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ABSTRACT

Following the work of Mazzeo-Swoboda-Wei-Witt | | and Mochizuki
[ ], there is a map Z between the algebraic compactification of the Dolbeault
moduli space of SL(2,C) Higgs bundles on a smooth projective curve coming from the
C* action, and the analytic compactification of Hitchin’s moduli space of solutions to
the SU(2) self-duality equations on a Riemann surface obtained by adding solutions
to the decoupled equations, known as “limiting configurations”. This map extends the
classical Kobayashi-Hitchin correspondence. The main result of this paper is that =
fails to be continuous at the boundary over a certain subset of the discriminant locus
of the Hitchin fibration.

1. Introduction

Let X be a closed Riemann surface of genus g > 2. The coarse Dolbeault moduli space of
SL(2, C) semistable Higgs bundles on X, denoted by Mp,, and Hitchin’s moduli space of solutions
to the SU(2) self-duality equations on ¥, denoted by My, have been extensively studied since
their introduction over 35 years ago. The Kobayashi-Hitchin correspondence, proved in [ ],
gives a homeomorphism between these two moduli spaces:

= Mpol = Myt - (1)

Both spaces are noncompact: Mp, is naturally a quasiprojective variety [ , |, and
like monopole moduli spaces, My admits Higgs fields of arbitrarily large norm. Nevertheless,
the map = is proper. Recently, there has been interest from several directions on natural com-
pactifications of these two spaces. A key feature on the Dolbeault side is the existence of a C*
action with the Biatynicki-Birula property, and this may be used to define a completion of Mp;
as a projective variety | , , ]. The ideal points are identified with the C* or-
bits in the complement of the nilpotent cone of Mpy. The Hitchin moduli space also admits
a more recently introduced compactification, My, based on the work of several authors (see
[ , , ]). The boundary of My is given by gauge equivalence classes of
limiting configurations. This compactification is relevant to many aspects of Hitchin’s moduli
space. For more details, we refer the reader to | , , , , ,
, |, and the references therein.
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By the work of | )

—

, there is a natural extension
: Mpol — MHit (2)

of the Kobayashi-Hitchin correspondence to the two compactifications described above, and it
is of interest to study the geometry of this map. This involves another key feature of Hitchin’s
moduli space; namely, spectral curves. Spectral curves and spectral data | | realize the
Dolbeault moduli space as an algebraically complete integrable system H : Mpg — B. In the
case of SL(2,C), the base B is the space of holomorphic quadratic differentials on 3. Given
q € H°(K?), one obtains a (scheme theoretic) spectral curve S,. This curve is reduced if g # 0,
irreducible if ¢ is not the square of an abelian differential, and smooth if ¢ has simple zeros. Let
B8 C B denote the open cone of quadratic differentials with simple zeros.

(1]

The ideal points of both compactifications Mp, and Mpy;; have associated nonzero quadratic
differentials, and therefore spectral curves. We write /\/lgafl for the elements in Mp, with smooth

spectral curves, and Mpop = Mpe \ Mpy for those with singular spectral curves; similarly for

Myge and Mﬂ?tg. We then have the following result.

THEOREM 1.1. The restriction of the compactified Kobayashi-Hitchin map = to the locus with
smooth associated spectral curves defines a homeomorphism Mpy ~ Mip. On the singular
spectral curve locus, however, = © : ﬂ%ﬁ% — ﬂﬁig is neither surjective nor injective.

It will be convenient to analyze the behavior along rays in B, where the spectral curve is
simply rescaled. For ¢ # 0 a quadratic differential, we set ﬂDol,q"’ (resp. ﬂHit’(ﬁ) to be the
points in Mpg (resp. ﬂHit) with spectral curves Sy, t € R*. The restriction of = gives a
map §q+ : ﬂDolquF — MHiW. We shall study the continuous behavior of §q+ for points in
the fiber H~!(tq) as t — +oo. For convenience, we set Mg = ﬂDol,(ﬁ N Mpo. When ¢
is irreducible, i.e. not a square, all elements in M+ are stable. Via the Hitchin | | and
Beauville-Narasimhan-Ramanan (BNR) correspondence | ], this reduces the description of
the fiber M, := H~!(q) to the characterization of rank 1 torsion free sheaves on the integral
curve Sy.

In | |, parameter spaces for rank 1 torsion free sheaves on algebraic curves with Goren-
stein singularities were studied in the context of compactified Jacobians, and the crucial notion of
a parabolic module was introduced. This was extensively investigated by Cook in | , 1,
partially following ideas of Bhosle [ ]. For simple plane curve singularities of the type ap-
pearing in spectral curves, one makes use of the local classification of torsion free modules of
Greuel-Knorrer | |. These methods were applied to study the Hitchin fibration by Gothen-
Oliveira in [ ] (see also | | for recent study). In parallel, Horn | | defines a
stratification My = |Jp My p labeled by certain effective divisors contained in the divisor of ¢
called o-divisors (see Section 5.5, and also [ N] for the more general situation).

Using the results from these references, we reinterpret the work of Mochizuki | | and
Mochizuki-Szabé [ ]. We first prove that the restriction of the compactified Kobayashi-
Hitchin map to the boundary is discontinuous in general. Following that, by utilizing the expo-
nential decay results from Mochizuki-Szab6 | |, which play an essential role, we demonstrate
that the entirety of §q+ is discontinuous.

THEOREM 1.2. Let q # 0 be an irreducible quadratic differential.

(i) The boundary map 0=, is continuous if ¢ has only zeros of odd order and discon-

+ t
q |6m;;:)01,q+
tinuous if ¢ has at least one zero of even order.
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(ii) If q has at least one zero of even order, then for each o-divisor D # 0 there exists an even
integer np > 1 so that for any Higgs bundle (F,v) € M, p, there exist 2np sequences of
Higgs bundles (EF,¢¥), k =1,...,2np such that

- limi%oo(gik, gof) = (F,¢) fork=1,...,2np,
— and if we write
0t = lim OZ+ (EF i), €:= lim OF + (F, t;2) ,
1—r 00 1—00
¥ if (F,1)) doesn’t lie in the real Iocus, then &,n',... n*"P are 2np + 1 different
limiting configurations,
¥ if (F, 1) lies in the real locus, then n' = n"P** fori = 1,---  n and we obtain np +1
different limiting configurations.

— for each k, there exists constants t; — 400 such that lim; s, §q+ (Eik, tigof) + §q+ (F, ).

When ¢ is reducible, the description of Higgs bundles in the fiber over ¢ becomes more
complicated because of, among other things, the existence of strictly semistable objects. To
understand this, we use the local descriptions of Gothen-Oliveira and Mochizuki (see | ,

]). In contrast to the irreducible case, the analogous exponential decay result to that
of Mochizuki-Szabé | | is unfortunately currently not available. This results in a weaker
statement for the reducible fiber. Recall that we have defined §q+ : MDoLqu — ﬂHit’qJF as the
compactified Kobayashi-Hitchin map, and 02+ : OMpg) g+ — OMpj; o+ as its restriction to the
compactified boundary. With this notation, the following holds:

THEOREM 1.3. Suppose q # 0 is reducible, if g > 3, then the boundary map 8§q+\amst . is
Dol,q

discontinuous. However, if g = 2, the boundary map 0= is continuous.

qt ‘aﬂ?}olﬂ

This paper is organized as follows: in Section 2, we provide a brief overview of Higgs bundles
and the BNR correspondence. In Section 3, we introduce the concepts of filtered bundles and
their compactness properties. Section 4 defines the algebraic and analytic compactifications.
Section 5 introduces parabolic modules and examines their connection to spectral curves. The
main results for Hitchin fibers with irreducible singular spectral curves are established in Section
6. In Section 7, the results for the reducible case are proven. Finally, in Section 8, we construct
the compactified Kobayashi-Hitchin map and prove the main results. The Appendix, based on
the work of Greuel-Knorrer, calculates some invariants of rank 1 torsion free sheaves on the
spectral curves we consider.
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2. Background on Higgs bundles

This section gives a very brief overview of the Dolbeault and Hitchin moduli spaces, spectral
curve descriptions, and the nonabelian Hodge correspondence. For more details on these topics,
see | , , ]

2.1 Higgs bundles

As in the Introduction, throughout this paper X will denote a closed Riemann surface of
genus g > 2 with structure sheaf O = Oy and canonical bundle K = Ky. Let £ — ¥ be
a complex vector bundle. A Higgs bundle consists of a pair (£, ), where £ is a holomorphic
bundle structure on E, and ¢ € H*(End(€) ® K). If rank(E) = 1, then a Higgs field is just an
abelian differential w. The pair (€, ¢) is called an SL(2,C) Higgs bundle if rank(E) = 2, det(&)
has a fixed isomorphism with the trivial bundle, and Tr(¢) = 0. In this paper we will focus
mainly on SL(2,C) Higgs bundles, but the rank 1 case will also be important.

Let (€, ¢) be an SL(2, C) Higgs bundle. A (proper) Higgs subbundle of (£, ¢) is a holomorphic
line bundle £ C & that is p-invariant, i.e. ¢ : L — L ® K. In this case, the restriction ¢, = 90”6,
makes (L, ) a rank 1 Higgs bundle. Moreover, ¢ induces a Higgs bundle structure on the
quotient £/L. We say (€, ¢) is stable (resp. semistable) if for all Higgs subbundles £, deg £ < 0
(resp. deg £ < 0). We say (&, @) is polystable if (£, ¢) ~ (L, w) ® (L1, —w), where L is a degree
zero holomorphic line bundle and w € H°(K).

If (€, o) is strictly semistable, i.e. semistable but not polystable, the Seshadri filtration |
gives a unique Higgs subbundle 0 C (£,w) C (€, ¢) with deg(£) = 5 deg(&) = 0. Write (£/,w) :
(€,¢)/(L,w), then we have w’ = —w and L' = £71. The associated graded bundle Gr(€,¢) =
(L,w) ® (LY, —w) of this filtration is a polystable SL(2,C) Higgs bundle. We say that (£, ) is
S-equivalent to Gr(&, ¢).

Holomorphic bundles £ with underlying C* bundle E are in 1-1 correspondence with O-
operators g : Q°(E) — QUY(E). We use the notation & := (F, dg). Let C denote the space of
pairs (0g, ), Opp = 0. Let C* and C** denote the subspaces of C where the Higgs bundles are
stable (resp. semistable). The complex gauge transformation group G¢ := Aut(E) has a right
action on C by defining for g € G, (0p, )9 := (g7 0dog,g topoyg).

There is a quasiprojective scheme Mp, whose closed points are in 1-1 correspondence with
isomorphism classes of polystable SL(2,C) Higgs bundles constructed via (finite dimensional)
Geometric Invariant Theory (see [ , ). In | | it was shown that the infinite
dimensional quotient C* / G¢, where the double slash indicates that S-equivalent orbits are
identified, admits the structure of a complex analytic space that is biholomorphic to the ana-
lytification M}, of Mpg1. Henceforth, we shall work in the complex analytic category, identify
the algebro-geometric and gauge theoretic moduli spaces as complex analytic spaces, and sim-
ply denote them both by Mps. We note that the set of stable Higgs bundles modulo gauge
transformations, My, | := C*/Gc, is a geometric quotient and an open subset of Mpg].

Finally, notice that the pair (£, ¢) is stable (resp. semistable) if and only if the same is true
for (£, Ap), A € C*. Hence, Mp, admits an action of C* that preserves M, ;. Though Mp,; is
only quasiprojective, the C* action satisfies the Biatynicki-Birula property:

THEOREM 2.1 (| , ]). For any [(£, )] € Mpol,
lim A [(€,0)] := lim|[(€. Ag)]

exists in Mpg.
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2.2 Spectral curves and the Hitchin fibration
The Hitchin map is defined as

7'[ : MDOI — HO(K2) ) [(5790)] = det((p) )

where H(K?) =: B is known as the Hitchin base. Hitchin | , | showed that H is
a proper map and a fibration by abelian varieties over the open cone B'® C B consisting of
nonzero quadratic differentials with only simple zeros. The discriminant locus B5"& := B\ B8
consists of quadratic differentials that are either identically zero or have at least one zero with
multiplicity. For ¢ € B, let M, := H1(¢). The “most singular fiber” My is called the nilpotent
cone.

Consider the total space Tot(K) of K, along with its projection 7 : Tot(K) — 3. The pullback
bundle 7* K has a tautological section, which we denote by A € H?(Tot(K),7*K). Given any
q # 0 € H°(K?), the spectral curve S, associated with ¢ is the zero scheme of the section
A2 — 1*q € H°(Tot(K),7*K). This is a reduced, but possibly reducible, projective algebraic
curve. The restriction of 7 to Sy, also denoted by 7 : S, — X, is a double covering branched
along the zeros of ¢.

The spectral curve S, is smooth if and only if ¢ has only simple zeros. It is reducible if and only
if ¢ = —w®w for some w € HY(K). In the latter case, we call such quadratic differentials reducible,
and otherwise we refer to them as irreducible. There is a noteworthy observation regarding
irreducible spectral curves.

