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detect and/or characterize experimentally because they have
too low of a probability (i.e., high energy).12−14

smFRET experiments are a powerful tool for studying the
distribution of structures that a protein adopts, including high
energy states that are invisible to many other techniques.15−17

In these experiments, a donor and an acceptor fluorophore are
attached to two dixerent residues in a protein. The donor
fluorophore on a single protein is then excited and one
measures how many acceptor and donor photons are
emitted.18,19 The probability of transferring energy from the
donor to the acceptor fluorophore, called the FRET e)ciency,
reports on a variety of valuable structural properties, including
the distance between the fluorophores, their relative
orientations, and the time scale on which they are rotating.
Making many measurements results in a probability distribu-
tion of FRET e)ciencies. These FRET e)ciency distributions
report on the distribution of structures the protein adopts and
have proved to be a powerful means of revealing the
conformational heterogeneity of proteins.20−23

Unfortunately, one cannot extract atomically detailed
structural models from smFRET data in a manner analogous
to fitting structures to electron density from crystallography or
cryoEM. smFRET data is inherently sparse, with each
experiment reporting on the structure and dynamics of a
single pair of dyes. One can perform experiments for multiple
dye positions to learn about more of the protein structure.
However, each experiment is independent, making it hard to
discern any correlations between the behavior of dixerent parts
of the protein. While multicolor FRET experiments are being
developed,24 they are quite challenging to perform and still
cannot measure many distances in parallel. Another challenge
is that there is not a one-to-one mapping between the FRET
e)ciency and the distance between a pair of residues.
Combining atomically detailed computer simulations with

smFRET experiments could yield experimentally grounded
models of protein conformational ensembles with the desired
resolution.25,26 Ideally, there would be a method to predict
energy transfer distributions from simulations to show that
these predictions were in perfect agreement with smFRET
experiments. Then one could analyze the simulations, making
use of the atomistic structural and dynamical information they
provide to generate new hypotheses, and test those hypotheses
experimentally.
While there are cases where smFRET experiments and

simulations are in good agreement, the agreement between the
two approaches is often limited.25 A variety of approaches have
been employed to close this gap. For example, scaling factors
have been used to account for the added distance between two
alpha carbons modeled in simulation and the distance between
two fluorophores as measured in FRET.27,28 Others have
employed reweighting schemes to account for force field biases
and shift the relative probabilities of structures from their
simulations into closer agreement with experiments.29−31

There have also been exorts to develop improved methods
for predicting the probability of energy transfer from
simulations (e.g., by modeling in the dyes) and to improve
force fields.26,28,32−42 However, there is still room for
improvement.
Here, we explore the importance of accounting for kinetic

exects in smFRET experiments when connecting with
simulations. Each FRET e)ciency measured in an smFRET
experiment is the ratio of acceptor photons to all photons
emitted during some time interval. This time interval typically

ranges from one to 10 ms depending on the experimental setup
(e.g., TIRF vs dixusion confocal, laser power, etc.).22,23 It has
long been recognized in the smFRET community that this
means each measured FRET e)ciency is, therefore, averaging
across whatever conformational dynamics occur during the one
to 10 ms time interval. As in nuclear magnetic resonance
(NMR) experiments, conformations that are exchanging more
quickly than this measurement time will be averaged together,
while conformations that are exchanging more slowly will not.
Significant exort has gone into dealing with this time-averaging
when analyzing experiments.43−53 For example, it is common
to perform global fits to many measurements with dixerent dye
positions and solvent conditions,54−56 fit hidden Markov
models to photon traces,21,46,51 or dissect the correlation
between FRET e)ciency and other fluorescence observables
that report on shorter time scales.44,45,55 New experimental
approaches are also being developed to shorten the time scale
over which FRET e)ciencies are measured.57−61 Attempts
have also been made to account for time when connecting
simulations with smFRET experiments.41,62−65 However, these
approaches are limited by the fact that it is rare to capture all
relevant conformational states of a protein in a single trajectory
or even a small collection of trajectories. Indeed, given the
computational expense of simulations, it is often helpful to use
enhanced or adaptive sampling approaches to capture large
protein motions. A unified computational approach to
analyzing swarms of simulation trajectories while also
accounting for time-averaging could dramatically improve
agreement between experiments and simulations enabling
these two approaches to be used even more exectively to
advance our understanding of the ensemble-function relation-
ship.
Here, we present an approach for accounting for time-

