ; 
Mason, T renti & T reu 2023 ; Carniani et al. 2024 ). These massive 
Dawn galaxies (MDGs) constitute an excess in the abundance of the 
(UV-)brightest galaxies relative to expectations of standard galaxy 
formation models (Boylan-Kolchin 2023 ). Shen et al. ( 2023 ) show 
that to reproduce the UV luminosity function (UVLF) inferred from 
MDGs, one requires that ∼ 30 per cent of the baryonic matter 
accreting on to a dark matter (DM) halo is converted into stars. 
This is far higher than the canonical value of " 5 per cent inferred 
for galaxies at lower redshift based on abundance matching of stellar 
masses and Lambda cold dark matter ( ! CDM) haloes (Rodr ́ıguez- 
Puebla et al. 2017 ; Moster, Naab & White 2018 ; Behroozi et al. 
2019 ). 
" E-mail: zack.andalman@princeton.edu 

The explanations for this tension fall into four categories. First, 
star formation might be intrinsically more efficient at Cosmic Dawn 
(Dekel et al. 2023 ). Secondly, a low mass-to-light ratio at Cosmic 
Dawn might cause models calibrated to the lower-redshift Universe to 
o v erestimate stellar masses. These explanations include the presence 
of active galactic nuclei (AGNs; Wang et al. 2024 ), a top-heavy stellar 
initial mass function (IMF; Sharda & Krumholz 2022 ; Cameron et al. 
2024 ), a lack of dust along the line of sight (Ferrara, Pallottini & 
Dayal 2023 ; Mason et al. 2023 ), and differences in dust properties. 
Thirdly, observations could be biased by bursty star formation at 
Cosmic Dawn (Shen et al. 2023 ; Sun et al. 2023 ). In this scenario, 
the bright end of the UVLF is dominated by less intrinsically bright 
galaxies which have undergone a recent burst. Finally, a modified ! - 
CDM cosmology can produce a greater abundance of massive haloes 
at Cosmic Dawn. These explanations include ‘Early Dark Energy’ 
(Klypin et al. 2021 ; Shen et al. 2024 ) or massive primordial black 
hole seeds (Liu & Bromm 2022 ). 

Some combination of effects may contribute to the tension. In this 
work, we explore the possibility that star formation is intrinsically 
more efficient at Cosmic Dawn due to differences in the properties 
of the interstellar medium (ISM). The mean baryon density of the 
Universe scales as (1 + z) −3 due to cosmic expansion, suggesting 
that massive DM haloes at Cosmic Dawn may host galaxies with 
high gas densities. 

At high redshift, massive haloes become increasingly rare. Typical 
comoving volumes of JWST galaxy surveys are ∼ 10 5 to 10 6 cMpc 3 . 
F or e xample, in the Cosmic Evolution Early Release Science 
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Figure 1. The comoving number density of DM haloes as a function 
of halo mass and redshift. A simple estimate for baryon surface density 
(Appendix A ) is used to plot lines of constant baryon surface density in 
red. The most massive galaxies at Cosmic Dawn seen by JWST likely have 
comoving number densities ∼ 10 −6 cMpc −3 . Our simulation (red star) probes 
galaxies with similar number densities. The high baryon surface densities 
∼ 10 4 M ! pc −2 and number densities ∼ 3 × 10 3 cm −3 create a unique 
environment for star formation which is not realized in the lower redshift 
Universe. 
(CEERS; Finkelstein et al. 2024 , ERS-1345), the ef fecti v e surv e y 
volume at UV magnitude ≤ −20 is ( 160 000 cMpc 3 . Thus, the 
haloes of observed galaxies should hav e como ving number densities 
! 10 −6 cMpc −3 . In Fig. 1 , we plot the comoving number density 
of DM haloes as a function of halo mass and redshift, assuming 
cosmological parameters from the Plank 2018 results (Planck Col- 
laboration VI 2020 ). We estimate the number density by integrating 
the Press–Schechter halo mass function (Press & Schechter 1974 ) 
using the PYTHON package COLOSSUS (Diemer 2018 ). We also plot an 
estimate for the typical baryon surface density of the galaxy hosted 
by the halo. The calculation is described in Appendix A . 

Haloes at redshifts z ∼ 9 and masses ∼ 10 11 M ! (marked by the 
red star) are interesting objects because they have number densities 
∼ 2 × 10 −5 cMpc −3 , so a small sample of such objects should 
exist within current surveys. Simultaneously, they are expected to 
host galaxies with high baryon surface densities ∼ 10 4 M ! pc −2 . 
For comparison, a Milky-Way-like galaxy at z = 0 with halo mass 
10 12 M ! has number density ∼ 2 × 10 −3 cMpc −3 and baryon surface 
density ∼ 3 × 10 2 M ! pc −2 . We expect the difference in surface 
densities to be even greater for the gas component, because at low 
redshift, massive galaxies tend to be quenched with most of their 
baryons in stars. We can also estimate the typical Hydrogen number 
density by assuming a disc scale height (Appendix A ). For a scale 
height ( H /R) gal = 0 . 1 and 50 per cent of the baryon mass in gas, the 
number density is ∼ 3 × 10 3 cm −3 . 

Such high densities create a unique environment for star formation 
which is not realized in the lower redshift Univ erse, e xcept in nuclear 
regions of some galaxies, where the typical result is a starburst (e.g. 
Naab & Ostriker 2017 ). MDGs may ha ve starb urst-like SFR densities 
throughout an extended region, rather than just in their centre. In their 
feedback-free starburst (FFB) model, Dekel et al. ( 2023 ) argue that 
the high-density conditions of Cosmic Dawn suppress the stellar 
feedback processes which usually regulate star formation. 

The physical conditions in MDGs differ from present-day galaxies 
in other ways too. The rapid accretion of cold streams in massive 
galaxies at high redshift is expected to seed strong turbulence 
(Dekel, Sari & Ceverino 2009 ; Ginzburg et al. 2022 ). This is 
empirically supported by the high velocity dispersions observed in 
galaxies at z ! 6 (de Graaff et al. 2024 ). Turbulent pressure supports 
molecular clouds against gravitational collapse, suppressing local 
star formation. Turbulence also reduces the clustering of supernovae 
(SNe), making SN feedback less ef fecti ve (Gentry et al. 2017 ). 
In addition to turbulence, the low metal content of the ISM and 
the higher CMB temperature at Cosmic Dawn may suppress star 
formation by making cooling less efficient. 

Galaxy formation during the epoch of reionization is often studied 
with big box cosmological simulations such as MASSIVEBLACK (Di 
Matteo et al. 2012 ), CROC (Gnedin 2014 ), EAGLE (Crain et al. 2015 ; 
Schaye et al. 2015 ), BLUETIDES (Feng et al. 2016 ), AURORA (P a wlik 
et al. 2017 ), ILLUSTRIS-TNG (Marinacci et al. 2018 ; Naiman et al. 
2018 ; Nelson et al. 2018 ; Pillepich et al. 2018 ; Springel et al. 2018 ), 
SPHINX (Rosdahl et al. 2018 ), SIMBA (Dav ́e et al. 2019 ), COSMIC 
DAWN II (Ocvirk et al. 2020 ), and THESAN (Kannan et al. 2022 ). 
Ho we ver, it is challenging to simultaneously resolve the structure 
of the ISM at scales ∼ 10 pc and use a large enough volume ( 
(100 h −1 

0 cMpc ) 3 to sample rare massive haloes. 
Previous work has gotten around this by using computationally 

cheap dark-matter-only simulations to select massive haloes as 
sources for zoom-in simulations with full hydrodynamics (Katz & 
White 1993 ; Tormen, Bouchet & White 1997 ), including RENAIS- 
SANCE (O’Shea et al. 2015 ), FIRSTLIGHT (Cev erino, Glo v er & 
Klessen 2017 ), FIRE-2 (Ma et al. 2018 ), FLARES (Lo v ell et al. 2021 ; 
Vijayan et al. 2021 ), and SERRA (Pallottini et al. 2022 ). These works 
generally find that massive galaxies at high redshift are associated 
with efficient and bursty star formation. Initial work focused on 
forward modelling of observations and population-level properties 
like the UVLF rather than the details of star formation in individual 
galaxies. Ho we ver, recent work has investigated the factors that 
contribute to efficient star formation in detail. Bassini et al. ( 2023 ) 
ran FIRE-2 simulations and found that high gas volume and surface 
densities naturally led to efficient star formation. Similarly, Ceverino 
et al. ( 2024 ) analysed FIRSTLIGHT simulations and found that star 
formation efficiency (SFE) is correlated with redshift and halo mass, 
reaching up to ∼ 10 per cent for 10 11 M ! haloes at z = 9 (their fig. 
7). 

In this work, we also use cosmological zoom-in simulations with 
the principal aim of exploring the physics of star formation and 
feedback in the most extreme MDGs. We simulate a halo which 
reaches 10 11 M ! at z = 9. We vary our treatment of turbulence and 
stellar feedback, allowing us to connect star formation on a global 
scale with ISM physics on a local scale. Our simulations differs 
from previous works in their treatment of star formation. Most high- 
redshift galaxy formation simulations use a star formation recipe 
based on the local Kennicutt–Schmidt law (Kennicutt 1998 ), where 
the local SFR density is εff ρ/τff and εff is the local SFE per freefall 
time τff . εff is typically set to a constant value on the order of a 
few per cent, consistent with observations of the local Universe (e.g. 
Hopkins et al. 2014 ). In contrast, we use a multi-freefall model 
(Federrath & Klessen 2012 ), a physically moti v ated model which 
predicts the SFR using a model of subgrid turbulence. This avoids 
ad hoc extrapolation from lower redshifts. 

This work is only the first step towards understanding the physics 
of star formation in MDGs. Our treatment of stellar feedback is 
crude due to the limitations of our ef fecti ve resolution ∼ 10 pc in a 
pure hydrodynamics simulation. Therefore, our quantitative results 
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should be taken with a grain of salt. Future work will treat radiation 
self-consistently and use a higher ef fecti ve resolution ∼ 1 pc that 
captures the physics of star-forming clouds. 

In Section 2 , we explain our numerical methods and our suite of 
models. In Section 3 , we analyse our results. In Section 4 , we interpret 
our results with toy models and discuss caveats and observational 
implications. We conclude in Section 5 . Tangential discussions are 
provided in the appendices. 
2  N U M E R I C A L  M E T H O D S  
We use the adaptive mesh refinement (AMR) code RAMSES (Teyssier 
2002 ) to model the interaction of DM, star clusters, and baryonic gas 
in a cosmological context. We start with a discussion of the rele v ant 
technical details of RAMSES and our initial conditions (Section 2.1 ). 
We follow with the details of our recipes for subgrid turbulence 
(Section 2.2 ), star formation (Section 2.3 ), SN feedback (Section 
2.4 ), and early feedback (Section 2.5 ). Finally, we describe our suite 
of simulations (Section 2.6 ). 
2.1 RAMSES 
RAMSES evolves gas quantities in an Eulerian sense on a discretized 
grid of cubical cells, which can be adaptively refined to increase 
the spatial resolution locally according to some adopted AMR 
criterion. DM and star cluster particles are evolved in a Lagrangian 
sense. DM particles and gas cells are coupled via the Poisson 
equation while star cluster particles and gas cells are coupled via 
recipes for star formation, early feedback, and SN feedback. We 
adopt standard cosmological parameters h 0 = 0 . 7, &m , 0 = 0 . 276, 
&b , 0 = 0 . 049, &!, 0 = 0 . 724, and zero curvature, consistent with 
current constraints. 

Each particle is defined by a unique identification number (ID), 
a position x and a velocity v . Star cluster particles carry additional 
metadata including their mass m ∗, metallicity Z, and time of birth 
t birth . We evolve density ρ, pressure P , velocity v , and metallicity 
Z on the grid according to the Euler equations using the MUSCL- 
Hancock scheme, a second-order Godunov method, and the Harten- 
Lax-van Leer-Contact Leer (HLLC) Riemann solver (Harten, Lax & 
Leer 1983 ). We use a fine time-step controlled by several stability 
conditions (see Teyssier 2002 ) and whose size is roughly ( 500 yr . 

We assume an ideal gas equation of state (EOS) appropriate for a 
rarefied plasma with γ = 5 / 3. The specific turbulent kinetic energy 
(TKE) ε turb and a refinement mask M are advected passively with the 
flow. The trajectories of DM and star cluster particles are computed 
using a particle-mesh solver. The Poisson equation is solved using a 
multi-grid method (Guillet & Teyssier 2011 ) with Dirichlet boundary 
conditions at refinement level boundaries. 

The grid resolution can be defined in terms of a refinement level 
) as *x = L/ 2 ) , where L is the size of the grid. Similarly, we can 
define the mass resolution of DM particles as 
m dm = &m , 0 ρcrit, 0 ( L/ 2 ) ) 3 , (1) 
where ρcrit, 0 = 3 H 2 0 / (8 πG ) is the critical density at z = 0. 

We generate initial conditions for a low-resolution ( ) = 9) DM 
only simulation in a comoving volume (100 h −1 

0 cMpc ) 3 at z = 100 
using MUSIC (Hahn & Abel 2011 ). We run the simulation until z = 9 
and identify a candidate halo with a mass ( 10 11 M !. We trace the 
DM particles of the candidate halo back to their positions at z = 100 
and define the conv e x hull created by these particles as the zoom 
region. 

We generate new initial conditions using MUSIC including DM 
and baryons. The simulation box is translated such that the candidate 
halo will form near the centre of the box at z = 9. Within the 
zoom region, we use a resolution ) = 14. Outside the zoom region, 
we progressively degrade the resolution until ) = 7, enforcing a 
separation of five cells between level boundaries (from ) = 7 to 
) = 14). We refer to this initial grid as the coarse grid. We track the 
Lagrangian volume of the halo throughout the simulation using the 
refinement mask, which we set equal to unity inside the zoom region 
and zero otherwise. 

The DM mass resolution in the zoom region is m dm , min ( 2 . 48 ×
10 4 M !. The corresponding baryon mass resolution is m b , min = 
f b m dm , min ( 4400 M !, where f b = &b , 0 /&m , 0 ( 0 . 17 is the baryon 
fraction. As a post hoc confirmation of our approach, we have verified 
that all DM particles within a 50 kpc sphere of the galaxy have mass 
m dm throughout the duration of our simulations. 

As the simulation runs, we refine the initial coarse grid based on 
a quasi-Lagrangian approach. A cell is refined if 

(i) The refinement mask M > 0 . 1 and at least one of the following 
conditions is met: 

(ii) The DM mass in a cell exceeds 8 m dm 
(iii) There baryonic (gas + star) mass in a cell exceeds 8 m b 
(iv) There are more than five Jeans lengths per cell. 
where the Jeans length is ,J = ( πc 2 s /Gρ) 1 / 2 and c s = √ 

γP /ρ is 
the sound speed. 

Criterion (i) ensures that only cells which exchange gas with the 
initial zoom-in region are refined. Criterion (iv) ensures that we 
satisfy the Truelo v e et al. ( 1997 ) criterion *x/,J < 0 . 25 in cells that 
are not maximally refined, preventing artificial fragmentation. 

Artificial fragmentation can still occur when maximally refined 
cells violate the Truelo v e criterion. Ho we ver, these cells only persist 
for one freefall time due to rapid star formation, limiting the 
development of artificial fragmentation. In our fiducial simulation 
at z = 9, only 6 per cent of maximally refined cells violate the 
Truelo v e criterion. In future simulations, we may use a pressure floor 
to eliminate artificial fragmentation altogether, following previous 
works (Robertson & Kravtsov 2008 ; Agertz, Teyssier & Moore 
2009 ). 

We increment the maximum refinement level ) max each time the 
physical box size doubles due to cosmic expansion, reaching ) max = 
20 at expansion factor a ∈ [0 . 05 , 0 . 1]. This approach maintains 
a constant physical ef fecti ve resolution *x min = L/ 2 ) max ( 10 pc 
throughout the duration of the simulation. 

We do not directly model Pop III star formation. Instead, we enrich 
the ISM to 10 −3 Z ! in the initial conditions. Previous simulation work 
shows that a single pair instability SN can enrich the host halo to at 
least this metallicity (Wise et al. 2011 ). Furthermore, this is abo v e the 
critical metallicity ∼ 10 −3 . 5 Z ! at which Pop III stars cease to form 
due to fine-structure Carbon and Oxygen line cooling (Bromm & 
Loeb 2003 ), so our initial conditions are consistent with no Pop III 
stars. 

Gas cooling and heating is implemented using equilibrium chem- 
istry for Hydrogen and Helium (Katz, Weinberg & Hernquist 1996 ), 
with a metallicity dependence given by Sutherland & Dopita ( 1993 ) 
and cosmological abundances ( X = 0 . 76, Y = 0 . 24). In diffuse gas 
n H ≤ 0 . 01 cm −3 (Aubert & Teyssier 2010 ), we account for heating 
from the extragalactic UV background, assuming a uniform radiation 
field that evolves with time according to Haardt & Madau ( 1996 ). 
This likely underestimates the UV background in MDGs due to 
clustering effects, but the error is acceptable given the simplicity of 
our model. 
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We floor the temperature at the cosmic microwave background 
(CMB) temperature to account for heating by CMB photons. This 
effect is important at Cosmic Dawn, when the CMB temperature is 
higher than the temperatures of star-forming clouds at the present 
day. When we stop our simulations at z = 9, the CMB temperature 
is T CMB ( 27 . 25 K. 

We run our simulations on the Stellar cluster at Princeton Uni- 
versity. Each simulation was run on 4 nodes with 96 cores per code, 
making 384 cores total. The cores on stellar are 2.9 GHz Intel Cascade 
Lake processors. Each simulation took approximately 2 weeks of 
runtime to reach completion. 
2.2 Subgrid turbulence model 
We use a Large Eddy Simulation (LES) method for subgrid turbu- 
lence as implemented in RAMSES by Kretschmer & Teyssier ( 2020 ), 
which we describe here for clarity. To describe the model, we 
decompose the density field into a bulk component ρ and a turbulent 
component ρ + : 
ρ = ρ + ρ + . (2) 
The bulk component is defined as the v olume-a verage density field 
smoothed on the scale of the cell *x. We also decompose the subgrid 
temperature T and velocity v fields into bulk components ˜ T , ̃  v and 
turbulent components T ++ , v ++ : 
T = ˜ T + T ++ , v = ̃  v + v ++ with ˜ T = ρT 

ρ
, ˜ v = ρv 

ρ
. (3) 

The bulk components are defined as the mass-weighted volume- 
average fields, also known as Fa vre-a veraged fields. The TKE is 
defined as 
e turb = 1 

2 ρv ++ 2 = 1 
2 ρσ 2 

3D = 3 
2 ρσ 2 

1D , (4) 
where σ3D (resp. σ1D ) is the three-dimensional (resp. one- 
dimensional) turbulent velocity dispersion. Using these definitions, 
one can derive equations for the TKE and bulk fluid components 
(Schmidt & Federrath 2011 ; Semenov, Kravtsov & Gnedin 2017 ). 

The bulk fluid equations include new terms for turbulent diffusion. 
Ho we ver, the turbulent dif fusion is generally small compared to the 
diffusion introduced by the numerical scheme. We maintain the 
original fluid equations rather than adding a dif fusi ve term to an 
already too-dif fusi ve scheme, follo wing pre vious work (Schmidt, 
Niemeyer & Hillebrandt 2006 ). The TKE equation reads 
∂ 
∂ t e turb + ∂ 

∂ x j ( e turb ̃  v j ) + P turb ∂ ̃  v j 
∂ x j = C turb − D turb , (5) 

where P turb = (2 / 3) e turb = ρσ 2 
1D is the turbulent pressure and C turb 

and D turb are creation and destruction source terms, respectively. 
In the LES framework, we assume that resolved and unresolved 

turbulence are coupled by eddies at the resolution scale. Defining the 
turbulent viscosity µturb = ρ*xσ1D , the turbulence creation term is 
C turb = 2 µturb ∑ 

ij 
[

1 
2 
(
∂ ̃  v i 
∂ x j + ∂ ̃  v j 

∂ x i 
)

− 1 
3 ( ∇·˜ v ) .ij ] = 1 

2 µturb | ̃  S ij | 2 , 
(6) 

where ˜ S is the bulk viscous stress tensor. Defining the turbulent 
dissipation time-scale τdiss = *x/σ1D , the turbulence destruction 
term is 
D turb = ε turb 

τdiss . (7) 

One caveat of the LES model is that gravitational forces do not 
enter into the turbulence creation term (equation 6 ). In a stable 
Keplerian disc, gravitational forces can stabilize shear flows against 
the Kelvin–Helmholtz instability, so the model o v erestimates the 
TKE source term. In a gravitationally unstable disc, gravitational 
forces can source additional turbulence, so the model underestimates 
the TKE source term. 
2.3 Star formation recipe 
With slight modification (Section 2.3.2 ), we model star formation 
using the multi-freefall model of Federrath & Klessen ( 2012 ) as 
implemented in RAMSES by Kretschmer & Teyssier ( 2020 ), which 
we describe here for clarity. 

2.3.1 Subgrid density PDF 
Empirically, star formation is described by the Kennicutt–Schmidt 
(KS) law (Kennicutt 1998 ), which relates the SFR surface density 
and gas surface density by / SFR ∝ / 1 . 5 gas . The KS relation holds at 
scales as small as 1 kpc (Kennicutt et al. 2007 ), supporting the idea 
that star formation can be modelled locally as volumetric Schmidt 
law (Schmidt 1959 ) 
ρ̇∗ = εff ρ

τff with τff = √ 
3 π

32 Gρ
, (8) 

where ρ̇∗ is the local SFR density and εff is the SFE per local freefall 
time τff . This model naturally explains the power-law index of 1.5 
in the empirical KS law. Equation ( 8 ) is often combined with a fixed 
density threshold to obtain a simple star formation recipe which 
can be used in cosmological simulations (e.g. Rasera & Teyssier 
2006 ). The parameter εff is chosen to match the observ ed KS la w in 
nearby resolved galaxies, typically resulting in a value " 5 per cent . 
Ho we ver, the SFE in the local Universe cannot necessarily be 
extrapolated to Cosmic Dawn. This moti v ates a prescripti ve star 
formation recipe which does not rely on empirical calibration. 

One approach is to consider the structure of the density field on 
unresolved scales ≤ *x min ( 10 pc . We extrapolate the turbulence 
spectrum to unresolved scales assuming Burgers turbulence: 
σ ( ) ) = σ1D ( ) 

*x 
)1 / 2 

, (9) 
where ) is the spatial scale. 

The turbulence transitions from supersonic to subsonic at the sonic 
scale ) s where the turbulent velocity dispersion (equation 9 ) is equal 
to the sound speed. Defining the turbulent Mach number M turb = 
σ1D /c s , the sonic scale is ) s = *x/ M 2 turb . Below the sonic scale, 
density fluctuations are weak, and a gas cloud can be treated as a 
quasi-homogeneous region. 

