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The nonabelian Hodge correspondence for
balanced Hermitian metrics of
Hodge-Riemann type

XUEMIAO CHEN AND RICHARD A. WENTWORTH

This paper extends the nonabelian Hodge correspondence for
Kahler manifolds to a larger class of hermitian metrics on com-
plex manifolds called balanced of Hodge-Riemann type. Important
examples include balanced metrics arising from multipolarizations
of Kéhler manifolds. The generalizations rely on a few key obser-
vations showing that the known results, especially the Donaldson-
Uhlenbeck-Yau theorem and Corlette’s theorem, remain valid in
this setting. Though not necessarily Kéhler, it is shown that the
Sampson-Siu Theorem proving that harmonic maps are plurihar-
monic holds for a slightly more restrictive class of metrics.

1. Introduction

Let X be a compact, complex manifold of dimension n. Recall that a hermi-
tian metric on X is called balanced if dw™ ' = 0, where w is the fundamental
(Kéhler) (1, 1)-form of the metric. The balanced metrics are a more restric-
tive class than the Gauduchon metrics, which satisfy 00w™ ' = 0. Never-
theless, there are many examples of balanced, non-Kéhler, metrics (cf. [22,
p. 292]).

In this paper we consider a further condition. We say that a balanced
metric is of Hodge-Riemann type, if it admits an expression:

wn—l

(1.1) m =wo N
where wy (resp. Q) is a real (1,1) (resp. (n — 2,n — 2)) form, and Q satis-
fies the Hodge-Riemann bilinear relations (see Definition 2.1 for the precise
definition).

The condition of being balanced of Hodge-Riemann type seems very
restrictive. However, many examples of non-Kéhler metrics satisfying this
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property come from multipolarizations. Namely, let wg, w1, ..., wp—2 be pos-
itive (1, 1)-forms on X, and suppose

wnfl

(1.2) o

—wo A AwWp_a

such that
o dw" ! =0;
° d(wl /\---/\wn,Q) =0

(e.g. both conditions are automatic if the w; are Kéhler). Then by a result
of Timorin [27], w is of Hodge-Riemann type. Even when the w; are Kéhler
metrics, w is not so in general.

In this note we show that certain properties of Hermitian-Einstein met-
rics and equivariant harmonic maps familiar for Kahler manifolds continue
to hold for balanced metrics of Hodge-Riemann type. Namely, we prove

1) a generalized Bogomolov-Gieseker inequality for w-polystable holomor-
phic (and Higgs) bundles (Corollary 3.4);

2) a version of the Sampson-Siu pluriharmonicity theorem for harmonic
maps to targets with nonpositive complexified sectional curvature
(Theorem 4.1 and Corollary 4.3);

3) the nonabelian Hodge correspondence relating w-stable Higgs bundles
with vanishing Chern classes to irreducible representations of the fun-
damental group (Theorem 5.1).

Let us remark that for the class of Gauduchon metrics, items (2) and (3) do
not hold in general (see [2])}, and the statement of item (1) cannot even be
formulated.

The simple idea behind these generalizations is well explained in [25,
Lemma 1.1]. Let us focus on item (3) above. Suppose D be a complex con-
nection on a vector bundle £ — X. A hermitian metric h on E gives a
decomposition D = D” 4+ D’ (see (5.2)). Conversely, a Higgs bundle defines
an operator D", and a metric allows one to complete it to a complex con-
nection D by setting D’ = (D")*. Let Fp = D? be the curvature of D, and

1As pointed out by one of the referees, a version of the nonabelian Hodge cor-
respondence in the non-Kéhler surface case was, however, proved by Liibke [19],
where the Chern class assumption is slightly different from the one below. The re-
sult in this paper is vacuous in the surface case, since the balanced assumption is
then equivalent to Kéahler.
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Gp = (D")? the pseudo-curvature. Flatness of D is the equation Fp =0,
whereas D arises from a Higgs bundle iff Gp = 0.