averaging when predicting FRET e)ciencies from simulations
and assess its performance on three well-studied systems that
exemplify dixerent extents of dynamics. An important
methodological contribution is the use of adaptive sampling
to accelerate exploration of conformational space and the use
of Markov state models (MSMs) to describe conformational
dynamics. In particular, using MSMs to generate synthetic
trajectories captures even more variations on dynamics than
the original simulations since these synthetic trajectories can
include sequences of transitions that were never observed in a
single molecular dynamics simulation. To demonstrate our
approach, we start with Apolipoprotein E4 (ApoE4), as it
contains both ordered and disordered regions and addresses
the applicability of our approach to each.54,66 We also apply
our approach to T4 Lysozyme, a well-ordered system that has
recently been extensively characterized using 33 distinct
smFRET labeling positions.55 Finally, we apply our approach
to amyloid-β40 (Aβ40), a 40 amino acid highly disordered
protein.28 One recent study produced simulations of Aβ40
with a variety of force fields, giving us the chance to test how
well dixerent force fields perform when combined with our
approach for accounting for time-averaging when predicting
the experimentally observed energy transfer distribution.67

v RESULTS
Accounting for Time-Averaging Ddramatically Im-

proves Agreement between Simulations and Experi-
ments for a Partially Disordered Protein. We developed
an approach for predicting FRET e)ciencies from simulations
in a manner that accounts for time-averaging by drawing on
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MSMs68−71 built from molecular dynamics simulations. An
MSM is a network model that describes a molecule’s
conformational space in terms of the structural states it adopts
and the probabilities of hopping between every pair of states in
a fixed time interval. These models integrate information from
many independent simulations to capture length and time
scales that are far beyond the reach of any individual
simulation. Importantly, we can use an MSM to generate a
synthetic trajectory using a kinetic Monte Carlo scheme in
which one chooses a random starting state and then iteratively
adds new random states based on the transition probabilities
from the current state to all other states. To mimic a smFRET
experiment, we use one MSM to describe the protein’s
conformational dynamics and separate MSMs for each of the
dyes. First, we select a random experimental photon time trace
and use our protein MSM to generate a synthetic trajectory of
the same length. Then we identify conformations in our
synthetic trajectory that correspond to the times photons were
detected in the experiment. We assume these are the
conformations that emit photons and then choose whether
to label each photon as coming from the donor or acceptor dye
as follows. First, we generate a set of plausible dye
conformations by mapping representative structures from
each state in our dye MSM onto the protein structure and
removing any that form steric clashes with the protein and

recreating a MSM based on the remaining states. Next, we use
our dye MSMs to simulate the dynamics of the dye (on a fixed
protein structure) leading up to emission of a photon. At each
step of these dye simulations, we use a Monte Carlo move to
decide if the donor emits a photon, transfers energy leading to
emission of an acceptor photon, or stays excited similar to
previous exorts.40,41 If the dye remains excited, both dyes are
allowed to hop to another state in the MSM. We repeat this
process for the remainder of the synthetic trajectory to
simulate a photon burst, returning the average FRET
e)ciency, or the number of acceptor photons divided by the
total photons, for that burst. Finally, we repeat this process
over multiple trajectories until an adequate number of photon
bursts have been sampled. Since we model dyes as a
postprocessing step instead of including the dyes in the
simulations, it is easy to scale this approach to predict the
observed FRET for many dye positions. Furthermore,
simulating the dye dynamics allows us to minimize the
number of adjustable parameters, as we do not need to select
constant values like a Förster radius that are required by other
approaches.
To test our approach, we applied it to the partially

disordered protein ApoE4. Our recent work presented
smFRET measurements for five dixerent pairs of dye positions
on this protein. Some of these dye positions report on