We assume that each parcel of gas which is gravitationally unstable 
on the sonic scale will eventually collapse and form stars. On 
intermediate scales between the sonic scale and the resolution scale, 
density fluctuations can be significant. The probability distribution 
function (PDF) of density in a supersonic turbulent medium is well- 
described by a lognormal distribution (Vazquez-Semadeni 1994 ; 
Kritsuk et al. 2007 ): 
p V ( s) = d V 

d s = 1 √ 
2 πσ 2 

s exp ( − ( s − s ) 2 
2 σ 2 

s ) (10) 
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with normalization condition 
∫ ∞ 

−∞ p V ( s ) d s = 1 and ∫ ∞ 
−∞ ρp V ( s ) d s = ρ, (11) 

where s = ln ( ρ/ ρ) is the logarithmic density, σs is its standard 
deviation, and s = −1 / 2 σ 2 

s is its mean. 
Padoan & Nordlund ( 2011 ) fit a simple analytic form to σs using 

non-magnetized, isothermal turbulence simulations forced by an 
Ornstein-Uhlenbeck process: 
σ 2 

s = ln (1 + b 2 M 2 turb ) . (12) 
The parameter b describes the turbulence forcing in the simulations. 
For purely solenoidal (divergence-free) forcing, b = 1 / 3. For purely 
compressive (curl-free) forcing, b = 1. The column density PDF 
is also well-described by a lognormal distribution, although the 
dispersion is generally smaller because fluctuations are averaged 
out by integration along the line of sight (Appendix G ). 
2.3.2 Turbulence forcing parameter 
In most of our simulations, we set the forcing parameter to a constant 
v alue. Ho we ver, we run one experimental simulation where we derive 
the forcing parameter from the local velocity field, a novel addition 
to RAMSES in this work. Using a Helmholtz decomposition, the 
velocity field can be represented as a curl-free term v comp = −∇ φ
and divergence-free term v sol = ∇×A . 
v = v comp + v sol = −∇ φ + ∇×A . (13) 

Computing the Helmholtz decomposition would require a com- 
putationally e xpensiv e iterativ e solv er on the global velocity field. 
Instead, we use a heuristic approach moti v ated by the following. 
Taking the divergence of equation ( 13 ) reveals that the curl-free 
component of the velocity field depends only on the divergence. 
Similarly, taking the curl reveals that the divergence-free component 
of the velocity field depends only on the curl. We make a simple ap- 
proximation that the magnitudes of the curl-free and divergence-free 
components of the velocity field are proportional to the divergence 
and curl, respectively. This gives the following expression for ratio 
of power in compressive to solenoidal forcing modes: 
ψ = P comp 

P sol = ( ∇·v ) 2 
‖ ∇× v ‖ 2 . (14) 

See Ginzburg et al. ( 2025 ) for a more rigorous justification of this 
expression. Federrath et al. ( 2010 ) fit a simple analytic form to b turb 
using detailed turbulence simulations (their equation 23): 
b turb ( 1 

3 + 2 
3 
(

ψ 
ψ + 1 

)3 
. (15) 

We use this formula to compute a local turbulence forcing for each 
cell in the simulation. 
2.3.3 Star formation efficiency 
Assuming that star-forming cores are homogeneous spheres with 
diameter ) s (Krumholz & McKee 2005 ), the gravitational stability 
condition is αvir, core ≥ 1, where αvir, core is the virial parameter of the 
core given by 
αvir, core = 2 E kin 

| E grav | = 15 
π

c 2 s + σ ( ) s ) 2 
Gρ) 2 s . (16) 

The gravitational stability condition can alternatively be expressed 
as a condition on the density ρ ≤ ρcrit , where 
ρcrit = 15 

π

2 c 2 s M 4 turb 
G*x = αvir ρ 2 M 4 turb 

1 + M 2 turb (17) 
and 
αvir = 15 

π

c 2 s + σ 2 
1D 

G ρ*x 2 = 15 
π

c 2 s 
G ρ*x 2 (1 + M 2 turb ) (18) 

is the virial parameter of the entire cell. The critical logarithmic 
density is 
s crit = ln [αvir 2 M 4 turb 

1 + M 2 turb 
]

, (19) 
s crit depends on the cell size. At higher resolutions, a larger density 
is required to become gravitationally unstable, but gas will naturally 
reach those higher densities as it collapses down to the smaller cell 
size. 

The model breaks down when the entire cell is subsonic M turb " 1 
(Federrath & Klessen 2012 ) and the sonic scale is larger than the 
resolution scale. In this case, the density PDF should be interpreted 
as the probability distribution for the density across the entire cell 
and the gravitational stability condition (equation 16 ) should use the 
resolution scale rather than the sonic scale. We smoothly interpolate 
between both stability conditions by defining a modified critical 
logarithmic density (Kretschmer & Teyssier 2020 ): 
s crit = ln [αvir (1 + 2 M 4 turb 

1 + M 2 turb 
)]

. (20) 
If each unstable gas parcel collapses in one freefall time and 

converts all its mass into stars, then the local SFR is given by 
ρ̇∗ = ∫ ∞ 

s crit ρ

τff ( ρ) p( s) d s = εff ρ

τff ( ρ) , (21) 
where εff is the local SFE per freefall time given by 
εff = ∫ ∞ 

s crit τff ( ρ) 
τff ( ρ) ρρ p( s) d s 

= 1 
2 exp ( 3 

8 σ 2 
s ) 

[ 
1 + erf ( 

σ 2 
s − s crit √ 

2 σ 2 
s 

) ] 
. (22) 

For notational convenience, we drop the overlines on the bulk fluid 
components for the remainder of the paper. 

This is the multi-freefall (MFF) model of Federrath & Klessen 
( 2012 ), validated by detailed turbulence simulations in the same 
work. This recipe is an important first step to wards predicti ve models 
at Cosmic Dawn. Ho we ver, there are several caveats. The model 
neglects deviations from a lognormal density PDF, the spatial cor- 
relation of the density field, and the time-scale required to replenish 
the density PDF after a star has formed. Some of these issues are 
addressed by the recent turbulent support (TS) model of Hennebelle, 
Brucy & Colman ( 2024 ) (Section 4.6 ). The MFF model implies 
that as the turbulence forcing becomes more solenoidal, the subgrid 
density PDF becomes more narrow (equation 12 ), generally reducing 
the local SFE for the same gas conditions and TKE (equation 22 ). 
We leave further discussion to Section 4.4 . 

The expected number of star cluster particles to form in one time- 
step *t is 
〈 N cl 〉 = ρ̇∗*x 3 *t 

M cl , (23) 
where M cl is the star cluster particle mass. In our simulations, the 
fiducial value M cl = M b , min = 4400 M ! is the minimum baryon mass 
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resolution on the coarse grid defined in Section 2.1 . Each time-step, 
we form a number of star cluster particles sampled from a Poisson 
distribution with a Poisson parameter 〈 N cl 〉 . This procedure allows 
us to model star formation as discrete events distributed in time, 
independent of the adopted star cluster particle mass. 

Although our star formation recipe is independent of the adopted 
star cluster particle mass, our recipe for photoionization feedback is 
not. By adjusting the star particle mass, we adjust the efficiency of 
photoionization feedback (Section 2.5 ). We exploit this effect in our 
early feedback series (Section 2.6 ). 
2.4 Superno v ae recipe 
We use a SN feedback model based on the detailed turbulence 
simulations of Martizzi, Faucher-Gigu ̀ere & Quataert ( 2015 ) as 
implemented in RAMSES by Kretschmer & Teyssier ( 2020 ), which we 
describe here for clarity. SN explosions are one of the key feedback 
processes which regulate star formation. As the SFR increases, the 
SN rate increases commensurately. SNe inject energy and momentum 
into the ISM, depleting the reservoir of cold gas available to form 
stars. 

Our simulation duration ∼ 550 Myr is shorter than the time-scales 
required for Type Ia SNe ! 1 Gyr , associated with the explosion 
of a white dwarf in a close binary system (Tinsley 1979 ). We only 
model Type II SNe, associated with the explosions of massive stars 
m ∗ ! 8 M !. 

Type II SNe are expected to occur during a window of time from 
τstart ( 3 Myr to τend ( 20 Myr after the birth of a massive star. These 
values for τstart and τend are consistent with previous work using the 
population synthesis code STARBURST 99 (Leitherer et al. 1999 ; Kimm 
et al. 2015 ). 

Assuming that it samples the IMF, a star cluster particle is expected 
to produce a number of SNe given by 
N SNe = χM cl 

m big , (24) 
where M cl is the star cluster particle mass, m big is the typical mass 
of a supernova progenitor, and χ is the mass fraction of supernova 
progenitors within the stellar population. m big and χ are related to 
the IMF ξ ( m ) via 
m big = ∫ m max 

m min mξ ( m ) d m 
∫ m max 

m min ξ ( m ) d m , χ = ∫ m max 
m min mξ ( m ) d m 
∫ m max 

0 mξ ( m ) d m , (25) 
where m min is the minimum mass of an SN progenitor and m max is 
the maximum stellar mass. 

The IMF only enters into our modelling through our choice of m big 
and χ . Using a Chabrier IMF (Chabrier 2003 ) with m min = 8 M ! and 
m max = 100 M !, one finds m big ( 19 M ! and χ ( 0 . 21. Following 
Kretschmer & Teyssier ( 2020 ), we adopt m big = 10 M ! and χ = 
0 . 2. Our smaller value of m big results in approximately twice as 
many SNe than predicted by a Chabrier IMF. This discrepancy was 
unintentional. Ho we ver, we note that the value of m big is uncertain 
due to the sensitivity of equation ( 25 ) to the exact choices of m min , 
m max , and the functional form of the IMF. 

In each simulation time-step, we compute the SN rate assuming 
that the N SNe events are uniformally distributed in the interval 
between τstart and τend : 
Ṅ SNe = N SNe 

τend − τstart (26) 
although physically, the SN distribution should be skewed towards 
later times (Section 4.7 ). 

The expected number of SN events per time-step is 〈 N SNe 〉 = 
Ṅ SNe *t . Each time-step, we trigger a number of SNe sampled from 
a Poisson distribution with a Poisson parameter 〈 N SNe 〉 , similar to 
Hopkins et al. ( 2018 ). This procedure allows us to model SNe as 
discrete events distributed in time, independent of the adopted star 
cluster particle mass. 

The e xploding SN blastwav e interacts with the surrounding 
medium in four stages. Initially, the SN ejecta expands freely. 
Once the ejecta has swept up a mass in the ISM comparable to 
its own, a shock forms and expands following the Sedov–Taylor 
solution, approximately conserving energy . Eventually , radiative 
cooling behind the shock front causes the expansion to deviate from 
the Sedov–Taylor solution, and the expansion proceeds approxi- 
mately conserving momentum. Finally, the blast wave slows due 
to radiative losses and accumulated material, fading into the ISM. 
The transition radius between the second Sedov–Taylor phase and 
the third ‘sno wplo w’ phase is called the cooling radius. 

Ideally, one should resolve the energy-conserving Sedov–Taylor 
phase and model a SN explosion by injecting a thermal energy 
E SN ( 10 51 erg into the surrounding gas. Ho we ver, at high densities, 
the cooling radius is smaller than the resolution scale. In this case, 
injecting energy into the surrounding gas would result in the energy 
from the SN being artificially radiated away before it could accelerate 
gas in the sno wplo w phase. To compensate for this effect, we inject 
momentum in addition to thermal energy when the cooling radius is 
not resolved. This momentum feedback method is common practice 
in galaxy simulations (Hopkins, Quataert & Murray 2011 ; Kim & 
Ostriker 2015 ; Kimm et al. 2015 ; Hopkins et al. 2018 ). 

Martizzi et al. ( 2015 ) fit power laws in density and metallicity to 
the cooling radius R cool and the SN terminal momentum P SN using 
high-resolution simulations of individual SN explosions: 
R cool ( 3 . 0 ( Z 

Z !
)−0 . 082 ( n H 

100 cm −2 )−0 . 42 
pc , (27) 

P SN ( 1420 ( Z 
Z !

)−0 . 137 ( n H 
100 cm −2 )−0 . 16 

M ! km s −1 . (28) 
We use these equations to estimate R cool and P SN and inject momen- 
tum according to 
P = P SN N SN 

 
  
  

1 R cool < *x min 
( *x min /R cool ) 3 / 2 *x min < R cool < 4 *x min 
0 R cool > *x min . (29) 

Our approach is only an approximation of the full model recom- 
mended by Martizzi et al. ( 2015 ), which incorporates additional 
physical scales into the calculation of injected momentum and 
energy. Martizzi et al. ( 2015 ) also provide versions of equations 
( 27 ) and ( 28 ) for SN which occur in an inhomogeneous medium 
with M turb = 30. In an inhomogeneous medium, the cooling radius 
is larger by a factor of a few because the blast wave preferentially 
mo v es through low-density channels, but the terminal energy and 
momentum deposited in the ISM by the SN remnant do not 
change significantly . Ideally , one should use a model which depends 
continuously on the turbulent Mach number. 

We inject momentum onto the grid by dividing momentum flux 
P *x −2 *t −1 equally between the six faces of the cell and directly 
adding it to the thermal pressure in the Riemann solver (Agertz 
et al. 2013 ). We remo v e the associated P d V work in the internal 
energy equation to a v oid spurious heating (Kretschmer & Teyssier 
2020 ). We inject thermal energy onto the grid by adding energy 
N SN E SN to the thermal energy of the cell hosting the star particle. 
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We assume a SN metal yield y = 0 . 1, so each SN event deposits a 
mass yN SN m big = N SN M ! of metals into the ISM. 

Momentum feedback approximates the long-term effect of SNe 
on the surrounding ISM, but it fails to capture heating on short time- 
scales in the unresolved Sedov–Taylor phase. Our results concerning 
SN feedback should be considered with caution, despite our physi- 
cally moti v ated subgrid prescription. We leave further discussion to 
Section 4.7 . 
2.5 Early feedback recipe 
In addition to SN feedback, stellar feedback includes thermal pres- 
sure from photoionized gas, stellar winds, and radiation pressure. We 
call these early feedback processes because they begin immediately 
after a massive star forms, in contrast to SN feedback. Out of the 
early feedback processes, we only model thermal pressure from 
photoionized gas. We discuss the effects of other early feedback 
processes in Section 4.5 . 

In each cell containing a star cluster particle younger than τend = 
20 Myr , we set the temperature T phot = 20000 K. This forces the gas 
into a fast cooling regime where it approaches the photoionization 
temperature within a few time-steps. In practice, we achieve this by 
injecting a thermal energy associated with a sound speed 
c s = √ 

γ k B T phot 
µm p ( 22 km s −1 , (30) 

where we have assumed a γ = 5/3 adiabatic EOS and mean 
molecular weight µ = 0 . 6. 

Our early feedback recipe depends on the choice of M cl because 
each star particle has the same effect on its parent cell, regardless 
of its mass. As the adopted value of M cl decreases, less stellar mass 
is required to photoionize the parent cell, representing increasingly 
efficient photoionization feedback. We select a fiducial value of M cl 
such that the H II region volume equals the volume of the most refined 
cell under typical star-forming conditions. In this case, a star particle 
is formed exactly when its H II region becomes resolved. 

Let 〈 Q/m ∗〉 be the average rate of hydrogen-ionizing photons 
emitted per stellar mass. This can be derived from the IMF ξ ( m ) if 
the rate of ionizing photon emission Q ( m ) is known as a function 
mass: 
〈 Q 
m ∗ 〉 = ∫ Q ( m ) ξ ( m ) d m ∫ 

mξ ( m ) d m . (31) 
Using data for main sequence stars given by table 15.1 of Draine 

( 2011 ), we fit Q ( m ) to a simple analytic form for masses ≥ 15 . 6 M !
(Appendix B ): 
Q ( m ) ( [ 

8 . 37 × 10 45 ( m 
M !

)2 . 12 
− 2 . 33 × 10 48 ] 

cm −2 s −1 . (32) 
Assuming a Chabrier IMF (Chabrier 2003 ), we estimate 〈 Q/m ∗〉 ( 
5 . 85 × 10 46 cm −2 s −1 M −1 

! . Higher mass stars contribute more ioniz- 
ing photons, but have a lower abundance. In our calculation, most of 
the contribution to the ionizing photons comes from stars ( 35 M !. 
Star clusters which are too small to sample the IMF up to this mass 
may have lower ionization rates. 

Equating the rates of photoionization and radiative recombination, 
we find the classic result from Str ̈omgren ( 1939 ) that the star cluster 
creates a Str ̈omgren sphere of ionized gas with radius 
R S = ( 3 M cl 

4 παB n 2 H 〈 Q 
m ∗ 〉 )1 / 3 

, (33) 

where αB ( 2 . 58 × 10 −13 cm 3 / s is the case B recombination rate at 
an electron temperature 10 4 K (Ferland et al. 1992 ). We use the on- 
the-spot approximation, assuming that electrons which recombine 
directly to the ground state do not contribute to the net ionization. 

The stellar mass required to photoionize a cell is given by equating 
Str ̈omgren sphere and cell volumes and solving for the star cluster 
mass, which yields a similar value to our fiducial star particle mass 
4400 M !: 
M cl = 4 π

3 αB n 2 H *x 3 min 
〈 Q/m ∗〉 

( 5000 M ! ( n H 
100 cm −3 )2 ( *x 

10 pc 
)3 

×
( 〈 Q/m ∗〉 cm 2 s M !

5 . 85 × 10 46 
)−1 

. (34) 
In MDGs, stars form at significantly higher densities than the 

value ∼ 10 2 cm −2 which appears in equation ( 34 ). However, the 
strong turbulence in MDGs lowers the effective density relevant for 
photoionization because photoionizing photons preferentially escape 
through low-density channels in the gas. We can estimate the ef fecti ve 
density using a PDF-weighted harmonic mean 
ρeff = [∫ 1 

ρ
p V ( s ) d s ]−1 

= e −σ 2 
s ρ = ρ

1 + b 2 turb M 2 turb . (35) 
This is equi v alent to computing the density associated with the 
average photon mean free path, which scales as ∝ ρ−1 for constant 
opacity. The result comports with our intuition that the ef fecti ve 
density should decrease with increasing turbulent Mach number. This 
is similar in spirit to the more heuristic definition of the ef fecti ve 
density in Appendix B of Faucher-Gigu ̀ere, Quataert & Hopkins 
( 2013 ). For the typical densities and turbulent Mach numbers at star 
formation sites in our simulations ( n H ∼ 10 4 cm −3 , M turb ∼ 10), the 
ef fecti ve density is indeed ∼ 10 2 cm −3 . 

Our crude model (single star particle mass) cannot account for 
the density dependence in equation ( 34 ). We run several simulations 
with different star particle masses to determine how this parameter 
effects our results (Section 2.6 ). In future work, we will impro v e 
upon our early feedback model. 

We also do not properly account for multiple star cluster particles 
in a cell. If one star cluster particle photoionizes a cell, then 
by the Str ̈omgren sphere argument, multiple star particles should 
photoionize a region larger than a cell. In our simulations, these 
situations are instead handled by multiplying the injected thermal 
energy by the number of star cluster particles, artificially restricting 
the Str ̈omgren sphere to the cell size. 
2.6 The suite of simulations 
We run 13 simulations from z = 100 to z = 9. Parameters and 
summary statistics for each simulation are given in Table 1 . The 
calculation of summary statistics is described in Appendix D and their 
values are analysed in Section 3.5 . We separate our simulations into 
4 series: a feedback series, an early feedback series, a SN feedback 
series, and a turbulence forcing series. The same fiducial simulation 
appears in each series by a different name and marked by an asterisk. 

We use the feedback series to investigate the effects of different 
feedback mechanisms. yesFbk includes both photoionzation and 
SN feedback. In SNeOnly , we turn off photoionization feedback. In 
photOnly , we turn off SN feedback. In noFbk , we turn off both 
forms of feedback. 
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We use the early feedback series to investigate the effect of 
photoionization feedback in detail. In highPhot , medPhot , and 
lowPhot , we progressively decrease the star particle mass by 
factors of 5. A smaller star particle mass corresponds to more 
efficient photoionization feedback (Section 2.5 ). The fiducial star 
cluster particle mass in medPhot is given by the minimum baryon 
mass resolution M cl , fid = M b , min = 4400M ! close to the physically- 
moti v ated v alue gi ven by equation ( 34 ). 
highPhotC , medPhotC , and lowPhotC are identical to 

highPhot , medPhot , and lowPhot , e xcept the y do not use 
the MFF star formation recipe. Instead, the local SFE is set to a 
constant value abo v e a density threshold, following the standard star 
formation recipe in galaxy simulations (e.g. Hopkins et al. 2014 ). 
The density threshold and constant local SFE are calibrated to the 
fiducial simulation. Specifically, the density threshold is set to the 
25th- percentile star-forming density 4 . 24 × 10 −21 g / cm 3 and the 
constant local SFE is set to the median local SFE 13.8 per cent. 

We use the SN feedback series to investigate the effect of the SN 
delay time. In medSNe , fastSNe , and instSNe , we progressively 
decrease τstart , the delay time before the first SN explosion. These 
simulations are moti v ated by Dekel et al. ( 2023 )’s argument that at 
high densities, the delay time creates a window of opportunity for 
rapid star formation. 

We use the turbulence forcing series to investigate the effect of 
the turbulence forcing parameter. In solTurb , we set b turb = 0 . 3, 
corresponding to turbulence forced by purely solenoidal modes. In 
compTurb , we set b turb = 1 . 0, corresponding to turbulence forced 
by purely compressive modes. In varTurb , we determine the 
turbulence forcing parameter from the local velocity field using 
equation ( 15 ). 
3  RESU LTS  
We now analyse our simulated galaxies at z = 9 and examine the 
relationships between the gas conditions of the ISM, stellar feedback 
processes, and star formation. First, we explain how we locate the 
galaxy inside the simulation box (Section 3.1 ). Then, we use a 
snapshot of our fiducial simulation at z = 9 to analyse the structure 
of our simulated MDGs (Section 3.2 ). Next, we discuss the lifecycle 
of gas in our simulated galaxies (Section 3.3 ). Then, we compare 
the local gas properties between simulations (Section 3.4 ). Next, we 
discuss the star formation histories (SFHs) of our simulated galaxies 
(Section 3.5 ) and the variability in their SFRs (Section 3.6 ). Finally, 
we discuss the effect of the turbulence forcing parameter (Section 
3.7 ). 
3.1 Zooming in 
To locate the galaxy inside the simulation box, we start by determin- 
ing the location of every peak in the DM density field using PHEW , 
the built-in clump finder in the RAMSES code introduced by Bleuler & 
Teyssier ( 2014 ). Around each peak, we identify the volume bounded 
by the enclosing saddle surface as a clump. We iteratively merged 
clumps within each density isosurface ρ = 80 ρcrit and identify the 
resulting objects as haloes. In a 10 kpc sphere centred on the DM 
barycenter of the most massive halo, we define the centre of the 
galaxy r c as the gas and star barycenter. 

In Fig. 2 , we zoom in on the location of the most massive galaxy 
in the fiducial simulation. At the largest scales, we identify the high 
resolution zoom region embedded in a cosmological box. At a scale 
∼ 100 kpc , we identify streams accreting onto the galaxy. Zooming 

Figure 2. Log arithmic g as density in an xy-slice through the most massive 
galaxy in the fiducial simulation at z = 9. The main plot shows the entire 
simulation box with side length 100 h −1 

0 cMpc ≈ 14 Mpc . The inset plots 
show smaller scales, from ∼ 1 Mpc (bottom left) to ∼ 100 kpc (top right) to 
∼ 10 kpc (top left) to 1 kpc (bottom right). The range of the density colourbar 
is adjusted in each inset plot to maximize contrast. At the largest scales, we 
identify the high-resolution zoom region embedded in a cosmological box. At 
a scale ∼ 100 kpc , we identify streams accreting on to the galaxy. Zooming 
in further, we see the central galaxy and the individual star-forming clumps 
within. Movies of the simulations are available on YouTube . 
in further, we see the central galaxy and the individual star-forming 
clumps within. 

Applying this algorithm to each snapshot, we can track the most 
massive galaxy as it moves through the simulation box. There is no 
guarantee that the most massive halo at z > 9 is the progenitor of 
the most massive halo at z = 9, so we visually inspect the density 
field and switch haloes when necessary to enforce continuity. We fit 
a cubic polynomial to each spatial coordinate of the galaxy centre to 
create a frame which smoothly follows the galaxy. We use this frame 
to generate movies of our simulations available on YouTube . 1 
3.2 Galaxy structure 
In the second and third columns of Fig. 3 , we show face-on and edge- 
on projections of the logarithmic gas and star surface densities in a 
box of side length 2 kpc . The procedure for computing the direction 
of net angular momentum is described in Appendix C . We o v erlay 
the in-plane velocity fields as arrows. 

The galaxy mass is concentrated around a single plane with a 
rotational velocity field, suggesting a disc structure. Our estimate of 
the galaxy radius 720 pc in Appendix A agrees nicely with Fig. 3 . 
The morphology of the galaxy can be quantified by the scale height 
H /R and the ratio of the rotational velocity to the radial velocity 
dispersion v rot /σr . The calculation of these metrics is described in 
Appendix C . 

In a rotationally supported thin disc, we expect H /R 2 1 and 
v rot /σr 3 1. The relative contribution of the centrifugal force to the 
support is (Ceverino et al. 2012 ) 
R = [1 + 2( σr /v rot ) 2 ]−1 

. (36) 
1 https:// tinyurl.com/ 53xxm3r2 
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Figure 3. Log arithmic g as (top ro w) and star (bottom ro w) surface densities in a box of side length 2 kpc around the galaxy centre in the fiducial simulation at 
z = 9 projected face-on (left column) and edge-on (right column). In each panel, we o v erlay the in-plane gas (resp. star) velocity field in green, averaged over 
the projection direction and weighted by gas (resp. star) mass. The galaxy mass is concentrated around a single plane with a rotational velocity field, suggesting 
a disc structure. The gas and star mass is organized into dense clumps of size ∼ 100 pc , although the clump size may be limited by our ef fecti ve resolution 
( 10 pc . 
For gas with temperature ≤ 10 4 K, we find a disc height ≈ 326 pc 
and disc radius ≈ 696 pc , giving a scale height ( H /R) gas ≈ 0 . 468, 
although this may be artificially inflated by accreting cold gas 
in the polar regions. In addition, we find v rot /σr ≈ 2 . 16, corre- 
sponding to R ( 0 . 70. This implies that the gas disc is mostly 
supported by rotation (70 per cent) with some turbulent support 
(30 per cent). 