PROPOSITION 2.2 (cf. | ). Let (£, %) be a Higgs bundle with g = det(y), and suppose q is
irreducible. Then (€, ¢) has no proper invariant subbundles. In particular, (£, ) is stable.

Proof. Suppose L C £ is p-invariant, and let ¢, be the restriction. Then

1
det o = —§Tr(<p2) =—(pz)?,

contradicting the assumption. O

Let us emphasize that being reducible is not the same as having only even zeros. To see this,
suppose that Div(q) = 2D. Then K ~ O(D) ® Z, where Z is a 2-torsion point in the Jacobian.
The spectral curve Sy is reducible if and only if 7 is trivial.

2.3 Rank 1 torsion free sheaves and the BNR correspondence

In this subsection, we provide some background on rank 1 torsion free sheaf theory over

spectral curves in the context of the Hitchin and BNR correspondence, as developed in [ ,
].

Let S be a reduced and irreducible complex projective curve and Og its structure sheaf. The
moduli space of invertible sheaves on S is denoted by Pic(S). If F is a coherent analytic sheaf
on S, we can define its cohomology groups H*(S, F). Since dim S = 1, H*(S,F) = 0 for i > 2.
The Euler characteristic is defined as x(F) = dim H°(S, F) — dim H!(S, F). The degree of a
torsion free sheaf F is given by deg(F) = x(F) —rank(F)x(Og). If F is locally free, then deg(F)
coincides with the degree of the invertible sheaf det(F). We let Pic?(S) C Pic(S) denote the
degree d component.

Let Wd(s ) be the moduli space of degree d rank 1 torsion free sheaves on S, and Pic(S) =
[Licz Piicd(S) [ ]. Then Piicd(S) is an irreducible projective scheme containing Pic?(S) as
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an open subscheme. When S is smooth, we have Piicd(S) = Pic?(S). The relationship to Higgs
bundles is given by the following.

THEOREM 2.3 (| , ]). Let ¢ € HY(K?) be an irreducible quadratic differential with
spectral curve Sy. There is a bijective correspondence between points in Pic(S;) and isomorphism
classes of rank 2 Higgs pairs (€, p) with Tr(¢) = 0 and det(p) = q. Explicitly: if £ € Pic(S,), then
€ :=m.(L) is a rank 2 vector bundle, and the homomorphism 7, L — T L ® K = m,(L ® 7*K)
given by multiplication by the canonical section \ defines the Higgs field .

This correspondence gives the very useful exact sequence

0—>£®I—>7r*5Mw*5®W*K—>£®W*K—>O, (3)
for some ideal sheaf Z. In case S is smooth, then Z = Og(—A), where A is the ramification
divisor. The sequence (3) will be used below in Section 6.

Let g be a quadratic differential with only simple zeros, and to simplify notation write S = S,.
Let A := Div(\) be the ramification divisor of the map 7 : S — ¥. By the Riemann-Hurwitz
formula, the genus of S is ¢g(S) = 4g — 3, where g is the genus of ¥. Furthermore, for any
L € Pic(S), Riemann-Roch gives deg(m.L) = deg(L) — (2g — 2). The SL(2,C) Higgs bundles are
characterized by

T := {L£ € Pic*97%(9) | det(m. L) = Ox}. (4)
By the Hitchin-BNR correspondence (Theorem 2.3), the map xpnr : T — My is a bijection.

The branched double cover 7w : S — ¥ is given by an involution ¢ : § — 5. We have the
norm map Nmg/y, : Jac(S) — Jac(¥), where Jac(S) is the connected component of the trivial
line bundle in Pic(S) and Nmg/5(Og(D)) := Ox(m(D)). The Prym variety is defined as

Prym(S/%) := ker(Nmg/5;) = {£ € Pic(S) | L& 0L = Og} .
Also, we have det(m,L£) = Nmg/s(£) ® K~'. Thus, 7 can be expressed as
T ={L € Pic**(S) | Nmg/xn(L) = K} .

Hence, 7 is a torsor over Prym(S/X). Explicitly, by choosing Ly € T, we obtain an isomorphism
T 2% Prym(S/X) given by £ — L ® L.
To summarize, we have the following:

PROPOSITION 2.4. Let q be a quadratic differential with simple zeros. Then M, = T =
Prym(S/Y).

If ¢ # 0 is irreducible but nongeneric, the spectral curve S is singular and irreducible. We
may still define the set T C ngﬂ(S ) as follows:

T :={L € Pic”" *(S) | det(r.L) = Os} ,

We also set 7 := T N Pic? 2. Then T is the natural compactification of 7 induced by the
inclusion Pic29~2(S) c Pic(S). The BNR correspondence, as stated in Theorem 2.3, implies that
XBNR : T — M, is an isomorphism.

2.4 The Hitchin moduli space and the nonabelian Hodge correspondence

We now recall the well-known nonabelian Hodge correspondence (NAH), which relates the
space of flat SL(2,C) connections, Higgs bundles, and solutions to the Hitchin equations. This
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result was developed in the work of Hitchin | ], Simpson | |, Corlette [ ], and
Donaldson | ].

As above, let E be a trivial(ized), smooth, rank 2 vector bundle over the Riemann surface ¥,
and let Hy be a fixed Hermitian metric on E. We denote by sl(E) (resp. su(E)) the bundle of
traceless (resp. traceless skew-hermitian) endomorphisms of E. Let A be a unitary (with respect
to Hy) connection on E that induces the trivial connection on det E, and let ¢ € Q! (isu(E)).
We will sometimes also refer to ¢ as a Higgs field. The Hitchin equations for the pair (A, ¢) are
given by:

Fa+9Ndp=0, dadp=dyp=0. (5)
If we split the Higgs field into type: ¢ = ¢ + !, with ¢ € QLO(sI(E)), then (5) is equivalent to:
Fa+lp.¢l1=0, dap=0. (6)

Notice that (Jg, ) then defines an SL(2,C) Higgs bundle. The Hitchin moduli space, denoted
by Musit, is the moduli space of solutions to the Hitchin equations, given by

M = {(4, 9) | (A, ¢) satisfies (5)}/7,

where G is the gauge group of unitary automorphisms of E. Recall that a flat connection D is
called completely reducible if and only if it is a direct sum of irreducible flat connections. The
NAH can be summarized as follows:

THEOREM 2.5 ([ , , , ). A Higgs bundle (€,y) is polystable if and
only if there exists a Hermitian metric H such that the corresponding Chern connection A and
Higgs field ¢ = ¢ + ' solve the Hitchin equations (5). Moreover, the connection D defined by
D = V4 + ¢ is a completely reducible flat connection, and it is irreducible if and only if (€, )
is stable.

Conversely, a flat connection D is completely reducible if and only if there exists a Hermitian
metric H on F such that when we express D = V 4 4+ ¢ + ¢!, we have dg¢ = 0. Moreover, the
corresponding Higgs bundle (€, y) is polystable, and it is stable if and only if D is irreducible.

The nonabelian Hodge correspondence gives the Kobayashi-Hitchin homeomorphism (1),
which when restricted to the stable locus is a diffeomorphism onto irreducible solutions of (5).

Finally, we note that there is an action of S' on My defined by (A, ¢) — (A, " - ¢), where
e . ¢ = e+ e Wt With respect to this and the ST € C* action on Mp,, the map = is
Sl-equivariant.

3. Filtered bundles and compactness

Filtered (or parabolic) bundles are described, for example, in | |. They play a key role
in the analytic compactification. This section provides a brief overview of filtered line bundles
and demonstrates a compactness result.

3.1 Filtered line bundles

Let Z be a finite collection of distinct points on a closed Riemann surface ¥, and let ¥/ = ¥\ Z.
Viewing ¥ as a projective algebraic curve, an algebraic line bundle L over the affine curve ¥’
is a line bundle defined by regular transition functions on Zariski open sets over ¥’. The sheaf
of sections of L can be extended in infinitely many different ways over Z to obtain (invertible)
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coherent analytic sheaves on Y. The sections of L are then realized as meromorphic sections of
any such extension that are regular on X'.

A filtered line bundle F.(L) is an algebraic line bundle L — ', along with a collection
{La}acr of coherent extensions across the punctures Z such that L, C Lg for o > f3, for a
fixed sufficiently small €, Ly—e = Lo, and Ly = Lay1 @ Os(Z). Let Gry = Lo/ La+e denote the
quotient (torsion) sheaf. A value aw where Gr,, # 0 is called a jump. Since we are considering line
bundles, for each p in the support of Gr,,, there is exactly one jump a, in the interval [0,1).
The collection of jumps «ap, p € Z, fully determines the filtered bundle structure. If we denote
by L := Ly, the degree of a filtered line bundle is defined as

deg(Fi(L)) := deg(L —i—Zap .
peEZ

Alternatively, a weighted line bundle is a pair (£, x) where £L — ¥ is a holomorphic line
bundle and x : Z — R is a weight function. The degree of a weighted bundle is defined as

deg(L, x) := deg(L) + Z Xp -
peEZ

The notions of filtered and weighted line bundles are nearly equivalent. Namely, given a
filtered line bundle F, (L), we define £ := Ly and X, = o,. Conversely, given a weighted line
bundle (£, x), let ay, = xp + nyp, where n, € Z is the unique integer so that 0 < x, +n, < 1. A
filtered bundle F.(L), L := L|,, is then determined by setting Lo = L£(—_ npp) With jumps
ay. Clearly, deg(F(L)) = deg(ﬁ,x). We shall use the notation F, (L, x) for the filtered bundle
associated to a weighted bundle (£, x) in this way.

Different weighted bundles can give rise to the same filtered bundle. The following is a fact
that will be frequently used in this paper. If D =} _, d,x is a divisor supported on Z, let

(2) dy , x€Z;
x) =
XD 0, zex\Z.
Then for any weighted bundle (£, x) we have F.(L(D),x — xp) = F«(L, x).
Let (L1, x1) and (L2, x2) be two weighted lines bundles. We define the tensor product
(L1, x1) ® (L2, x2) = (£1 ® L2, x1 + X2) -
Then the degree is additive on tensor products. For filtered bundles, we define
FulL1,x1) @ Fu(L2, x2) = Fu(L1 @ Lo, x1 + X2) - (7)

The degree is again additive for the tensor product of filtered bundles. This agrees with the usual
definition of tensor product for parabolic bundles.

3.2 Harmonic metrics for weighted line bundles

PROPOSITION 3.1. Let (L,x) be a degree 0 weighted bundle. Then there exists a Hermitian

metric h on Lsy, which is unique up to a multiplication by a nonzero constant, and such that:
(i) the Chern connection Ay, of (L, h) is flat: Fu, = 0;

(ii) for p € Z, and (Uy,2) a holomorphic coordinate centered at p, |z|~2X¢h extends to a C*

Hermitian metric on L|y,.

Proof. We first choose a background Hermitian metric hy such that |z|=2X?h defines a C*°
Hermitian metric defined on U,. Let Ay, be the Chern connection, and Fjy, the curvature. Note
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that Fa, is smooth on . By the Poincaré-Lelong formula, we have g Js Fa, = deg(L, x) = 0.

Therefore, there exists a C* function p such that Ap + gAF "4, = 0. We define h = hge”. For
the corresponding Chern connection Ay, we have F4, = 0, which implies (i). (ii) follows from
the property for hg, since p is a smooth function on Y. As p is well-defined up to a constant, h
is well-defined up to a constant, which implies the uniqueness of h up to a constant. ]

The metric obtained above is called the harmonic metric. For a weighted bundle (L, x), the
holomorphic bundle £ and the harmonic metric h define a filtration as follows. Given «, define
the sheaf

Lo(U) :={s € HY(U,L(*2)) | |s|p, = O(r*°) for all € > 0} ,
and any open set U C X. Here, r denotes the distance to Z in any smooth conformal metric on

Y. It is straightforward to check that this defines a filtered bundle that matches F, (L, x) under
the correspondence given in the previous section.

Even though the harmonic metric is only well-defined up to a constant, the Chern connection
A = (L, h) is independent of this choice. The (1, 0) part of A, denoted Vj, then defines logarithmic
connections Vy, : Loy — Lo ® K(Z).

3.3 Convergence of weighted line bundles

In this subsection, we consider the convergence of weighted line bundles. The main result we
prove here is a consequence of | , Theorem 1.8]. For the reader’s convenience, we present a
short proof in our situation.

Let (2o, go) be a metrized Riemann surface (i.e. a Riemann surface ¥y with conformal metric
g0). We view ¥ as given by an underlying surface C' with almost complex structure Jy. Consider
a neighborhood U; of Jy in the moduli space of holomorphic structures and a neighborhood
Uy of gp in the space of smooth metrics. We denote the product of these neighborhoods by
U = U; x Us. We can define the fiber bundle Picy — U, where each fiber is the Picard group
defined by the holomorphic structure. Let (X; = (C, J;), g:) be a family of metrized Riemann
surfaces that converge smoothly to (2¢,g0) as t — 0. Let Z; C ¥; be a collection of a finite
number of points that converge to Zj in suitable symmetric products of C. For each p € Zy, we
can write Z; = Upez,Ztp such that all points in Z; ,, converge to p. We define the convergence of
weighted line bundles as follows.