Now suppose w is a balanced metric on X, so that the degree and slope
stability of holomorphic bundles can be defined. Given an w-slope stable
Higgs bundle with ch; (E) = 0, one can find a metric h so that the associated
connection D satisfies

(1.3) FpANwoNANQy=0

Similarly, given a flat connection D one can find a harmonic metric, meaning
that

(1.4) Gp ANwogANQy =0

Thus, under the assumptions, the forms Fp and Gp are “primitive”, in the
sense of (2.1) below.

The nonabelian Hodge correspondence follows by showing that if in ad-
dition chy(E) = 0, then (1.3) implies Fp = 0, and on the other hand, (1.4)
always implies Gp = 0 (as pointed out in [25, p. 17], the “pseudo-Chern
class” defined by Gp automatically vanishes by the flatness of D). Now, if
we assume w is of Hodge-Riemann type, then these conclusions hold by in-
tegrating tr(Fp A Fp) or tr(Gp A Gp) against €y, and using the vanishing
of the Chern classes and the Hodge-Riemann bilinear relations. Thus, we
see that the Kéhler condition may be relaxed.

2. Hodge-Riemann forms

In this section, we recall the notion of a Hodge-Riemann form on a polarized
complex vector space, i.e. a complex space V' with a constant Kéhler form
wo- Denote AP? to be the space of constant (p, ¢) forms over V. We fix Qg to
be any real (n —p — q¢,n — p — q) form. On APY, we can define a Hermitian

form as
(pt+a)(p+a—1)
2

Q(a, B) = (V=1)P7(-1) * (A B A Qo)

The space of primitive forms of degree (p, q) associated to (€, wp) is defined
as

(2.1) PPI={a e APT:aAwy AQy=0}.

Definition 2.1. We call Qy a Hodge-Riemann form for degree (p,q) with
respect to wy if
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1) there exists a Q-orthogonal decomposition
AP = PPA @y A AP
2) @ is positive definite on PP,

Remark 2.2. e Later in this paper, without mentioning it, we will ap-
ply the Hodge-Riemann property of Q to a (not necessarily square)
matrix of forms. More precisely, suppose («;;) is a matrix with entries
being primitive, i.e. (a;;) Awo A Qo = 0, then

(VP (o) A (o)) A ) = 3 Qo) > 0

where (a;;)* = (@j;) denotes the adjoint of (cy;). This applies, in par-
ticular, to forms with values in a hermitian bundle, where the trace is
replaced by the hermitian inner product.

e It follows from the classical Hodge-Riemann relation that Qo = wj ™4
is a Hodge-Riemann form (cf. [29, Thm. 6.32]).

In general, the Hodge-Riemann property of a form is difficult to verify.
However, we have the following result, which has been used to get the mixed
Hodge-Riemann relation (see [8]).

Proposition 2.3 ([27, Main Theorem]|, see also [13]). For any con-
stant positive (1,1) forms wy, - ,wg on (V,wp), w1 A -+ Awp_ is a Hodge-
Riemann form with respect to wy for any degrees (p,q) satisfying p+ q = k.

As a special case, this gives

Corollary 2.4. For any constant positive (1,1) forms wi,...,wp—2 on
(V,(.U())

1) wo A+ ANwp—2 is a strictly positive (n — 1,n — 1) form. In particular,
there exists a positive (1,1) form w so that

wn—l

— —wa A -
= 1) wo N Wp—2
(cf. [22, p. 279], and also [28]).

2) wi A Awp—z is a Hodge-Riemann form for degrees (p,q) satisfying
P+ q = 2 with respect to wy.
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This combined with [24, Cor. 8.5] implies the following

Proposition 2.5. For any constant Kdhler forms wy,ws on (V,wg), the
form

is a Hodge-Riemann form for degree (p,q) with p + q = 2 with respect to wy.