Likewise, for stars, we find a disc height ≈ 115 pc and a disc radius 
≈ 431 pc , giving a scale height ( H /R) star ≈ 0 . 266. In addition, we 
find v rot /σr ≈ 0 . 919, corresponding to R ( 0 . 30. This implies that 
the stellar disc is mostly supported by turbulence (70 per cent) with 
some rotational support (30 per cent). The significant contributions 
from both rotation and turbulence explain the thick disc structure. At 
lower redshift, MDGs may start to resemble massive star-forming 
galaxies at cosmic noon, which show disc structures in observation 
(F ̈orster Schreiber et al. 2006 ; Genzel et al. 2006 , 2008 ) and 
simulation (Danovich et al. 2015 ). 

The gas and star mass is organized into dense clumps of size 
∼ 100 pc , although the clump size may be limited by our ef fecti ve 
resolution ( 10 pc . None the less, high-redshift disc galaxies show 
similar structures in observation (Elmegreen et al. 2007 ; Guo et al. 
2012 ; Soto et al. 2017 ; Guo et al. 2018 ) and simulation (Noguchi 
1998 ; Inoue et al. 2016 ; Mandelker et al. 2017 , 2025 ), strengthening 
the analogy. The recent simulation work of (Nakazato, Ceverino & 
Yoshida 2024 ) find that similar clump structures at high redshifts 
z ! 5 might be detectable by JWST due to their brightness in rest- 
frame optical emission lines. 

The average face-on baryonic surface density within 1 kpc of the 
centre is 1500 M ! pc −2 , with a contribution 470 M ! pc −2 from the 
gas. This is less than our estimate ∼ 10 4 M ! pc −2 of the baryonic 
surface density in Appendix A . The discrepancy is primarily due 
to baryons inside the halo which have not yet settled into the disc, 
making f b M vir an o v erestimate of the baryon mass in the disc. The 
baryon mass inside the galaxy radius 720 pc is only a third of the 
baryon mass inside the virial radius 14 kpc . 

The surface density is higher at smaller radii, but the disc is in- 
creasingly dominated by stars. The face-on baryonic surface density 
within 180 pc of the centre is 8000 M ! pc −2 with a contribution 
880 M ! pc −2 from the gas. Gas density is enhanced significantly 
within the clumps, with f ace-on gas surf ace density ∼ 10 4 M ! pc −2 
and Hydrogen number density ∼ 3 × 10 3 cm −3 . Most of the star 
formation occurs within these clumps. 
3.3 Gas lifecycle 
The lifecycle of gas in our simulated galaxies can be understood 
in temperature-density phase space. In Fig. 4 , we show the distri- 
bution of gas mass in temperature-density phase space for noFbk , 
SNeOnly , lowPhot , medPhot , and highPhot at z = 9. The 
temperature is divided by µ, the mean molecular weight. 

We identify multiple ISM gas phases, including the hot ionized 
medium (HIM; n H ∼ 0 . 005 cm −3 and T ! 10 5 . 5 K), the warm neutral 
medium (WNM; n H ∼ 0 . 6 cm −3 and T ∼ 5000 K), the cold neutral 
medium (CNM; n H ∼ 30 cm −3 and T ∼ 100 K), and photoionized 
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Figure 4. Two-dimensional histograms of the density and temperature in a box of side length 5 kpc around the most massive galaxy at z = 9 weighted by 
gas mass for highPhot , medPhot , lowPhot , SNeOnly , and noFbk . The temperature is normalized by µ, the mean molecular weight. The colourbar 
represents the phase space density i.e. the mass per bin in logarithmic density and temperature. Hotter and more diffuse gas has relatively less mass per bin 
and is represented by purple colours. Colder and more dense gas has relatively more mass per bin and is represented by green colours. We o v erplot contours 
outlining the smallest phase space areas containing 75 per cent of star formation events weighted by stellar mass (black) and 75 per cent of SN events (red). In 
the bottom right panel, we show a schematic diagram of the gas evolution, explained in Section 3.4 . 
gas ( n H ! 0 . 3 cm −3 and T ∼ 10 4 K). We remind the reader that the 
ionization state of the gas only enters into our simulations through 
the prescribed cooling function. 

The black contours in Fig. 4 outline the smallest phase space area 
that contains 75 per cent of star formation events over the course of 
the simulation. Stars typically form at high densities ∼ 3 × 10 3 cm −3 
and low temperatures ∼ 300 K. The star-forming regions of phase 
space contain very little gas because any gas that enters this region 
is quickly remo v ed by star formation or feedback. The red contours 
outline the smallest phase space area that contains 75 per cent of 
SN events occur. The SN events are distributed between the CNM, 
photoionized gas, and the HIM. 

Whether gas evolves horizontally or vertically in phase space is 
a question of time-scales. When the cooling time-scale is longer 
than the freefall time, gas collapses, moving horizontally to higher 
densities. When the freefall time is longer than the cooling time- 
scale, gas cools, moving vertically to lower temperatures. At a fixed 
temperature and metallicity, we have τcool ∝ ρ−1 and τff ∝ ρ−1 / 2 , 

so collapsing gas will eventually reach a density where cooling 
dominates. 

The gas mass in the galaxy increases o v er time due to accretion 
from the IGM. If the cooling time near the virial radius is short, this 
precludes the formation of a stable accretion shock, and the cold 
gas accretes directly onto the central galaxy (cold mode accretion). 
Otherwise, the shock-heated gas must cool in the circumgalactic 
medium (CGM) before reaching the galaxy (hot mode accretion) 
(Birnboim & Dekel 2003 ; Kere ̌s et al. 2005 ). Fig. 4 probes a region 
deep inside the virial radius, so it does not explicitly separate these 
two scenarios. 

Hot mode accretion typically dominates at halo masses ! 10 11 to 
10 12 M ! for (quasi-)spherical accretion (Birnboim & Dekel 2003 ; 
K ere ̌s et al. 2005 ). Ho we ver, at high redshift, accretion in massive 
haloes is increasingly dominated by dense filaments, shortening the 
cooling time and enhancing cold mode accretion (Dekel & Birnboim 
2006 ; Kere ̌s et al. 2009 ). Therefore, we expect MDGs to accrete 
primarily in the cold mode despite the large halo mass and low 
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Figure 5. Histograms of the hydrogen number density (first column), modified temperature (second column), turbulent velocity dispersion (third column), and 
metallicity (fourth column) in a box of side length 5 kpc around the most massive galaxy at z = 9 in the early feedback series (top row) and turbulence forcing 
series (bottom row), weighted by gas mass. Each simulation is shown in a different colour, with the fiducial simulation in blue. An additional histogram of the 
turbulence forcing parameter is included for the variable turbulence forcing simulation. 
metallicity of the accreting gas. The CGM is poorly resolved in our 
simulations, so we leave a detailed study of gas accretion onto MDGs 
to future work. 

The lower right panel of Fig. 4 is schematic diagram illustrating 
the processes that mo v e gas through the phase space: (i) cold gas 
from cosmic filaments accrete on to the galaxy; (ii) some of the 
gas is shock-heated by turbulence, joining the HIM; (iii) HIM gas 
cools to the Hydrogen ionization temperature ∼ 10 4 K, where it 
becomes neutral and joins the WNM; (iv) the neutral gas cools less 
efficiently than the ionized gas, so it collapses while maintaining 
approximately the same temperature; (v) once the density becomes 
sufficiently high, cooling becomes efficient and the gas joins the 
CNM; (vi) eventually, stars begin to form and photoionization 
feedback generates photoionized gas at ∼ 10 4 K; (vii) the gas 
continues to collapse until it once again becomes cold and dense 
enough to form stars; (viii) SN explosions can recycle gas in any of 
the previous stages back into the WNM or HIM. 

We can build up this picture by starting with our most simple 
noFbk simulation. In this simulation, gas accretes, cools, and 
collapses following steps (i)–(iv). However, without SNe to enrich 
the gas with metals, the gas is pristine and must reach high densities 
∼ 300 cm −3 before it can cool below ∼ 10 4 K. At this point, the gas 
is so dense that it only needs to cool to ∼ 1000 K before stars form 
efficiently. This also describes the formation of the first generation 
of stars in the other simulations that include SNe. 

The most striking difference between noFbk and SNeOnly is the 
presence of gas at temperatures ! 10 7 K. Only SNe can produce gas 
at these extreme temperatures (McCray & Snow 1979 ; Spitzer 1990 ). 
The virial temperature reached by the accretion shock in hot mode 
accretion (equation A3 ) and the temperatures reached by turbulent 
shocks (Wada & Norman 2001 ; Ceverino & Klypin 2009 ) are both 
∼ 10 6 K. If an SN explodes in diffuse gas, the ejecta reaches a far 
greater temperature given by 
T SN 
µ

= m p 
k B E SN 

m ej ( 6 . 1 × 10 8 E 51 m ej , 10 K (37) 
where E 51 = E SN / 10 51 erg and m ej , 10 = m ej / 10 M ! are the SN 
energy and ejecta mass, respectively. SN can explode in diffuse 

gas when a young star particle diffuses into a diffuse region over 
its lifetime, or when the local gas conditions around a star cluster 
particle are modified by early feedback or other SNe. 

Metal-enriched gas starts to cool below ∼ 10 4 K at densities ! 
10 cm −3 . The cooling and collapsing gas forms a diagonal band 
in phase space. Eventually, gas reaches the CMB temperature ( 
27 . 25 K and becomes dense enough to form stars. The metal enriched 
gas ends up forming stars at lower densities than pristine gas. 

In simulations with photoionization feedback, star formation 
immediately generates photoionized gas. After a few time-steps, 
the temperature of the gas is set by a balance between the thermal 
energy injected by photoionization and the thermal energy remo v ed 
by cooling. As gas collapses, the cooling rate increases and gas 
is able to reach lower temperatures, producing a second diagonal 
band in phase space. In highPhot where photoionization is more 
efficient, stars form at higher temperatures than lowPhot , where 
photoionization is less efficient. 

We do not resolve the multiphase nature of the ISM on small 
scales, so the high temperatures of star formation in the simulations 
with photoionization does not mean that stars form out of high- 
temperature gas. Instead, the temperature of star formation reflects 
the filling factor of photoionized gas near star formation sites on 
unresolved scales. 
3.4 Local gas properties 
In Figs 5 and 6 , we show the mass-weighted and volume-weighted 
distributions, respectively, of gas density, temperature, turbulent 
velocity dispersion, and metallicity for the early feedback and 
turbulence forcing series. We plot turbulent velocity dispersion 
σ 2 

turb = (2 / 3) ε turb /ρ rather than turbulent Mach number to isolate the 
differences in turbulence between simulations from the temperature- 
dependence M turb ∝ T −0 . 5 at a constant TKE. 

Compared to the lower-redshift Universe, the gas has higher den- 
sities, higher turbulent velocity dispersions, and lower metallicities. 
The mass-weighted density and temperature distributions in the early 
feedback series are consistent with the two-dimensional histograms 
in Fig. 4 . 
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Figure 6. Histograms of the hydrogen number density (first column), modified temperature (second column), turbulent velocity dispersion (third column), and 
metallicity (fourth column) in a box of side length 5 kpc around the most massive galaxy at z = 9 in the early feedback series (top row) and turbulence forcing 
series (bottom row), weighted by volume. Each simulation is shown in a different colour, with the fiducial simulation in blue. An additional histogram of the 
turbulence forcing parameter is included for the variable turbulence forcing simulation. 

HII regions created by photoionization feedback produce a sharp 
peak in the temperature distribution at ∼ 10 4 K. The density distri- 
bution does not change significantly across the early feedback series, 
suggesting that the thermal pressure from photoionization feedback 
is insufficient to halt the collapse of the star-forming clouds. This is 
expected, because for high mass star-forming clouds ! 10 6 M !, the 
sound speed ∼ 10 km / s in photoionized gas is less than the escape 
speed of the cloud (e.g. Krumholz & Matzner 2009 ). 

The v olume-weighted distrib utions tell a similar story. In this case, 
the peak in the temperature distribution at T ∼ 10 4 K represents the 
volume of WNM rather photoionized gas, whose volume fraction 
is generally smaller. As photoionization feedback becomes more 
efficient, volume mo v es from HIM gas to less diffuse WNM gas. 

Solenoidal forcing decreases the local SFE for the same gas 
conditions and TKE. Therefore, gas must reach higher densities to 
form stars efficiently, resulting in more gas mass at high densities in 
solTurb . 

In Fig. 7 , we show the distributions of gas density, temperature, 
turbulent velocity dispersion, and metallicity in star-forming cells 
for the early feedback and turbulence forcing series. In the early 
feedback series, photoionization feedback forces stars to form at 
higher temperatures. Therefore, the gas must reach higher densities 
and lower turbulent velocity dispersions for star formation to become 
efficient. This explains the trends of increasing density and decreas- 
ing turbulent velocity dispersion with increasing photoionization 
feedback efficiency. 

A similar analysis applies to the turbulence forcing series. In the 
solenoidal forcing limit, the SFE is lower for the same gas conditions, 
so gas must reach higher densities, lower temperatures, and lower 
turbulent velocity dispersions for star formation to become efficient. 
This explains the trends of increasing star formation density and 
decreasing star formation temperature with increasingly solenoidal 
turbulence forcing. 

Ho we ver, the trend in the turbulent velocity dispersion seems to 
go the wrong way, increasing as the turbulence forcing becomes 
more solenoidal. The reason is that regions of high density, low 
temperature, and high turbulence are spatially coincident (Appendix 
F ). In solTurb , stars are forced to form in high density and 

low temperature regions, which also forces them to form in high 
turbulence re gions, ev en though turbulence generally decreases the 
local SFE. 

In Fig. 8 , we show the distributions of gas density, temperature, 
turbulent velocity dispersion, and metallicity in cells where a SN 
event occurs for the early feedback and turbulence forcing series. 
The distribution of gas conditions near SNe is multimodal, reflecting 
the multiphase nature of the ISM. As photoionization feedback 
becomes more efficient, more SNe occur in photoionized gas and 
HIM rather than CNM. This effect can also be seen in Fig. 4 , where 
the portion of the red contour in photoionized gas and HIM expands as 
photoionization feedback becomes more efficient. SNe occur in more 
dense environments as turbulence forcing becomes more solenoidal, 
following the trend in the density of star-forming cells. 

In the SN feedback series, we vary the SN delay time τstart . We 
find that the summary statistics and gas property distributions (not 
shown in figures) are almost identical for all simulations in the 
series. This suggests that the SN delay time is not important for 
star formation, even in the extreme case of instSNe where SNe 
can occur immediately after star formation. 

Our finding contradicts the prediction of the FFB model (Dekel 
et al. 2023 ) that the SN delay time provides a crucial window of 
opportunity for efficient star formation. However, our ability to test 
the FFB model is limited by our ef fecti ve resolution ( 10 pc . We 
cannot fully resolve the parsec-scale dynamics which control star- 
forming clouds, especially in dense regions where the SN cooling 
radius is unresolved (Section 4.7 ). 
3.5 Star formation histories 
At a high level, we describe the SFH using summary statistics in 
Table 1 , including the total stellar mass M ∗ in the galaxy at z = 9, the 
av erage SFR o v er the last 50 Myr at z = 9 SFR 50 , the integrated SFE 
εint = M ∗/f b M halo , the median local SFE med ( εff ), and the outflow 
efficiency η = Ṁ out / SFR 50 , where Ṁ out is the mass outflow rate. The 
calculation of these summary statistics is described in Appendix D . 
Nearly all our simulations produce significant stellar populations 
( M ∗ ! 10 9 M !) with high SFRs ( Ṁ ∗ ! 100 M ! yr −1 ) and high SFEs 
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Figure 7. Histograms of the hydrogen number density (first column), modified temperature (second column), turbulent velocity dispersion (third column), and 
metallicity (fourth column) of star-forming cells in the early feedback series (top row) and turbulence forcing series (bottom row), weighted by stellar mass. 
Each simulation is shown in a different colour, with the fiducial simulation in blue. The inset plot shows a histogram of the turbulence forcing parameter for the 
turbulence forcing series. An additional histogram of the turbulence forcing parameter is included for the variable turbulence forcing simulation. 

Figure 8. Histograms of the hydrogen number density (first column), modified temperature (second column), turbulent velocity dispersion (third column), and 
metallicity (fourth column) of cells with SN events in the early feedback series (top row) and turbulence forcing series (bottom row), weighted by SN number. 
Each simulation is shown in a different colour, with the fiducial simulation in blue. An additional histogram of the turbulence forcing parameter is included for 
the variable turbulence forcing simulation. 
( εff , εint ! 10 per cent ), supporting the notion that star formation is 
intrinsically efficient at Cosmic Dawn. 

In Fig. 9 , we plot the time evolution of the gas mass, stellar mass, 
and virial mass for the fiducial model. The details of the calculation 
are described in Appendix D . We also plot the gas fraction f gas = 
M gas / ( M gas + M ∗). By design, the virial mass reaches 10 11 M ! at 
z = 9. Initially, the galaxy is dominated by the gas supplied by 
accretion. As the galaxy grows, it begins to form stars efficiently. 
At z ( 10, gas accretion is balanced by star formation, causing the 
gas mass to plataeu and the gas fraction to drop to 40 per cent 
by z = 9. This process will likely continue until the gas fraction 
reaches values " 10 per cent similar to massive galaxies in the local 
Universe (Wiklind et al. 2019 ). 

Throughout this paper, we use three different measurements of 
SFE. The local SFE εff is the fraction of gas within a single cell that 
is converted into stars within one local freefall time. The global SFE 
εglob = Ṁ ∗/f b Ṁ acc is the ratio of the SFR in the galaxy to the gas 
accretion rate. The integrated SFE εint = M ∗/f b M halo is the ratio of 
the stellar mass to the total gas mass accreted onto the galaxy o v er 
its lifetime. Any measure of SFE is defined on a particular spatial 
and temporal scale. Measurements of the SFE on multiple scales are 
necessary ingredients of a holistic picture of star formation. Even 
simulations with a fixed local SFE ∼ 1 per cent can exhibit high 
integrated SFEs (e.g. Ceverino et al. 2024 ). 

Figs 10 and 11 visually represent the integrated and local SFEs, 
respectively. In Fig. 10 , we show the stellar mass as a function of 
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Figure 9. Gas mass (blue), stellar mass (orange), virial mass (green), and 
gas fraction (top panel) as a function of time for the fiducial model. These 
quantities are computed at 43 discrete data dumps. By design, the virial 
mass reaches 10 11 M ! at z = 9. At z ( 10, gas accretion is balanced by star 
formation, causing the gas mass to plataeu and the gas fraction to drop to 
40 per cent by z = 9. 

Figure 10. Stellar mass as a function of time for the early feedback series 
(top panel) and turbulence forcing series (bottom panel). The integrated SFE 
defined relative to the halo mass at z = 9 is shown on a secondary y-axis in 
both panels. Within each series, each simulation is shown in a different colour, 
with the fiducial simulation in blue. Dashed lines in the upper panel indicate 
constant SFE simulations. The stellar mass increases almost exponentially 
with time, following the expected accretion rate onto a DM halo in the early 
Universe. 

Figure 11. A histogram of local SFE weighted by stellar mass for the early 
feedback series (top panel) and the turbulence forcing series (bottom panel). 
Within each series, each simulation is shown in a different colour, with the 
fiducial simulation in blue. The dashed line in the upper panel indicates the 
local SFE of the constant local SFE simulations. In all simulations, the local 
SFE ranges from ∼ 1 per cent to ∼ 100 per cent , reflecting the large range 
of gas conditions in which stars can form. 
time, which is proportional to the integrated SFE. In Fig. 11 , we 
show the distribution of local SFEs in star formation events. 

The relative factors between the stellar masses of different sim- 
ulations remain approximately constant throughout time, implying 
that the differences between simulations are not redshift dependent 
for z ≥ 9. This lends credence to our approach of analysing a single 
snapshot in time at z = 9. 

The stellar mass, and therefore also the mean SFR, increases 
almost exponentially with time, following the expected accretion rate 
onto a DM halo in the early Universe (Section 4.1 ). In all simulations, 
the local SFE ranges from ∼ 1 per cent to ∼ 100 per cent , reflecting 
the large range of gas conditions in which stars can form (Fig. 7 ). 

Comparing photOnly to noFbk , we isolate the effect of 
photoionization feedback. Both simulations have similar integrated 
and local SFEs, suggesting that by itself photoionization feedback 
is inef fecti ve at suppressing star formation. Alternatively, compar- 
ing SNeOnly to noFbk , we isolate the effect of SN feedback. 
SNeOnly has a lower integrated SFE but a similar local SFE, 
suggesting that SN feedback suppresses star formation without 
changing the local gas conditions at star formation sites. 

In yesFbk , both feedback mechanisms operate simultaneously. 
yesFbk has the lowest integrated and local SFE in the feedback 
series. The low integrated SFE suggests that photoionization is 
ef fecti ve, but only in tandem with SN feedback. The low local SFE 
suggests that when both feedback mechanisms work together, they 
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alter the local gas conditions, even though this effect is not seen for 
either mechanism in isolation. 

These results are consistent with previous simulations, which 
show that early feedback pressurizes the gas in star-forming regions, 
driving expansion which reduces the gas density (e.g. Ceverino 
et al. 2014 ; Rosdahl et al. 2015 ). When SNe occur in more diffuse 
gas, more of their energy makes it into the ISM rather than being 
absorbed locally and radiated away. Once in the ISM, this energy 
can suppress star formation by disrupting star-forming clouds and 
launching outflows. The detailed simulations of dense gas clouds in 
Walch & Naab ( 2015 ) show that ∼ 50 per cent more SN energy goes 
into the ISM when SN go off in previously photo-ionized regions. 

In the early feedback series, the integrated and local SFEs 
change by a similar factor between simulations. For example, from 
medPhot to highPhot , both efficiencies decrease by a factor of 
2. Therefore, it is tempting to conclude that the integrated SFE is 
proportional to the local SFE, which is consistent with a picture 
where star formation is not regulated by feedback. Ho we ver, our 
other simulations provide evidence to the contrary. 

First, the constant efficiency simulations all have a fixed local 
SFE, but they show the same trend in integrated SFE as the MFF 
simulations. Second, in the turbulence forcing series, the local SFE 
decreases by a factor of 3 as turbulence forcing becomes more 
solenoidal. The trend in integrated SFE goes in the same direction, but 
by a much smaller factor. These results do not rule out a correlation 
between local and integrated SFE, but they suggest that the local SFE 
is not the main driver for the trends we see. 

The trends in outflow efficiency suggest an alternative explanation. 
SNe can regulate star formation by launching outflows which 
remo v e gas from the galaxy. When there are no SNe ( noFbk and 
photOnly ), the galaxy is not able to launch outflows η ≈ 0. When 
there are SNe, we see a small outflow efficiency η ( 0 . 5. 

As photoionization feedback becomes more efficient, the outflow 
efficiency increases, reaching η ( 10 in highPhot . This supports 
the idea that photoionization feedback enhances the coupling be- 
tween SN explosions and the ISM. It is also consistent with the 
local gas properties, which show that photoionization feedback is 
associated with an increase in the volume fraction of the WNM 
(Fig. 6 ) and more SN explosions in photoionized gas and HIM rather 
than CNM (Fig. 8 ). 
3.6 Star formation variability 
In the first row of Fig. 12 , we plot the SFR as a function of time. 
The calculation of the SFR is described in Appendix D . The SFR 
fluctuates on multiple time-scales, from small bursts lasting only 
a few Myr to large bursts lasting 10s of Myr . Because the mean 
SFR increases rapidly as a function of time, measurements of the 
SFR on long time-scales may under-represent the instantaneous SFR 
(Section 4.9.1 ). 

After major bursts, the SFR temporarily decreases, possibly 
because the bursts consume dense gas available to form stars. The 
movies associated with this paper reveal that the major bursts in 
the SFR coincide with significant merger events, which was also 
seen in the cosmological zoom-in simulations of Cosmic Dawn 
galaxies in the FIRSTLIGHT project (Ceverino, Klessen & Glo v er 
2018 ). Ho we ver, analysing the role of mergers in detail is beyond the 
scope of this paper. 