DEFINITION 3.2. A family of weighted line bundles (L, x¢) over ¥;\ Z; with weights x¢ : Zy — R
converges to (Lo, Xo) if

(i) L; converges to Ly in Picy,

(i) for all p € Zo and t sufficiently small, - .7 xt(q) = xo(p)-

A sequence of filtered bundles F.(L;) converges to F.(Ly) if the corresponding weighted
bundles converge. The following theorem provides insight into the compactness of a sequence of
weighted line bundles.

THEOREM 3.3. Consider a family of weighted line bundles (L, x:) defined over (¥; \ Z;), and
with deg(L, xt) = 0. Let h; be the corresponding harmonic metrics from Proposition 3.1. If Z,
converges to Zy, we write Z; = Upcz, Zt . Then there exists a weighted line bundle (Lo, xo) over
Zy with a harmonic metric hy such that:

o0

loc S€Nse.

(i) After rescaling by c¢; > 0, c¢;hy converges to hg over 3¢ \ Zy in the C
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(ii) If Ay, is the Chern connection of (L, hy), then on ¥g \ Zy, lim;_o Vi = Vg in CX

loc*

Proof. By the assumptions on weights, deg(L;) is a fixed, t-independent constant. Let v = (J;, g¢)
be a path in U. Then Picy |, is compact, and there exists an £y € Pic(Xg) such that £; converges
to Lo. For p € Zy, define xo(p) = >_ ez, , Xt(q), and thus obtain a weighted line bundle (Lo, xo)-

Choose a family of approximate harmonic metrics h{*", such that |z|~2*h{"® extends to a
smooth metric in a neighborhood of p and k" converges to hy™ in C72.(Xg \ Zp). Moreover,
write hy = hjPPet. After a suitable rescaling of hy, we can assume ||s¢||;2 = 1. Let p; := AhPP
be the curvature defined by the metric h;"P. Then s; satisfies the equation As; = p; over X.
As p; converges to pg € Cio.(X\ Zp), and g; is a family with bounded geometry, we obtain the
estimate
[stllcer2.a(sy < Cralllptlleras) +1)

where C}, , is a t-independent constant. Therefore, passing to a subsequence, s; converges to sy
in C*°(X), which implies (i). The assertion (ii) follows from (i). O

4. The algebraic and analytic compactifications

4.1 The algebraic compactification of the Dolbeault moduli space

In this subsection, we present the algebraic method for compactifying the Dolbeault moduli
space. This technique is based on the C* action on Mp,], and was introduced in | , ,
, , ]. The gauge theoretic approach can be found in | ].

THEOREM 4.1 (| , Thm. 11.2],] ]). Let V' be a complex algebraic variety with C* action.
Suppose

(i) the fixed point set of the C* action is proper,
(ii) for every t € C*, v € V, the limit %ir%t - v exists.
%

Then the space U := {v € V| tlirn t - v does not exist} is open in V', and the quotient U/C* is
— 00
separated and proper.

We apply this to the Dolbeault moduli space. The first step is to note that the possible
isotropy subgroups are limited.

LEMMA 4.2 ([ , Thm. 6.2]). Let £ = [(£, ¢)] be an SL(2,C) Higgs bundle equivalence class
with H(§) # 0. Then the stabilizer I'¢ of £ for the C* action is either trivial or Z/2. The latter
case holds if and only if (£, ¢) and (€, —p) are complex gauge equivalent.

Proof. For t € Tg, H(E) = H(t- &) = t*H(E). Hence, t* = 1 if H(£) # 0. O

By this Lemma, the space (Mpe \ H~*(0))/C* has an orbifold structure. In passing, we note
that the fixed points of the Z/2 action correspond to real representations under the nonabelian
Hodge correspondence | , Sec. 10].

By the properness of the Hitchin map H (see Theorem 2.1), it follows that tlim t- & exists if
—00
and only if H(§) = 0. Now define

Moo = { (Mpor x €) [T(Mpo \ B4 0) } /T (8)
The analytic topology on the disjoint union is generated by open sets U x W; and
V x (W nCH IV N (Mo \ H™H(0))

10
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where U,V C Mpg1, Wi, Wa C C are open, and 0 € Wi, 0 € Wa. The topology on My is then
the quotient topology, and it is straightforward to see that with this topology, it is compact.

Since (Mpe x C*)/C* = Mpg, there is a natural inclusion

L Mpol = Mpa, 1(€) = [(€,1)]
where brackets denote the equivalence class under the C* action. The boundary of Mp,; is
OMpol = Mpol \ t(Mpol) = (Mpe \ H(0))/C* .
There is a boundary map
Lo : Mpol \ HH(0) — OMbpor, € [(£,0)] ,

which is invariant under the C* action, i.e., tg(A) = 15(&) for A € C*.

The C* action on Mpg covers the square of the action on B. Hence, it is natural to compactify
B by projectivizing;:

B:=PH"K?*) @C).
The inclusion is given, as usual, by
o B— B, uq) =g x{1}],
where g x {1} € H°(K?) @ C. We also define 9B = B\ 1o(B) ~ P(H°(K?)), with boundary
projection map
to,0: B\{0} = B, 1,6(q) = g x {0}] .
The Hitchin map H : Mpo — B extends to H : Mpo — B, where H|pmp,, = to o H, and for
every [(€,)]/C* € OMpe,
H([(£,9)]/C") = [(H(p),0)] C B..
This is well defined, since det(y) # 0 if [(£,¢)]/C* € Mpe. Moreover,

. _
MDOI ? MDOI

P
B—* B
comimutes.

There is a good algebraic structure on this compactification.

THEOREM 4.3 (] , , , , ]). The compactified space Mpy is a normal
projective variety, and OMpg is a Cartier divisor of Mpg.

The following characterization of sequential convergence is useful. As HY(K?) is a finite
dimensional space, the L? norm on ¢ € H O(K%) can be chosen arbitrarily and we fix one such
choice.

PROPOSITION 4.4. Let [(&;, pi)] € Mpol be a sequence of Higgs bundles, and write g; = det(p;)
1

and r; = HqZHE2 Suppose lim sup r; — co. Then up to subsequence:

~

(i) there exists a Higgs bundle [(Eoc, Poo)] With oo = det(Poo) and ||goo||z2 = 1 such that
o0 [(Ei, 771 00)] = [(Enos Poo)] in Mol and limy_yee 75 g = Goo in HO(K?);

11
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(ii)
lim ([(€:, 1)) = 16](Eser Poo)] , o1 Mpol

lim ¢o(qi) = t0,6(4ds) , 00 B .
71— 00

Proof. The first point follows since the Hitchin map # is proper and H(r; 1) is bounded. The
second follows directly from the definition. O

4.2 The analytic compactification of the Hitchin moduli space
We next describe the compactification of the Hitchin moduli space, as developed in | ,

i ]'

4.2.1 Decoupled Hitchin equations. We begin by defining the decoupled Hitchin equations.
Recall the notation from Section 2.4, let E be a trivial, smooth, rank 2 vector bundle over a
Riemann surface ¥, and let Hy be a background Hermitian metric on E. Let Z be a finite set
of distinct points in . For a smooth unitary connection A on Els, 7z and smooth ¢ = ¢ + of €
Q! (isu(E))|s\ 7, the decoupled Hitchin equations on ¥\ Z are:

Fa=0, [p,¢1=0, dap=0. (9)
Solutions to (9) alone may be quite singular near Z, so we make the following restriction:

DEFINITION 4.5. A solution (A, ¢) to (9) is called admissible if ¢ # 0, and |¢| extends to a
continuous function on ¥ with |¢|~1(0) = Z.

By a limiting configuration we always mean an admissible solution to the decoupled Hitchin
equations. Clearly, Z is determined by (A, ¢). Admissibility guarantees that det(y) extends to
a holomorphic quadratic differential ¢ = det(y) on X, with Z = ¢~!(0) the zero locus. Hence,
the spectral curve S, is well-defined. We emphasize that Z may vary for different admissible
solutions, but one always has that #7 < 4g — 4.

The equivalence relation on limiting configurations is that (Aj, ¢1) ~ (Asg, ¢2) if Z3 = Zs and
(A1,¢1)g = (A2, ¢2) for a smooth unitary gauge transformation g on X\ Z;. The moduli space
of decoupled Hitchin equations is then

MEM = {admissible solutions to (9)}/ ~ .

We denote by Mﬁiirtrjq the elements in Mﬁiirt“ with the determinant of the Higgs field equal to
a quadratic differential ¢. In this case, the equivalence relation is induced by the action of the
unitary gauge group over ¥\ Z, Z = ¢~ (0).

There is a natural C* action on the moduli space ME™: given (A4, ¢ = ¢ + o) € MEM and
t € C*, we set t- [(A,$)] = [(A, to + toh)], which is also a solution to (9).

4.2.2 Compactification of the Hitchin moduli space. The following compactness result is due
to Taubes | ] and Mochizuki | ] (see also [ ).

PROPOSITION 4.6. Let (A;, ;) be a sequence of solutions to (5), with ¢; = det(p;) € HY(K?).
Then

(i) if limsup ||lg|| z2(s;) < oo, then there is a subsequence (also denoted {i}), a smooth solution
(Ao, 00) to (5), and a sequence g; of smooth unitary gauge transformations on ¥, such
that (A;, ¢;)g; converges smoothly to (Ao, poo) On X;

12
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(ii) if lim ||q||;2(s;) = oo, then there is a subsequence (also denoted {i}), and qo, € H(K?) so
that
4i
llaill 2
over ¥, and an admissible solution (Ass, poo = Poo + ) to (9), with Zes := qz(0), and
smooth unitary gauge transformations g; on ¥\ Z,, such that over any open set Q) € ¥\ Z,
(Az)gz — Aoo; and

—7 (o

9; ' bigi
[Pl 2

— ¢oo
smoothly on €.

There is also a compactness result for sequences of solutions in MI;III?

PROPOSITION 4.7. Let [(Ai, i = @i + @I)] € MHEm be a sequence of admissible solutions to
(9), and let q; = det(p;) be the corresponding quadratic differentials. Then after passing to a
subsequence, there are t; € C*, a limiting configuration (Aso, oo = Yoo + gplo) with quadratic
differential qo, = det(pno) # 0, and a sequence g; of smooth gauge transformations on 3\ Z,

such that:

(i) t?q; converges smoothly to qeo,

(ii) over any open set Q @ X \ Zoo, (A;, t; - ¢i)g; converges smoothly to (Axo, Poo)-

Proof. Write ¢; = det(p;) € H°(K?). Adjusting by ¢; if necessary, we may assume g; converges to
Joo OVer X. Also, since Fiu, = 0 over ¥\ Z; and Z; converges to Z,, we can apply both Uhlenbeck
compactness and the classical bootstrapping method to obtain A, such that up to gauge A;
converges smoothly to Ay, over ¥\ Z. Finally, the convergence of ¢; follows by the bound on
qi’s. O

4.2.3 The topology on the compactified space. We now carefully define the topology on the
space Myjit ]_[./\/llﬁllfcn/ C*. Choose a metric in the conformal class on . Let W*2 denote the
Sobolev spaces on ¥ of distributional sections with at least k derivatives in L. For a finite set
of points Z C ¥ (or indeed any closed subset),

WE2(S\ Z) == {f | f € WF*(K), K C £\ Z, K compact}.

loc

These definitions extend easily to the space of connections and Q! (isu(E)) for a Hermitian vector
bundle (E, Hp) over 3 with a fixed smooth background connection.

Let wy, be a nested collection of open sets with w, C @, C wp41, with |J,,w, = 3\ Z. We
wp)i 10 terms of these, VVIIZ’CQ(E \ Z) a Fréchet space.