Remark 2.6. It is known that the Hodge-Riemann property is not invari-
ant under convex linear combinations. For example, fix any two Kéahler forms
wi and wo on C*, w? + aw3 is not a Hodge-Riemann form for degree (1,1)
for certain positive values of a (see [24, Rem. 9.3] and also [27, Rem. 3] for
other examples).

Timorin’s result motivates the following:

Definition 2.7. A hermitian metric w on a complex manifold X is said to
be balanced of Hodge-Riemann type if the following hold:

1) we have an expression

wn—l

WZWO/\QO

where wy is a positive real (1,1) form on X and Qg is areal (n —2,n —
2);

2) at every point € is a Hodge-Riemann form for (p,q), p + ¢ = 2;

3) Qo and wy A Qp are closed.

Note that (3) is equivalent to w being balanced and € being closed.

3. Bogomolov-Gieseker inequality

Below we show how the Donaldson-Uhlenbeck-Yau (resp. Hitchin-Simpson)
theorem relating stability of holomorphic (resp. Higgs) bundles to the exis-
tence of Hermitian Einstein type metrics results in a Chern class inequality.
The main result is Corollary 3.4. In this section, assume (X,w) is a compact
complex Hermitian manifold that satisfies items (1) and (3) of Definition 2.7,
as well as the Hodge-Riemann condition (2) for the case (p,q) = (1,1).
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Recall that associated to every coherent analytic sheaf &€ — X is a
holomorphic line bundle det £. The first Chern class of £ is by definition
c1(€) :==ci(det &) € HA(X,Z) N H(%’l(X). We define the w-degree of £ by:

degE::/ (&) N :/ c1(E) Nwo A Qo
X n : X

Because of the balanced condition, this is well-defined on the class of ¢1(E).
The slope of a (nonzero) torsion-free sheaf is

_ deg&
n&) = rank £

Then we say a holomorphic bundle &€ — X is w-stable if u(S) < u(€) for
every coherent subsheaf S C £ with 0 < rankS < rank &.

A Higgs bundle on X is a pair (€,0), where £ — X is a holomorphic
bundle, 6 is a holomorphic 1-form with values in End €, and 6 A 0 = 0 (see
[14] and [25]). We say that a Higgs bundle is w-stable if u(S) < p(€) for
every coherent subsheaf S C £ with 0 < rankS < rank& and 6(S) C S®
Qﬁ(, where Qﬁ( is the holomorphic cotangent sheaf of X. Thus, stable vector
bundles are a special case of stable Higgs bundles, where 8 = 0. Finally, we
say that (&,0) is w-polystable if (€, 0) splits as a direct sum of stable Higgs
subbundles, all with the same slope.

Given a hermitian metric h on &, let O + 0 denote the Chern connec-
tion of (€, h), 8* the hermitian adjoint of 6 with respect to h. Thus, 6* is a
(0,1)-form with values in End E, satisfying 0g6* = 0. We will consider the
compler connection

D=0p+0g+60+6*

and its curvature Fp. To be explicit, we will write: D = (€,0, h).

Definition 3.1. Fix a Higgs bundle (£,6) on X. A hermitian metric h on
€ is called Hermitian-Einstein (HE) if

(3.1) vV —lF(gﬁ’h) ANwgAQo=A-1d -wg A Qo
for some constant .

Now we have the following generalized Donaldson-Uhlenbeck-Yau,
Hitchin-Simpson theorem.
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Theorem 3.2 (Donaldson-Uhlenbeck-Yau theorem). (£,6) is w-
polystable if and only if it admits a HE metric. Moreover, if (€, 0) is w-stable,
such a metric is unique up to scaling.

The notion of HE metric we use here differs from that in the literature by
a conformal factor. For completeness, we provide details showing that this
is not an issue. We use the key fact that for balanced metrics the Kéhler
identities hold for (1,0) and (0, 1) forms ([11, Prop. 1]; see also [20, Lemma
7.1.1]).