Figure 1. Accounting for time averaging significantly alters the apparent structural distribution from our model and increases agreement with
experiments. (A) Interdye distances for apolipoprotein E labeled with Alexafluor 488 and Alexafluor 594 at positions 5 and 86 or (D) 223 and 291.
In red is the result from taking a purely thermodynamic perspective and accounting for the distance added or subtracted by dye positioning (B,E)
Exemplar structures of ApoE at two distinct dye-distance positions. Arrows indicate the portion of the distance distribution the structure occupies.
(C) FRET e)ciencies obtained for positions 5 and 86 or (F) 223 and 291. In black is the experimental distribution, in red is the thermodynamic
distribution of ApoE, and in purple is the time-averaged distribution resulting from the red trace.
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dynamics within the largely folded N-terminal domain while
others report on the partially disordered and highly flexible C-
terminal domain.54 Therefore, comparisons between simu-
lations of this protein and experiments speak to the utility of
our approach for both well-folded and disordered structures.
We previously showed that ApoE4 predominately adopts three
conformational states: a closed state, an open state, and an
extended state. Identifying these three states experimentally
required an enormous number of measurements, including
multiple dye positions each at varying levels of denaturant.
Even with this wealth of data, building atomically detailed
structural models of the dixerent states required extensive
molecular dynamics simulations, totaling over 3 ms of
aggregate simulation, which we showed were in reasonable
agreement with experiments using a simplified version of the
approach presented here. That approach did not model dye
dynamics and, therefore, required us to choose constant values
for parameters like the fluorescence anisotropy used in the
Förster radius.
Assessing dixerent ways of predicting FRET e)ciencies

from simulations and examining the actual distance distribu-
tions in those simulations highlights the importance of
accounting for time-averaging (Figure 1). For example, Figure
1A shows the modeled interdye distance distribution between
residues 5 and 86 in the folded, N-terminal domain. This
distribution has two peaks, which roughly correspond to the
closed and open states of ApoE4 (Figure 1B). If one assumes
that smFRET measurements are instantaneous (i.e., there is no
time-averaging and the observed signal is entirely determined
by the thermodynamics of the ensemble), then the distribution
of FRET e)ciencies that one predicts retains these two peaks.
We call this the thermodynamic distribution for brevity.
However, accounting for time-averaging causes these two
peaks to collapse into a single peak because the dixerent
populations are in fast exchange (Figure 1C). Importantly, the
FRET e)ciency we predict by accounting for time-averaging is
in good agreement with the experimental data. Without
accounting for time-averaging (i.e., using a purely thermody-
namic approach), we would have come to the erroneous
conclusion that our simulations were in poor agreement with
experiments. By accounting for time-averaging, we instead find
good agreement with experiments and can use the simulation

data to help identify the dixerent populations that give rise to
the experimentally observed smFRET data.
Repeating the analysis above for the other dye positions

supports the importance of accounting for time-averaging. For
example, the modeled interdye distance distribution between
residues 223 and 291 in the disordered C-terminal domain is
broad and symmetrical (Figure 1D). The distribution of FRET
e)ciencies one would predict from a purely thermodynamic
perspective (i.e., without accounting for time-averaging) is
skewed to large FRET e)ciencies, in poor agreement with the
experimentally observed distribution of FRET e)ciencies.
Accounting for time-averaging improves the agreement
between simulations and experiments (Figure 1F). Impor-
tantly, the MSM accounts for motions occurring over multiple
time scales enabling us to automatically average together states
which are interconverting rapidly in a single energy basin while
simultaneously capturing the dixerences between states that
are interconverting slowly and thus broadening the histogram.
Similar results are found for other dye positions (Figure S2).
Treating the dyes as a point cloud rather than modeling their
dynamics also gives similar results (Figure S3), though this
approach requires the choice of a constant Förster radius that
can be a source of error if a poor choice is made or if the dyes
are not isotropically rotating.