For any ¢ € HY(K?)\ {0}, set Z, := ¢~1(0), and consider the moduli space
M, = {[(4, )] € Mt NWH ()} UL[(A, 9)] € M, N RG2S\ Z)}/C,

then define the seminorms || f|l,, := || f[lwr.2(

Here we give more precise explanation of the above notation. The space Mpyj; o+ consists of
solutions (A, ¢ = ¢ + ¢f) to the Hitchin equations such that det(¢) = tq for some non-zero
complex number ¢. Moreover, the notation [(4,¢)] € Mpuite N WH2(X) means the equiva-
lence class of (A, $) € W*2(X) modulo unitary gauge transformations in W*+1:2(%). Similarly,
(A, ¢)] € Mhiig‘qﬂWloc consists of the equivalence class of (A, ¢) € I/VIIZ’f(E\Zq) modulo unitary

13
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gauge transformations in W{Zjl’Q(E \ Z,) and the C* action is given by t-[(A4, ¢)] — [(4,t¢)]. By

classical bootstrapping of the gauge-theoretic elliptic equations, M is independent of k > 2.
Next define M := My U quHo(Kz)\{O} M, and based on definition, we have M = Mpg;; U

MEm /C* . Tts topology is generated by two types of open sets. For interior points & = [(A, ¢)] €

Muyit € M we use the open sets
Ve = {[(A",¢")] € Muis | |A" = Allyrzsy + 10" = dllwezs) < e}

from the topology of Mpy;. For any boundary point & € Mﬁlftn /C*, choose a representative
(Ao, o) with [|¢ol|2 = 1. Let ¢ = det(¢p), and fix any open set w € X\ Z;. Then, setting

My, = M \ H71(0),
. . 1 1
Ugowe ={(A,0) € Mg | |4 — Aollwrzwy + Glen,Sf“l gl 26 — e ollwreqy <€ ol > ;}

J{(4,¢) € MEPIIA = Aollwraqy + 16 — dollwraqy < €}
defines an open set around &y. The sets Ug, ., and V¢ . generate the topology on M.

THEOREM 4.8. The space M is Hausdorff and compact.

Proof. The Hausdorff property follows from the definition of the topology. By Propositions 4.6
and 4.7, M is sequentially compact. Moreover, using this explicit base for the topology, M is first
countable and hence compact. O

We may now define the compactification of the Hitchin moduli space as the closure My;; C M
we write OMuyj; for the boundary of the closure, and My ¢« := Mmpiy N M, for the subset of
elements with a fixed quadratic differential.

The following result is described in | , , ].

THEOREM 4.9 ([ , Prop. 3.3]). If ¢ has only simple zeros, then Myt g+ = M.

In other words, the compactification of any slice where ¢ does not lie in the discriminant locus
is “the obvious one”.

5. Parabolic modules and stratification of BNR data

In this section, we review the notion of a parabolic module, as described in [ , ,
, |. This concept leads to a partial normalization of the generalized Jacobian and
Prym varieties of the spectral curve.

5.1 Normalization of the spectral curve

Let ¢ # 0 be a quadratic differential with an irreducible, singular spectral curve S = S,,.
The zeros of g define a divisor Div(q) = > i1, mip; + > 72, n;p;, where the m; and n; are even
and odd integers, respectively, and hence r; and ro are the numbers of even and odd zeros,
respectively, counted without multiplicity. Write Zeven = {p1,--.,Pr }, Zoaa = {P}, ...}, }, and
Z = Zoyen U Zodd, SO #Z =1 =11 + ro.

The map 7 : S — ¥ is a double covering branched along Z; hence, we may view p; and p)
as points in S. For x € S, let O, be the algebraic local ring, O} its group of units, and R, the

completion. We say that S has an A,, singularity at x if R, = C[[r, s]]/(r? — s"*1), where n > 1.

14
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If S has an A; singularity at x, we call it a nodal singularity, and if S has an A singularity at
x, we call it a cusp singularity.

Let p: S — S be the normalization of S, and let 7 :=mop:

sS—,g
Y, g
5

For even zeros p; we write p~1(p;) = {p;", ; }, and for odd zeros p} we write p~1(p}) = p.. Since
m: S — ¥ is a branched double cover, the involution ¢ on S extends to an involution of S which
we also denote by o. Note that o(f,) = p, while o(p) = p7.
The ramification divisor A’ = 137 m;p; + 3 > i(nj — 1)pf, is a (Weil) divisor on S, and
there is an exact sequence:
0— Og — p.Og — Z O0,/05 — 0 . (11)
z€Supp(A’)

The genus of S is g(S) = 4g — 3 — deg(A) = 29 — 1 + 19/2.

5.2 Jacobian under the pull-back to the normalization

We now recall some facts about the Jacobian under the pull-back to the normalization (cf.
[ ). Let x € Z C S be a singular point, i.e. either z € Zoyen Or = p;. with n; > 3. Let O,

be the integral closure of O,. Set V := [[. ., O /O%. Then we have the following well-known
short exact sequence.

0 — V — Jac(95) 7, Jac(S) — 0 . (12)

This will play an important role later on.

5.2.1 Hitchin fiber. We examine the locally free part T of the Hitchin fiber under the pull-
back. Here, 7T is defined to be the set of L € Pic?9~2(S) such that det(r,L) = Ox, (see 4). Though
A’ is a divisor S, it could also be considered as a divisor on ¥ by the identification of p;, p;- and
7(pi), m(p}). To save notation, we write Ox(A’) for the corresponding line bundle on X. For any
L € Pic(S), from (11) we see that det(7,p*L) = det(m.L) @ Ox(A'). We define a new set, T, as
follows:

T :={L € Pic?2(S) | det(7.L) = O(A")}.
Then p* maps 7T to 7. Furthermore, if L1, Lo € Pic(S) satisfy p*L; = p*Lo, then we have
meL1 = 7, Lo. This means that the fiber of p* : Jac(S) — Jac(S) is the same as that of p* : T — T,
resulting in the following fibration:

VT T (13)

5.3 Torsion free sheaves

Now we present Cook’s parametrization of rank 1 torsion free sheaves on curves with Goren-
stein singularities (see | , p. 40] and also | , ]). An explicit computation of the
invariants used in this paper is provided in Appendix A. Let x € Z be a singular point of .S,
and let L — S be a rank 1 torsion free sheaf. We again let O, denote the local ring at =z, O,

15
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its integral closure, and 0, = dimc(0,/O,). According to | , Lemma 1.1], there exists a
fractional ideal I, that is isomorphic to L., uniquely defined up to multiplication by a unit of
O,, such that O, C I, C O,. We define £, := dim¢(I,/O,) and b, := dime(T(I, ®o, O.)),
where T means the torsion subsheaf. Then, ¢, and b, are invariants of L.

Let K, be the field of fractions of O,. The conductor of I, C (5x is defined to be
C)={uek,|u-0,ClL}.

The singularity is characterized by the following dimensions:
20, —20,

0o
———

CO,) cCU)CO, CI, CO, . (14)
Ox—Ly

20z
For z = p; € Zeyen, we have d,,, = m;/2, and there are two maximal ideals m4. in (5,,3 corresponding
to the points pi-. We let (O, /C(I,,))ms be the localization by the ideals my, and define Gt =
dim(c(@pi/C(Ipi))mi. Moreover, we have dim(c((api/C(Opi))mi = m;/2 = §,,. By Appendix A,
az= = (m;/2) — Ly, and therefore a5t + a5 = 26,, — 24y, and also by, = £;,. Define

V(Ly) ={(cf,ci) [ €Zz0, ¢f +c7 =by}

For & = p} € Zoqq, we have 0, p = (n; —1)/2, and the maximal ideal m of O, is unique. Define
ag = dlmC(O 1 /C(Iy))m- By Appendlx A, we have ay = 26, — 2{, and by = {,;. Moreover,
dlm(c(Opi/C( Pi))m =mn; —1 =26, In this case we set V(L ) ={ly }
Let 7: Op = O,/C(O,) be the quotlent map. Define
S(Ly) := {Oy-submodules F, C O,/C(O,) | dim¢(Fy) = 65 , 0~ Y(F,) = Ly} .

Hence, if J, = n~1(F,) with F, € S(L,), there exists an ideal t in O, such that J, = t, - L.
For & = p; € Zeyen, We obtain two integers ¢ = dlm@( Op/(te - O2))ms. By | , Lemma 6],

(cF ;) € V(Ly,), for & = pl € Zoqa, dime (O, (t, - Op)) = epi € V(Ly), and these only depend
on F,. Hence, there is a well-defined map:

F, — ,¢: ) when x = p;,
Ky 1 S(Ly) — V(Ly) : {F _>él E when:lc—pj
x P} Tl

LEMMA 5.1 ([ , Lemma 6]). For x € Z, the connected components of S(L) are parame-
terized by elements in V(Ly).

Set V(L) := [[,e, V(Le) and S(L) := [[,c, S(Lz). Write N (L) := [V(L)]| for the number of
points in V(L). There is a map

k=] ke : S(L) — V(L) .
reZ

For any ¢ € V(L), write ¢ = (cic7 ol ,jfl,ép - ,ﬁp/m). Associate to ¢ the divisor

T2
Z BT e By ) + Y by
=1
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on S. Composing x with the map above, we define
s S(L) — Div(S HF — ¢ — Dg (15)
T€EZ
The following result is straightforward but important:

PROPOSITION 5.2. L is locally free if and only if 2 =0 on S(L).

Proof. L is locally free if and only if ¢, = 0 for all z € Z. The claim then follows directly from
the definition of D. O

5.4 Parabolic modules

In this subsection, we define the notion of a parabolic module, following | , ,

. First note that dime(O,/C(Oy)) = 26, (cf. (14)). Let Gr(dy, O, /C(O;)) be the Grass-
mannian of §, dimensional subspaces of the vector space O /C(Oy). Then O acts on Gr(0y,0,/C(Oy))
by multiplication, with fixed points corresponding to d,-dimensional O, submodules of O,./C(Ox).

We write P (z) for the (reduced) variety of fixed points. This is a closed subvariety of Gr(d5, O /C(Oy)).

Suppose z is an A, singularity. For notational convenience, we write P(A4,) = P(x). We
have the following:
PROPOSITION 5.3 (| , Prop. 2|). The following holds:
(i) P(A,) is connected and depends only on §,. Also, dim¢ P(As,) = n, and we have isomor-
phisms P(Azp—1) = P(A2).

(ii) If P(Ayp) is defined to be a point, then the inclusions P(Ag) C P(Az) C --- C P(Agy,) give
a cell decomposition of P(Agy,).
(iii) The singular locus Sing(P(Aszy)) = P(Aan—4a). In particular, it has codimension > 2. More-
over, P(A;) = P(A2) = CP!, and P(A4) is a quadric cone.
Define Z(S) = [[,c, P(x). This only depends on the curve singularity of S. Let J € Pic(S).
As vector spaces,
TR e 20,/0(0,) , Ty = 0,/C(0y) .

DEFINITION 5.4. A parabolic module PMod(S) consists of pairs (J,v), where J € Jac(S) and
v =1l ey Ve, with v, € P(z).

By | , p. 41], PMod(S) has a natural algebraic structure. Let pr : Pl\/Lod(g) — Jac(S) be
the projection to the first component. Then pr defines a fibration of PMod(S) with fiber 22(5).
Moreover, there is a finite morphism 7 : PMod(S) — Jac(S) defined by sending (J,v) — L,
where L is given by:

0—L—p.J —(JRO\)/v—0.

There is a diagram:

2(S) —— PMod(S) —2 Jac(S)

lf
Tac(S)

The map 7 may be regarded as the compactification of the pull-back normalization map p* in
(12).
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THEOREM 5.5 (] , Thm. 1]). For the map 7 : PMod(S) — Jac(S) defined above,

(i) 7 is a finite morphism, where the fiber over L consists of N(L) points,
(ii) The restriction 7 : 7~ Jac(S) — Jac(S) is an isomorphism. Moreover, for L € Jac(S), we
have pro 7~ 1(L) = p*(L).
(iii) Suppose 7(J,v) = L. For x € Z, we have v, € S(Lg). Let D, = s(v) be the divisor defined
n (15). Then

0—p'L/T(p°L) — J — J®0Op, — 0.
In particular, p*L/T (p*L) = J(—D,).
Suppose all of the zeros of the quadratic differential ¢ are odd. Then for L € Jac(S), N(L) = 1,

and we can deduce the following.

COROLLARY 5.6. If¢~1(0) = {p}, ..., p.} and all zeroes have odd multiplicity, then r : PMod(S) —
Jac(S) is a bijection. Moreover, for L € Jac(S) with 7(J,v) = L, we have

p'L/T(p*L) = J(= Y {yi})
For convenience, we recall the canonical example of a parabolic module.

EXAMPLE 5.7 ([ , Ex. 2]). Suppose q contains 4g — 2 simple zeros and one zero x of order 2.
Then the spectral curve S has one nodal singularity at x. Denote p : S — S the normalization,
with p~!(z) = {&4,2_}. Then 2(5) = CP', and we obtain a fibration CP' — PMod(S) —
Jac(S). Let L € Jac(S) \ Jac(S). If we write L := p*L/T(p*L), then

7UL) = {(E© O@),04), (E 0 OF),0.)} .
We can define two sections:
st @ Jac(S) — PMod(S) : J — (J,vt) ,
where vy = [1,0], v_ = [0, 1]. Then Jac(S) is the quotient of PMod(S) given by the identification
Jac(S) = PMod(S)/(sy ~ O(F_ — &4)s_) .
In particular, PMod(S) is not a fibration over Jac(S).

PROPOSITION 5.8. The singular set of PMod(g) has codimension at least 2. Moreover, if the
spectral curve S contains only cusp or nodal singularities, then PMod(S) is smooth.