Lemma 3.3. Given an n-dimensional hermitian manifold (X,w) with
dw™ ' = 0, the following hold:

"%t = —/=1A0%t | 9*al? = V/=1ADaM®

0,1 1,0

for any (0,1)-form o™+, and any (1,0)-form a*°.

Proof of Theorem 3.2. For the existence of HE metrics, it suffices to assume
(€,0) is w-stable. Since w is balanced, it is in particular Gauduchon, and so
by the result of Li-Yau [18], generalized to Higgs bundles by Liibke-Teleman
[21], there is a metric h such that

n—1 n

w ~ w
V _1F(£’€,]~1) /\ m - )\ . Idm

where A = 2mu(€)/ vol(X,w). Now there is a positive function f such that

wo A\ W =f w_"
O =11 Tl
Choose A such that
(3.2) A / 7+ = Xvol(X,w) = 2mu(€)
X n:

Then we can find a function ¢ satisfying: Ayp = 2(Af — X) Let h = e%h.
Then

F(S,G,h) = F(E,Q,Tl) - 85@ -1d

By Lemma 3.3, the Hodge and Dolbeault laplacians on functions are related:

A, = 2A. Hence,

_ w1 1 wh n—1 n
—100p N = Ap— =AM N ———7 — A—
1oy (n—=1)! 2 7l w0 (n—1)! n!
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The existence follows. Similarly for the converse, by doing a conformal
change we get the existence of HE metrics used in the literature, which
implies the polystability. O

As a direct corollary of this, we have the following generalized

Bogomolov-Gieseker inequality

Corollary 3.4. For any w-polystable rank r Higgs bundle (£,0), the fol-
lowing inequality holds:

/ (2res(€) — (r — er(E)2) A D > 0
X
where the equality holds if and only if € is projectively flat.

Proof. Eq. (3.1) implies
n 1
F~=Fegon — - tr(Fieg,n)) - 1d - wo

is primitive. Now the conclusion follows as in the usual case by applying the
Hodge-Riemann property of Qg to /—1F* (see Remark 2.2, and note that
V—1F" is hermitian). O

For emphasis, we state the following version of the Donaldson-
Uhlenbeck-Yau theorem for the slope stability condition defined by mul-
tipolarizations (cf. [12]).

Theorem 3.5. Suppose X is a compact Kdhler manifold with (n —1)
Kahler forms wg, -+ ,wpn—2. Given a holomorphic vector bundle £ that is
slope stable with respect to [wo]U--- U [wn—2|, there exists a Hermitian-
Einstein metric h on &, i.e.

V=1Fgpn Awo A+ Awpg =A-1d - w§ Awp A+ Awy_g

for some constant A. Moreover, such a metric is unique up to constant rescal-
ings.

Remark 3.6. We emphasize here that the Chern connection of (£,h) is
not a Yang-Mills connection in general.

By Corollary 3.4 and Proposition 2.3, we have the following generaliza-
tion of the Bogomolov-Gieseker inequality for multipolarizations, proven in
the projective case by Miyaoka [23, Cor. 4.7].
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Corollary 3.7. Suppose X is a compact Kdahler manifold with (n —1)
Kahler forms wq, -+ ,wn—2, and & is a slope stable holomorphic vector bun-
dle over X with respect to [wo] U --- U [wy—2]. Then the following holds:

/X(zrcz(g) = 1)EE)AQ, >0

for any j=0,...,n—2. Here, Q;=woA - ANwj_1 AwWjs1--- Awp_2.
Moreover, the equality holds for some j if and only if € is projectively flat.

Remark 3.8. The gauge theoretic side of the HE connections defined via
multipolarizations is studied in [4].

4. The Sampson-Siu theorem

In this section, we prove

Theorem 4.1. Let X be a compact complex manifold with a balanced met-
ric of Hodge-Riemann type, and assume gy is strongly positive. If N is a
Riemannian manifold with nonpositive complexified sectional curvature, then
every harmonic map u: X — N is pluriharmonic.