Time-Averaging Improves Experiment-Simulation
Agreement for the Entire Spectrum from Ordered to
Disordered Proteins. Given that ApoE has a mix of ordered
and disordered regions, we reasoned that our time-averaging
approach should be equally applicable to fully ordered and
disordered systems. To test this hypothesis further, we used
our approach on the highly ordered protein, T4 lysozyme, and
the intrinsically disordered protein (IDP), Aβ40. Both T4
lysozyme and Aβ40 benefit from a plethora of prior structural
studies, including experimental smFRET characterization.28,55
For Aβ40, we make use of an existing 30 μs long simulation in
the amber99sb force field, which was found to match NMR
order parameters reasonably well.67 For lysozyme, we
performed 5 independent 5 μs long all-atom molecular
dynamics simulations in explicit tip3p solvent and the
amber03 force field as described in the methods section. For
both Aβ40 and lysozyme, we clustered our data sets, made
MSMs, modeled on the appropriate dye pairs to match the

Figure 2. smFRET time averaging impacts proteins across the ordered spectrum. (A) FRET e)ciencies for T4 Lysozyme labeled at 44 (para-
acetylphenylalanine) and 150 (cysteine) with Alexa 488 and Alexa 647 or (B) Aβ40 labeled at positions 1 (para-acetylphenylalanine) and 40
(cysteine) with Alexa 488 and Alexa 647. In black is the experimental distribution, red the thermodynamic FRET e)ciency, and purple accounting
for protein dynamics via time-averaging. Protein structures are the 15 most probable states in the MSM with labeling positions indicated in orange
spheres. Experimental donor only counts (E < 0.25) have been removed for ease of comparison.
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experimental setup, and investigated the predicted FRET
e)ciencies using our time-averaging approach.
As expected, we found that accounting for time-averaging is

important for both systems (Figure 2). We first calculate the
lysozyme FRET e)ciency for one of the experimental FRET
probe distances, residues 44−150, using Alexa 488 maleimide
and Alexa 647 hydroxylamine dyes. We find strong agreement
between our time-averaging approach and the experimental
results for lysozyme (Figure 2A). We note that both time-
averaging and thermodynamic FRET are in reasonable
agreement with experimental data for this probe position,
though both miss a population at high FRET e)ciency. We
next calculate the FRET e)ciency for Aβ40 using Alexa 488
hydroxylamine and Alexa 647 maleimide attached to positions
1 and 40. We find that the results significantly improve upon
the distribution obtained without time-averaging. However, the
distribution is shifted overall toward higher FRET e)ciencies,
suggesting either insu)cient sampling or force fields issues
(Figure 2B). Overall, these findings demonstrate that
accounting for time-averaging is helpful when there are
conformations in fast exchange and is equivalent to other
approaches when such exchange is absent.

Directing Sampling Based on Discrepancies between
Predicted and Observed FRET Reveals a Novel
Conformation of Lysozyme. Given the strong agreement
between our predicted energy transfer distributions and
experiments for folded and partially disordered systems, we
reasoned that remaining discrepancies may point to under
sampled regions of conformational space in simulations.
Indeed, the prior study on lysozyme concluded that the
minor population could not be explained by any structure of
lysozyme existing in the protein data bank.55 If this is true, then
we should be able to improve the agreement between
simulations and experiments by driving simulations to sample
structures with FRET values that are not observed often
enough compared to experiments.
To explore this possibility, we sought to provide a structural

model for a minor population that was previously observed in
an extensive smFRET study of lysozyme. That study presented
smFRET measurements for 33 pairs of dye positions. For 17 of
these dye pairs, the authors observe a minor state in the FRET
e)ciency that they could not explain based on any of the
numerous published crystal structures of this protein. When
probing residues 44−150, this minor population has high
FRET e)ciency, a metric which would require the dyes to