Proof. As the singularities of PMod(S) come from the space Z2(S), the claim follows from
Proposition 5.3. 0

Let P := {L € Jac(S) | det(m.L) = K~} and P be the closure of P in Pic(S). Since we
focus on SL(2, C) Higgs bundles, we must consider the parabolic module compactification of the
fibration

00—V —P 2% Prym(5/2) — 0.
Setting, M(g) := 771(P), then there is a diagram from | , p- 17]
P(S) —— PMod(S) —2 Prym(5/%)
- (16)
7

1 | *

Theorem 5.5 proves that pro 77" |p = p*.
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5.5 Stratifications of the BINR data

Recall that 7 (resp. P) is the natural compactification of 7 (resp. P) induced by the inclusion
Pic(S) C Pic(9). Parabolic modules define a stratification of P and T . In the following, 7 : S — &
is a branched double cover, o the associated involution on S, and by ¢ we also denote its extension
to an involution on the normalization S of S.

For a rank 1 torsion free sheaf L € Pic(S), consider the map

pis  Pic(S) — Pic(S) , pip(L) == p"L/T(p"L) ,

i.e. the torsion free part of the pull-back to the normalization. By | |, pi(L) =p*Latx € S
if and only if L is locally free at p(z) € S.

Using the previous conventions, recall that we have the divisor
LS T2
A=) B+ 5) + ) ni
i=1 j=1
on S.
DEFINITION 5.9 (] 1). An effective divisor D € Div(S) is called a o-divisor if
(i) D <A and 0*D = D;
(ii) and for any x € Fix(o), D|, = dyx, where d =0 mod 2.
The o-divisors play an important role in describing the singular Hitchin fibers.

PROPOSITION 5.10 ([ , ). Let L € P and write L := pipL. Then we have Leo*L =
O(—D) for D a o-divisor.

For a o-divisor D, define
Tp ={J € Pic(S) | J® o*J = O(A — D)} ;

7 > (17)
Pp ={J € Pic(S) | J® o*J = O(-D)} .

By | , Prop. 5.6], when the number of odd zeros r > 0 or D # 0, Tp and Pp are abelian
torsors over Prym(5/%) with dimension g(S)—g = g—1+ 3r2. When o = 0 and D = 0, Pp and
Tp are torsors over Nm ™! (Ox) UNm™!(I), where Nm is the norm map of the covering 7 : § — ¥,

and Z is the unique non-trivial line bundle satisfies 7*Z = Og. In addition, we define
To={LeT|piL€Tp};

_ _ _ (18)
Pp={LeP|psLe€Pp}.

Then the partial order on divisors defines a stratification of 7 (resp. P) by: Up/<pT pr (resp.
Up'<pPpr). The top strata are T p—o (resp. Pp=o), and these consist of the locally free sheaves.
From the definition, 7 = 7 p—g and P = Pp—g.

THEOREM 5.11 (| , Thm. 6.2]). (i) Suppose q contains at least one zero of odd order. For
each stratum indexed by a o-divisor D, if we let ngs be the number of p such that D|, = Al,,
then there are holomorphic fiber bundles
(C*)kl % Ck‘Q N T-D Pyt ,?’-D : (19)
(€M x k2 — Pp 25 Py
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where k1 = r — Ngs, ko =29 —2— %deg(D) — 11+ Ngs — %2, and 11,19 are the number of even
and odd zeros."
(ii) Suppose q is irreducible but all zeros are of even order. Then there exists an analytic

space TJD and a double branched covering p: Tp — 77JD, with TJD a holomorphic fibration
((C*)]ﬂ > (Ckz N TJD Pyg ,’f-D ‘
In particular, dim(Pp) = dim(7 p) = 3g — 3 — 1 deg(D).

As explained in | |, via the BNR correspondence the stratification above translates into
a stratification of the Hitchin fiber. Let xpnr : T —2 M, be the bijection in Theorem 2.3. Let D
be a o-divisor. Define M, p := xBNr(T p). Then the stratification of 7 induces a stratification
on My =Up Mgyp.

For each o-divisor D, since ¢*D = D and for any x € Fix(0), D|, = dyx, where d, = 0
mod 2, we can write D' := %fr(D). Then D’ is an effective divisor with supp D’ C Z. Moreover,
for x € ¢71(0), D, < %Lordx(q)J. Therefore, M, may be regarded as also being stratified by
divisors D’ defined over X.

5.6 The structure of the parabolic module projection

We now explain the relationship between the divisor D, in Theorem 5.5 and the o-divisor.
Given L € P, define

N, = {(J,v) € PMod(S) | 7(J,v) = L} ;
91, :=A{D, | (J,v) € M.},
That is, A7, = 77 1(L), and 2y, is the collection of divisors D, such that J(—D,) = pi(L). By
Theorem 5.5, if 7(J,v) = 7(J',v), then J' = J(Dy — D,). By (16), as L € P, we have J,J' €
Prym(S/X), which implies D, = D,ys. Therefore, for the cardinalities, we have | 47| = |ZL].
Furthermore, we define Ny, := |A7| = |ZL].
The divisor D,, satisfies the following symmetry property.

(20)

PROPOSITION 5.12. Let D be a o-divisor and L € Pp. For any D, € 91, we have D,+0*D,, = D.

Proof. Let 7(J,v) = L. Then by Theorem 5.5 we have L = J(—=D,), where L = pie(L). As
L € Pp and J € Prym(S/X), we have L ® 0*L = O(—D) and J ® 0*J = Og, which implies
D,+o0*D,=D. O

As a consequence, we have the following.

COROLLARY 5.13. Suppose q has only zeroes of odd order. Then for L. € Pp and D, € 91, we
have c*D, = D,, and D,, = %D. In addition, T : PMod(S) — P is a bijection.

Proof. Since each zero has odd order, supp (D,) C Fix(o), which implies D,, = ¢*D,,. By Propo-
sition 5.12, we must have D, = %D. ]

There are relationships between the integers appearing in the construction of the parabolic
module.

1J. Horn kindly pointed out to us that the formula in the paper [ , Theorem 6.2] needs to be modified
by incorporating mss. The expressions for k1 and k2 are derived from | , Proposition 5.12] and | ,
Theorem 5.13]. Specifically, in | , Proposition 5.12], it is stated that the local contribution of p is null when

D|, = Alp, which leads to the expression ki = r1 — nss.
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LEMMA 5.14 (] ). Let D = YiL di(p; + p; ) + D_i2, dip; be a o-divisor, and let L € Pp.
Then we have

(1) Ly, = d; and £y = d;/2;
(ii) a5r = a5 = (m;/2) —d; and ay =n; — 1 —d;.
Proof. Since L € Pp, we have dimT(p*L,,) = d; and dimT(p *Ly) = d;/2. The claim then

follows from Proposition A.1. O

PROPOSITION 5.15. Let D = >t d;(pf +p; ) +>.i2, d'p. be a o-divisor, and let L € Pp. Then
Np =TI:X,(d; + 1). The number Ny, depends only on the o-divisor D.

Proof. By Lemma 5.14, V(L) can be rewritten as
V(L) ={(cis e i = by = by ) L 6f + ¢ = diy e € Zzo}
O

If we define ny to be the number of D, € Zp such that ¢*D, # D,, then we have the
following.

PROPOSITION 5.16. (i) ny, is even;
(ii) if L € Pp with
T1 2
D=3 di(p +p;)+ ) dip,
i=1 i=1
and if there exists ig € {1,...,r1} such that d;, is not even, then ny = Np; otherwise,
ny, = Np — 1.

Proof. To prove (i), note that if o*D,, # D,, then o*(c*D,) # o*D,, which means that ny, is
even. For (ii), by Proposition 5.15, D, = ¢*D, for D, € 2y if and only if c;r =c =d;/2.

Therefore, ny;, # Ny, if and only if all d; are even, which implies (ii). O
We should note that the integer ny, only depends on the Higgs divisor D and in the rest of
paper, we define np := .

6. Irreducible singular fibers and the Mochizuki map

In this section, we provide a reinterpretation of the limiting configuration construction of a
Higgs bundle on an irreducible fiber, as introduced by Mochizuki in [ | (see also [ D.
We also investigate the relationship between limiting configurations and the stratification.

6.1 Abelianization of a Higgs bundle

Let ¢ be a fixed irreducible quadratic differential with spectral curve S, with normalization
p S — 5. We define K := 7*K (but note that K # Kz g)and g:=7"q € HO(K?), where 7 is as

n (10). Choose a square root w € HO(K) such that § = —w @ w (i.e. w = p*A). Let A := Div(w)
and Z :=supp(A). We can then write

1 T2
mi, N
AzZi(prrpi)Janjp; : (21)
i=1 j=1
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If 0 : S — S denotes the involution, then o*w = —w.

Let (£,¢) be a Higgs bundle on ¥ with det ¢ = ¢. Consider the pullback (£, @) := (7*E, 7 )
to S. We have ¢ € HO(End(é') ® K) and § = det(¢). Since § = —w @ w, +w are well-defined
eigenvalues of ¢ over S. Let A be the canonical section of the pullback of K to the total space
Tot(K). The spectral curve for (5 gp) is defined by the equation

= {\—G=0}.
The set 5" = Im(w) U Im(—w) C Tot(K) decomposes into two irreducible pieces.

Having fixed a choice of w, the elgenvalues of ¢ are globally well-defined, and we can define
the line bundle L, C € as Ly := - ker(¢ — w). Since 0w = —w, L_ =0*Ly = ker(¢ +w), and
there is an isomorphism 8|S\Z ~L,®L_ \5\2.

There is a local description of (£, ).

LEMMA 6.1 (] , Lemma 5.1, Thm. 5.3],] , Lemma 4.2)). Let z € Z and write A, =
mgx. Let U be a holomorphic coordinate neighborhood of z. Then there exists a frame ¢ €
H°(U, K) such that, under a suitable trivialization of £|yy = U x C?, we can write

- 0 1
Y= zdac (ZszQdI 0> X e. (22)

Moreover, if we define D := Zm 7 dyx, then D is a o-divisor.

LEMMA 6.2 ([ , Sec. 4.1]). For the L. defined above, we have L+ ® L_ O5(D — A).

Moreover, if we denote Lo:=L.(A—D) and Ly := 0*Ly, then L, =EN Ly, L. =&£N Ly, and
we have the exact sequences

0—>f+—>é~’—>il—>0;
0—>E_—>§—>Eo—>0.
Proof. The inclusion of Z}i — & defines an exact sequence:
0—>E+@E_—>§—>T—>O,
where T is a torsion sheaf with supp 7 C Z. From the local description in (22), in the same

izmlzdz> . Therefore, as det(£) = Oy, we

obtain L, ® L_ = Og5(D — A). Since sy, s are linear independent away from z, E/Ly is locally

generated by the section z% ™= s_. Therefore, g/er ~ E,(A — D) = L. Using the involution,
we obtain the other exact sequence. O

trivialization, Ei are spanned by the bases s+ = <

Therefore, if L ® o*L = O5(D — A), we have Ly = L(A — D) € Tp. In summary, the
construction above leads us to consider the composition of the following maps given by the
composition

§: My—Tp, (£,¢) = Ly Ly(A—D),
where the first map is obtained by taking the kernel of (7*¢p — w)|z+g.

This procedure is directly related to the torsion free pull-back. Recall that xgnr : T — M,

is the BNR correspondence map, and pj; : Pic(S) — Pic(§) is the torsion free pull-back. Then
we have
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PROPOSITION 6.3. 6 o xBNR = pj. In particular, if J € Tp, then 6 o xgNr(J) € %D.

Proof. Let J € T, and write (£,¢) = xsxr(J), (£,@) := (&, ). Recall the BNR exact
sequence on S (see (3)). As p* is right exact, we obtain
E P2 60K —pJoK—0.
Since the spectral curve is S = Im(w)UIm(—w), we can consider the restriction to the component
Im(w) and write A = w, Ly := ker(¢ Fw). We obtain an exact sequence
0Ly =€ 0K —pJok —0,
which breaks into short exact sequences
0— L, —E&—Im(@-—w) —0;
0—Im(@-—w) —EQK —p*JOK —0 .

dy

Mz

Using the local trivialization in Lemma 6.1, Im(® — w) is locally spanned by ( § ) e. From
Lemma 6.2, if we write Lo := L (A — D) and L; := 0* Ly, then
§oxsNr(J) =Li(A-D).

Moreover, there is an isomorphism Im(¢ — w) = L;. Letting E’l be the saturation of Ly, then
we obtain the commutative diagram:

0 r » EQK —— pJ @ K —— 0

where i : L1 — L) is the natural inclusion. Moreover, in the same trivialization, L is spanned by

the section ( ) ¢. Therefore, Z’l ~ J,_®K and from Lemma 6.2, Pl = doxmNr(J). O

_me—dm

If (€, ¢) is a Higgs bundle with (£, ») = xBNr (L), and Lo = doxpnRr(L), then by Proposition
6.3, Lo = pi¢(L). We define a Higgs bundle (&, po) as follows

-~ .~ (w0
& = Lo ® o™ Lo, 300=<0 _w>~

Moreover, £ is an Og submodule of & with a natural inclusion ¢ : € — & satisfying the following:

(i) the induced morphism & — Lo, £ — o* Ly is surjective,
(ii) the restriction of ¢| g7 Is an isomorphism,
(i) poor=r0¢.