In the statement of the theorem, w satisfies the condition of Defini-
tion 2.7, but we make the additional assumption that Qg is a strongly positive
(n —2,n — 2)-form in the sense of [7, Ch. ITI, Def. 1.1].

Proof of Theorem 4.1. Let V denote the Levi-Civita connection on N. This
induces a connection on u*T'N. The harmonic map equation is: dy,du = 0.
Since w is balanced, Lemma 3.3 implies that u is harmonic if and only if

(4.1) dydu Aw" 1 =0

Next, we follow the argument in [1, pp. 73-75]. Since € is closed,
d{dyd°u A du) A Qo = (Ry(du) A d°u) A Qo + (dvdu A dydu) A Qq

and so,

0= / {(Rn(du) A du) A Qo + (dvdu A dyd®u) A Qo}
X

By (4.1) and the Hodge-Riemann property, the second term is nonpositive.
We claim that also

<RN (dcu) N dcu> ANy <0
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Given this, it follows that dyd“u = 0; hence, the pluriharmonicity. The claim
follows from the assumption on g and the nonpositivity of the complexified
sectional curvature of N. We work at a point x. By definition, we know that

Qp = Z,ui\/—lo/i /\a_zi A AV=lak_y Aok,
i

where p1; > 0, and {a,...,a_,} are linearly independent (1,0) forms. De-
note by P; the complex two dimensional subspace of T'M where a§-| p,=0
forj=1,---,n—2.Fix X;,Y; so that {X;,Y;, JX;, JY;} form an orthogonal
basis for P;. Then

(Ry(du) A du) A Qo = Z,u;(RN(dcu) A du)(X;,Y;, JX;, JY;) dVol

for some p; > 0. Now as in [1, p. 75], we know

(R (d®u) A du)(X;, Yy, JXi, JYi) = RN (Zi, Wi, Wi, Z;) <0
where Z; = du(X; — JX;) and W; = du(W; — JW;). The claim follows. [
Remark 4.2. If X is the un~iversa1 cover of X, then Theorem 4.1 remains
valid for harmonic maps u : X — N that are equivariant with respect to a
representation p : w1 (X) — Iso(N). These play a role in the next section.
The existence of equivariant harmonic maps to nonpositively curved targets
N is guaranteed if p is reductive (or semisimple) (see [5, 9, 16, 17]).

Theorem 4.1, combined with [7, Prop. I11.1.11] implies

Corollary 4.3. Suppose X is a compact complex manifold with a balanced
metric w of the form (1.2), where w; are positive (1,1)-forms and

d(wl/\---/\wn_g):o

If N is a Riemannian manifold with nonpositive complexified sectional cur-
vature, then every harmonic map u : X — N s plurtharmonic.

5. The nonabelian Hodge correspondence

The goal of this section is to prove the following generalization of [25,
Cor. 1.3].
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Theorem 5.1. Suppose X is a compact complex manifold and w is a bal-
anced metric of Hodge-Riemann type on X. Then we have a categorical 1-1
correspondence between

1) semisimple flat bundles on X, and

2) isomorphism classes of w-polystable Higgs bundles (€,0) with chy(E) U
(w1 = 0 and chy(E) U [Q] = 0.

Remark 5.2. e When wy =w, Qy=w""2/(n—1)!, then by our as-
sumptions (X,w) is Kéhler. Then Theorem 5.1 reduces to the well

known nonabelian Hodge correspondence for compact Kéahler mani-
folds.

e There exist many examples where w is not a Kahler metric, even when
the underlying manifold X is Kahler, or even projective algebraic. For
example, take X to be projective with [w;], i =0,...,n — 2, all ample
classes, and take w as in (1.2). Then the class w”~! represents a point
in the interior of the cone of movable curves (see [3]).

e Notice that if Qg = w?‘Q, then dQ2y = 0 implies dw; = 0, and the man-
ifold is Kéhler. However, closedness of g = wi A -+ A wy_o, for dif-
ferent w;, can occur in the non-Kéahler setting. One might expect that
this will provide new insights for the study the non-Kahler complex
manifolds, since the results obtained here already put restrictions on
complex manifolds admitting such structures.