We quantify the variability of the SFR using the power spectral 
density (PSD) in the time domain. We compute the PSD following the 
procedure of Iyer et al. ( 2020 ). We start by computing the SFR using 
time bins of width 0 . 1 Myr , which gives a reasonable balance between 

shot noise and time resolution. The SFR spans a large dynamic range, 
so we work with the logarithm to better quantify the relative strengths 
of fluctuations in the SFR. 

We can remo v e the e xponential trend in the mean SFR with a 
linear detrending of the logarithmic SFR. We limit our analysis to 
times ≥ 350 Myr , when all simulations have a non-zero SFR such 
that the logarithm is well-defined. The second row of Fig. 12 shows 
the residuals of the linear detrending. 

Finally, we apply Welch’s method (Welch 1967 ) as implemented 
by scipy.signal.welch . In this method, the data are divided 
into o v erlapping se gments. We choose se gments of 256 bins which 
50 per cent o v erlap on each side with their neighbors. We compute 
a modified periodogram for each segment and then average the 
periodograms. We use the Hann window function in the computation 
of each periodogram to reduce edge effects. 

Our techniques are similar to the recent variability analysis of 
Pallottini & Ferrara ( 2023 ) for the SERRA simulations with a few 
differences. Pallottini & Ferrara ( 2023 ) fit the mean SFR trend 
to a polynomial in log space rather than an exponential, which is 
necessary because their simulations extend to lower redshifts where 
the mean SFR deviates from the e xponential trend. The y also use 
a Lomb ( 1976 )–Scargle ( 1998 ) periodogram analysis rather than 
a PSD analysis. The former has several benefits including better 
isolation of individual frequency contributions and straightforward 
quantification of peak significance (Dome et al. 2024 ). In future 
variability analyses, we will prefer this technique. 

In the third row of Fig. 12 , we plot the PSD of the SFR, inverting the 
x-axis to plot against fluctuations time-scale rather than frequency. 
The PSD has three regimes. On short time-scales, the PSD is flat 
and represents uncorrelated noise. On intermediate time-scales, the 
PSD roughly follows a power law P ∝ ( *t) 2 . This red noise is 
characteristic of the damped random walk expected from a stochastic 
Orstein-Uhlenbeck process (Caplar & Tacchella 2019 ). 

The transition between these two regimes occurs on a time-scale 
∼ 1 Myr , which can be interpreted as the time-scale for star formation 
i.e. the freefall time in a star-forming cloud. On shorter time-scales, 
it is impossible for one star formation event to be correlated with 
another. A freefall time ∼ 1 Myr is associated with a density ∼
3 × 10 3 cm −3 , which is consistent with the typical density of star 
formation in Fig. 7 . 

On longer time-scales, the PSD becomes flat again. The transition 
between these two regimes occurs on a time-scale ∼ 10 Myr , which 
can be interpreted as the lifetime of star-forming clouds in our 
simulation (Tacchella, Forbes & Caplar 2020 ). Due to the 550 Myr 
duration of our simulations, we cannot compute the PSDs on longer 
time-scales using Welch’s method. Ho we v er, one might e xpect the 
PSDs to regain a positive slope at even longer time-scales due to 
correlations caused by galaxy mergers, outflow recycling, and other 
processes affecting the gas reservoir (Tacchella et al. 2020 ). For 
e xample, Cev erino et al. ( 2018 ) identify bursts in the SFR on time- 
scales of 100s of Myr. 

For clarity of visualization, do not show our constant SFE simula- 
tions in Fig. 12 . In general, we find that the SFRs in the constant SFE 
simulations have less power in their PSDs than the corresponding 
MFF simulations, consistent with previous work (Martin-Alvarez 
et al. 2023 ). 

Our star formation histories show some agreement with the FFB 
model (Dekel et al. 2023 ). The time-scale of 10 s of Myr is similar 
to the time-scale predicted for generations of FFBs (Li et al. 2024 ). 
In addition, the highest SFRs are achieved during a time window of 
∼ 80 Myr between z = 10 and z = 9, similar to the halo-crossing 
time-scale predicted by Dekel et al. ( 2023 ) o v er which FFBs are 
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Figure 12. SFR (first row), logarithmic SFR residuals (second row), and the PSD of the SFR (third row) for the early feedback series (left column) and the 
turbulence forcing series (right column). Within each series, each simulation is shown in a different colour, with the fiducial simulation in blue. The transition 
from white noise to red noise occurs on the star formation time-scale ∼ 1 Myr . The transition from red noise back to white noise occurs on time-scale representing 
the lifetime of star-forming clouds ∼ 10 Myr . 
acti ve. Ho we ver, a longer simulation is required to see if rapid star 
formation is suppressed by feedback from earlier generations of star 
clusters. 

3.7 Variable turbulence forcing parameter 
In varTurb , we determine the turbulence forcing parameter from 
the local velocity field using equation ( 15 ). varTurb behaves almost 
like a simulation with constant forcing parameter in between the 
solenoidal and compressive forcing limits. In Fig. 7 , the density, 
temperature, and turbulent velocity dispersion distributions of star- 
forming cells for varTurb are somewhere in-between the distribu- 
tions for solTurb and compTurb . 

Ho we ver, in some metrics, varTurb deviates from this behavior. 
The median local SFE in varTurb is nearly the same as compTurb 
and the turbulent velocity dispersion of the gas is higher in varTurb 
than in solTurb or compTurb . 

These effects can be explained because stars preferentially form 
in compressively forced regions, which have a higher local SFE 
for the same gas conditions and TKE. This is apparent in the 
forcing parameter distribution for star-forming cells (Fig. 7 ), which 
is shifted more towards the compressive end than the forcing 
parameter distribution for the gas (Fig. 5 ). Because a dispropor- 
tionate number of stars form in compressively forced regions, 
the local SFE distributions are similar between varTurb and 
compTurb . Our fiducial model, which assumes the compres- 
sively forced limit, is therefore a reasonable approximation for 
model varTurb , where the forcing parameter is determined more 
self-consistently. 

In Appendix F , we show the turbulence forcing parameter in an 
xy-slice through the galaxy in the fiducial simulation at z = 9. Close 
to the galaxy, most of the volume is dominated by solenoidal forcing, 
but there are small pockets of compressive forcing. The turbulence 
forcing parameter distribution of SN-hosting cells (Fig. 8 ) has a peak 
at the compressive forcing limit b turb = 1 . 0, hinting that these pockets 
may be formed by SN explosions. 
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We leave a more rigorous analysis of self-consistent turbulence 
forcing to future work which models the forcing parameter more 
carefully. Ginzburg et al. 2025 describe a more rigorous approach 
to implement a self-consistent forcing parameter which involves 
decomposing the shear tensor into three components representing 
compression, solid body rotation, and shear flow. 
4  DISCUSSION  
In this section, we interpret our results with toy models, compare 
to similar works, and discuss observational implications. First, 
we show that when the gas depletion time is sufficiently short, 
star formation and gas metallicity are regulated by ejective stellar 
feedback (Sections 4.1 and 4.2 ). Then, we show that the previous 
arguments are predicated on the high local SFE in MDGs (Section 
4.3 ). Next, we describe the relationship between turbulence and star 
formation (Section 4.4 ). Then, we discuss the role of early feedback 
processes not included in our models (Section 4.5 ). Next, we discuss 
the limitations of our star formation recipe (Section 4.6 ), SN feedback 
recipe (Section 4.7 ), and other aspects of our modelling (Section 
4.8 ). Finally, we discuss the observational implications of our results 
(Section 4.9 ). 
4.1 Self-regulation of global SFE 
We can use a simple one-zone model to explain the global SFE in our 
simulations and the exponential growth of the stellar mass, inspired 
by the ‘bathtub’ toy model of Dekel & Mandelker ( 2014 ) and similar 
models from earlier works (e.g. Tinsley 1968 ). The gas mass M gas in 
a galaxy is depleted by star formation and outflows. Simultaneously, 
the gas mass is augmented by accretion and SN explosions. These 
processes can be described by a differential equation: 
Ṁ gas = f b Ṁ acc − Ṁ ∗ + Ṁ SNe − Ṁ out 

= f b Ṁ acc − (1 − χ + η) Ṁ ∗, (38) 
where χ is the mass fraction of massive stars and η = Ṁ out / Ṁ ∗ is 
the outflow efficiency. The model can account for the recycling of 
gas by adding ne gativ e contributions to η. 

The outflow efficiency characterizes the strength of ejective 
feedback, the component of stellar feedback that remo v es gas from 
the galaxy. Pre ventati ve feedback, the component of stellar feedback 
which does not remo v e gas from the galaxy, can still suppress star 
formation by moving gas out of the star-forming state, but its effect 
on the global SFE is more subtle (Appendix H ). 

If Ṁ ∗ ∝ M gas and Ṁ acc is constant, then equation ( 38 ) asymptot- 
ically approaches a steady state solution where Ṁ gas = 0 (Dekel & 
Mandelker 2014 ). In practice, Ṁ acc changes as a function of 
time. Ho we ver, if the gas depletion time τdep = M gas / Ṁ ∗ is short 
compared to the time-scale on which the accretion rate changes 
τacc = Ṁ acc / M̈ acc , then we can treat Ṁ acc as constant. We estimate 
values for τdep and τacc relevant to our simulations in Section 4.3 . 

Setting Ṁ gas = 0 in equation ( 38 ), we find 
Ṁ ∗ = f b Ṁ acc 

1 − χ + η . (39) 
Dividing by the accretion rate to get the global SFE, we find 
εglob = 1 

1 − χ + η . (40) 
The global SFE is independent of the local SFE and decreases with 

stronger ejective feedback. We call this behaviour self-regulation, 
because the SFR is regulated by stellar feedback. Self-regulation is 

consistent with the trend in decreasing integrated SFE with increasing 
outflo w ef ficiency in our simulations (Section 3.5 ). Equation ( 39 ) also 
demonstrates that the SFR is proportional to the gas accretion rate 
onto the galaxy. At Cosmic Da wn, the Univ erse is well-approximated 
by an Einstein-deSitter (EdS) cosmology. The specific accretion rate 
on to a halo of mass M halo in an EdS universe is approximately (Dekel 
et al. 2013 ) 
Ṁ acc 
M halo ( s ( M halo 

10 12 M !
)β

(1 + z) 5 / 2 , (41) 
where β is the power-law exponent of the fluctuation power spectrum 
and s is the specific accretion rate into a halo of M halo = 10 12 M !
at z = 0. Dekel et al. ( 2013 ) find that values β ( 0 . 14 and s ( 
0 . 030 Gyr −1 are consistent with the Millennium cosmological 
simulation (Springel et al. 2005 ). 

Ignoring the weak M βhalo dependence and integrating, we find 
(Dekel et al. 2013 , equation 9) 
M halo ( M halo , 0 e −α( z−z 0 ) , (42) 
where M halo , 0 is the halo mass at redshift z 0 , α = (3 / 2) st H , 0 , t H , 0 = 
(2 / 3) &−1 / 2 

m , 0 H −1 
0 ≈ 17 . 5 Gyr is the age of an EdS universe at redshift 

z = 0, and we have used 
a = (1 + z) −1 = ( t 

t H , 0 
)2 / 3 

. (43) 
This implies that the accretion rate onto a given halo as it grows 

is (Dekel et al. 2013 , equation 10) 
Ṁ acc ( z) ( sM halo , 0 e −α( z−z 0 ) (1 + z) 5 / 2 . (44) 
At high redshift, the accretion rate is well-described as an exponential 
function of redshift (see also Correa et al. 2015 ). Therefore, the 
exponential growth of stellar mass in our simulated galaxies is simply 
a reflection of the exponential growth of the halo accretion rate. 
4.2 Metal enrichment 
Using a similar approach, we can describe the process of metal 
enrichment. The metal mass in a galaxy is go v erned by 
Ṁ metal = −Z( Ṁ ∗ + Ṁ out ) + y Ṁ SNe 

= −[ Z(1 + η) − yχ ] Ṁ ∗, (45) 
where y is the SN metal yield and we have assumed that the metal 
content of the primordial, accreting gas in negligible. 

This model assumes that metals produced in SN explosions are 
rapidly mixed throughout the ISM rather than remaining localized to 
the SN site. The turbulent environment at Cosmic Dawn facilitates 
that mixing. Our simulated galaxies have typical velocity dispersions 
( 50 km s −1 and radii ( 700 pc , so the metal mixing time is 
approximately τmix ∼ R gal /σturb , 1D ( 14 Myr , far shorter than the 
lifetime of the galaxy. 

Again assuming a steady state Ṁ metal = 0, we find that 
Z = yχ/ (1 + η) (46) 
In our simulations, we have y = 0 . 1 and χ = 0 . 2. If the outflow 
efficiency is negligible η ≈ 0, then we have Z ≈ 0 . 02 ≈ 1 Z !, which 
is similar to the typical gas metallicity in noPhot (Fig. 5 ). 

If, on the other hand, outflows become efficient at removing gas, 
then the gas metallicity will be reduced accordingly. For example, 
1 + η is larger by a factor of 5 in highPhot compared to medPhot , 
and the typical gas metallicity is reduced by the same factor. 
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4.3 Condition for self-regulation 
Section 4.1 , we assume that the depletion time-scale is short 
compared to the accretion time-scale, and therefore the gas mass 
reaches a steady state. To define the condition for steady state more 
precisely, we apply a bathtub-like model to the star-forming gas mass 
M sf , following the arguments of Semenov et al. ( 2017 , 2018 ). 

Star-forming gas is depleted by star formation, stellar feedback, 
and dynamical processes (e.g. turbulent shear) operating on a time- 
scale τdyn . Simultaneously, star-forming gas is augmented by cooling 
and collapse on a time-scale τcool . These processes can be described 
by a differential equation 
Ṁ sf = 1 − f sf 

τcool M gas − f sf 
τdyn M gas − (1 + µ) Ṁ ∗, (47) 

where f sf = M sf /M gas is the star-forming mass fraction and µṀ ∗
is the rate at which gas mass is remo v ed from the star-forming 
state by stellar feedback. µ characterizes the strength of pre ventati ve 
feedback. 

The time-scales τcool , τff , and τdyn which set the star-forming gas 
mass are shorter than the accretion time-scale, so we can assume a 
steady state where Ṁ sf = 0. Then, we can solve for f sf , which yields 
f sf = τff 

εff 
[
f dyn τff 

εff + (1 + µ) τcool ]−1 
, (48) 

where f dyn = 1 + τcool /τdyn is a factor of a few. We have assumed 
that the SFR is related to the gas mass by the Schmidt law 
Ṁ ∗ = εff 

τff f sf M gas . (49) 
Equation ( 49 ) implies that τdep = τff / ( f sf εff ). Therefore, the gas 

depletion time is 
τdep = f dyn τff 

εff + (1 + µ) τcool . (50) 
We can combine equation ( 50 ) and our simulations to estimate the 

depletion time in MDGs. In our simulations, the typical local SFE 
is εff ∼ 10 per cent and the typical density of star-forming regions 
is ∼ 3 × 10 3 cm −3 , corresponding to a freefall time τff ∼ 1 Myr . 
Feedback is weak, so we can approximate µ ≈ 0. f dyn and τcool /τff 
are both factors of a fe w. These v alues imply that the depletion time 
is of the order of 10 s of Myr . 

Differentiating equation ( 44 ), we find the rate of change of the 
accretion rate 
M̈ acc ( s 2 M halo , 0 e −α( z−z 0 ) (1 + z) 4 [(1 + z) − 5 

2 α
]

. (51) 
Dividing Ṁ acc by M̈ acc to get the accretion time-scale, we find 
τacc ( α(1 + z) −5 / 2 /s 

α − (5 / 2)(1 + z) −1 . (52) 
For a halo of mass 10 11 M ! at redshift z = 9, we find τacc ( 154 Myr . 
This is longer than the depletion time, so the assumption of steady 
state in Section 4.1 and the resulting self-regulation behavior are 
valid. 

If the local SFE were on the order of a few per cent, similar to 
present-day galaxies, than the accretion time-scale would be shorter 
than the depletion time-scale and the assumption of steady state 
would break down. In Appendix H , we find that in this case, self- 
regulation is not guaranteed, especially for low local SFE. 

This simple calculation emphasizes an important point. One might 
think that because feedback is weak in MDGs, that star formation 
should not be regulated by feedback. Ho we ver, we have sho wn that 

this is not the case, because the high local SFE compensates for the 
weak feedback. 
4.4 Turbulence 
Turbulence broadens the subgrid density PDF (equation 12 ). In 
relatively hotter and more diffuse gas, the broadening effect extends 
the high-density tail of the distribution into the Jeans unstable 
region, enhancing local star formation. Physically, this represents star 
formation in high-density regions created by turbulent compression. 

In relatively cooler and more dense gas, the broadening effect 
extends the low-density tail of the distribution into the Jeans stable 
region, suppressing local star formation. Ho we ver, in this case 
the broadening effect does not significantly change the local SFE, 
because the low-density tail of the distribution is only associated 
with a small amount of mass. 

Making the turbulence more compressive also has a broadening 
effect, because M turb and b turb play the same role in equation 
( 12 ). This explains the trend of increasing local SFE as turbulence 
becomes more compressi ve. Ho we ver, changing the TKE has an 
additional effect which does not occur when changing the turbulence 
forcing parameter. 

Turbulent pressure assists thermal pressure in preventing 
gravitational collapse (equation 18 ). This results in a larger critical 
density in the gravitational stability criterion (equation 20 ), reducing 
the local SFE for the same gas conditions. Local star formation 
is suppressed by turbulent pressure support for any gas condition, 
but the effect is most potent when the mean density is close to the 
critical density for collapse. 

Turbulent pressure support becomes more important as turbulence 
forcing becomes more solenoidal because the PDF becomes nar- 
rower. In the solenoidal forcing limit, a small change in the critical 
density for collapse has a larger effect on the portion of the PDF 
which is gravitationally unstable. 

In Fig. 13 , we show how the local SFE in the MFF model varies as 
a function of temperature, density, and turbulent velocity dispersion 
σturb = c s M turb in the solenoidal and compressive forcing limits at 
a fixed smoothing scale 10 pc . Physically, the smoothing scale can 
be understood as a mixing length. In numerical contexts, it can be 
understood as the size of a resolution element. 

The local SFE is easy to understand in the e xtreme re gimes of 
fully Jeans stable ( εff ∼ 0 per cent ) or fully Jeans unstable ( εff ∼
100 per cent ). In the transitional regime, where the local SFE takes 
on intermediate values, the result becomes sensitive to turbulence. In 
our simulated MDGs, most star formation occurs in the transitional 
regime (Fig. 13 ) where the effect of turbulence is important. 

In general, the local SFE decreases with increasing turbulent 
velocity dispersion for the same gas conditions, except for gas 
conditions which are marginally Jeans stable in the compressive 
forcing limit. These marginally stable, supersonic gas clouds are 
common in low redshift galaxies such as the Milky Way. 

In real galaxies, the relationship between the forcing of small- 
scale turbulence and large-scale galactic dynamics is complex. 
varTurb provides a first insight into how this could play out. 
Solenoidal forcing modes in the turbulence may be driven by the 
differential rotation within a disc, suppressing star formation in 
discs. Meanwhile, compressive forcing modes may be driven by 
SN explosions, g alaxy–g alaxy mergers (Renaud et al. 2014 ), or 
accretion (Mandelker et al. 2025 ), enhancing star formation in those 
environments. 

Due to self-regulation (Section 4.1 ), the decrease in local SFE 
due to the high turbulence of Cosmic Dawn only has a weak effect 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/540/4/3350/8157902 by M
athem

atics Library, user on 22 July 2025



Efficient star formation at Cosmic Dawn 3369 

MNRAS 540, 3350–3383 (2025) 

Figure 13. Local SFE as a function of temperature and Hydrogen number density in the MFF model (equation 22 ). Each column shows a different turbulent 
velocity dispersion. The top row is the solenoidal forcing limit ( b turb = 0 . 3) and the bottom row is the compressive forcing limit ( b turb = 1 . 0). The resolution 
scale is set to its minimum value *x = 10 pc in our simulations, and we emphasize that the local SFE is a resolution-dependent quantity by definition. 
Iso-efficiency contours are shown in red for εff ∈ { 0 . 1 per cent , 1 per cent , 10 per cent , 100 per cent } . When εff ∼ 0 per cent , the gas is Jeans stable. When 
εff = 100 per cent , the gas is fully Jeans unstable. In each panel, we o v erplot a blue contour outlining the region of phase space containing 90 per cent of star 
formation events weighted by stellar mass in solTurb (top row) and compTurb (bottom row). The contours are smoothed by a 10 px Gaussian filter for ease 
of viewing. In general, the local SFE decreases with increasing turbulent velocity dispersion for the same gas conditions, except for gas conditions which are 
marginally Jeans stable in the compressive forcing limit. 
on the stellar mass which ultimately forms. For turbulent velocity 
dispersions even larger than the typical values ∼ 50 km s −1 in our 
simulated galaxies, the local SFE may drop enough to take the galaxy 
out of the self-regulated regime. In this case, the integrated SFE 
would begin to decrease in proportion to the decrease in local SFE. 
4.5 Other early feedback processes 
Our early feedback model only includes thermal pressure from 
photoionized gas (Section 2.5 ). Ho we ver, there are other early 
feedback processes we do not model, including radiation pressure 
from FUV and multiply-scattered IR photons and stellar winds. 
In this section, we discuss the effect of these mechanisms on star 
formation in MDGs. 
4.5.1 Radiation pr essur e feedback 
Massive stars produce a significant flux of UV photons with energies 
below the Lyman limit i.e. FUV. In dense environments like giant 
molecular clouds, these photons are readily absorbed by dust grains, 
imparting their momentum on to the surrounding gas (Krumholz & 
Matzner 2009 ; Fall, Krumholz & Matzner 2010 ; Murray, Quataert & 
Thompson 2010 ; Sales et al. 2014 ). This radiation pressure is 
augmented by multiply-scattered Ly α (Kimm et al. 2018 ) and 
reprocessed IR (Murray et al. 2010 ; Skinner & Ostriker 2015 ) 
photons. The former is not as well-studied, so we will focus our 
discussion on FUV and IR radiation pressure feedback. 

FUV radiation pressure feedback is diminished in high surface 
densities environments because the radiation pressure force cannot 
o v ercome the gravity of the cloud (Fall et al. 2010 ; Murray et al. 
2010 ). In addition, radiation pressure forces partially cancel out 
when FUV is absorbed on scales smaller than the typical separation 
between radiation sources (Menon, Federrath & Krumholz 2023 ). 

On the other hand, IR radiation feedback is enhanced in high 
surface density environments because each IR photon undergoes 
many scatterings (Thompson, Quataert & Murray 2005 ; Krumholz & 
Matzner 2009 ; Murray et al. 2010 ). When / b ! 3000 M !/ pc 2 , IR 
radiation pressure feedback dominates o v er FUV radiation pressure 
feedback (Menon et al. 2023 ), even though dust opacities are ∼ 100 
times greater in the FUV than in the IR (Semenov et al. 2003 ). 
Therefore, we expect IR radiation feedback to dominate o v er FUV 
radiation feedback in MDGs. 

There are several additional considerations which may affect the 
strength of IR radiation feedback in MDGs. First, IR wavelengths are 
much larger than interstellar grain radii, so the dust opacity varies 
as κ ∝ ν2 following the electric dipole limit (Draine 2011 ). This 
causes the mean photon frequency to decrease as stellar radiation 
diffuses through the dust, weakening the dust-radiation coupling 
(Reissl et al. 2018 ; Krumholz, McKee & Bland-Hawthorn 2019 ). 
Secondly, the low metallicity at Cosmic Dawn leads to a low dust- 
to-gas ratio, which reduces the ef fecti ve IR opacity (Menon et al. 
2024 ). 

Third, in a turbulent medium, radiation preferentially escapes 
through low column density channels (Skinner & Ostriker 2015 ; 
Tsang & Milosavljevi ́c 2018 ; Menon et al. 2022 ). Radiation pressure 
feedback may even self-regulate by driving turbulence (Krumholz & 
Thompson 2012 ). This argument only applies to the IR photons, 
which are produced diffusely by dust and thus sample the turbulent 
density structure. The FUV photons are produced by the massive 
stars themselves which are preferentially surrounded by high-density 
regions. Matter-radiation anticorrelation is especially important in 
the star-forming regions of MDGs, where the turbulent velocity 
dispersions are high ∼ 50 km / s (Fig. 7 ). 