Figure 3. Discrepancies between smFRET and time averaging results enable discovery of a novel lysozyme fold. (A) FRET e)ciencies and (C)
observed interdye distances for T4 Lysozyme labeled at position 44 and 150 with Alexa 488 and Alexa 647. Experimental traces are in black,
calculations resulting from an MSM that only included crystal-like states in purple, and calculations resulting from an MSM including the alternate
state in orange. Experimental donor only counts (E < 0.25) have been removed for ease of comparison. (B) Example conformations of the crystal-
like state of lysozyme (blue), or the alternate state (red). Residues 44 and 150 labeled for clarity. (D) Qualitative comparison of smFRET
distributions from experiment and simulation results including the alternate pose of lysozyme. (E) Wasserstein distance between experimental and
limited sampling data set (purple) or extended sampling data set (orange) for all labeled pairs.
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come closer together than is conceivable based on a clamshell
motion of the two lobes of lysozyme. Furthermore, we would
not expect our simulations (aggregate simulation time of 25
μs) to reach this minor state since the experiments suggest that
it is accessed with a rate of ∼4 ms−1. Indeed, we find that our
simulations stay near the starting structure and that our
predicted energy transfer distributions agreed well with the
major population seen experimentally but missed the minor
population seen for constructs like lysozyme44−150 (Figure 3A).
To provide a structural explanation for the minor population

seen experimentally, we employed a combination of metady-
namics and MSMs. First, we used metadynamics simulations to
find structures that are consistent with the high FRET of the
minor population. In metadynamics, one adds an external
biasing force to drive dynamics along a preselected collective
variable. In this case, we pushed the system along the distance
between residues 44 and 150 to see if we could find structures
where they come close together, as this would result in a high
FRET e)ciency. These simulations revealed that the β domain
can undergo minor unfolding which enables a swiveling
motion to bring residue 44 much closer to residue 150 of the α
domain (Figure 3B). To test if this alternative structural state is
metastable, we selected four conformations where residues 44
and 150 are near one another and ran >500 ns conventional
molecular dynamics simulations of each of them. All the
simulations stayed near the starting point, confirming that the
alternative structure state we discovered in metadynamics is a
metastable free energy state. To determine the relative
probability of this alternative state and those observed in our
original simulations, we sought to build an MSM that captured
transitions between the crystal-like states and the new
alternative state. We ran goal-oriented adaptive sampling

simulations using the fluctuation amplification of specific traits
(FAST) algorithm72 to promote transitions from the crystallo-
graphic state to the alternative state and vice versa. FAST
works by iteratively running a batch of simulations, building an
MSM, and choosing states from the MSM as starting points for
new simulations in a manner that balances between exploring
further around states with a specified geometric property
(called exploitation) and broad exploration of conformational
space. In this case, we started one batch of FAST simulations
from the crystallographic structure and set the exploitation
term to favor states with a low RMSD to the novel fold we
discovered and a second with the targets reversed. Both sets of
simulations captured transitions between the two folds,
providing a basis for building an MSM that captures the
relative probabilities of both folds of lysozyme.
After building a new MSM that incorporates this data, we

find that the computationally calculated energy transfer
distribution now includes a minor state in agreement with
experiments with multiple dye positions (Figure 3). Specifi-
cally, including the novel fold of lysozyme greatly improves
agreement between our time-averaged results and the
experimental traces for labeling pair 44−150 (Figure 3A,B).
As a further test of our model, we then calculated energy
transfer distributions for the remaining 32 FRET probe
positions. Agreement between our model and these experi-
ments would be strong support for our model, given that none
of these experiments influenced our simulation strategy. In
support of the alternative fold we predicted, we see the
addition of minor peaks to 11 of the 17 FRET probe positions
that were sensitive to this minor population, and only one
additional peak in probe positions not reporting on the minor
population (Figures 3D and S4). Inclusion of the alternate

Figure 4. Force field choice has a significant impact on the level of agreement between simulations and experiments on IDPs even when accounting
for time averaging. (A) FRET e)ciencies for Aβ40 labeled at positions 1 and 40 with Alexa 488 and Alexa 647 in dixerent force fields. In each
trace, the black line represents the experimental smFRET result, individual force field and water combinations indicated in the legend below the
column. (B) FRET e)ciency distributions for T4-lysozyme residues 44 and 150 in amber03 with TIP3P water (purple) or charmm36m with
TIP3P water (orange) or the experimental result (black). Experimental donor only counts (E < 0.25) have been removed for ease of comparison.
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state greatly reduces the Wasserstein distance between the
experimental and predicted histograms for all states except
2:8−69 and 44−132.
Results for IDPs are More Sensitive to Force Field