Proof of Theorem 5.1. The proof, of course, closely follows the lines of the
classical theorem, taking care to avoid the Kéhler condition.

First, assume (&, #) is an w-polystable Higgs bundle. If chy () U [w" 1] =
0, then by Theorem 3.2 there is a hermitian metric h on £ such that (1.3)
is satisfied for

(5.1) D=0p+0p+60+6*

(note that A =0 by (3.2)). Hence, Fpp is primitive. Moreover, /—1Fp is of
type (1,1) and hermitian. Since cha(&) U [Qg] = 0, we have

0—/ tI‘(FD/\FD)/\QO
X

Since g is a Hodge-Riemann form, we conclude that D is a flat connection,
which is necessarily semisimple.
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Now let D be a semisimple flat connection on E. By Corlette’s theorem
(see Remark 4.2) there exists a harmonic metric, which has the following
consequence. Decomposing into type we can express D as in (5.1), where
0 € O'°(X,End E), and 6 + 6* is essentially du for an equivariant harmonic
map u : X — GL(n,C)/U(n). Let

(5.2) D'"=0g+60 , D =0p+6*
We wish to prove that Gp = (D")? = 0, for then O is integrable, 0pf = 0,

and O A0 = 0; i.e. (O, 0) is a Higgs bundle.
Flatness of D implies,

1) (9E9 = 0;
2) (9p0)* = —0gpb;
3) 0%+ 3[0,0) = 0;

By (4.1), we have (g — (0p0)*) Aw™ ! =0, and combining this with (2)
we have

(5.3) IO AW =00 Awog A Q=0
i.e. Gp is primitive (note that we have only used the balanced condition for
this part).

To prove that Gp = 0, we argue as in the proof of Theorem 4.1 (see also
[5, proof of Thm. 5.1]). We have:

dtr(Op0 A 0*) A Qg = dtr(df A 6*) A Qo
= tr(8E5E0 ANO*) N Qo+ tr(5E9 A (5}59)*) A Qo

_ _% tx([[6,6°,6] A 6%) A Qo + tx(356 A (96)*) A
— _i tr([6, 6] A [6,6]") A Qo + tr(9e A (0p8)*) A Qo

so integrating,
1 _ _
0— _Z/ 6e([6, 6] A [6,61%) A Q +/ (80 A (F0)7) A D
X X
By the Hodge-Riemann property of €0y, both terms on the right hand side

are nonpositive, and hence vanish. We conclude that Opf =0, and [0, 6] = 0.
By (3) above, d is integrable, and this completes the proof. O
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As in the Kéahler case, Theorem 5.1 translates into a statement about
moduli spaces. Assume (X,w) is as above, and let Mp (X, n) be the set
of isomorphism classes of stable rank n Higgs bundles on X with van-
ishing Chern classes. Let M2 (X,n) be the set of isomorphism classes of
rank n holomorphic vector bundles on X with integrable connection. Then
M3, (X,n) and MJ% (X, n) each has the structure of a separated complex
analytic space (see [20, Ch. 4] and [15], respectively). We have the following
weak version of the nonabelian Hodge correspondence (cf. [26, Thm. 7.18]
or [20, Cor. 4.4.4]), whose proof follows exactly as in [26].

Corollary 5.3. Let (X,w) be a compact hermitian manifold that is balanced
of Hodge-Riemann type. Then the set theoretic identification in Theorem 5.1
gives a homeomorphism:

MEOI(Xv TL) = ziTRT (X7 n) .

Asis in the Kahler case, the homeomorphism in Corollary 5.3 is not holomor-
phic. Indeed, as was pointed out by one of the referees it would be interesting
to show that the distinct complex structures fit into a hyperkéhler structure
on the smooth locus of M (X, n). Such a result would generalize the clas-
sical work of Hitchin [14] for the case of Riemann surfaces and of Fujiki [10]
for higher dimensional Kéhler manifolds. This will be pursued in a future
work.