In Fig. 14 , we estimate the face-on IR dust optical depth in our 
fiducial simulation given by integrating the contributions from each 
cell along the projection direction. In the left panel, we compute the 
contribution of each cell as ρκIR , where κIR = ̃  κIR ( Z/Z !) is the IR 
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Figure 14. Logarithmic IR dust optical depth in a box of side length 2 kpc 
around the most massive galaxy in the fiducial simulation, projected in the 
face-on direction. In the left panel, we compute the contribution of each cell 
as ρκIR . In the other panels, we compute the contribution of each cell using an 
ef fecti ve optical depth accounting for the matter-radiation anticorrelation (Ap- 
pendix G ) for solenoidal (middle panel) and compressive (right panel) turbu- 
lence forcing models. We find that despite the low metallicity, the star-forming 
regions of the galaxy are optically thick to IR. Ho we ver, accounting for the 
matter-radiation anti-correlation significantly reduces the optical depth. 
dust opacity at solar metallicity assuming that the dust-to-gas ratio 
scales linearly with metallicity. This may o v erestimate the opacity at 
low metallicity (Feldmann 2015 ; Choban et al. 2022 ). 

˜ κIR is roughly constant ∼ 5 g / cm −2 in the dust temperature range 
100 K " T dust " 1200 K, and takes on smaller values outside of that 
range (Semenov et al. 2003 ). We adopt this constant value and ignore 
the temperature dependence. In the other panels, we compute the 
contribution of each cell using an ef fecti ve optical depth accounting 
for the matter-radiation anti-correlation (Appendix G ) for solenoidal 
and compressive turbulence forcing models. 

We find that despite the low metallicity, the star-forming regions 
of the galaxy are optically thick to IR. Ho we ver, accounting for 
the matter-radiation anticorrelation significantly reduces the optical 
depth. Turbulent Mach number is positively correlated with density 
in our simulations (Fig. F1 ), so the regions that contribute most 
to the optical depth are most strongly affected by matter-radiation 
anticorrelation. This estimate suggests that IR radiation pressure 
feedback may still be important in MDGs, but matter-radiation 
anticorrelation needs to be accounted for. This should be investigated 
by future work. 

4.5.2 Stellar winds 
Line photons from massive stars drive stellar winds which serve as 
an additional early feedback mechanism (Castor, Abbott & Klein 
1975 ; Weaver et al. 1977 ; Lancaster et al. 2021 ). The integrated 
kinetic energy carried by stellar winds o v er a massiv e star lifetime is 
comparable to that delivered by a SN explosion (Castor et al. 1975 ). 
The potential of stellar winds to ri v al SNe as a feedback mechanism 
has been shown in simulations (Ceverino & Klypin 2009 ; Fierlinger 
et al. 2016 ). 

The low metallicity in MDGs makes launching line-driven winds 
more difficult. Even when winds are launched, their impact may be 
weakened by the leakage of hot gas through low-density channels 
and energy losses due to turbulent mixing (Rogers & Pittard 2013 ; 
Rosen et al. 2014 ; Lancaster et al. 2021 ). These effects are enhanced 
in the turbulent environment of MDGs. For these reasons, we expect 
that stellar winds are a subdominant feedback mechanism in MDGs. 
Ho we ver, detailed simulations of stellar winds in turbulent, low- 
metallicity environments are needed to test this hypothesis. Given 
an appropriate subgrid model, stellar wind feedback could be easily 
included in our simulations. 

4.6 Beyond the multi-freefall model 
Our star formation recipe is based on the MFF model of Federrath & 
Klessen ( 2012 ) as implemented in RAMSES by Kretschmer & Teyssier 
( 2020 ). In this section, we discuss the shortcomings of this approach 
and compare our recipe to other works with similar prescriptions. 

4.6.1 Other star formation recipes 
Federrath & Klessen ( 2012 ) discuss three variations of the MFF 
model with different choices for the critical density threshold s crit 
from (Krumholz & McKee 2005 ) (KM), (Padoan & Nordlund 2011 ) 
(PN), and (Hennebelle & Chabrier 2011 ) (HC). The KM and PN 
versions simultaneously fit all of their detailed simulations to within 
a factor of two o v er two magnitudes in SFR. 

Our MFF model is based on the KM version with a modification 
by Kretschmer & Teyssier ( 2020 ). Other works (Kimm et al. 2017 ; 
Trebitsch et al. 2017 ; Mitchell et al. 2018 ; Rosdahl et al. 2018 ) use a 
MFF model based on the PN v ersion, e xcept that the y only allow stars 
to form in cells larger than the turbulent Jeans length. This thermo- 
turbulent model differs from our model because it does not allow star 
formation in unresolved locally Jeans-unstable clouds if they reside 
in a cell which is globally Jeans-stable. The thermo-turbulent model 
has been extended to include magnetic pressure support (Martin- 
Alvarez et al. 2020 ) and has been incorporated into multiphysics 
simulations including on-the-fly radiative transfer and cosmic rays 
(Martin-Alvarez et al. 2023 ; Dome et al. 2024 ). 

There are a plethora of star formation recipes outside the MFF 
model framework. Based on detailed MHD simulations, Padoan, 
Haugbølle & Nordlund ( 2012 ) propose an exponential SFE law 
of the form εff ∝ exp ( α1 / 2 

vir ), noting that the local SFE is nearly 
independent of turbulent Mach number. More recent simulations by 
Kim, Ostriker & Filippova ( 2021 ) also fa v our the exponential model, 
although with a different numerical coefficient in the argument 
of the exponential. This model has successfully been applied to 
measurements of the SFE in the Milky Way (Evans, Kim & Ostriker 
2022 ; Elia et al. 2025 ). Future work is needed to develop a theoretical 
foundation for the exponential model, and to describe under what 
conditions it is fa v oured o v er MFF-type models. 

4.6.2 Pr e-stellar cor e efficiency 
We assume that all of the gas in a gravitationally unstable gas 
cloud at the sonic scale forms stars. Ho we ver, the process of star 
formation is not 100 per cent efficient even at the sonic scale. Previous 
observational (Andr ́e et al. 2010 ) and theoretical (Matzner & McKee 
2000 ) work suggest that only εcore ∼ 30 –50 per cent of the gas in a 
collapsing pre-stellar core ends up in stars. 

The MFF model can easily be modified by a pre-factor εcore in 
equation ( 22 ) which accounts for the efficiency of star formation at 
the sonic scale. Any value εcore < 1 would result in a lower local SFE 
εff for the same gas conditions. This is essentially the same effect 
as when we go from compressive to solenoidal turbulence forcing. 
solTurb indeed has a smaller local SFE than compTurb , but the 
integrated SFEs only differ by ∼ 5 per cent because our MDGs 
are in the self-regulated regime where their integrated SFEs are 
primarily determined by the strength of stellar feedback. Therefore, 
we expect that simulations with lower values of εcore will also have 
lower integrated SFEs, but only by a small factor. 
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4.6.3 Subgrid density PDF 
We assume that the subgrid density PDF is lognormal (equation 
10 ) with width given by equation ( 12 ). Ho we ver, the true small- 
scale density field may differ significantly from this description. 
First, equation ( 12 ) comes from fitting a functional form to the 
small-scale turbulence simulations of Padoan & Nordlund ( 2011 ). 
Those simulations consider the steady state in a gas forced by the 
idealized Ornstein–Uhlenbeck process. Ho we ver, ISM turbulence is 
not a steady state. Forcing from the bulk velocity field and stellar 
feedback is multi-scale and time-variable. 

Second, the lognormal form of the subgrid density PDF is only an 
approximation (Federrath et al. 2010 ; Beattie et al. 2022 ). Deviations 
from a lognormal shape are more pronounced at high Mach numbers 
(Federrath & Klessen 2012 ), such as those in MDGs. After a star 
formation event, there may be a delay before the lognormal PDF can 
be re-established by gravitational collapse which the model does not 
account for. 

Third, the MFF model is fundamentally limited by its use of the 
density PDF alone to characterize the unresolved density field. The 
density PDF is a one-point statistical description that ignores spatial 
correlation. The same density PDF could be produced by numerous 
dense subsolar gas clumps or a single mass gas clump, which should 
physically correspond to different SFEs. 

Recently, Hennebelle et al. ( 2024 ) presented the turbulent support 
(TS) model to address some of these shortcomings. The TS model 
substitutes the lognormal PDF in fa v our of the more complex 
Castaing-Hopkins PDF, which has been shown to produce better 
agreement in the high-Mach regime (Castaing 1996 ; Hopkins 2013 ). 
Compared to the lognormal PDF, the Castaing-Hopkins PDF predicts 
less gas at high densities, a consequence of small-scale turbulent 
pressure support. The TS model also accounts for unresolved spatial 
correlations parametrized by the power-law index of the mass 
function of self-gravitating clumps. 

Brucy et al. ( 2024 ) compare the predictions of the TS model 
to detailed turbulence simulations. Surprisingly, they find that the 
lognormal PDF reproduces the SFE in the high-Mach regime 
better than the Castaing-Hopkins PDF. It is unclear whether this 
discrepancy is physical or related to numerical dissipation in the 
turbulence simulations. Re gardless, the y show that the MFF tends 
to o v erpredict the SFE in the high-Mach re gime (their Fig. 14 ) in 
agreement with Hennebelle et al. ( 2024 ). At high Mach number, the 
turbulent Jeans length becomes larger than the turbulence injection 
scale. This implies that turbulence no longer generates gravitationally 
unstable structures. 

These arguments imply that that MFF may o v erestimate the SFR 
in MDGs. Ho we ver, it’s worth noting that our simulations are at 
an intermediate resolution ∼ 10 pc relative to the resolution of the 
detailed turbulence simulations of Brucy et al. ( 2024 ) at ∼ 2 pc and 
the size of the simulation domain ∼ 1000 pc on which they apply the 
TS model. It’s possible that although we use a more simple star for- 
mation recipe, we still capture some of the rele v ant behavior simply 
due to our high resolution. Future work should investigate whether 
the TS model converges with the MFF model at smaller scales. 
4.6.4 Subgrid equation of state 
Another aspect of star formation we hav e ne glected is the subgrid 
EOS. The detailed turbulence simulations used to calibrate the MFF 
model assume an isothermal EOS (Padoan & Nordlund 2011 ). This 
is generally appropriate in dense star-forming regions where cooling 
is efficient. This also matches the behavior of our simulations in 
dense regions due to the cooling term in the energy equation. 

Variations in the EOS lead to changes in subgrid density statistics 
(Passot & V ́azquez-Semadeni 1998 ; Li, Klessen & Mac Low 2003 ; 
Audit & Hennebelle 2010 ). The simulations of Glo v er & Mac Low 
( 2007a , b ) indicate that the ef fecti ve polytropic index may be sub- 
unity (soft EOS) in the density range ∼ 10 − 10 4 cm −3 and super- 
unity (stiff EOS) at much higher densities ! 10 9 cm −3 where the gas 
starts to become optically thick (Masunaga & Inutsuka 2000 ). In our 
simulations, the high-density tail of the subgrid density PDF enters 
this range (Fig. E1 ). 

Federrath & Banerjee ( 2015 ) derive density variance versus Mach 
number relations for multiple EOSs, analogous to equation ( 12 ). At 
low Mach numbers, the density variance only depends weakly on the 
EOS. Ho we ver, at high Mach numbers rele v ant to the conditions 
in MDGs, the density variance can increase significantly as the 
EOS becomes softer. Future detailed turbulence simulations should 
account for how the EOS changes at different density scales and 
produce a more accurate parametrization of the density distribution. 
4.7 Feedback modelling caveats 
4.7.1 Supernova clustering 
Each star cluster particle in our simulations represents a bound 
collection of individual stars. The star particle mass is tied to 
the efficiency of photoionization feedback (Section 2.5 ). Ho we ver, 
the star particle mass also affects the efficiency of SN feedback 
through the clustering of SN explosions. A larger star particle 
mass produces more clustered SN explosions which enhances the 
efficiency of SN feedback through the formation of superbubbles 
with delayed radiative cooling (e.g. Sharma et al. 2014 ; Gentry 
et al. 2017 ). Ho we ver, a smaller star particle mass samples more 
diffuse environments where the efficiency of SN feedback is higher. 
Ideally, one could decouple the photoionization feedback model 
from the star particle mass and sample star particle masses from 
a cluster mass function parametrized by the local gas conditions. 
Ho we ver, although the cluster mass function has some constraints 
in local Universe (Fall & Chandar 2012 ; Adamo et al. 2015 ), it 
could differ substantially in MDGs. This is further complicated by 
the dependence of cluster sizes on the efficiency of early feedback 
(Smith et al. 2021 ). 

SN clustering is also impacted by the clustering of the star clusters 
themselves. In our simulations, star particles inherit the velocity 
of the gas in their parent cell. Ho we v er, the v elocity of the star 
cluster could deviate from this value on the scale of the turbulent 
velocity dispersion. This implies that our simulations underestimate 
the dispersion of star clusters. 

Dynamical interactions can also remo v e stars from the cluster. 
Weak two-body interactions produce ‘walk-away’ stars which slowly 
diffuse out of the cluster. Strong two-body interactions produce ‘run- 
away’ stars ejected at rapid velocities. Run-away stars can travel a 
significant distance from the cluster centre before going SN. The 
fraction of massive stars ejected this way is enhanced by their 
tendency to concentrate at the centres of clusters where two-body 
encounters are more common (Oh & Kroupa 2016 ). Hydrodynamics 
simulations demonstrate that the ejection of massive stars enhances 
the efficiency of SNe feedback by producing more SN explosions in 
diffuse regions (Ceverino & Klypin 2009 ; Kimm & Cen 2014 ). 

Finally, only a fraction of stars form in bound clusters, described 
by the cluster formation efficiency (CFE; Bastian 2008 ). Milky-Way- 
like galaxies in the local Univ erse hav e typical CFEs " 15 per cent 
(Kruijssen 2012 , Table 3). Empirically, the CFE increases in higher 
gas surface density environments, both within and between galaxies 
(Adamo et al. 2020a ), reaching 37 ± 7 per cent in the Milky Way 
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Galactic centre (Ginsburg & Kruijssen 2018 ) and 30 − 100 per cent 
in nearby mergers (Adamo et al. 2020b ). Therefore, the CFE is likely 
higher in MDGs but still < 100 per cent . The deviation from 100 
per cent may reduce SN clustering and thus the efficiency of SN 
feedback (Kruijssen 2012 , Section 7.3.4). 

SN clustering also depends on the distribution of SN in time. 
We determine the SN rate at each time-step assuming that SNe are 
uniformly distributed within the time interval between τstart and τend . 
In reality, SN explosions are more clustered towards the end of that 
interval due to the ne gativ e slope of the IMF. Previous work has 
accounted for this by adjusting the SN rate o v er the star particle 
lifetime (Kimm et al. 2015 ). 
4.7.2 Supernova cooling radius 
In dense regions when the SN cooling radius is unresolved, we model 
the SN explosion using momentum feedback. Without momentum 
feedback, the thermal energy injected by the SN would be unphysi- 
cally radiated away before the sno wplo w phase of the SN blastwave. 
Ho we ver, by skipping the earlier phases of the SN explosion, we do 
not account for the effect of this heating on the star-forming cloud. 
This small-scale heating could allow SNe to more rapidly shut off 
star formation within a cloud. If we could resolve these scales, the 
SN delay time might become important to star formation as predicted 
in the FFB model (Dekel et al. 2023 ). 

The supernova cooling radius should also be affected by the un- 
resolved density field. Martizzi et al. ( 2015 ) simulate SN explosions 
in inhomogeneous media with a variety of turbulent Mach numbers. 
They find that as the Mach number increases, the SN explosion 
deposits its thermal energy and momentum at progressively larger 
radii (their fig. 7). This ef fect increases the ef fecti veness of SN 
feedback. Future modelling should produce power law scalings 
similar to those in Martizzi et al. ( 2015 ) which incorporate the 
turbulent Mach number as a continuous parameter. 
4.7.3 Secondary star formation 
In the dense galactic environments of Cosmic Dawn, it may be 
possible for the dense shells of a SN blastwave to themselves be 
gravitationally unstable and trigger additional star formation. Using 
simple one-dimensional models, Nagakura, Hosokawa & Omukai 
( 2009 ) found that a triggered star formation can occur from a 
typical core-collapse SN in gas with density ! 10 3 cm −3 . In our 
simulations, a significant fraction of SNe occur in this regime (Fig. 
8 ). Therefore, this effect may increase the SFR relative to what we 
predict. Secondary star formation might even be enhanced when 
accounting for small scale turbulence, because the conditions inside 
a SN blastwave are dominated by compressive forcing modes. 
4.8 Miscellaneous considerations 
4.8.1 Pop III stars 
We do not include a model for Pop III stars. At z = 9, this is a good 
approximation, but our simulations begin at z ∼ 100 and therefore 
they include the time period where Pop III stars dominate the cosmic 
star formation history z ∼ 15 − 20 (see Klessen & Glo v er 2023 , for 
a re vie w). Pop III stars with masses 140 M ! " m ∗ " 260 M ! are 
expected to undergo pair-instability SNe, which have energies 100 ×
that of more standard core-collapse SN, leading to more ef fecti ve SN 
feedback. 

Even after Pop III star formation ceases, stars forming in low 
metallicity Z " 3 per cent Z ! environments could form directly 
from atomic gas due to the discrepancy between the thermal and 
chemical equilibrium time-scales (Glo v er & Clark 2012 ; Krumholz 
2012 ). The formation time-scale for H 2 is slow at low metallicities 
due to the lack of dust grain surfaces the catalyse the reaction, so 
the molecular fraction remains small until the density rises high 
enough to form H 2 via three-body reactions. If the gas surrounding 
a young massive star is primarily atomic Hydrogen, the effect 
of photoionization feedback may be enhanced due to the lower 
ionization energy relative to molecular Hydrogen. More detailed 
studies are needed to explore these effects, especially in less massive 
haloes at Cosmic Dawn, which may be less rapidly enriched by 
metals. 
4.8.2 Active galactic nuclei 
As discussed in Section 1 , some MDGs show evidence of AGN 
activity. AGN might provide an additional source of feedback which 
we do not consider. From a theoretical perspective, the formation 
mechanisms of supermassive BHs (SMBHs) is an open question. 
It is typically assumed that SMBHs form from massive BH seeds, 
which grow by accretion and mergers. As pointed out by Dekel 
et al. ( 2023 ), the enhanced SFE in massive z ∼ 10 galaxies might 
suppress accretion onto the BH by consuming most of the gas 
in star formation. On the other hand, the inefficiency of feedback 
may enhance accretion of the residual gas. Future simulations could 
address the question of BH growth and AGN feedback by using the 
sink particle functionality already available in RAMSES . 
4.8.3 Chaotic variance 
The multiple non-linear coupled PDEs in our galaxy simulations 
form a chaotic system, and therefore, our results are subject to 
chaotic variance, seeded by truncation errors and random algorithmic 
elements. Genel et al. ( 2019 ) found that global properties of a single 
galaxy can vary on a level of ∼ 2 –25 per cent due to chaotic variance, 
depending on the property in question. In a similar analysis, Keller 
et al. ( 2019 ) concluded that differences " 20 per cent in time- 
average SFRs between different galaxy simulations require statistical 
e vidence to sho w that it is not due to stochasticity, with mergers 
being a particularly large source of chaos. Ideally, we could run 
multiple copies of each simulation to quantify the range of chaotic 
variance, but this was impossible due to computational cost. Most 
of our conclusions are based on integrated quantities or statistical 
analyses, so we believe that our results are robust to chaotic variance, 
but we do not have data to confirm this. 
4.9 Obser v ational implications 
4.9.1 SFR indicators 
Caplar & Tacchella ( 2019 ) point out that when the SFR is determined 
from observations, one must rely on tracers such as IR, UV, and 
emission lines. These tracers do not reflect the instantaneous SFR 
because the y hav e different contributions from stars of different ages. 
To predict what the star formation history looks like as seen by a given 
indicator , we con volve the intrinsic SFR with the response function 
of that indicator. 

Using the Flexible Stellar Population Synthesis (FSPS) code ( FSPS ; 
Conroy, Gunn & White 2009 ), we estimate the response function for 
two star formation indicators: the H α emission line and the JWST 
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Figure 15. SFR as a function of time (left panel) for the fiducial simulation, 
including both the intrinsic SFR (blue) and the SFR inferred by H α (orange) 
and the JWST f200W filter (green). An inset plot shows a zoom to highlight 
how the indicators respond to short-time-scale variability. In the right panel, 
we show the cumulative luminosity for a given indicator as a function of time 
*t since star birth. The H α SFR is similar in magnitude to the intrinsic SFR, 
but the JWST f200w SFR is systematically smaller, resulting from the long- 
time-scale contributions which sample earlier times when the SFR was lower. 
f200w filter. At z = 9, the H α line is redshifted to , = 5 . 9 µm , 
which is outside the spectral range of JWST ’s NIRSpec instrument. 
Ho we ver, we found that viable emission line indicators such as H β
and the O III lines produce similar response functions to H α. At 
z = 9, JWST ’s f200w and f277w filters probes mid-UV and near-UV 
frequencies, respectively. We find that the f277w filter produces a 
similar response function to the f200w filter. 

We assume a redshift z = 9, a Chabrier IMF (Chabrier 2003 ), and a 
metallicity Z = 0 . 331 Z !, equal to the median metallicity of stars in 
our fiducial simulation. FSPS also includes dust and nebular emission 
models. FSPS has been e xtensiv ely calibrated against observations 
in the low redshift Universe (Conroy & Gunn 2010 ). There may be 
large systematic errors at z ∼ 10, which we ignore for the sake of 
qualitative argument. 

We plot the response functions in the right panel of Fig. 15 . H α
responds rapidly on a time-scale of ∼ 3 Myr , while the JWST f200w 
filter responds on longer time-scales of ∼ 10 Myr , but with small 
contributions on time-scales as long as ∼ 100 Myr . Note that our 
response function for the JWST f200w filter is only valid at z = 9. 
At higher redshifts, the JWST f200w filter responds slightly faster 
e.g. on time-scales ∼ 5 Myr for z = 19. The O III ,4960 line, another 
plausible emission line indicator, has a similar response function to 
H α. Likewise, the JWST f277w filter, another plausible photometric 
indicator, has a similar response function to the JWST f200w filter. 

In the left panel of Fig. 15 , we show the SFR as a function of time 
for the fiducial simulation, including both the intrinsic SFR and the 
SFR inferred by H α and JWST f200w star formation indicators. The 
H α SFR is similar in magnitude to the intrinsic SFR, but the JWST 
f200w SFR is systematically smaller, resulting from the long-time- 
scale contributions which sample earlier times when the SFR was 
lo wer. This ef fect is a consequence of the rapid increase in the mean 
SFR as a function as time in this epoch. 

Both SFR indicators hide the intrinsic variability in the SFR on 
short time-scales, reducing the observed variability as pointed out by 
Furlanetto & Mirocha ( 2022 ). F ollowing P allottini & Ferrara ( 2023 ), 
we quantify this effect using the standard deviation of fluctuations in 
the log SFR σSFR , computed using the procedure in Section 3.6 . 
F or the ra w and JWST f200w SFRs in our fiducial simulation, 
the standard deviations are 0.28 and 0.12. The variability in UV 
magnitudes is directly related to the variability in the log SFR by 

Figure 16. SFR (top panel) and stellar mass (bottom panel) as a function 
of time in our simulations (red) and a selection of the most luminous galaxy 
candidates at Cosmic Dawn in various surv e ys, including JADES (blue), 
CEERS (orange), and COSMOS-Web (green). The solid red line shows data 
from our fiducial simulation and the shaded area includes the range of values 
from lowPhot , highPhot , solTurb , and varTurb . Galaxy candidates 
which are not spectroscopically confirmed are marked with an open circle. 
SFR is av eraged o v er 10 Myr (up triangle, solid line), 50 Myr (circle), and 
100 Myr (down triangle, dashed line). The stellar mass and SFR data for each 
simulation are available on the Princeton Research Data Service (Andalman & 
Teyssier 2024 ). 
σUV = 2 . 5 σSFR . For the raw and JWST f200w SFRs in our fiducial 
simulation, this implies UV variabilities 0.83 and 0.35, respectively. 
The latter more accurately characterizes the variability that would 
actually be observed. This value is significantly smaller than the 
variability σUV ! 1 . 5 required to explain the discrepancies between 
models and data from burstiness alone (Mason et al. 2023 ; Shen et al. 
2023 ). Our conclusion is similar to Pallottini & Ferrara ( 2023 ), expect 
that we account for the effect of the SFR indicator. However, our 
simulations do not capture enhanced burstiness due to coupling with 
radiation and cosmic rays as demonstrated by Dome et al. ( 2024 ). 
4.9.2 Stellar masses and SFRs 
In Fig. 16 , we plot the stellar mass and SFR in our fiducial simulation 
as a function of redshift in red. We also plot our epistemic uncertainty, 
the range of stellar masses and SFRs across simulations in the early 
feedback and turbulence forcing series. The stellar mass and SFR 
data for each simulation are available on the Princeton Research 
Data Service 2 (Andalman & Teyssier 2024 ). 