Choice than Globular Proteins. We hypothesized that
accounting for time-averaging in our Aβ40 prediction was
insu)cient to give strong agreement with experiment because
the force field preferred overly compact states of Aβ40.
Historically, force fields which govern the underlying physics of
the simulation, have yielded large dixerences between
simulations and the corresponding experimental data for
IDPs.67,73,74 While amber99sb notably performs better with
IDPs than others, force fields that were parametrized for folded
proteins tend to lead to over compaction of IDPs, largely due
to an imbalance between protein−protein and protein−water
interactions. This systematic compaction of Aβ40 would skew
the observed FRET values toward higher e)ciencies, exactly as
we have observed (Figure 2B).
To test whether discrepancies in experimental agreement are

due to force field errors, we predicted Aβ40 smFRET using
simulations conducted with a suite of nine dixerent force
fields/water models. Seven of these data sets were taken from a
previous study that examined how well 30 μs simulations with
each force field recapitulated NMR measurements. The seven
force field/water combinations are amber99SB*-ILDN with
TIP3P, C22* with TIP3P-CHARMM, C36m with TIP3P-
CHARMM, a03ws with TIP4P, a99SB with TIP4P-Ew with
Head-Gordon vdW and dihedral modifications (a99sb-ucb),
a99SB-ILDN with TIP4P-D, and a99SB-disp with a modified
TIP4P water. In addition to these data sets, we also ran our
own simulations using amber0375 and a99sb-ws, both with
TIP3P water. For each of our simulations, we ran 250 ns long
simulations in triplicate starting from the 10 most distinct
Aβ40 structures captured in the previous simulations.
We find that force field choice substantially axects the

quality of smFRET prediction for IDPs and that there is still
room for improvement. For each of the above force field−
water combinations, we generated MSMs and calculated the
expected smFRET. All force field−water combinations result in
Aβ40 distributions that are more collapsed than the
experimental distribution (Figure 4A). We note that in our
data sets, we explicitly started simulations from expanded states
of Aβ40. However, these states exhibit a rapid compaction
event which is not reversed during the simulation, consistent
with previous findings that most force fields are biased toward
more compact IDP structures than are experimentally
observed.42,73,76 Of the force field−water combinations,
a99SB-ILDN-TIP4PD and a99sb-ucb showed the strongest
agreement with experiment.
While there is large variation in force field performance for

IDPs, we find less variation between force fields for lysozyme.
We performed another 5 independent, 5 μs long replicate
simulations of lysozyme in tip3p water using charmm36m as a
force field. As with our amber03 simulations, we fail to uncover
the third, minor population, of lysozyme (Figure S5). Using
the previously discovered minor state of lysozyme as both a
starting and target structure, we again performed goal-oriented
sampling to promote transitions between the crystal-like poses
of lysozyme and the minor state in the charmm36m force field.
Both sets of simulations again capture transitions between the
two states, enabling us to construct an MSM. Though there are
slight dixerences in energy transfer e)ciency between our data
sets constructed using amber03 and charmm36m, both

produce good agreement between the experimental energy
transfer distributions and those predicted from our MSMs
(Figure 4B).

v DISCUSSION
Here, we have explored how conformational averaging during
smFRET measurements impacts the observed distribution of
FRET e)ciencies. Our results show that accounting for time-
averaging across protein and dye dynamics improves the
agreement between simulations and experiments for three
proteins across the ordered spectrum (Figures 1 and 2). These
results agree with an existing experimental understanding that
single molecule energy transfer distributions report an average
of all protein motion during the measurement window. Our
work adds to these prior experimental exorts by both
identifying which states are being averaged together, while
also providing an atomistic view of the protein conformations.
While prior computational exorts have often focused on
accounting for protein dynamics, improving protein and dye
force field accuracy, or accounting for dye dynamics in FRET
predictions, often these exorts either require additional
simulations for every labeled dye position, or are unable to
account for the exect of dye dynamics without a priori
knowledge of the dynamical nature of the dyes. Our approach
is unique in that it leverages MSMs to account for both protein
and dye dynamics without the need for additional, computa-
tionally expensive, simulations. This removes additional
modeling choices, such as choosing a Förster radius or time
scale to average dye motions over, from the calculation.
Historically it has been di)cult to determine why