6. Rigidity of representations of fundamental groups

For the sake of completeness, in this last section we point out that two
important results of Corlette and Simpson generalize to our setting. Let
GRr be a simple real algebraic group acting by isometries on the irreducible
bounded symmetric domain Ggr/K. We assume (X, w) is a compact complex
manifold with a balanced metric of Hodge-Riemann type. Let P be the
principle Gg bundle with structure group reduced to K. As in [6], one can
associate a volume vol(P) to P by defining it as a power of the first Chern
class of P up to a conformal factor. Now the following generalizes [6, Thm.
0.1].

Theorem 6.1. Suppose P is flat with vol(P) # 0 and Gr/K is not of the
form U(n,1)/U(n) x U(1) or SO(2n +1,2)/S(O(2n + 1) & O(2)). Then the
momnodromy homomorphism of the fundamental group of X into Gr is locally
rigid as a homomorphism of the fundamental group of X into the complez-
ification of Gg.
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The argument follows by replacing [6, Prop. 2.4] with argument in the
proof of Theorem 5.1 to get the holomorphic property of the harmonic sec-
tions. This is the only place where the Kéhler assumption is needed in [6].
Simpson’s argument in the Kéahler case also gives (see [25])

Theorem 6.2. Suppose p: m1(X) — GL(n,C) is a locally rigid representa-
tion of the fundamental group of X. Then the associated flat vector bundle
is the underlying vector bundle of a complex variation of Hodge structure.

Acknowledgements

R.W.’s research is supported in part by NSF grant DMS-1906403. The au-
thors warmly thank Yang Li for comments on an earlier version of this paper.
We also thank the anonymous referees for a careful reading of the paper and
for helpful suggestions that improved the presentation.

References

[1] J. Amorés, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fun-
damental groups of compact Kéahler manifolds, Vol. 44 of Mathematical
Surveys and Monographs, American Mathematical Society, Providence,
RI (1996), ISBN 0-8218-0498-7.

[2] 1. Biswas, Stable Higgs bundles on compact Gauduchon manifolds, C.
R. Math. Acad. Sci. Paris 349 (2011), no. 1-2, 71-74.

[3] S. Boucksom, J.-P. Demailly, M. Paun, and T. Peternell, The pseudo-
effective cone of a compact Kahler manifold and varieties of negative
Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201-248.

[4] X. Chen and R. A. Wentworth, Compactness for Q-Yang-Mills connec-
tions, Calc. Var. Partial Differential Equations 61 (2022), no. 2, Paper
No. 58, 30.

[5] K. Corlette, Flat G-bundles with canonical metrics, J. Differential
Geom. 28 (1988), no. 3, 361-382.

[6] ———, Rigid representations of Kdhlerian fundamental groups, J. Dif-
ferential Geom. 33 (1991), no. 1, 239-252.

[7] J.-P. Demailly, Complex analytic and differential geometry, Online
notes.



Nonabelian Hodge correspondence 653

[8] T.-C. Dinh and V.-A. Nguyén, The mized Hodge-Riemann bilinear re-
lations for compact Kdhler manifolds, Geom. Funct. Anal. 16 (2006),
no. 4, 838-849.

[9] S. K. Donaldson, Twisted harmonic maps and the self-duality equations,
Proc. London Math. Soc. (3) 55 (1987), no. 1, 127-131.

[10] A. Fujiki, Hyper-Kdihler structure on the moduli space of flat bundles,
in Prospects in complex geometry (Katata and Kyoto, 1989), Vol. 1468
of Lecture Notes in Math., 1-83, Springer, Berlin (1991).

[11] P. Gauduchon, Fibrés hermitiens a endomorphisme de Ricci non
négatif, Bull. Soc. Math. France 105 (1977), no. 2, 113-140.