In blue, green, and orange, we show estimates of stellar mass and 
SFR from JWST NIRSpec spectroscopy and NIRCam photometry 
for a selection of luminous galaxies from the JWST Advanced 
Deep Extragalactic Surv e y (JADES; Eisenstein et al. 2023 ), CEERS 
(Finkelstein et al. 2024 , ERS-1345), and (COSMOS-Web Casey 
et al. 2023 , GO#1727). We source our data for each surv e y from 
Harikane et al. ( 2024 ), Carniani et al. ( 2024 ), and Casey et al. ( 2024 ), 
2 https:// doi.org/ 10.34770/ v56h-ps15 
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respectively. This selection includes the most luminous and high 
redshift galaxies spectroscopically confirmed at the time of writing, 
such as GS-z11-0, GS-z14-0, and GS-z14-1. 

Ideally, we should only compare our simulated galaxy to observed 
galaxies whose halo mass matches that of our simulated galaxy at the 
appropriate redshift. Ho we ver, the star-to-halo mass ratio at Cosmic 
Dawn is not well-constrained, since it depends on the integrated 
SFE. As argued in Section 1 , the most extreme objects disco v ered at 
Cosmic Dawn in current surveys should have halo masses in around 
the value M halo ∼ 10 11 M ! for our simulated galaxy. Ho we ver, sur- 
v e ys which sample a larger volume, like COSMOS-Webb, probably 
include more massive haloes M halo ≥ 10 11 M ! which naturally have 
larger stellar masses and SFRs. 

The COSMOS-Webb candidates are not spectroscopically con- 
firmed, indicated by open circles in the plot, so their redshifts should 
be taken with caution. Previous work suggests that photometric 
estimates of redshift systematically o v erestimate redshift for galaxies 
at Cosmic Dawn (e.g. Fujimoto et al. 2023 , Fig. 4 ). Even when 
spectra are available, stellar masses and SFRs are typically estimated 
using spectral fitting codes like BAGPIPES (Carnall et al. 2018 ) 
and PROSPECTOR α (Leja et al. 2019 ). Ho we ver, at Cosmic Dawn, 
NIRSpec data provides very little constraints on dust-obscured 
star formation or the presence of an AGN, which would artificially 
decrease and increase stellar population estimates, respectively. 

The crude comparison in Fig. 16 is reasonable because the stellar 
masses and SFRs inferred from observations are already highly 
model-dependent. We are only suggesting that our simulated galaxies 
are in the ballpark of stellar masses and SFRs of the MDGs seen by 
JWST . Future work could make this comparison more quantitative 
using abundance matching and accounting for the effects of cosmic 
variance (Kragh Jespersen et al. 2025 ), but a more detailed approach 
may not be justified until the observational data are better understood. 

More observ ational e vidence for MDGs are found at Cosmic Noon 
( z ∼ 3), near the peak of the cosmic SFR density, where a population 
of massive quiescent galaxies (MQGs) have emerged (Glazebrook 
et al. 2017 ; Valentino et al. 2020 ; Antwi-Danso et al. 2025 ; Carnall 
et al. 2023 , 2024 ; Glazebrook et al. 2024 ; de Graaff et al. 2025 ). 
These galaxies typically have large stellar masses M ∗ ! 10 10 M !
and low specific SFRs " 0 . 2. Recently, Weibel et al. ( 2025 ) reported 
the disco v ery of a MQG at z = 7 . 3 confirmed spectroscopically 
with JWST NIRSpec as part of the Cycle 2 program of RUBIES 
(GO#4233) with a stellar mass M ∗ ∼ 10 10 M !. 

Detailed modelling of MQG spectra suggests that MQGs must 
have formed the bulk of their stellar populations within the first 
billion years of cosmic history in short, extreme starbursts lasting 
hundreds of Myr at most Weibel et al. (e.g. 2025 ). This is qualitatively 
consistent with our simulated MDGs, hinting that MDGs could be 
the progenitors of MQGs. Future work should extend run simulations 
out to lower redshift to investigate this possibility. Cosmological 
simulations tend to underproduce MQGs at high redshift (Alcalde 
P amplie ga et al. 2019 ; Merlin et al. 2019 ), so the y hav e been 
understudied in the theoretical galaxy formation community. 
5  C O N C L U S I O N S  A N D  F U T U R E  WO R K  
In this work, we run zoom-in simulations of a MDG ( M halo = 
10 11 M !, z = 9) using the cosmological hydrodynamics code RAM- 
SES at an ef fecti ve resolution ( 10 pc . Our simulations capture a 
unique regime where star formation is expected to be enhanced by 
high gas densities. Our suite of simulations vary in the details of 
their star formation and feedback recipes, allowing us to investigate 
the connection between global SFE and local gas conditions. Our 

fiducial simulation uses a physically moti v ated, turbulence-based, 
multi-freefall model of star formation, a v oiding ad hoc extrapolation 
from lower redshifts. 

We summarize our main findings in bullet points: 
(i) Star formation efficiencies : The high gas densities ∼

10 4 M !/ pc 2 , ∼ 3 × 10 3 cm −3 in star-forming regions of MDGs 
naturally result in efficient star formation, with a local SFE εff ∼
10 − 20 per cent and an integrated SFE εint ∼ 10 − 30 per cent . 

(ii) Galaxy structure : Our simulated galaxies form a thick disc 
with support from both rotation and turbulence. For cold gas, the disc 
radius is R gas ∼ 700 pc and the scale height is H /R ∼ 0 . 5. For stars 
the disc radius is R gas ∼ 400 pc and scale height is H /R ∼ 0 . 25. The 
baryonic mass is organized into dense, cold, and turbulent clumps of 
diameter ∼ 100 pc where most of the star formation occurs, although 
the size of these clumps may be an artefact of our ( 10 pc ef fecti ve 
resolution. These discs may have analogues in the discs of star- 
forming galaxies at Cosmic Noon. 

(iii) Star formation history and variability : The stellar mass in the 
MDG increases in proportion to the accretion rate onto the halo i.e. 
nearly exponential growth for z ≥ 9. The SFR fluctuates on various 
time-scales, producing an intrinsic UV variability σUV ( 0 . 83 which 
is reduced to σUV ( 0 . 35 when measured with a wide-band filter. 
This is insufficient to explain the discrepancies between models and 
data from bursty star formation alone. The Fourier transform of the 
SFR encodes information about the typical density of star formation 
∼ 3 × 10 3 cm −3 and the typical lifetime of star-forming clouds ∼
10 Myr . 

(iv) Stellar feedback : Our implementation of stellar feedback is 
crude, but our preliminary results suggest that stellar feedback in 
MDGs is weak due to the high density conditions. This is consistent 
with the general prediction of the FFB scenario, despite the fact that 
our current simulations don’t resolve the SN cooling radius or the 
star-forming clusters where FFBs would occur. Weak feedback can 
be partially mitigated by photoionization from massive stars, which 
decreases the density around SN explosions. Ho we ver, e ven in our 
strongest photoionization feedback model the integrated SFE is still 
high ≥ 10 per cent . 

(v) Self-regulation : One might think that the weak feedback in 
MDGs cannot regulate star formation. Ho we ver, we sho w that star 
formation is still regulated by feedback due to the high local SFE. 
As a result, the global SFE is nearly independent of the local SFE 
and depends inversely on the strength of ejective feedback. 

(vi) Metal enrichment : Similar to the global SFE, gas metallicity 
depends inversely on the strength of ejective feedback. By z = 9, SN 
feedback enriches our simulated galaxies to a significant fraction of 
solar metallicity. 

(vii) Turb ulence : Turb ulence generally decreases the local SFE for 
the same gas conditions due to turbulent pressure support. Turbulence 
in MDGs is strong ∼ 50 km / s due to intense accretion, but not strong 
enough to take MDGs out of the self-regulated regime, so it has only 
a weak effect on global and integrated SFEs. 

(viii) Comparison to observations : Our simulated galaxies are in 
the ballpark of the estimated stellar masses and SFRs of the MDGs 
observed by JWST . 

Our study is the first step towards understanding efficient star 
formation in MDGs. Our treatment of stellar feedback is crude 
due to the limitations of our ef fecti ve resolution ( 10 pc in a 
pure hydrodynamics simulation. Although these factors affect the 
accuracy of our results, they also make the simulations easier to 
interpret by simplifying the physics. We will use the insights from 
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this work to make informed choices about more computationally 
e xpensiv e future simulations which capture more of the physics. 

The interplay between photoionization and SN feedback in our 
simulations suggests that early feedback is important in MDGs, even 
when it cannot suppress star formation directly. In future simulations, 
we will model early feedback in more detail using RAMSES-RT , 
including explicit models for photoionization, radiation pressure, and 
stellar winds. These models should account for the effect of strong 
turbulence, which can decrease the ef fecti ve opacity (Appendix G ). 
Using RAMSES-RT will also enable a more self-consistent treatment 
of the extragalactic radiation field. 

The high densities in our simulations mean that we do not resolve 
the scale of star-forming clouds, which can be roughly approximated 
by the Jeans radius R J = c s / √ 

Gρ. For a cloud at the Hydrogen 
ionization temperature ∼ 10 4 K and a density given by the median 
star-forming density of our fiducial simulation ∼ 3 × 10 3 cm −3 , the 
Jeans radius is ∼ 20 pc , and the cloud will only be resolved by eight 
cells. For a lower temperature given by the median star-forming 
temperature of our fiducial simulation ∼ 300 K, the Jeans radius 
is ∼ 3 pc , and the cloud will not be resolved at all. The addition of 
three AMR levels would give an effective resolution ( 1 pc , resulting 
in fully resolved star-forming clouds. A high resolution would also 
solve the problem of unresolved H II re gions, rev ealing the multi- 
phase structure of the ISM. 

There are many other avenues for future work, including (i) 
exploring the growth of black holes and impact of AGN on star 
formation in MDGs and (ii) running simulations beyond Cosmic 
Da wn to inv estigate whether our MDGs could be the progenitors of 
massive quiescent galaxies at lower redshifts. 
ACKNOWLEDGEMENTS  
ZA w ould lik e to acknowledge helpful conversations with David Set- 
ton, Jenny Greene, Eve Ostriker, Ronan Hix, Nicholas Choustikov, 
Matthew Sampson, Diederek Kruijssen, Mike Boylan-K olchin, T ibor 
Dome, Robert Feldman, and work by Diego Solorio on the simulation 
initial conditions. We are grateful to our referee Daniel Ceverino, 
whose time and attention significantly impro v ed the quality of this 
manuscript. 

This material is based upon work supported by the National 
Science Foundation (NSF) and the U.S.-Israel Binational Science 
Foundation (BSF) under Award Number 2406558 and Award Title 
‘The Origin of the Excess of Bright Galaxies at Cosmic Dawn’. 

This material is based upon work supported by the U.S. Depart- 
ment of Energy, Office of Science, Office of Advanced Scientific 
Computing Research, Department of Energy Computational Science 
Graduate Fellowship under Award Number DE-SC0024386. 

AD has been partly supported by the Israel Science Foundation 
grant ISF 861/20 and by NSF-BSF grant 2023723. 

This report was prepared as an account of work sponsored by an 
agency of the United States Go v ernment. Neither the United States 
Go v ernment nor any agency thereof, nor any of their employees, 
mak es any w arranty, express or implied, or assumes an y le gal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe pri v ately o wned rights. Reference 
herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, 
or fa v ouring by the United States Go v ernment or an y agenc y 
thereof. The views and opinions of authors expressed herein do not 

necessarily state or reflect those of the United States Go v ernment or 
an y agenc y thereof. 

The simulations presented in this article were performed on com- 
putational resources managed and supported by Princeton Research 
Computing, a consortium of groups including the Princeton Institute 
for Computational Science and Engineering (PICSciE) and the Office 
of Information Technology’s High Performance Computing Center 
and Visualization Laboratory at Princeton University. 

This research made use of SCIPY (Virtanen et al. 2020 ), NUMPY 
(Harris et al. 2020 ), and MATPLOTLIB (Hunter 2007 ). 
DATA  AVAILABILITY  
The simulations in this work were run on Stellar cluster at Princeton 
University. Each simulation contains approximately 1 . 3 Tb of data. 
Due to data storage limitations, we have only maintained data from 
our fiducial simulation, which can be provided upon reasonable 
request to the corresponding author. Likewise, the exact RAMSES 
patch and initial conditions used for our simulations can be provided 
upon reasonable request to the corresponding author. 

A data set containing the stellar mass and SFR as a function 
of proper time and redshift for the fiducial model and models 
lowPhot , highPhot , solTurb , and varTurb are provided 
on the Princeton Research Data Service (Andalman & Teyssier 
2024 ) under the Creative Commons Attribution 4.0 International 
( CC- BY- 4.0 ) license. This data set may be useful for comparing our 
simulated MDGs results to other simulated or observed MDGs. 

Movies of the simulations are publicly available on YouTube ( ht 
tps:// tinyurl.com/ 53xxm3r2 ). 
REFERENCES  
Adamo A. , Kruijssen J. M. D., Bastian N., Silva-Villa E., Ryon J., 2015, 

MNRAS , 452, 246 
Adamo A. et al., 2020a, Space Sci. Rev. , 216, 69 
Adamo A. et al., 2020b, MNRAS , 499, 3267 
Agertz O. , Teyssier R., Moore B., 2009, MNRAS , 397, L64 
Agertz O. , Kravtsov A. V., Leitner S. N., Gnedin N. Y., 2013, ApJ , 770, 25 
Alcalde P amplie ga B. et al., 2019, ApJ , 876, 135 
Andalman Z. L. , Teyssier R., 2024, Star Formation Histories of Simulated 

Massive Galaxies at Cosmic Dawn [Data set]. Princeton University 
Andr ́e P. et al., 2010, A&A , 518, L102 
Antwi-Danso J. et al., 2025, ApJ , 978, 90 
Aubert D. , Teyssier R., 2010, ApJ , 724, 244 
Audit E. , Hennebelle P., 2010, A&A , 511, A76 
Bassini L. , Feldmann R., Gensior J., Hayward C. C., Faucher-Gigu ̀ere C.-A., 

Cenci E., Liang L., Bernardini M., 2023, MNRAS , 525, 5388 
Bastian N. , 2008, MNRAS , 390, 759 
Beattie J. R. , Mocz P., Federrath C., Klessen R. S., 2022, MNRAS , 517, 5003 
Behroozi P. , Wechsler R. H., Hearin A. P., Conroy C., 2019, MNRAS , 488, 

3143 
Birnboim Y. , Dekel A., 2003, MNRAS , 345, 349 
Bleuler A. , Teyssier R., 2014, MNRAS , 445, 4015 
Boylan-Kolchin M. , 2023, Nat. Astron. , 7, 731 
Boylan-Kolchin M. , 2025, MNRAS , 538, 3210 
Bromm V. , Loeb A., 2003, Nature , 425, 812 
Brucy N. , Hennebelle P., Colman T., Klessen R. S., Le Yhuelic C., 2024, 

A&A , 690, A44 
Bullock J. S. , Dekel A., Kolatt T. S., Kravtsov A. V., Klypin A. A., Porciani 

C., Primack J. R., 2001, ApJ , 555, 240 
Cameron A. J. , Katz H., Witten C., Saxena A., Laporte N., Bunker A. J., 

2024, MNRAS , 534, 523 
Caplar N. , Tacchella S., 2019, MNRAS , 487, 3845 
Carnall A. C. , McLure R. J., Dunlop J. S., Dav ́e R., 2018, MNRAS , 480, 

4379 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/540/4/3350/8157902 by M
athem

atics Library, user on 22 July 2025

https://choosealicense.com/licenses/cc-by-4.0/
https://www.youtube.com/playlist?list=PL7YbfRC6zxzAYgFEr5oefYb5dcv0dl7Ba
https://tinyurl.com/53xxm3r2
http://dx.doi.org/10.1093/mnras/stv1203
http://dx.doi.org/10.1007/s11214-020-00690-x
http://dx.doi.org/10.1093/mnras/staa2380
http://dx.doi.org/10.1111/j.1745-3933.2009.00685.x
http://dx.doi.org/10.1088/0004-637X/770/1/25
http://dx.doi.org/10.3847/1538-4357/ab14f2
http://dx.doi.org/10.1051/0004-6361/201014666
http://dx.doi.org/10.48550/arXiv.2307.09590
http://dx.doi.org/10.1088/0004-637X/724/1/244
http://dx.doi.org/10.1051/0004-6361/200912695
http://dx.doi.org/10.1093/mnras/stad2617
http://dx.doi.org/10.1111/j.1365-2966.2008.13775.x
http://dx.doi.org/10.1093/mnras/stac3005
http://dx.doi.org/10.1093/mnras/stz1182
http://dx.doi.org/10.1046/j.1365-8711.2003.06955.x
http://dx.doi.org/10.1093/mnras/stu2005
http://dx.doi.org/10.1038/s41550-023-01937-7
http://dx.doi.org/10.48550/arXiv.2407.10900
http://dx.doi.org/10.1038/nature02071
http://dx.doi.org/10.48550/arXiv.2404.17374
http://dx.doi.org/10.1086/321477
http://dx.doi.org/10.48550/arXiv.2311.02051
http://dx.doi.org/10.1093/mnras/stz1449
http://dx.doi.org/10.1093/mnras/sty2169


3376 Z. L. Andalman, R. Teyssier and A. Dekel 

MNRAS 540, 3350–3383 (2025) 

Carnall A. C. et al., 2023, Nature , 619, 716 
Carnall A. C. et al., 2024, MNRAS , 534, 325 
Carniani S. et al., 2024, Nature, 633, 318 
Casey C. M. et al., 2023, ApJ , 954, 31 
Casey C. M. et al., 2024, ApJ , 965, 98 
Castaing B. , 1996, Journal de Physique II , 6, 105 
Castor J. I. , Abbott D. C., Klein R. I., 1975, ApJ , 195, 157 
Ceverino D. , Klypin A., 2009, ApJ , 695, 292 
Ceverino D. , Dekel A., Mandelker N., Bournaud F., Burkert A., Genzel R., 

Primack J., 2012, MNRAS , 420, 3490 
Ceverino D. , Klypin A., Klimek E. S., Trujillo-Gomez S., Churchill C. W., 

Primack J., Dekel A., 2014, MNRAS , 442, 1545 
Ceverino D. , Glover S. C. O., Klessen R. S., 2017, MNRAS , 470, 2791 
Ceverino D. , Klessen R. S., Glover S. C. O., 2018, MNRAS , 480, 4842 
Ceverino D. , Nakazato Y., Yoshida N., Klessen R. S., Glo v er S. C. O., 2024, 

A&A , 689, A244 
Chabrier G. , 2003, PASP , 115, 763 
Choban C. R. , Kere ̌s D., Hopkins P. F., Sandstrom K. M., Hayward C. C., 

Faucher-Gigu ̀ere C.-A., 2022, MNRAS , 514, 4506 
Conroy C. , Gunn J. E., 2010, ApJ , 712, 833 
Conroy C. , Gunn J. E., White M., 2009, ApJ , 699, 486 
Correa C. A. , Wyithe J. S. B., Schaye J., Duffy A. R., 2015, MNRAS , 450, 

1514 
Crain R. A. et al., 2015, MNRAS , 450, 1937 
Danovich M. , Dekel A., Hahn O., Ceverino D., Primack J., 2015, MNRAS , 

449, 2087 
Dav ́e R. , Angl ́es-Alc ́azar D., Narayanan D., Li Q., Rafieferantsoa M. H., 

Appleby S., 2019, MNRAS , 486, 2827 
de Graaff A. et al., 2025, Nature Astronomy , 9, 280 
de Graaff A. et al., 2024, A&A , 684, A87 
Dekel A. , Birnboim Y., 2006, MNRAS , 368, 2 
Dekel A. , Mandelker N., 2014, MNRAS , 444, 2071 
Dekel A. , Sari R., Ceverino D., 2009, ApJ , 703, 785 
Dekel A. , Zolotov A., Tweed D., Cacciato M., Ceverino D., Primack J. R., 

2013, MNRAS , 435, 999 
Dekel A. , Sarkar K. C., Birnboim Y., Mandelker N., Li Z., 2023, MNRAS , 

523, 3201 
Di Matteo T. , Khandai N., DeGraf C., Feng Y., Croft R. A. C., Lopez J., 

Springel V., 2012, ApJ , 745, L29 
Diemer B. , 2018, ApJS , 239, 35 
Dome T. , Tacchella S., Fialkov A., Ceverino D., Dekel A., Ginzburg O., 

Lapiner S., Looser T. J., 2024, MNRAS , 527, 2139 
Draine B. T. , 2011, Physics of the Interstellar and Intergalactic Medium. 