simulations and experiments have failed to agree. While
simulations can have systematic errors due to parametrization
or incomplete conformational sampling, experimental limi-
tations and artifacts may also lead to disagreements. Here, we
highlight examples where predicted and experimentally
obtained energy transfer e)ciency measurements appeared
to disagree until we properly accounted for details of the
experiment like time-averaging. Accounting for these exper-
imental details in our modeling approach did not provide a
structural rationale for a previously observed minor population
of T4 lysozyme. However, we were able to use this persistent
discrepancy to guide additional simulations to find structures
that are consistent with the energy transfer in the minor
populations. This approach allowed us to propose a structural
model for the previously unexplained minor population that is
consistent with most of the experimental measurements
(Figure 3). We also find that simulations of Aβ40 with force
field and water combinations parametrized for folded proteins
result in an overly compact ensemble compared to the
experimentally determined ensemble (Figure 4). As expected,
based on previous publications, force fields designed to
improve performance on disordered proteins performed better
in our tests. While there were still dixerences between
amber03 and charmm36m force fields for our lysozyme
simulations, the choice of force field was less impactful for
lysozyme than Aβ40.
We expect our approach will enable combining simulations

and experiments to understand the link between sequence,
structure, and function in many settings. While smFRET
experiments are extremely valuable, one cannot readily derive
atomistic models of conformational distributions from this data
alone. The approach we have outlined here enables robust
calculation of energy transfer distributions from protein
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ensembles, providing a direct link between energy transfer
distributions and atomic models. While our approach led to
strong agreement between simulations and experiments, there
are some exceptions where our data sets diverge. One
explanation could be that we do not consider alternative
mechanisms of donor energy emission−such as quenching via
nearby residues such as tryptophan and tyrosine. Another
explanation could be that the mutagenesis required for dye
attachment during experiments, as well as the attachment of
the dye itself, disrupt the conformational landscape of the
protein in question. Indeed, in many of our apo-simulation
models we observe states that are incompatible with dye
labeling, such as when amino acid to-be-labeled becomes
buried or interacts closely with other regions of the protein.
Nonetheless, our method is implemented postsimulation,
modeling additional dye positions is rapid and requires
minimal additional computational cost. Accordingly, once
one has a satisfactory simulation data set, it is facile to use
these tools to design novel probe pairs which report on
identified motions of interest.

v MATERIALS AND METHODS
Molecular Dynamics Simulations. All simulations were

performed in explicit solvent at 300 K. Simulations of
Apolipoprotein E4 were generated using OpenMM8.077 and
amber0375 with TIP3P water78 and a time step of 4 fs. The
data set was generated using a diverse composition of starting
structures of ApoE initially based on PDB ID 2L7B{Citation}
and totals 3.61 ms. Clustering was performed based on the
pairwise distances between 15 selected residue pairs and the
MSM was created using row normalization and a 2 ns lagtime.
Simulations of Aβ40 in the following force fields were

obtained from prior work:67 a99SB*-ILDN with TIP3P, C22*
with TIP3P-CHARMM, C36m with TIP3P-CHARMM, a03ws
with TIP4P/2005 interactions, a99SB with TIP4P-Ew with the
Head-Gordon vdW and dihedral modifications (a99SB-UCB),
a99SB-ILDN with TIP4P-D, and a99SB-disp with a modified
TIP4P-D water. For each combination, a total of ∼30 μs data
were collected using Anton hardware. Simulations of Aβ40 in
amber03 + TIP3P and amber99sb-ws + TIP3P were generated
in this work using GROMACS and 10 diverse starting
structures from the above Aβ40 data set and running each
simulation for 250 ns in triplicate using unique initial velocities
for each (aggregate 7.5 μs). Clustering for both simulation data
sets was performed using the distance between every fifth
residue as a feature, and the MSM was created using row
normalization and a 5 ns (Anton data sets) or a 0.2 ns lag time
(GROMACS).
Simulations of T4 lysozyme were performed in amber03