[12] D. Greb and M. Toma, Compact moduli spaces for slope-semistable
sheaves, Algebr. Geom. 4 (2017), no. 1, 40-78.

[13] M. Gromov, Convex sets and Kdhler manifolds, in Advances in dif-
ferential geometry and topology, 1-38, World Sci. Publ., Teaneck, NJ
(1990).

[14] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc.
London Math. Soc. (3) 55 (1987), no. 1, 59-126.

[15] N.-K. Ho, G. Wilkin, and S. Wu, Conditions of smoothness of mod-
uli spaces of flat connections and of character varieties, Math. Z. 293
(2019), no. 1-2, 1-23.

[16] J. Jost and S.-T. Yau, Harmonic maps and group representations, in
Differential geometry, Vol. 52 of Pitman Monogr. Surveys Pure Appl.
Math., 241-259, Longman Sci. Tech., Harlow (1991).

[17] F. Labourie, Existence d’applications harmoniques tordues a valeurs
dans les variétés a courbure négative, Proc. Amer. Math. Soc. 111
(1991), no. 3, 877-882.

[18] J. Li and S.-T. Yau, Hermitian-Yang-Mills connection on non-Kdhler
manifolds, in Mathematical aspects of string theory (San Diego, Calif.,
1986), Vol. 1 of Adv. Ser. Math. Phys., 560-573, World Sci. Publishing,
Singapore (1987).

[19] M. Liibke, Einstein metrics and stability for flat connections on compact
Hermitian manifolds, and a correspondence with Higgs operators in the
surface case, Doc. Math. 4 (1999) 487-512.



654

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

X. Chen and R. A. Wentworth

M. Liibke and A. Teleman, The Kobayashi-Hitchin correspondence,
World Scientific Publishing Co., Inc., River Edge, NJ (1995), ISBN
981-02-2168-1.

—————, The universal Kobayashi-Hitchin correspondence on Hermitian
manifolds, Mem. Amer. Math. Soc. 183 (2006), no. 863, vi+97.

M. L. Michelsohn, On the existence of special metrics in complexr geom-
etry, Acta Math. 149 (1982), no. 3-4, 261-295.

Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal
variety, in Algebraic geometry, Sendai, 1985, Vol. 10 of Adv. Stud. Pure
Math., 449-476, North-Holland, Amsterdam (1987).

J. Ross and M. Toma, Hodge-Riemann bilinear relations for Schur
classes of ample vector bundles, Ann. Sci. Ec. Norm. Supér. (4)56
(2023), no. 1, 197-241.

C. T. Simpson, Higgs bundles and local systems, Inst. Hautes Etudes
Sci. Publ. Math. (1992), no. 75, 5-95.

—————, Moduli of representations of the fundamental group of a smooth
projective variety. II, Inst. Hautes Etudes Sci. Publ. Math. (1994),
no. 80, 5-79 (1995).

V. A. Timorin, Mized Hodge-Riemann bilinear relations in a linear con-
text, Funktsional. Anal. i Prilozhen. 32 (1998), no. 4, 63-68, 96.

M. Toma, A note on the cone of mobile curves, C. R. Math. Acad. Sci.
Paris 348 (2010), no. 1-2, 71-73.

C. Voisin, Hodge theory and complex algebraic geometry. I, Vol. 76
of Cambridge Studies in Advanced Mathematics, Cambridge University
Press, Cambridge, english edition (2007), ISBN 978-0-521-71801-1.
Translated from the French by Leila Schneps.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742, USA
E-mail address: xmchen@umd . edu

E-mail address: raw@umd .edu

RECEIVED NOVEMBER 14, 2021
ACCEPTED MARCH 21, 2022



	Introduction
	Hodge-Riemann forms
	Bogomolov-Gieseker inequality
	The Sampson-Siu theorem
	The nonabelian Hodge correspondence
	Rigidity of representations of fundamental groups
	Acknowledgements
	References