Princeton Univ. Press, Princeton 
Eisenstein D. J. et al., 2023, preprint ( arXiv:2306.02465 ) 
Elia D. , Evans N. J., Soler J. D., Strafella F., Schisano E., Molinari S., 

Giannetti A., Patra S., 2025, ApJ , 980, 216 
Elme green D. M. , Elme green B. G., Ravindranath S., Coe D. A., 2007, ApJ , 

658, 763 
Evans N. J. , Kim J.-G., Ostriker E. C., 2022, ApJ , 929, L18 
Fall S. M. , Chandar R., 2012, ApJ , 752, 96 
Fall S. M. , Krumholz M. R., Matzner C. D., 2010, ApJ , 710, L142 
Faucher-Gigu ̀ere C.-A. , Quataert E., Hopkins P. F., 2013, MNRAS , 433, 1970 
Federrath C. , Banerjee S., 2015, MNRAS , 448, 3297 
Federrath C. , Klessen R. S., 2012, ApJ , 761, 156 
Federrath C. , Roman-Duval J., Klessen R. S., Schmidt W., Mac Low M. M., 

2010, A&A , 512, A81 
Feldmann R. , 2015, MNRAS , 449, 3274 
Feng Y. , Di-Matteo T., Croft R. A., Bird S., Battaglia N., Wilkins S., 2016, 

MNRAS , 455, 2778 
Ferland G. J. , Peterson B. M., Horne K., W elsh W. F ., Nahar S. N., 1992, 

ApJ , 387, 95 
Ferrara A. , Pallottini A., Dayal P., 2023, MNRAS , 522, 3986 
Fierlinger K. M. , Burkert A., Ntormousi E., Fierlinger P., Schartmann M., 

Ballone A., Krause M. G. H., Diehl R., 2016, MNRAS , 456, 710 
Finkelstein S. L. et al., 2023, ApJ , 946, L13 
Finkelstein S. L. et al., 2024, ApJ , 969, L2 
F ̈orster Schreiber N. M. et al., 2006, ApJ , 645, 1062 

Fujimoto S. et al., 2023, ApJ , 949, L25 
Furlanetto S. R. , Mirocha J., 2022, MNRAS , 511, 3895 
Genel S. et al., 2019, ApJ , 871, 21 
Gentry E. S. , Krumholz M. R., Dekel A., Madau P., 2017, MNRAS , 465, 

2471 
Genzel R. et al., 2006, Nature , 442, 786 
Genzel R. et al., 2008, ApJ , 687, 59 
Ginsburg A. , Kruijssen J. M. D., 2018, ApJ , 864, L17 
Ginzburg O. , Dekel A., Mandelker N., Krumholz M. R., 2022, MNRAS , 513, 

6177 
Ginzburg O. , Dekel A., Mandelker N., Bournaud F., Ceverino D., Primack J., 

2025, preprint ( arXiv:2501.07097 ) 
Glazebrook K. et al., 2017, Nature , 544, 71 
Glazebrook K. et al., 2024, Nature , 628, 277 
Glo v er S. C. O. , Clark P. C., 2012, MNRAS , 421, 9 
Glo v er S. C. O. , Mac Low M.-M., 2007a, ApJS , 169, 239 
Glo v er S. C. O. , Mac Low M.-M., 2007b, ApJ , 659, 1317 
Gnedin N. Y. , 2014, ApJ , 793, 29 
Goodman A. A. , Pineda J. E., Schnee S. L., 2009, ApJ , 692, 91 
Guillet T. , Teyssier R., 2011, J. Comput. Phys. , 230, 4756 
Gunn J. E. , Gott J. R. III, 1972, ApJ , 176, 1 
Guo Y. , Giavalisco M., Ferguson H. C., Cassata P., Koekemoer A. M., 2012, 

ApJ , 757, 120 
Guo Y. et al., 2018, ApJ , 853, 108 
Haardt F. , Madau P., 1996, ApJ , 461, 20 
Hahn O. , Abel T., 2011, MNRAS , 415, 2101 
Harikane Y. , Nakajima K., Ouchi M., Umeda H., Isobe Y., Ono Y., Xu Y., 

Zhang Y., 2024, ApJ , 960, 56 
Harris C. R. et al., 2020, Nature , 585, 357 
Harten A. , Lax P. D., Leer B. v., 1983, SIAM Re vie w , 25, 35 
Hennebelle P. , Chabrier G., 2011, ApJ , 743, L29 
Hennebelle P. , Brucy N., Colman T., 2024, A&A , 690, A43 
Hopkins P. F. , 2013, MNRAS , 430, 1653 
Hopkins P. F. , Quataert E., Murray N., 2011, MNRAS , 417, 950 
Hopkins P. F. , Kere ̌s D., O ̃ norbe J., Faucher-Gigu ̀ere C.-A., Quataert E., 

Murray N., Bullock J. S., 2014, MNRAS , 445, 581 
Hopkins P. F. et al., 2018, MNRAS , 477, 1578 
Hunter J. D. , 2007, Comput. Sci. Eng. , 9, 90 
Inoue S. , Dekel A., Mandelker N., Ceverino D., Bournaud F., Primack J., 

2016, MNRAS , 456, 2052 
Iyer K. G. et al., 2020, MNRAS , 498, 430 
Kannan R. , Garaldi E., Smith A., Pakmor R., Springel V ., V ogelsberger M., 

Hernquist L., 2022, MNRAS , 511, 4005 
Katz N. , White S. D. M., 1993, ApJ , 412, 455 
Katz N. , Weinberg D. H., Hernquist L., 1996, ApJS , 105, 19 
Keller B. W. , Wadsley J. W., Wang L., Kruijssen J. M. D., 2019, MNRAS , 

482, 2244 
Kennicutt R. C. , Jr, 1998, ApJ , 498, 541 
Kennicutt R. C. , Jr et al., 2007, ApJ , 671, 333 
Kere ̌s D. , Katz N., Weinberg D. H., Dav ́e R., 2005, MNRAS , 363, 2 
Kere ̌s D. , Katz N., Fardal M., Dav ́e R., Weinberg D. H., 2009, MNRAS , 395, 

160 
Kim C.-G. , Ostriker E. C., 2015, ApJ , 802, 99 
Kim J.-G. , Ostriker E. C., Filippova N., 2021, ApJ , 911, 128 
Kimm T. , Cen R., 2014, ApJ , 788, 121 
Kimm T. , Cen R., Devriendt J., Dubois Y., Slyz A., 2015, MNRAS , 451, 

2900 
Kimm T. , Katz H., Haehnelt M., Rosdahl J., Devriendt J., Slyz A., 2017, 

MNRAS , 466, 4826 
Kimm T. , Haehnelt M., Blaizot J., Katz H., Michel-Dansac L., Garel T., 

Rosdahl J., Teyssier R., 2018, MNRAS , 475, 4617 
Klessen R. S. , Glo v er S. C. O., 2023, ARA&A , 61, 65 
Klypin A. et al., 2021, MNRAS , 504, 769 
Kragh Jespersen C. , Steinhardt C. L., Somerville R. S., Lo v ell C. C., 2025, 

ApJ , 982, 23 
Kretschmer M. , Teyssier R., 2020, MNRAS , 492, 1385 
Kritsuk A. G. , Norman M. L., Padoan P., Wagner R., 2007, ApJ , 665, 416 
Kruijssen J. M. D. , 2012, MNRAS , 426, 3008 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/540/4/3350/8157902 by M
athem

atics Library, user on 22 July 2025

http://dx.doi.org/10.1038/s41586-023-06158-6
http://dx.doi.org/10.48550/arXiv.2405.02242
http://dx.doi.org/10.3847/1538-4357/acc2bc
http://dx.doi.org/10.3847/1538-4357/ad2075
http://dx.doi.org/10.1051/jp2:1996172
http://dx.doi.org/10.1086/153315
http://dx.doi.org/10.1088/0004-637X/695/1/292
http://dx.doi.org/10.1111/j.1365-2966.2011.20296.x
http://dx.doi.org/10.1093/mnras/stu956
http://dx.doi.org/10.1093/mnras/stx1386
http://dx.doi.org/10.1093/mnras/sty2124
http://dx.doi.org/10.1051/0004-6361/202450224
http://dx.doi.org/10.1086/376392
http://dx.doi.org/10.1093/mnras/stac1542
http://dx.doi.org/10.1088/0004-637X/712/2/833
http://dx.doi.org/10.1088/0004-637X/699/1/486
http://dx.doi.org/10.1093/mnras/stv689
http://dx.doi.org/10.1093/mnras/stv725
http://dx.doi.org/10.1093/mnras/stv270
http://dx.doi.org/10.1093/mnras/stz937
http://dx.doi.org/10.48550/arXiv.2404.05683
http://dx.doi.org/10.1051/0004-6361/202347755
http://dx.doi.org/10.1111/j.1365-2966.2006.10145.x
http://dx.doi.org/10.1093/mnras/stu1427
http://dx.doi.org/10.1088/0004-637X/703/1/785
http://dx.doi.org/10.1093/mnras/stt1338
http://dx.doi.org/10.1093/mnras/stad1557
http://dx.doi.org/10.1088/2041-8205/745/2/L29
http://dx.doi.org/10.3847/1538-4365/aaee8c
http://dx.doi.org/10.1093/mnras/stad3239
http://arxiv.org/abs/2306.02465
http://dx.doi.org/10.3847/1538-4357/adaeb2
http://dx.doi.org/10.1086/511667
http://dx.doi.org/10.3847/2041-8213/ac6427
http://dx.doi.org/10.1088/0004-637X/752/2/96
http://dx.doi.org/10.1088/2041-8205/710/2/L142
http://dx.doi.org/10.1093/mnras/stt866
http://dx.doi.org/10.1093/mnras/stv180
http://dx.doi.org/10.1088/0004-637X/761/2/156
http://dx.doi.org/10.1051/0004-6361/200912437
http://dx.doi.org/10.1093/mnras/stv552
http://dx.doi.org/10.1093/mnras/stv2484
http://dx.doi.org/10.1086/171063
http://dx.doi.org/10.1093/mnras/stad1095
http://dx.doi.org/10.1093/mnras/stv2699
http://dx.doi.org/10.3847/2041-8213/acade4
http://dx.doi.org/10.3847/2041-8213/ad4495
http://dx.doi.org/10.1086/504403
http://dx.doi.org/10.3847/2041-8213/acd2d9
http://dx.doi.org/10.1093/mnras/stac310
http://dx.doi.org/10.3847/1538-4357/aaf4bb
http://dx.doi.org/10.1093/mnras/stw2746
http://dx.doi.org/10.1038/nature05052
http://dx.doi.org/10.1086/591840
http://dx.doi.org/10.3847/2041-8213/aada89
http://dx.doi.org/10.1093/mnras/stac1324
http://arxiv.org/abs/2501.07097
http://dx.doi.org/10.1038/nature21680
http://dx.doi.org/10.1038/s41586-024-07191-9
http://dx.doi.org/10.1111/j.1365-2966.2011.19648.x
http://dx.doi.org/10.1086/512238
http://dx.doi.org/10.1086/512227
http://dx.doi.org/10.1088/0004-637X/793/1/29
http://dx.doi.org/10.1088/0004-637X/692/1/91
http://dx.doi.org/10.1016/j.jcp.2011.02.044
http://dx.doi.org/10.1086/151605
http://dx.doi.org/10.1088/0004-637X/757/2/120
http://dx.doi.org/10.3847/1538-4357/aaa018
http://dx.doi.org/10.1086/177035
http://dx.doi.org/10.1111/j.1365-2966.2011.18820.x
http://dx.doi.org/10.3847/1538-4357/ad0b7e
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1088/2041-8205/743/2/L29
http://dx.doi.org/10.48550/arXiv.2404.17368
http://dx.doi.org/10.1093/mnras/sts704
http://dx.doi.org/10.1111/j.1365-2966.2011.19306.x
http://dx.doi.org/10.1093/mnras/stu1738
http://dx.doi.org/10.1093/mnras/sty674
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1093/mnras/stv2793
http://dx.doi.org/10.1093/mnras/staa2150
http://dx.doi.org/10.1093/mnras/stab3710
http://dx.doi.org/10.1086/172935
http://dx.doi.org/10.1086/192305
http://dx.doi.org/10.1093/mnras/sty2859
http://dx.doi.org/10.1086/305588
http://dx.doi.org/10.1086/522300
http://dx.doi.org/10.1111/j.1365-2966.2005.09451.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14541.x
http://dx.doi.org/10.1088/0004-637X/802/2/99
http://dx.doi.org/10.3847/1538-4357/abe934
http://dx.doi.org/10.1088/0004-637X/788/2/121
http://dx.doi.org/10.1093/mnras/stv1211
http://dx.doi.org/10.1093/mnras/stx052
http://dx.doi.org/10.1093/mnras/sty126
http://dx.doi.org/10.1146/annurev-astro-071221-053453
http://dx.doi.org/10.1093/mnras/stab769
http://dx.doi.org/10.48550/arXiv.2403.00050
http://dx.doi.org/10.1093/mnras/stz3495
http://dx.doi.org/10.1086/519443
http://dx.doi.org/10.1111/j.1365-2966.2012.21923.x


Efficient star formation at Cosmic Dawn 3377 

MNRAS 540, 3350–3383 (2025) 

Krumholz M. R. , 2012, ApJ , 759, 9 
Krumholz M. R. , Matzner C. D., 2009, ApJ , 703, 1352 
Krumholz M. R. , McKee C. F., 2005, ApJ , 630, 250 
Krumholz M. R. , Thompson T. A., 2012, ApJ , 760, 155 
Krumholz M. R. , McKee C. F., Bland-Hawthorn J., 2019, ARA&A , 57, 227 
Labb ́e I. et al., 2023, Nature , 616, 266 
Lancaster L. , Ostriker E. C., Kim J.-G., Kim C.-G., 2021, ApJ , 914, 89 
Leitherer C. et al., 1999, ApJS , 123, 3 
Leja J. et al., 2019, ApJ , 877, 140 
Li Y. , Klessen R. S., Mac Low M.-M., 2003, ApJ , 592, 975 
Li Z. , Dekel A., Sarkar K. C., Aung H., Giavalisco M., Mandelker N., 

Tacchella S., 2024, A&A , 690, A108 
Liu B. , Bromm V., 2022, ApJ , 937, L30 
Lomb N. R. , 1976, Ap&SS , 39, 447 
Lo v ell C. C. , Vijayan A. P., Thomas P. A., Wilkins S. M., Barnes D. J., 

Irodotou D., Roper W., 2021, MNRAS , 500, 2127 
Ma X. et al., 2018, MNRAS , 478, 1694 
Mandelk er N. , Dek el A., Ceverino D., Tweed D., Moody C. E., Primack J., 

2014, MNRAS , 443, 3675 
Mandelk er N. , Dek el A., Ceverino D., DeGraf C., Guo Y., Primack J., 2017, 

MNRAS , 464, 635 
Mandelker N. , Ginzburg O., Dekel A., Bournaud F., Krumholz M. R., 

Ceverino D., Primack J., 2025, MNRAS , 538, L9 
Marinacci F. et al., 2018, MNRAS , 480, 5113 
Martin-Alvarez S. , Slyz A., Devriendt J., G ́omez-Guijarro C., 2020, MNRAS , 

495, 4475 
Martin-Alvarez S. , Sijacki D., Haehnelt M. G., F arc y M., Dubois Y., 

Belokurov V., Rosdahl J., Lopez-Rodriguez E., 2023, MNRAS , 525, 
3806 

Martizzi D. , Faucher-Gigu ̀ere C.-A., Quataert E., 2015, MNRAS , 450, 
504 

Mason C. A. , Trenti M., Treu T., 2023, MNRAS , 521, 497 
Masunaga H. , Inutsuka S.-i., 1999, ApJ , 510, 822 
Masunaga H. , Inutsuka S.-i., 2000, ApJ , 531, 350 
Matzner C. D. , McKee C. F., 2000, ApJ , 545, 364 
McCray R. , Snow T. P., Jr, 1979, ARA&A , 17, 213 
Menon S. H. , Federrath C., Krumholz M. R., 2022, MNRAS , 517, 1313 
Menon S. H. , Federrath C., Krumholz M. R., 2023, MNRAS , 521, 5160 
Menon S. H. , Lancaster L., Burkhart B., Somerville R. S., Dekel A., Krumholz 

M. R., 2024, ApJ , 967, L28 
Merlin E. et al., 2019, MNRAS , 490, 3309 
Mitchell P. D. , Blaizot J., Devriendt J., Kimm T., Michel-Dansac L., Rosdahl 

J., Slyz A., 2018, MNRAS , 474, 4279 
Moster B. P. , Naab T., White S. D. M., 2018, MNRAS , 477, 1822 
Murray N. , Quataert E., Thompson T. A., 2010, ApJ , 709, 191 
Naab T. , Ostriker J. P., 2017, ARA&A , 55, 59 
Nagakura T. , Hosokawa T., Omukai K., 2009, MNRAS , 399, 2183 
Naiman J. P. et al., 2018, MNRAS , 477, 1206 
Nakazato Y. , Ceverino D., Yoshida N., 2024, ApJ , 975, 238 
Nelson D. et al., 2018, MNRAS , 475, 624 
Noguchi M. , 1998, Nature , 392, 253 
O’Shea B. W. , Wise J. H., Xu H., Norman M. L., 2015, ApJ , 807, L12 
Ocvirk P. et al., 2020, MNRAS , 496, 4087 
Oh S. , Kroupa P., 2016, A&A , 590, A107 
Padoan P. , Nordlund Å., 2011, ApJ , 730, 40 
Padoan P. , Haugbølle T., Nordlund Å., 2012, ApJ , 759, L27 
Pallottini A. , Ferrara A., 2023, A&A , 677, L4 
Pallottini A. et al., 2022, MNRAS , 513, 5621 
Passot T. , V ́azquez-Semadeni E., 1998, Phys. Rev. E , 58, 4501 
P a wlik A. H. , Rahmati A., Schaye J., Jeon M., Dalla Vecchia C., 2017, 

MNRAS , 466, 960 
Pillepich A. et al., 2018, MNRAS , 475, 648 
Planck Collaboration VI, 2020, A&A , 641, A6 
Press W. H. , Schechter P., 1974, ApJ , 187, 425 
Rasera Y. , Teyssier R., 2006, A&A , 445, 1 

Reissl S. , Klessen R. S., Mac Low M.-M., Pellegrini E. W., 2018, A&A , 611, 
A70 

Renaud F. , Bournaud F., Kraljic K., Duc P. A., 2014, MNRAS , 442, L33 
Robertson B. E. , Kravtsov A. V., 2008, ApJ , 680, 1083 
Rodr ́ıguez-Puebla A. , Primack J. R., Avila-Reese V., Faber S. M., 2017, 

MNRAS , 470, 651 
Rogers H. , Pittard J. M., 2013, MNRAS , 431, 1337 
Rosdahl J. , Schaye J., Teyssier R., Agertz O., 2015, MNRAS , 451, 34 
Rosdahl J. et al., 2018, MNRAS , 479, 994 
Rosen A. L. , Lopez L. A., Krumholz M. R., Ramirez-Ruiz E., 2014, MNRAS , 

442, 2701 
Sales L. V. , Marinacci F., Springel V., Petkova M., 2014, MNRAS , 439, 2990 
Scargle J. D. , 1998, ApJ , 504, 405 
Schaye J. et al., 2015, MNRAS , 446, 521 
Schmidt M. , 1959, ApJ , 129, 243 
Schmidt W. , Federrath C., 2011, A&A , 528, A106 
Schmidt W. , Niemeyer J. C., Hillebrandt W., 2006, A&A , 450, 265 
Semenov D. , Henning T., Helling C., Ilgner M., Sedlmayr E., 2003, A&A , 

410, 611 
Semenov V. A. , Kravtsov A. V., Gnedin N. Y., 2017, ApJ , 845, 133 
Semenov V. A. , Kravtsov A. V., Gnedin N. Y., 2018, ApJ , 861, 4 
Seon K.-I. , 2009, ApJ , 703, 1159 
Seon K.-I. , 2012, ApJ , 761, L17 
Sharda P. , Krumholz M. R., 2022, MNRAS , 509, 1959 
Sharma P. , Roy A., Nath B. B., Shchekinov Y., 2014, MNRAS , 443, 3463 
Shen X. , Vogelsberger M., Boylan-Kolchin M., Tacchella S., Kannan R., 

2023, MNRAS , 525, 3254 
Shen X. , Vogelsberger M., Boylan-Kolchin M., Tacchella S., Naidu R. P., 

2024, MNRAS , 533, 3923 
Skinner M. A. , Ostriker E. C., 2015, ApJ , 809, 187 
Smith M. C. , Bryan G. L., Somerville R. S., Hu C.-Y., Teyssier R., Burkhart 

B., Hernquist L., 2021, MNRAS , 506, 3882 
Soto E. et al., 2017, ApJ , 837, 6 
Spitzer L. , Jr, 1990, ARA&A , 28, 71 
Springel V. et al., 2005, Nature , 435, 629 
Springel V. et al., 2018, MNRAS , 475, 676 
Str ̈omgren B. , 1939, ApJ , 89, 526 
Sun G. , Faucher-Gigu ̀ere C.-A., Hayward C. C., Shen X., Wetzel A., Cochrane 

R. K., 2023, ApJ , 955, L35 
Sutherland R. S. , Dopita M. A., 1993, ApJS , 88, 253 
Tacchella S. , Forbes J. C., Caplar N., 2020, MNRAS , 497, 698 
Teyssier R. , 2002, A&A , 385, 337 
Thompson T. A. , Quataert E., Murray N., 2005, ApJ , 630, 167 
Tinsley B. M. , 1968, ApJ , 151, 547 
Tinsley B. M. , 1979, ApJ , 229, 1046 
Tormen G. , Bouchet F. R., White S. D. M., 1997, MNRAS , 286, 865 
Trebitsch M. , Blaizot J., Rosdahl J., Devriendt J., Slyz A., 2017, MNRAS , 

470, 224 
Truelo v e J. K. , Klein R. I., McKee C. F., Holliman J. H. II, Howell L. H., 

Greenough J. A., 1997, ApJ , 489, L179 
Tsang B. T. H. , Milosavljevi ́c M., 2018, MNRAS , 478, 4142 
Valentino F. et al., 2020, ApJ , 889, 93 
Vazquez-Semadeni E. , 1994, ApJ , 423, 681 
Vijayan A. P. , Lo v ell C. C., Wilkins S. M., Thomas P. A., Barnes D. J., 

Irodotou D., Kuusisto J., Roper W. J., 2021, MNRAS , 501, 3289 
Virtanen P. et al., 2020, Nat. Methods , 17, 261 
Wada K. , Norman C. A., 2001, ApJ , 547, 172 
Walch S. , Naab T., 2015, MNRAS , 451, 2757 
Wang B. et al., 2024, ApJ , 969, L13 
Weaver R. , McCray R., Castor J., Shapiro P., Moore R., 1977, ApJ , 218, 377 
Weibel A. et al., 2025, ApJ, 983, 11 
Welch P. , 1967, IEEE T. Acoust. Speech , 15, 70 
Wiklind T. et al., 2019, ApJ , 878, 83 
Wise J. H. , Turk M. J., Norman M. L., Abel T., 2011, ApJ , 745, 50 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/540/4/3350/8157902 by M
athem

atics Library, user on 22 July 2025

http://dx.doi.org/10.1088/0004-637X/759/1/9
http://dx.doi.org/10.1088/0004-637X/703/2/1352
http://dx.doi.org/10.1086/431734
http://dx.doi.org/10.1088/0004-637X/760/2/155
http://dx.doi.org/10.1146/annurev-astro-091918-104430
http://dx.doi.org/10.1038/s41586-023-05786-2
http://dx.doi.org/10.3847/1538-4357/abf8ab
http://dx.doi.org/10.1086/313233
http://dx.doi.org/10.3847/1538-4357/ab1d5a
http://dx.doi.org/10.1086/375780
http://dx.doi.org/10.1051/0004-6361/202348727
http://dx.doi.org/10.3847/2041-8213/ac927f
http://dx.doi.org/10.1007/BF00648343
http://dx.doi.org/10.1093/mnras/staa3360
http://dx.doi.org/10.1093/mnras/sty1024
http://dx.doi.org/10.1093/mnras/stu1340
http://dx.doi.org/10.1093/mnras/stw2358
http://dx.doi.org/10.48550/arXiv.2406.07633
http://dx.doi.org/10.1093/mnras/sty2206
http://dx.doi.org/10.1093/mnras/staa1438
http://dx.doi.org/10.1093/mnras/stad2559
http://dx.doi.org/10.1093/mnras/stv562
http://dx.doi.org/10.1093/mnras/stad035
http://dx.doi.org/10.1086/306608
http://dx.doi.org/10.1086/308439
http://dx.doi.org/10.1086/317785
http://dx.doi.org/10.1146/annurev.aa.17.090179.001241
http://dx.doi.org/10.1093/mnras/stac2702
http://dx.doi.org/10.1093/mnras/stad856
http://dx.doi.org/10.48550/arXiv.2405.00813
http://dx.doi.org/10.1093/mnras/stz2615
http://dx.doi.org/10.1093/mnras/stx3017
http://dx.doi.org/10.1093/mnras/sty655
http://dx.doi.org/10.1088/0004-637X/709/1/191
http://dx.doi.org/10.1146/annurev-astro-081913-040019
http://dx.doi.org/10.1111/j.1365-2966.2009.15423.x
http://dx.doi.org/10.1093/mnras/sty618
http://dx.doi.org/10.48550/arXiv.2402.08911
http://dx.doi.org/10.1093/mnras/stx3040
http://dx.doi.org/10.1038/32596
http://dx.doi.org/10.1088/2041-8205/807/1/L12
http://dx.doi.org/10.1093/mnras/staa1266
http://dx.doi.org/10.1051/0004-6361/201628233
http://dx.doi.org/10.1088/0004-637X/730/1/40
http://dx.doi.org/10.1088/2041-8205/759/2/L27
http://dx.doi.org/10.1051/0004-6361/202347384
http://dx.doi.org/10.1093/mnras/stac1281
http://dx.doi.org/10.1103/PhysRevE.58.4501
http://dx.doi.org/10.1093/mnras/stw2869
http://dx.doi.org/10.1093/mnras/stx3112
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1051/0004-6361:20053116
http://dx.doi.org/10.1051/0004-6361/201731698
http://dx.doi.org/10.1093/mnrasl/slu050
http://dx.doi.org/10.1086/587796
http://dx.doi.org/10.1093/mnras/stx1172
http://dx.doi.org/10.1093/mnras/stt255
http://dx.doi.org/10.1093/mnras/stv937
http://dx.doi.org/10.1093/mnras/sty1655
http://dx.doi.org/10.1093/mnras/stu1037
http://dx.doi.org/10.1093/mnras/stu155
http://dx.doi.org/10.1086/306064
http://dx.doi.org/10.1093/mnras/stu2058
http://dx.doi.org/10.1086/146614
http://dx.doi.org/10.1051/0004-6361/201015630
http://dx.doi.org/10.1051/0004-6361:20053617
http://dx.doi.org/10.1051/0004-6361:20031279
http://dx.doi.org/10.3847/1538-4357/aa8096
http://dx.doi.org/10.3847/1538-4357/aac6eb
http://dx.doi.org/10.1088/0004-637X/703/1/1159
http://dx.doi.org/10.1088/2041-8205/761/2/L17
http://dx.doi.org/10.1093/mnras/stab2921
http://dx.doi.org/10.1093/mnras/stu1307
http://dx.doi.org/10.1093/mnras/stad2508
http://dx.doi.org/10.1093/mnras/stae1932
http://dx.doi.org/10.1088/0004-637X/809/2/187
http://dx.doi.org/10.1093/mnras/stab1896
http://dx.doi.org/10.3847/1538-4357/aa5da3
http://dx.doi.org/10.1146/annurev.aa.28.090190.000443
http://dx.doi.org/10.1038/nature03597
http://dx.doi.org/10.1093/mnras/stx3304
http://dx.doi.org/10.1086/144074
http://dx.doi.org/10.3847/2041-8213/acf85a
http://dx.doi.org/10.1086/191823
http://dx.doi.org/10.1093/mnras/staa1838
http://dx.doi.org/10.1051/0004-6361:20011817
http://dx.doi.org/10.1086/431923
http://dx.doi.org/10.1086/149455
http://dx.doi.org/10.1086/157039
http://dx.doi.org/10.1093/mnras/286.4.865
http://dx.doi.org/10.1093/mnras/stx1060
http://dx.doi.org/10.1086/310975
http://dx.doi.org/10.1093/mnras/sty1217
http://dx.doi.org/10.3847/1538-4357/ab64dc
http://dx.doi.org/10.1086/173847
http://dx.doi.org/10.1093/mnras/staa3715
http://dx.doi.org/10.1038/s41592-019-0686-2
http://dx.doi.org/10.1086/318344
http://dx.doi.org/10.1093/mnras/stv1155
http://dx.doi.org/10.48550/arXiv.2405.01473
http://dx.doi.org/10.1086/155692
http://dx.doi.org/10.1109/TAU.1967.1161901
http://dx.doi.org/10.3847/1538-4357/ab1089
http://dx.doi.org/10.1088/0004-637X/745/1/50