Following [ , Sec. 4.1], we call (&, @) the abelianization of the Higgs bundle (€, ).
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6.2 The construction of the algebraic Mochizuki map

In this subsection, we define the algebraic Mochizuki map, as introduced in | ]. Recall
that for any divisor D = ) ., d,x, there is a canonical weight function

(2) d, x€suppD ;
)=
XD 0 x¢suppD .

We also have the stratiﬁcationj' = UpT p, for o divisors D. Let .Z(S) be the space of all degree
zero filtered line bundles over S. The algebraic Mochizuki map OM¢ is defined as

oMo . T — F(S) , L — Fulpie(L), 5xD-1) -
EXAMPLE 6.4. When q has only simple zeroes, this construction generalizes that of [ |
(see also [ ]). In the case of a quadratic differential with simple zeros, the spectral curve S

is smooth, and every torsion free sheaf is locally free, so that T =T. If Z = {p1,...,p1g—a} are

the branch points of S, and A = Z?ﬁf pi, then the weight function %XfA assigns a weight of
—1 at each p;. For L € T, OM°¢(L) = F,(L, 3x—a).

Below are some additional properties of ©Mo¢,

PROPOSITION 6.5. ®M°C|7D is a continuous map.
Proof. This follows directly from the definition of ©M°¢ and Theorem 3.3. O

From Theorem 5.11, we know that for a o-divisor D, the preimage of the map pf; : Tp — T
has dimension 29 —2 — % deg(D)—ry/2, where rq is the number of odd zeros of g. Even for the top
stratum D = 0, p;; is not injective if the spectral curve is not smooth. Indeed, if L1, Ly € T p with
pi(L1) = pi(L2), then based on the construction we have OMo¢(L;) = ©M¢(L,). In summary,
we have the following result:

PROPOSITION 6.6. If ¢ € H°(K?) is irreducible, then ©M°¢ is injective if and only if ¢ has simple
Zeros.

6.3 Convergence of subsequences

Fix a locally free Ly € 7. Using the isomorphism ¢y, : 7 — P defined by ¢, (L) = LLy L
we can extend the Mochizuki map OM°¢ to P. For J € Pp, we write J := pi;(J) and choose the
weight function %X p- We then define:

oy Pp — Z(S), J s FulJ,4xp) .

PROPOSITION 6.7. The map @18/100 satisfies the following properties:

(i) Let J € P and L := LoJ, then
@18/[OC(J) — @MOC(L) ® @MOC(LO)—I ,
where & is the tensor product for filtered line bundles (7).
(ii) Suppose L = 7(I,v) with (I,v) € m& and L € Pp, then
@16/[0(: © T(I7 U) = f*(I(_Dv)7 %XDU+O—*D1)) 9
where D, is the corresponding divisor defined in Theorem 5.5.

(iii) If o* D, = D,, then ©)°¢ o 7(I,v) = F,(I,0), where 0 means all parabolic weights are zero.
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Proof. As Ly is locally free, we have pf.J = (p*Lo) ™' ® p};L. By definition,

0y'°°(J) = FulpieJ, 5xp) » (L) = Fu(plL, gxp-n) » ©M°(Lo) = FulpigLo, 5X-1)
which implies (i). For (ii), by Theorem 5.5, pi;L = I(—D,), and from Proposition 5.12, we have
D = D, + 0*D,, which implies (ii). When ¢*D,, = D,,, we compute

Foll(=Dy) , 5XD,+0+D,) = FulI(=Dv) , xp,) = Ful1,0) ,

which implies (iii). O

We now give a criterion for the continuity of the map ©M°¢. By Proposition 6.7, it is sufficient
to study the map @MOC Recall that for L € P, we have

N ={(J,v) € PMod( | 7(J,v) =L}, 2p:={D,| (J,v) € M},

and the number ny, is defined to be the number of divisors D, € 9y, such that ¢*D, # D,.
PROPOSITION 6.8. Let D be a o-divisor, L € Pp, and assume that @10\40‘3 is continuous at L.
Then, for (J,v) € A7, and D, € 91, we have 0*D,, = D,, i.e., nj, = 0.

Proof. As the top stratum P is dense in P, there exists a family L; € P such that lim; ,o L; =
L. Let (J;,v;) € PMod(S) be such that 7(J;,v;) = L;. Then, after passing to subsequences,
lim; o0 (Jiy v5) = (Joos Voo), and 7 (Joo, Vo) = L. As L; is locally free, we have D, = 0. Moreover,
by Theorem 5.5, we have pi;L = Joo(—D,,.), and from Proposition 5.12, we have D = D, +
o*D,._. . By Proposition 6.7, we have

O (L) = O} o 7(J;, v;) = Fu(Ji, 0)
and we compute

lim @MOC( ) .7:*<J0070) - f*(Joo(_Dvoo)vxDvoo) .

1—00
Moreover, by Proposition 6.7, we have
1
00 °(L) = FulJoo( Do), 5
Since ©}1°¢ is continuous on L, we have lim; ,o, O)°¢(L;) = ©M°¢(L), which implies that
XDyoo = Xo*Dyoy ]

(XDyoy + Xo*Doo))-

By Proposition 5.16, ny, > 0 if and only if ¢ has at least one zero of even order. Hence, the
following is immediate.

COROLLARY 6.9. Suppose q is irreducible and has a zero of even order. Then @13406 is not
continuous.

By contrast, we have the following.
PRrROPOSITION 6.10. If q is irreducible with all zeroes of odd order, then Gg/k’c is continuous.
Proof. Since all zeroes of ¢ are odd, for any L € P, we have ny, = 0. Let Lo, € P be fixed and
let L; € P be any sequence such that lim; o, L; = Loo. Since 7 : PMod(S) — P is bijective,
we take (J;,v;) € PMod(S) with 7(J;,v;) = L;. Moreover, we assume lim; o (J;, v;) = (Joo, Voo )

with 7(Joo, Voo) = Leo. Since ¢ contains only odd order zeros, it follows that supp D, C Fix(o).
By Proposition 6.7, we have ©}1°°(L;) = F.(J;,0). Therefore, we have:

lim ©°°(L;) = lim F,(J;,0) = Fu(oo, 0) = 031 (Loy).

i—00
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This concludes the proof. ]
THEOREM 6.11. Suppose q is irreducible. For the map ©M°¢ : M, — ﬂ(g), we have:

(i) ©Mec js injective if and only if q only has only simple zeros;

@Moc

(ii) if q has only zeroes of odd order, is continuous;

(iii) if ¢ contains a zero of even order, @©M°¢ is not continuous.

Proof. (i) follows from Proposition 6.6. (ii) follows from Proposition 6.10. (iii) follows from
Corollary 6.9. O
PROPOSITION 6.12. Suppose ny, > 0. Then for k = 1,...,ny, there exist sequences Lf € P with
lim; o Lf’ = L such that if we denote FF := lim;_,oo 9%/100(Lf), FU .= @g/IOC(L), then Fk1 £ Fko
for k1 # ko. Moreover, there exist {Dy,..., Dy, } C 9y, such that FF = Fe(piL, xD},)-

Proof. By the definition of ny, we can find (J*,v*) with 7(J* v*) = L. If we define Dy, := D,
then o* Dy, # Dj. Moreover, by Theorem 5.5, we have pi;L = J*(—Dy). As 7~1(P) is dense in
%(5), for each (J*,v¥), we can find a sequence (JF,vF) € 771(P) such that lim;_,o. (JF, vF) =
(J*,v*) and we define L¥ := 7(J¥,vF). Since L¥ is locally free, D, = 0, and thus ojlec(Lk) =
Fi(JF,0). We compute

lim O)°°(LF) = F.(J*,0) = Fu(pitL, xD,)

1—00
and O)1°°(L) = F.(pj;L, 3xp). Based on our assumptions, we have Dy, # Dy, for ki # ky and
0* Dy # Dy, which implies that XDy, %+ XDy, for k1 # ko and xp, # %XD- O

We now present a computation for the case of a simple nodal curve.

EXAMPLE 6.13. Let g be a quadratic differential with 2g — 4 simple zeros, and let x be an even
zero of q of order two. Then S has a singular point, which we also denote by x. Let p : S S
be the normalization map and p~!(x) = {x1,72}. Consider the o-divisor D = x1 + 2, and let
L € Pp. Then ny, = 2, and we can write A7, = (J1,v1), (J2,v2), where D,, = 1 and D,,, = x3.
Moreover, we have pf;L = J; ® O(—x1) = Jo ® O(—x2). Let (o, B) denote the parabolic weight
that is equal to a at x1, B at xo, and % at all other zeros. Then the filtered bundles obtained in
Proposition 6.12 are

]:*(p:fL’ (170)) ’ f*(p:flﬁ (07 1)) ’ ]:*(p:va (%7 %)) :

6.4 Mochizuki’s convergence theorem for irreducible fibers

In this subsection, we recall Mochizuki’s construction of the limiting configuration metric
[ , Section 4.2.1, 4.3.2] and the convergence theorem.

6.4.1 Limiting configuration metric. Let ¢ be an irreducible quadratic differential and (&, ¢) €
M, a Higgs bundle with (£, ¢) = xpNr(L). We write Ly = piyL and (£,9) := p*(£,¢). Then the
abelianization of (£, ), which is a Higgs bundle over S , can be written as Eo=Lo® J*Zo, Po =
diag(w, —w). The natural inclusion ¢ : (£, @) — (€, @o) is an isomorphism over S\ Z. Moreover,
we let D be the o-divisor of (&, ¢).

From the construction of ©M°¢(L) and Proposition 6.12, we have nj, different divisors D, for
k=1,--- ,np with ¢*Dy # Dy and Dy + 0*Dy = D. Moreover, we can find ny, + 1 different
filtered bundles with deg 0. Define

]:*70 = @MOC(L) - ]:*(507X%(D7A)), ]:*,k = ]:*(E(MX(DkféA)) )
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which are all degree zero filtered bundles with different level of filtrations.

Now we will introduce the construction in | , Section 4.2.1, 4.3.2]. For k = 0,--- ,np,
we define hy to be the harmonic metric for the filtered bundle F, & thls is well- deﬁned up to a
positive multiplicative constant. To fix this constant, assume that o hk ® hi = 1. This gives a
unique choice of hy. We then define the metric Hy = diag(hy, o hk) on &, with det(Hk) = 1. For
the resulting harmonic bundle (go, ©o, H k), we define Vi to be the unitary connection determined

- - ~ t
by Hj. Since Hy, is diagonal, over S\ Z, it follows that Fg = 0, and we have [0, 05 *] = 0.
Furthermore, as ¢ is an isomorphism on S\ Z, the metric Hy, also defines a metric on (£, @) over
S\ Z.
For any & € S\ Z with z := p(Z), we have isomorphisms
(€0, 20)|o(z) = (€0, P0)lz = (E,0)|z = (E,9)a

Therefore, H ¢ induces a metric H };im on X\ Z, and we may consider H,I;im as the push-forward
of hg. In [ , Theorem 5.2], the push-forward metric of @M°¢(L) is explicitly written in local
coordinates.

Recall the notation from Section 2.4. Let E be a trivial, smooth, rank 2 vector bundle over a
Riemann surface 3, and let Hy be a background Hermitian metric on E. Over ¥\ Z, we write V};im
for the Chern connection defined by H ,I;im, which is unitary w.r.t. Hy and (bl,;im = gp};im + chLim be
the corresponding Higgs field in the unitary gauge. They satisfy the decoupled Hitchin equations
over ¥\ Z. Thus from any Higgs bundle (&, ¢), we obtain nz, + 1 limiting configurations

(VE™, 0™ = o + o) € M
The flat connection, which is defined over X\ Z, may be understood by using the nonabelian

Hodge correspondence for filtered vector bundles | ]. Given filtered line bundles F, j, define
filtered vector bundles &, j, := Fi @ 0*F ), which can be explicitly written as

g*,o 1= ]'—*@07)(%@7/\)) D f*(U*EOaX%(DfA)) ;

- - - (23)
5*,1(: L= ]:*(L07XD]€7%A) EB‘;E*(O- LO?XU*DkféA) ) k 75 0.