with TIP3P water. Initial unbiased simulations were started
from PDB structure 5LZM79 and 5 replicates were performed
for 5 μs each using dixering initial velocities. Metadynamics
simulations were performed using PLUMED and a biasing
potential of 0.3 between residues 44 and 150 for a total of 250
ns. Unbiased simulations were started from 4 alternate states
uncovered by metadynamics with 5 replicas using dixering
initial velocities, each for a total length of 1 μs. FAST adaptive
sampling was performed from both alternate and crystal-like
states to the opposing state to capture the transition pathways
in forward and reverse using RMSD as a progress metric.
MSMs were built based on cluster centers from initial unbiased
simulations, or the entire data set excluding the metadynamics
runs (total 94.8 μs). Clustering was performed using backbone

RMSD to a radius of 2.5 Å and the MSM was built using row
normalization and a lag time of 2 ns.
Simulations of dyes were performed in amber03ws using the

modified amber dye parameters28,39 with TIP3P water and a
time step of 2 fs. A single run was performed for each dye for
500 ns. Simulation frames were saved every 20 fs. A 5000 state
MSM with a lag time of 2 ps was built for each dye using
RMSD of heavy atoms as a clustering metric.

Simulation of smFRET. Dye color determination was
achieved by building a MSM for each dye of interest (see
simulations, above). Briefly, the dye MSM is modeled onto
each state in the protein MSM, removing any positions from
the dye MSM that clash with the protein and creating a new,
renormalized MSM with clashing states removed. Next, a
random dye position is chosen for both the donor and acceptor
dye. Probabilities of radiative decay, energy transfer, non-
radiative decay, or remaining excited are calculated and a
random outcome is chosen accordingly, similar to prior
work.40,41 If the dye remains excited, dye positions are allowed
to update along with transfer probabilities until the donor dye
is no longer excited. In the case of point clouds, a
conformational ensemble of dyes26 was modeled onto the
protein and all steric clashes were discarded. Photon colors
were determined by choosing a random distance between the
donor and acceptor dye emission centers and the Förster
relationship (eq 1).

E R R r/( )0
6

0
6 6= + (1)

To determine which protein states to average, we recolor an
experimental photon trace from Apolipoprotein E4.54 We
choose a random state from our protein MSM and build a
synthetic trajectory to match the length of the experimental
photon burst. We apply a time correction factor of 10,000 to
slow the simulation time scale to match the experimental time
scale. Each time an experimental photon is observed, we select
the corresponding state in our trajectory and evaluate the
photon identity as above. We determine the overall energy
transfer e)ciency as the ratio of acceptor photons to the total
observed photons and repeat this process for all bursts
(∼14,000), yielding the displayed distributions. The code for
these calculations is available on github (https://github.com/
bowman-lab/enspara).

Experimental smFRET Data. Data for Apolipoprotein E4
was obtained from Stuchell-Brereton et al.54 Data for T4
lysozyme was obtained from Sanabria et al.55 Data for Aβ40
was obtained from Meng et al.28

Analysis/Software. Simulations generated during this
manuscript were performed in GROMACS202080 or
OpenMM8.077 as noted. Adaptive sampling was performed
using FAST,72 and metadynamics81 simulations were per-
formed using PLUMED82 and GROMACS2020. Structure
imaging was performed in PyMOL. Trajectory analysis was
performed using MDtraj.83 Clustering and MSMs were created
using ENSPARA.84 All graphs were generated using
Matplotlib.85
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Additional methodological details on simulation setup,
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logical details on modeling of FRET processes computa-
tionally. Implied time scales for dye and protein MSMs.
FRET distributions for three additional dye pairs for
ApoE. Impact of modeling FRET dyes as point clouds
versus accounting for dye dynamics for protein ApoE.
FRET distributions for all 33 labeling positions of
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