3378 Z. L. Andalman, R. Teyssier and A. Dekel 

MNRAS 540, 3350–3383 (2025) 

APPENDIX  A :  SIMPLE  ESTIMATE  O F  BAR  Y  O N  
SURFAC E  DENSITY  
We define a DM halo as a sphere about a density peak with 
mean o v erdensity * ( 200 abo v e the cosmological background ρcrit , 
following the standard definition from the spherical-collapse model 
(Gunn & Gott 1972 ). This implies a matter density inside the halo 
of 
ρhalo = *ρcrit, 0 &m , 0 (1 + z) 3 (A1) 
and a halo virial radius 
R vir = ( M vir 

(4 π/ 3) ρhalo 
)1 / 3 

= ( M vir 
(4 π/ 3) *ρcrit, 0 &m , 0 

)1 / 3 
(1 + z) −1 

( 14 M 1 / 3 11 (1 + z) −1 
10 kpc , (A2) 

where M 11 = M vir / 10 11 M !, (1 + z) 10 = (1 + z) / 10, and ρcrit, 0 = 
3 H 2 0 / (8 πG ) is the critical density of the Universe at redshift z = 0. 
The corresponding virial temperature is 
T vir 
µ

= m p 
k B GM vir 

2 R vir ( 3 . 6 × 10 6 M 2 / 3 11 (1 + z) 10 K. (A3) 
Following Dekel et al. ( 2013 ), we assume that the radius of the 

galactic disc scales with the halo radius via a contraction factor ,
R gal = ,R vir ( 720 ,0 . 05 M 1 / 3 11 (1 + z) −1 

10 pc , (A4) 
where ,0 . 05 = ,/ 0 . 05. Based on tidal-torque theory, Dekel et al. 
( 2013 ) argue that the average , is similar to the halo spin parameter, 
with typical value , ( 0 . 05 (e.g. Bullock et al. 2001 ). We further 
assume that the baryon mass in the galactic disc is approximately 
equal to the total accreted baryon mass, 
M b = f b M vir , f b = &b , 0 /&m , 0 . (A5) 

Under these assumptions, the typical baryon surface density in the 
galaxy is 
/ b = M b 

πR 2 gal = f b M 1 / 3 vir 
π,2 

(
4 π
3 *ρcrit, 0 &m , 0 )2 / 3 

(1 + z) 2 
( 9 . 6 × 10 3 ,−2 

0 . 05 M 1 / 3 11 (1 + z) 2 10 M ! pc −2 . (A6) 
As a corollary, we see that M vir ∝ (1 + z) 6 , which is similar to a result 
from Boylan-Kolchin ( 2025 ). We use equation ( A6 ) to estimate the 
baryon surface density in a galaxy as a function of redshift and 
the mass of its host halo in Fig. 1 . The gas and baryon surface 
densities are related by / gas = (1 − εint ) / b , where εint = M ∗/M b is 
the integrated SFE. Given the disc scale height ( H /R) gal , the typical 
number density is 
n H = M gas /m H 

πR 3 gal ( H /R) gal = (1 − εint ) f b 
π,3 ( H /R) gal 4 π3 *ρcrit, 0 &m , 0 (1 + z) 3 

( 540 (1 − εint ) ,−3 
0 . 05 ( H /R)(1 + z) 3 10 cm −3 . (A7) 

APPENDIX  B:  C O N T R I BU T I O N  O F  MASSIVE  
STARS  TO  P H OTO I O N I Z AT I O N  
The average rate of Hydrogen-ionizing photons emitted per stellar 
mass depends on both the IMF ξ ( m ) and the rate of ionizing photon 
emission as a function of stellar mass Q ( m ). The latter has empirical 
constraints from the local Universe. 

In Fig. B1 , we plot data from table 15.1 of Draine ( 2011 ) 
and fits to the functional form Q ( m ) ∼ am b + c using the least- 
squares method. Across luminosity classes, only stars with masses 
m ! 20 M ! make significant contributions to the ionizing photon 

Figure B1. The rate of ionizing photon emission as a function stellar mass 
for massive stars on the main sequence (blue), the giant branch (orange), and 
the supergiant branch (green). The dots are data from Draine ( 2011 , table 
15.1) and the dashed lines are fits to the functional Q ( M) ∼ aM b + c. 
production, making photoionization feedback sensitive to the high- 
mass end of the IMF. 

This uncertainty moti v ates the large range of values for M cl in our 
early feedback series. The crudeness of our early feedback recipe is 
a reflection of the limitations of a pure hydrodynamics simulation 
and large uncertainties at Cosmic Dawn. 
APPENDI X  C :  C A L C U L AT I O N  O F  N E T  
A N G U L A R  M O M E N T U M  
In Fig. 3 , we show face-on and edge-on projections of the galaxy. In 
this section, we describe the procedure for computing the direction 
of net angular momentum required to generate these projections. 

First, we estimate the bulk velocity v bulk of the galaxy as the mass- 
weighted average velocity in a 3 kpc sphere with centre r c , the centre 
of the galaxy. Contributions from stars and gas are included in the 
mass weight. The typical bulk velocity of the galaxy relative to our 
grid is on the order of hundreds of km / s . 

Next, we compute the direction of the net angular momentum of 
the galaxy ˆ !, which is in general not aligned with the Cartesian sim- 
ulation grid. We estimate the direction of the net angular momentum 
as the mass-weighted sum of the specific angular momentum in a 
3 kpc sphere with centre r c , where the specific angular momentum 
is given by l = ( r − r c ) × ( v − v bulk ). Contributions from stars and 
gas are included in the mass weight. 

We define a primed coordinate system r + with origin r c and z-axis 
parallel to ˆ !. By projecting parallel to ˆ z + , we can view the galaxy 
f ace-on. Lik ewise, by projecting parallel to ˆ x + or ˆ y + , we can view the 
galaxy edge-on. 

In Section 3.2 , we used the scale height to quantify the disciness 
of the galaxy. We compute the scale height using an iterative method 
based on appendix B of Mandelker et al. ( 2014 ). 

Let M cyl ( H , R) denote the mass contained inside a cylinder of 
height H and radius R with axis along ̂  z + and centre r c . We start with 
an initial guess for the disc height H and an upper bound on the disc 
radius R max . Then, we iterate the following steps until convergence 
to a less than 1 per cent change between iterations in H and R: 

(i) Determine the radius R such that M cyl ( H , R) = 
f M cyl ( H , R max ); 

(ii) Determine the height H such that M cyl ( H , R) = f M cyl ( R , R ). 
We set the initial disc height H = 500 pc and the upper bound on 

the disc radius R max = 1 kpc . Ho we ver, our results are not sensitive 
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to changes in these parameters by factors of a few. We chose a mass 
fraction f = 85 per cent consistent with Mandelker et al. ( 2014 ). 
The calculation can be repeated separately for cold gas and stars. We 
only include gas with temperatures ≤ 10 4 K to exclude outflows and 
accreting gas. 

To compute the ratio of the rotation velocity to the radial velocity 
dispersion, we first compute the relative velocity components in the 
primed coordinate system 
*v x + = ( v − v bulk ) · ˆ x + , *v y + = ( v − v bulk ) · ˆ y + . (C1) 
In cylindrical polar coordinates ( s, ϕ, z), this becomes 
*v s + = s −1 ( x + *v y + − y + *v x + ) , *v ϕ + = s −1 ( x + *v x + + y + *v y + ) . 

(C2) 
The ratio of the rotation velocity to the radial velocity dispersion 

at cylindrical radius s + is 
v rot 
σr ( s + ) = 〈 *v ϕ + 〉 ρ( s + ) (〈 ( *v s + ) 2 〉 ρ( s + ) − 〈 *v s + 〉 2 ρ( s + ) )−1 / 2 

, (C3) 
where 〈·〉 ρ( s + ) denotes a density-weighted av erage o v er a c ylindrical 
shell at cylindrical radius s + . 

We use cylindrical shells of width *s + = 25 pc for s ≤ R and 
height H . The o v erall ratio of the rotation velocity to the radial 
velocity dispersion is the average over cylindrical shells, weighted 
by the mass of each shell. The ratio can be computed separately for 
gas and stars using the corresponding disc dimensions. 

We adopt the notation v rot /σr to be consistent with previous 
literature in the main body of the paper. Ho we ver, we emphasize 
that the radial velocity dispersion is computed in cylindrical polar 
coordinates, not spherical polar coordinates. 
APPEN D IX  D :  C A L C U L AT I O N  O F  SUMMARY  
STATISTICS  
We use various summary statistics to compare our simulations in 
Section 3.5 . In this appendix, we explain the calculation details for 
each statistic. For these calculations, we restrict the domain to a box 
B of side length 5 kpc centred on the galaxy to a v oid contrib utions 
from other galaxies in the simulation box. At z = 9, B contains 
∼ 1 / 3 of the stellar mass in the simulation box. 

Our simulations record the time of birth for each star particle. To 
compute the SFR, we start by binning the star particles in B at z = 9 
by time of birth and dividing by the bin width: 
˜ Ṁ ∗( t) = 1 

*t ∑ 
r k ( t 9 ) ∈ B 

t b ,k ∈ [ t ,t + *t ] 
m k ( t 9 ) , (D1) 

where r k is the position of star particle k, t b ,k is the time of birth 
of star particle k, *t is the bin width, and t 9 is the time at z = 9. 
We use 5500 time bins of width 100 kyr in the range [0 , 550] Myr . 
Equation ( D1 ) underestimates the SFR because the star particle mass 
decreases o v er its lifetime due to SN mass-loss. This is accounted 
for by 
Ṁ ∗( t ) = ˜ Ṁ ∗( t ) 

f ( t 9 − t ) , (D2) 
where f ( *t) is given by 
f ( *t) = 

 
   
   

1 *t ≤ τstart 
1 − χ

(
*t−τstart 
τend −τstart ) τstart ≤ *t ≤ τend 

1 − χ *t ≥ τend . 
(D3) 

The SFR averaged over a time interval *t is 
SFR *t ( t ) = 1 

*t 
∫ *t 

0 d( *t + ) Ṁ ∗( t − *t + ) . (D4) 
We compute the stellar mass by integrating the SFR o v er time, 

accounting for SN mass-loss: 
M ∗( t) = ∫ t 

0 d t + Ṁ ∗( t + ) f ( t − t + ) . (D5) 
Equi v alently, we can compute the stellar mass by summing the 
masses of the star particles in B: 
M ∗( t) = ∑ 

r k ( t) ∈ B m k ( t) . (D6) 
In the fiducial simulation, the two methods always agree to within 
1 per cent. Ho we ver, we prefer equation ( D5 ) because it can be 
used to compute the stellar mass at arbitrary times rather than 
only times associated with data dumps. We compute the gas 
mass by summing the mass ρ*V in each grid cell, similar to 
equation ( D6 ). 

To compute the virial mass, we start by computing the enclosed 
mass M ( < r ) as a function of radius, including contributions from 
gas, stars, and DM. The radial coordinate is computed with respect 
to the centre of the halo. The virial radius is the radius where M( < 
R vir ) = (4 / 3) πR 3 vir ρhalo , where ρhalo is given by equation ( A1 ). The 
virial mass is M vir = M( < R vir ). 

The local SFE is a function of the local gas conditions by the MFF 
model (equation 22 ). We compute the median local SFE from the 
distribution of local SFEs in star birth events, weighted by stellar 
mass. The integrated SFE is 
εint = M ∗

f b M halo . (D7) 
The outflow efficiency is given by η = Ṁ out / SFR 50 , where Ṁ out 

is the mass outflow rate and SFR 50 is the SFR averaged over 
the last 50 Myr . We use SFR 50 rather than Ṁ ∗ because the raw 
SFR is highly stochastic, making the mass outflow rate better- 
correlated with SFR 50 . We compute the mass outflow rate using 
the mass flux of gas with positive radial velocities in a spherical 
shell ∂ V of radius R out = 2 kpc and thickness *R out = 0 . 1 R out = 
200 pc : 
Ṁ out = 4 πR 2 out 

*V out 
∫ 
∂ V d 3 r ρ( r ) v r ( r ) H ( v r ( r )) , (D8) 

where H is the Heaviside step function, v r is the radial 
velocity of the gas relative to the centre of the galaxy, 
and *V out is the volume of the spherical shell, given 
by 
*V out = 4 π

3 [( R out + *R out ) 3 − R 3 out ] . (D9) 
F or a giv en simulation, the v alue of η v aries for dif- 
ferent choices of R out , but the ratio of outflow efficien- 
cies between simulations is robust for values from 1 to 
4 kpc . 
APPENDI X  E:  T H E  DENSITY  PDF  O N  
DI FFERENT  SCALES  
The density distribution of gas in the galaxy changes depends on the 
scale under consideration. In Fig. E1 , we show the mass-weighted 
gas density distribution of the galaxy in our fiducial simulation 
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Figure E1. Histogram of the gas density in a box of side length 5 kpc 
around the most massive galaxy in the fiducial simulation at z = 9, weighted 
by gas mass. We compute the gas density using the raw cell value (blue), the 
subgrid density PDF given by the MFF model (orange), and the portion of the 
subgrid density PDF that is gravitationally unstable, i.e. αvir < 1 (green). 
These histograms represent the cell-scale density distribution, the sonic- 
scale density distribution, and the density distribution of collapsing clouds, 
respectively. The inset plot shows the convolution functions for clarity: a 
Dirac delta function for the cell-scale histogram (blue), a lognormal function 
for the sonic-scale histogram (orange), and a truncated lognormal function 
for the collapsing sonic-scale histogram (green). 
at z = 9. On the same plot, we convolve the density distribution 
with the subgrid density PDF given by the MFF model (equation 
10 ), ef fecti vely computing the gas density distribution on the sonic 
scale. 

Because the mean density of a cell represents a volume-weighted 
average, the mass-weighted distribution shifts to higher densities in 
the sonic-scale PDF. This shows that the mass-weighted density PDF 
is scale-dependent, and therefore, it can produce misleading results 
when there are multiple scales of interest. 

We also convolve the density distribution with the portion of 
the PDF that is gravitationally unstable i.e. αvir < 1, ef fecti vely 
computing the density distribution of collapsing clouds. The tail 
of this distribution crosses the opacity limit ρ ∼ 10 −13 g / cm 3 

(Masunaga & Inutsuka 1999 ), where the assumption of a cold, 
isothermal gas begins to break down. 
APPENDI X  F:  SPATIAL  C O R R E L AT I O N S  O F  
G A S  PROPERTIES  
In this section, we use two-dimensional projections and slices to 
gain an intuition for the spatial correlation of gas properties. Spatial 
correlations are not captured by the PDFs analysed in Section 3.4 . 

In Fig. F1 , we show slice plots of gas properties in the early 
feedback series. Regions of high density, low temperature, high 
Mach number, and low metallicity are spatially coincident. Likewise, 
regions of low density, high temperature, low Mach number, and high 
metallicity are spatially coincident. The low-density regions tend to 
flow away from the galaxy. 

As photoionization becomes more ef fecti ve, the density field 
becomes more homogeneous, confirming our interpretation of the 
volume-weighted PDFs (Fig. 6 ). In noPhot , nearly all the gas mass 
is located in one central clump. In highPhot , the gas is distributed 
into multiple dense clumps and throughout the diffuse regions of the 
ISM. This helps explain why photoionization feedback leads to more 
SNe occurring in diffuse environments. 

It is difficult to predict a priori whether compressive or solenoidal 
forcing modes should dominate. On the one hand, the collapsing 
gas clouds and SN explosions associated with star formation drive 
compressive modes. This creates a positive feedback loop, because 
compressive forcing conditions enhance star formation. On the 
other hand, large-scale processes like accretion, mergers, and the 
differential rotation of a disc drive solenoidal modes, which suppress 
star formation. In varTurb , we capture these effects by computing 
the turbulence forcing parameter from the local velocity field. 

In Fig. F2 , we show the v elocity div ergence and curl, proxies for 
the power in compressive and solenoidal forcing modes, respectively, 
and the resulting forcing parameter in varTurb . The velocity field 
in regions near the galaxy is dominated by solenoidal motion, which 
should suppress star formation. Ho we ver, the star formation history 
in varTurb is closer to compTurb than solTurb . This indicates 
that even though solenoidal forcing modes dominate the turbulence, 
a disproportionate fraction of star formation occurs in small pockets 
of compressive forcing. 
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Figure F1. Log arithmic g as density (first ro w), temperature (second ro w), turbulent Mach number (third ro w), and metallicity (fourth ro w) in an xy slice 
through the most massive galaxy in highPhot (first column), medPhot (second column), lowPhot (third column), and Nophot (fourth column) at z = 9. 
We o v erlay arro ws sho wing the direction and magnitude of the velocity field in each panel, with the bulk motion subtracted out. 
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Figure F2. Logarithmic square of the velocity divergence (left column), 
square modulus of the velocity curl (middle column), and turbulence forcing 
parameter (right column) in an xy slice through the most massive galaxy in 
the fiducial simulation at z = 9 at a scale of 100 kpc (top row) and 10 kpc 
(bottom row). We o v erlay arrows showing the direction and magnitude of the 
velocity field in the bottom row. The square of the v elocity div ergence and 
velocity curl modulus are proxies for power in compressive and solenoidal 
forcing modes, respectively. 
APPENDIX  G :  C O L U M N  DENSITY  PDF  
The volume density PDF (equation 10 ) described by the MFF 
model is related to the column density PDF, which is a direct 
observable. Numerical simulations show that the column density 
PDF of supersonic turbulent gas is well-described by a lognormal 
distribution, similar to the volume density PDF (Federrath et al. 
2010 ) 
p A ( η) = d A 

d η = 1 √ 
2 πσ 2 

η

exp [ 
− ( η − η) 2 

2 σ 2 
η

] 
, (G1) 

where η = ln ( // / ) is the logarithmic surface density, ση is the stan- 
dard deviation of the logarithmic surface density, and η = −1 / 2 σ 2 

η

is its mean in analogy to s, σs , and s for the volume density PDF 
(equation 10 ). We use η to denote the logarithmic surface density 
for notational consistency with other work and rely on context to 
disambiguate the logarithmic surface density and outflow efficiency. 
Equation ( G1 ) is supported observationally by measurements of col- 
umn densities in the Perseus molecular cloud (Goodman, Pineda & 
Schnee 2009 ). In general, the dispersion in the logarithmic column 
density distribution ση is less than the dispersion in the logarithmic 
volume density distribution σs , because fluctuations are averaged out 
by integration along the line of sight. 

The ratio ση/σs decreases as the spectral slope of the density 
field decreases because the density field has less spatial correlation, 
so integration averages over more fluctuations. Previous work has 
shown that the spectral slope can be approximated by a power law in 
the Mach number (e.g. Seon 2009 ). 

Using that relationship, Seon ( 2012 ) show that the relationship 
between the two dispersions is well-approximated by a constant of 
proportionality σ 2 

η = Aσ 2 
s , where A depends only on the forcing 

parameter. For b turb = 1 / 3 , 0 . 5 , 1, they find best-fitting values A = 
0 . 2 , 0 . 24 , 0 . 38, respectively. We fit these data with a linear function 
using a least-squares regression, which combined with equation ( 12 ), 
yields 
σ 2 

η ≈ (0 . 107 b turb + 0 . 272) ln (1 + b 2 turb M 2 turb ) . (G2) 

Figure G1. Ef fecti ve optical depth (equation G4 ) in a turbulent medium 
relative to mean optical depth as a function of mean optical depth. Curves for 
different turbulent Mach numbers are shown in different colours indicated by 
the colourbar. Curves for compressive (resp. solenoidal) forcing are shown 
in solid (resp. dashed) lines. At high Mach numbers and high mean optical 
depths, the ef fecti ve optical depth is significantly reduced relati ve to the mean. 

Using the column density PDF, we can compute the ef fecti ve 
optical depth through a cell. We assume a constant opacity κ such 
that τ = κ/. Then the optical depth PDF is p A ( τ ) = τ−1 p A ( η). 
Consider a radiation field with intensity I 0 incident on the face of a 
cell with area *x 2 . Then the incident flux F 0 = I 0 *x 2 . The flux out 
the other side of the cell has contributions from each column 
F = ∫ d AI 0 e −τ = F 0 ∫ ∞ 

0 d τp A ( τ ) e −τ

= F 0 ∫ ∞ 
−∞ d ηp A ( η) exp ( −τe η) , (G3) 

where τ = κ/ is the mean optical depth. Let F = F 0 e −τeff define the 
ef fecti ve optical depth. Then we have 
τeff = − ln ∫ ∞ 

−∞ d ηp A ( η) exp ( −τe η) . (G4) 
In the limit M turb 2 1, the logarithmic surface density PDF becomes 
a delta function and the ef fecti ve optical depth approaches the mean 
optical depth as expected. 

The integral can be e v aluated numerically using Gaussian quadra- 
ture as implemented in scipy.integrate.quad . For multiple 
simultaneous e v aluations, we use the v ectorized v ersion implemented 
in scipy.integrate.quad vec . In Fig. G1 , we show the 
ef fecti ve optical depth relative to the mean optical depth as a function 
of mean optical depth for various turbulent Mach numbers and 
turbulence forcing parameters. At high Mach numbers and high mean 
optical depths, the ef fecti ve optical depth is significantly reduced 
relative to the mean. 
APPENDI X  H :  B R E A K D OW N  O F  STEADY  
STATE  
If the depletion time is long compared to the accretion time-scale, 
then the SFR responds slowly to changes in the gas mass. In this 
case, the SFR passively reflects the current distribution of gas and is 
given by equation ( 49 ). Dividing equation ( 49 ) by the gas accretion 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/540/4/3350/8157902 by M
athem

atics Library, user on 22 July 2025



Efficient star formation at Cosmic Dawn 3383 

MNRAS 540, 3350–3383 (2025) 

rate to get the global SFE, we find 
εglob = M g 

f b Ṁ acc f sf εff 
τff . (H1) 

Consider the case where the local SFE is small or pre ventati ve 
feedback is weak such that the first term dominates in equation ( 48 ). 
Then 
f sf ≈ 1 

f dyn , τdep ≈ f dyn τff 
εff (H2) 

and 
εglob ≈ M gas 

f b Ṁ acc τff εff 
f dyn . (H3) 

In this case, the global SFE is proportional to the local SFE, so 
the galaxy is not self-re gulated. Semeno v et al. ( 2018 ) call this the 
dynamics-re gulation re gime. 

Now consider the case where the local SFE is large or pre ventati ve 
feedback is weak such that the second term dominates in equation 
( 48 ). Then 
f sf ≈ τff 

τcool 1 
(1 + µ) εff , τdep ≈ (1 + µ) τcool (H4) 

and 
εglob ≈ M gas 

f b Ṁ acc τcool 1 
1 + µ. (H5) 

Similar to when steady state applies, the global SFE is independent 
of the local SFE, so the galaxy is self-regulated. Ho we ver, rather 
than ejective feedback, the global SFE is regulated by pre ventati ve 
feedback. (Semenov et al. 2018 ) call this the feedback-regulation 
regime. 

When steady state applies, the galaxy is al w ays self-regulated. 
When steady state does not apply, the galaxy is only self-regulated 
if the local SFE satisfies 
εff 3 τff 

τcool f dyn 
1 + µ. (H6) 

Essentially, the local SFE must be large enough for pre ventati ve 
feedback to remo v e gas from the star-forming state faster than it is 
supplied by cooling and collapse. 
This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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