These are polystable filtered vector bundles over S \ Z. As for each k = 0,---,nr, a*g*’k = Eu ks
the filtered bundles g*k induce filtered vector bundles &, over ¥ \ Z. The flat connections
VI,;im will be the unique harmonic unitary connections corresponding to the &, ;. Moreover, for
0 < k1 # ko < np, based on the deﬁnition~of Dy, qu Dy, we can always find = € Zeven, a
preimage of an even zero x of ¢, such that &, ;, and &, , have different filtered structures near
I. Since over even zeros, S — ¥ is not a branched covering, we conclude that near x, &, ), and
& i, are different filtered bundles. By | , Main theorem|, the harmonic connections V, and
Vi, are not gauge equivalent.
We therefore conclude the following;:

PROPOSITION 6.14. For 0 < ki # ko < ngp, (V %im, ¢L1m) and (V%;m, le) are not gauge equiva-
lent in /\/llﬁlftn

Moreover, as with the algebraic compactification of the elements in the C* orbit, we would like
to compare with the limiting configurations in the space ./\/llﬁlftn /C*. Over the Dolbeault moduli
space Mp,l, there is a natural Zy action given by (€, ¢) — (£, —¢), and the fixed point of the Za

action is defined to be the real locus of the Dolbeault moduli space, which we denoted by Mﬂsol.
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It follows from | , Theorem 6.2] that the source of the orbifold points of the algebraic
compactification comes from the quotient of the real locus. Moreover, for (£,¢) = xBNr(L),
(&,p) € ME_, if and only if 0*L = L.

Given a Higgs bundle (€, ¢), under the previous convention we let

(€0 = Lo ® 0* Lo, po = diag(w, —w))

be the abelianization of (£, ¢). Note that o*(Ey, o) = (€0, @0) and Ly is the eigenline bundle
for pg with eigenvalue w. Therefore, (go,géo) is gauge equivalent to (go,—cﬁo) if and only if
Eo = O’*EQ, which is equivalent to (€, ) lies in the real locus. For the collection of divisors
9 :={Dr,---,Dy, }, for any Dy, € Z, we have 0*Dj, € 2. Therefore, there exists a permutation
of the index 7 : {1,-- ,np} — {1,--- ,ny} such that D, ) = 0*D;, with 72 = id.

Suppose for the limiting configurations in (23), (g*,kl, ©p) is gauge equivalent to (g*,;w, —0)-
Then the eigenline bundle for eigenvalue w will be gauge equivalent, which implies

f*(LO7XDk1—%A) = ‘F*(O'*L()’XU*D}Q—%A)'

The above equality holds if and only if Eo = a*zo and k1 = 7(ke). In summary, we conclude
the following:

PROPOSITION 6.15. Let [(VE™, ¢Mm)] be the C* equivalence class of (VE™, ¢H™) in the space
MEm /C*. Then the following holds:
(i) Su;zpose (E,0) ¢ ME_,, then for any 0 < ki # ks < ny, [(V%im, I,;im)] # [(VI,;;“, ],;;m)] in
M /C*.
(ii) Suppose (€,¢) € ME |, then [(V I,;im,gﬁL‘m)] = [(V%;m, I,;;m)] in M&m/C* if and only if
/{1 = /{2 or k‘l = T(]i'2)

In particular, when (€, ¢) ¢ ME |, we obtain 1+ 2np different C* equivalence classes of the
limiting configurations in MH™/C* and when (£,¢) € ME |, we obtain 1 + np different C*
equivalence classes of limiting configurations in M&m/C*.

We define the analytic Mochizuki map YMC as
MO My — MER (€, 9)] = (V5™ 66™)], (24)
which we recall is the limiting configuration defined by ©@M°¢(L).

6.4.2 The continuity of the limiting configurations. We now introduce the main result of
Mochizuki | |. Fix (£,¢) = xBNr(L) € M,. For any real parameter ¢t > 0, (£,tp) is a
stable Higgs bundle. By the Kobayashi-Hitchin correspondence, there exists a unique metric Hy
solving the Hitchin equation. Denote by V; the unitary connection defined by H; and write
Dy = Vi + t¢y for the full SL(2,C) flat connection. We then have:

THEOREM 6.16 (| I, [ , Theorem 1.7]. The family (€, ty) has a unique limiting config-
uration YM°¢(&, ) such that for any compact set K C ¥\ Z,

. Moc _
Jim (Ve o) = TUE ) lery = 0.

Moreover, if write (€, ) = xBNr(L), suppose L = p*z, then there exist t-independent positive
constants Cy g and C} - such that

(e, ¢0) = TMOC(E, P)lex) < Cz,Kefol/’Kt .
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As the map TM¢ is the composition of ©M°¢ o X]SI{IR with the nonabelian Hodge correspon-

dence, the behavior of TM¢ i the same as O©M°°. Recall the decomposition My =UM,p from
the end of Section 5. By Theorem 6.11, Proposition 6.12, Proposition 6.14 and Proposition 6.15,
we obtain:

THEOREM 6.17. Let ¢ be an irreducible quadratic differential. The map YTMo¢ . My — Mhlftn
satisfies the following properties:
(i) if all the zeros of q are odd, then YM°¢ is continuous;
(ii) if at least one zero of q is even, then for each (F,v¢) € Mg p, there exists an integer 2np
that only depends on D, and 2np sequences {(EF, o)} for k =1,...,2np, such that
* limy oo (EF, ©F) = (F,¢) fork =1,...,2np,

* and if we write

n® = lim TMOO(ER tigf) &= lim TMOY(F )

1—00 1—00
- if (F,1) doesn’t lie in the real locus, then &,n', ... ,n*"P are 2np + 1 different
limiting configurations,
- if (F,b) lies in the real locus, then ' = n"P* fori =1,--- ,n and we obtain np +1
different limiting configurations.

7. Reducible singular fiber and the Mochizuki map

We now investigate properties of the Hitchin fiber associated with a reducible quadratic
differential, as discussed in | |. Additionally, we provide an overview of Mochizuki’s technique
for constructing limiting configurations of Hitchin fibers for reducible quadratic differentials, as
detailed in | |. We also analyze the continuity of the Mochizuki map.

7.1 Local description of a Higgs bundle

Write ¢ = —w®w withw € HY(K), A = Div(w), Z = supp (A), and M, = H(q). Compared
to the irreducible case, M, contains strictly semistable Higgs bundles, so we let /\/lf]t denote the
stable locus. We point out that there is a sign ambiguity in the choice of w, which actually plays
an important role in the following.

7.1.1 Local description. Given a Higgs bundle (£, ¢) with det(¢) = ¢, define line bundles
Ly :=ker(ptw). (25)

Then the inclusion maps L+ — £ are injective. Similarly, we may define an abelianization of
(&E,p) by (&0 =Ly @ L_, 9y = diag(w, —w)). We then have a natural inclusion ¢ : & — &, which
is an isomorphism on X\ Z, and ¢ ot =1 0 ¢y.

It follows from | , Prop. 7.10] that Ly are the only @-invariant subbundles of £. If we
write dy := deg(L4), then (&, ) is stable (resp. semistable) if and only if d+ < 0 (resp. < 0).
As det(€) = O, the map det(r) : Ly ® L — O defines a divisor D = Div(det(¢)) such that
Ly ® L_ = O(—D). Therefore, we obtain

d++d7—|—degD:0,

and 0 < D < A. The Higgs bundle (€, ) is semistable if and only if —degD < d4 < 0 and
stable if the equalities are strict. For the rest of this section, we always write D = Zpe 7 4pp.
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By M, p we mean the set of Higgs bundles (£, ) € M, for which the relation L, ® L_ =
O(—D) holds. Consequently, we have My = Jy<c p<p Mg, D-

7.1.2 Semistable settings. As the fiber M, might contain strictly semistable Higgs bundles,
we now explicitly enumerate all of the possible S-equivalence classes. When D = 0, then L_ =
Ljrl and deg(Ly) = 0. The corresponding Higgs bundle is polystable and can be explicitly written

as
<L ®L™ (‘(‘)’ —0w>) ’

where L € Jac(3). When D # 0, suppose deg(L;) = —deg(D). Then L_ = L;'(—D) and
deg(L_) = 0. Under S-equivalence, the polystable Higgs bundle is

(L+(D)® LT (-D), <05 —Ow)> ’

where L, € Pic™4¢(P) (%),

7.2 Reducible spectral curves

In this subsection, we introduce the algebraic data in | ] which describes the singular
fiber with a reducible spectral curve. This plays a similar role to the parabolic modules. See
[ , Sec. 7.1] for more details.

For any effective divisor D, and line bundle L, define the space

H'D.L)= @ O(L)y/~,

pEsupp D

where s; ~ s9 if and only if ord,([si] — [s2]) > D,. Let L € Pic(X), and define the following
subspaces of HY(A, L2K):

V(D, L) := {s € H*(A, L*K) | ord,(s) = A, — Dy, if D, > 0; s|, = 0, if D, = 0},
W(D7L) = {S € HO(Aa LQK) | 5|supp (A-D) = O} .

One checks that W(D, L) = Upr<pV(D’, L). Moreover, the space V(D, L) is a linear subspace of
H°(A, L?K) with a hyperplane removed. In addition, C* acts on V(D, L) by multiplication, and
dim(V(D, L)/C*) = deg(D) — 1.

We define the fibrations

Pm : YV (D, m) — Pic™(X), pm : #(D,m) — Pic" (%)
such that for L € Pic™(X), the fibers are V(D, L) and W(D, L).

7.2.1 Algebraic data from the extension. The Higgs bundle (£, ) can be understood in terms
of an extension. Since det(£) = O, we have the exact sequence

0— Ly —E&— L' —0.

For each p € Z, with U C ¥ a neighborhood of p, (£, ¢) can be written in terms of a splitting
of C*° bundles
_ 5L b w c
_ -1 _ + _
6—L+@COOL+ ,65—( 0 8L+1> ,g0—<0 —CU) .
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Now consider go‘ - Because the induced morphisms
(L), — Ly @ K)|, , (E/Ly)], — (E/Ly @ K)|,

both vanish, we obtain a map s : L7'[y ~ (6/L+)‘A — Ly K]|a, or equivalently a section
s € HY(A, L2 K). Moreover, by | , Lemma 7.12], Div(s) = A— D, where Div(s) is the divisor
defined by zeros of s. Therefore, given any (£, ¢) € M, we obtain an L € Pic™(X) and an element
in V(D, L). The stability condition implies that 0 < D < A, we have —deg D < deg L < 0.

7.2.2 Inverse construction. The inverse of the construction above also holds; for further
details, see | , Sec. 7] and | , Sec. 5]. Given L € Pic™(X) and s € V(D, L), we define
a Higgs bundle via extensions as follows. From ¢ = —w ® w, L, we have a short exact sequence
of complexes of sheaves:

res(A)

0 y L2 —— L’K y LKy —— 0

where, for a section s’ € I'(L?), ¢(s') := v/—1ws’, and res(A) is the restriction map to the divisor
A. The long exact sequence in hypercohomology implies that res(A) induces an isomorphism

res(A) : HY(C3) = H(C}) = H(A, I°K) .
Moreover, H!(C3) fits into an exact sequence
0— W, — HYC)) — Wy, — 0,

where

Wi = coker (c: H(L?) — H°(L*K)) ;

Wy = ker (c: HY(L?) — H'(L?K)) .
Now H'(X, L?) parameterizes extensions

0—L—E&—L'—0.

Given b € Wa, we can find ¢ € T'(L?K), d¢’ = 2bw, and construct a Higgs bundle

_ 45 _ (0 b (w
E=L®c~ L ,8E—<0 éL—l , = 0 —w)’ (26)

For 0 < D <A and —degD < m < 0, the construction above defines a map
- "f/(D’m) — Mq y S € V(DvL) = [(87()0)] )

where [(£, )] is the S-equivalence class of the Higgs bundle constructed in (26) (note that for
(b, ') # (0,0), the orbit of (£, ) is closed in the semistable locus if and only if deg(L) # 0).
When D = 0, V(A, L) = {0} and the image of p : ¥'(A,0) — M, consists of the polystable Higgs
bundles £ = L @ L™!, ¢ = diag(w, —w) such that L? = Oy,.

THEOREM 7.1 (][ , Thm. 7.7]). For 0 < D < A and —deg(D) < m; < 0 and the map
o: Y (D,m1) - Mg, we have
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(i) for mg = —deg(D) — mq, we have (¥ (D, mq)) = p(¥ (D, ms)),

(ii) for the C* action on ¥ (D, my) by multiplication, for £ € ¥ (D, m1), p(C*§) = p(&),

(iii) when my # —3 deg(D),0,—deg(D), o : ¥(D,m1)/C* — My, is an isomorphism onto its
image,

(iv) when m; = —3deg(D), p : ¥ (D,m1)/C* — Mg is a double branched covering, which
branched along line bundles L € Pic™! (X)) such that L? = O(-D),

(v) when D = 0, then p : ¥(A,0) — M, is a double branched covering, branched along
L € Pic%(%) such that L* = O.

(vi) when my = 0,—deg(D), p : 7 (A,0) = M, is surjective but not injective. The image of ¢
are all polystable Higgs bundles.

REMARK. Parts (iii) and (vi) of Theorem 7.1 are different from the statements in [ , Theo-
rem 7.7]. Because of the S-equivalence, when m; = 0, — deg(D), the map ¢ will not be injective.
We thank the authors of [ | for clarification of this point.

EXAMPLE 7.2. When g = 2, for ¢ = —w Q@ w, we can write A = p1 + py or A = 2p. In either case,
the M3' = (¥ (D, m)) for —deg(D) <m < 0 and 0 < D < A. Therefore, m = —1, D = A and
o(¥V (A, —1)) = M. Moreover, generically, the map  : (¥ (A, —1))/C* — M is two-to-one.

7.3 The stratification of the singular fiber

We now present two stratifications of M. Recall that from any Higgs bundle (£, ¢) we obtain
two line bundles L1+ and a divisor D. There are two different stratifications: one given by the
divisor D and the other by the degree of L.

7.3.1 Divisor stratification. We first discuss the stratification defined by the divisor. Indeed,
using D, decompose into strata: M, = UongA Mg p. As the definition of L+ depends on the
choice of the square root, there is no natural map from Mp to Pic(X). Consider the following
space: Vo = U_ geg(p)y<m<o ¥ (D, m). This forms a fibration

7:Vp — U Piem(®).
—deg(D)<m<0
Moreover, for L € Pic™(%), we have 771(L) = #(D, L) and dim(r~1(L)/C*) = deg(D) — 1. By
Theorem 7.1, ply, : Vp — Mp is surjective. Since
oly (Dm) = ©ly(D,— deg(D)—m)
generically, ply, is a two-to-one map.
In summary, we obtain the following map which characterizes the singular fiber.
p:V= |J Vp=>M;= |J Mqp.
0<D<A 0<D<A
The top stratum is given by D = A.
7.3.2 Degree stratification. We next introduce the stratification defined by degrees; this en-

codes how different divisor stratifications are glued together. For —(2g — 2) < m < 0 and
L € Pic™(X), define W(L) := Ugeg p>—m V(D L). This set is connected, based on the definition
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and [ , Lemma 7.14]. Moreover, if we define
W = U Y(D,m), W:= U W s
—m<deg D, 0<D<A —(2g—2)<m<0

then we have p(W) = (V). We should also note that though W,, "W,, = () for any m # n, W
is connected. As L, L_ are symmetric, by Theorem 7.1, we have

p(7(D,m)) = (¥ (D, —deg(D) —m)) ,

which implies that for any integer —(2g — 2 +m) < n < 0, pW,,, N W,, # 0.
We now give an example of the degree stratification when g = 2.

EXAMPLE 7.3. Suppose w has only one zero with order 2. Then A = 2p, and all possible divisors
are Dy = 2p, D1 = p, Dy = 0. The degree stratification is

W_y =7(D2,-2) , W_q =7 (Da, —1) U ¥ (D1, 1)

Wo = 7 (Dy,0) U ¥ (D1,0) N ¥ (D3,0) .
The image of (¥ (D2, —1)) is stable, (¥ (Dy,0)) is poly-stable and o(# \ (¥ (D2,—1) U
¥ (Dy,0))) is semistable.

Moreover, we have (¥ (D2, —2)) = (¥ (D2,0)), p(¥ (D1, —1)) = (¥ (D1,0)) and p|y(p,,—1)

is a branched covering. Furthermore, we have p(¥ (D2, —1))Np(¥ (D1,0)) # 0 and p(¥ (D2, —1))N
(7 (Do,0)) = 0.

7.4 Algebraic Mochizuki map

Based on the study of the local rescaling properties of Higgs bundles, Mochizuki introduced
a weight for each p € Z in | , Sec. 3]. To be more specific, let ¢ be a real number. For each
p € Z, the weight we consider is given by

Xp(c) = min{l,, (m, + 1)c+ £,/2} ,
where Div(w) = >_, mpp and £, is defined in Section 7.1.1.

By utilizing the global geometry of a Higgs bundle, we can uniquely determine the constant
c. We aim to choose the sign of w such that dy < d_.

LEMMA 7.4 ([ , Lemma 4.3]). If (£, ¢) is stable, then there exists a unique constant ¢ > 0
such that

dy + ZXP(C) =0, d + Z(ep —xp(c)) =0.

pPEZ pEZ

Proof. Since (£, ¢) is stable, we have — ) ¢, < d+ < 0. We define the function
fle)=di+ xplc) (27)
p

which is strictly increasing. Moreover, for ¢ sufficiently large, x,(c) = ¢,, and therefore f(c) =
di+3, ¢y = —d— > 0. Additionally, f(0) = d4++>_,(£,/2). Since dy < d_ anddi+d_+3_ () =
0, we obtain f(0) < 0. The monotonicity of f implies the existence of ¢y such that f(co) =0. O

From the construction, if d4 < d_, two weighted bundles (L4, xp(co)) and (L—, ¢, — xp(co))
are obtained with weights x,(co) and ¢, —xp(co) at each p € Z, respectively. On the other hand, if
d4 > d_, by symmetry, weighted bundles (L4, ¢, — xp(co)) and (L_, xp(co)) are obtained. When
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(€, ) is strictly semistable, S-equivalent to (L,w) @ (L~!, —w), then we would like to consider
the weighted bundles (L, 0) @ (L™, 0) with weight zero.

Next, we define the algebraic Mochizuki map. Let .71 (X) be the space of rank 1 degree zero
filtered bundles on ¥, and let %5(X) := Z(X) x Z#_(X) be the direct product. Fix a choice of
w. Then from any Higgs bundle (&, ¢), we obtain the subbundles Ly with degree di and define
the algebraic Mochizuki map

oMo M, — (%),
@Moc(g 90) — {f*(L+aXp(CO)) @f*(L*aép - XP(CO))’ if d+ <d-

7 Fe(Ls, by — xp(co)) @ Fu(L—, xp(co)), if d- < dy”
oMoc(g ) := F.(L,0) @ F.(L71,0), (£, ¢) semistable.

(€, p) stable,

We list some properties of this map.
PROPOSITION 7.5. For OM°¢ we have:
(i) for each ¥ (D, m) with 0 < D < A, —deg(D) < m <0, OM°|_y(p ) is continuous,
(i) fori=1,2 and s; € Vp with (&, ;) := p(s;), suppose 7(s1) = 7(s2), then OM¢(&y, 1) =
OMoc(&,, o). In particular, O©M° is not injective.

Proof. The proof follows directly from the definition. O

A Higgs bundle (£, ¢) € M, is called “exotic” if the constant ¢ in Lemma 7.4 satisfies ¢ # 0.
This new behavior only appears in the Hitchin fiber with reducible spectral curve.

PROPOSITION 7.6. A Higgs bundle (£, ) is not exotic if and only if its corresponding degrees
satisfy dy = d_.
Proof. This is straightforward from the definition and Lemma 7.4. O

7.5 Discontinuous behavior

In this subsection, we study the discontinuous behavior of ©@M°¢. Consider a sequence of
algebraic data (L;, q;) € W,,,, where L; € Pic™ and ¢; € ¥ (D, L;). We assume that lim; , ., L; =
Lo in Pic™ and lim; o0 ¢ = goo € ¥ (Do, L), for Dog # D. As the space Ugeg prs—m YV (D',m)
is connected, we can always find such a sequence.

Let L, := L; and L' := L;' ® O(—D). By Lemma 7.4, the weight function, which we denote
by x4+, is independent of 4. In addition, we have

lim O 0 p(Ls, ¢i) = Fi(Loo, X+) ® Fu(Lz (=D), x-) -

1—>00
For (Loo, goo € ¥ (Dwo, L)), let x5° be the corresponding weights. These depend on Dy, and m.
Then

OMC 6 o(Loo, Goo) = Fiu(Loo, XT) ® Fu(Log ® O(=Doo), X -
Therefore, we obtain

lim @Moc o(L;, qi)
=0V 0 p(Loo, Goo) ® (Fx (O, x+ —XT°) ® Fu(O(Doo — D), x— — X)) .

PROPOSITION 7.7. When g > 3, there exists a sequence (&;,p;) € M, of stable Higgs bundles
with stable limit (Ex, Yoo) = lim;_,00(&;, i) such that

Alim @MOC(EZ', (,OZ') 7& @Moc(gom Sooo) .
i—00
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Proof. Choose D = A and dy = —(g — 1) with L; = L € Pic+ (%), and study the degenerate
behavior for a family ¢; € V(A, L) which converges to ¢oo € ¥ (Do, L). Here, Dy satisfies
Do < D and deg(Ds) = deg(D) — 1. As ¢; lies in the top stratum, we can always find such a
family. Take (&, i) = ©(Li, ¢;) and (Eso, Poo) = (L, ¢oo). When g > 3, we have —deg(Doo) <
dy < —% deg(Doo), which implies (€, ¥o) is a stable Higgs bundle.

Write D = > £,. As (&, ;) is nonexotic, the weights will be x4 (p) = x-(p) = £,/2.
However, as deg(Doo) # 2d4, (€0, Poo) is exotic. By Proposition 7.6, if we write x3°(p) for
the weight functions with corresponding constant ¢, then ¢ > 0. Therefore, for p # pg, we have

XE(p) = (mp+1)c+mp/2 > mp/2 = x4(p). By (28), limjoe OM(Ej, i) # OM(Exc, o). O
When g = 2, the stratification is simpler, and we have the following.

ProprosIiTION 7.8. When g = 2, the following holds:

(i) Suppose A = py + pa for p1 # po, then ®M°C|Mzt is continuous. Moreover, there exists a
sequence of stable Higgs bundles (&;, p;) € Mg where the limit (o, Poo) = lim;—00 (&, ¢4)
is semistable, and v(0) is also semistable and furthermore

lim ©M°C(E;, ) # OM(Exc, poc) -
1—00
(ii) Suppose A = 2p. Then C"‘)MOC‘Mflt is continuous.

Proof. For (i), suppose A = p; + p2, then by Example 7.2, we have _/\/lzt = p(¥(A,-1)). By
Proposition 7.5, @lqvloc\ Mt is continuous. However, for semistable elements other strata must
be taken into consideration. Take L € Pic™1(X) and ¢; € V(A, L) such that ¢; convergence to
doo € V(p1, L). We define (&, ¢;) = 9(L, ¢;) and (€, Poo) = (L, goo). For each 1,

oMoc (&, ) = Fu(L, (3, 1) & Fu(LTH(=A), (3. 3)).

Moreover, we have

OM(Euc, o) = Fu(L(D), (0,0)) & Fu(L™(=D), (0,0)) # lim ©Y(E;, ;).

1—00
For (i), by Example 7.3, o(¥ (D2, —1)) = M3' and by Proposition 7.5, @2/[00]/\,@ is continu-
ous. We now consider the behavior of the filtered bundle when crossing the divisors. O

7.6 The analytic Mochizuki map and limiting configurations

In this subsection, we construct the analytic Mochizuki map for the Hitchin fiber with a
reducible spectral curve. We also introduce the convergence theorem of Mochizuki as stated in
[ | and examine the discontinuous behavior of the analytic Mochizuki map.

For (&, ) € M, we can express the abelianization as (&, po) = (Ly & L, <bg _Ow) ), thus
oMo p) = Fu(Ly,x+)®L_(L_,x_) € F»(X). Via the nonabelian Hodge correspondence for
filtered bundles, we obtain two Hermitian metrics h¥™ with corresponding Chern connections
AhI:Eim. These metrics satisfy the following proposition.

PROPOSITION 7.9 (| , Lemma 4.4]). The metrics h''™ over Ly satisfy
i) Fa i, =0 and RE™RE™ =1,
+

ii) for every p € X, there exists an open neighborhood (U, z) with P = {z = 0} such that
|z|~2xw(co) plim and |z|2xp(c0)+2le pLim oxtends smoothly to L|y.
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Now, HUm := plim ¢ pLim j5 a metric on & which induces a metric on (€, ¢)|s\z because
(&,9)Ix\z = (€0, p0)|5\z- Let (AUm plim) he the Chern connection defined by (&, ¢, H™) over
¥\ Z. Then (AM™ ¢lm) s a limiting configuration that satisfies the decoupled Hitchin equations
(9). The analytic Mochizuki map YTM°¢ is defined as:

’I‘MOC . Mq N ./\/thllrtn7 TMOC(57 90) — (ALim’ ¢Lim)‘ (29)
Note that H“™ is not unique: for any constant ¢, the metric cthrim @ ¢~ 1hM™ defines the same

Chern connection as HM™ . In any case, the map TM¢ is well-defined.

Suppose (&, ) is an S-equivalence class of a semistable Higgs bundle. Let H; be the harmonic
metric for (€, ty). For each constant C' > 0, define pc to be the automorphism of Ly @ L_ given
by pc = Cidr, @ CHd, . AsEXL,®L_onX\Z, peHy can be regarded as a metric on
Els)\z- Take any point x € ¥\ Z and a frame e, of L|r, and define:

h%im(exvex) 1/2
o +
C(x,t) := (Ht(ex,ex) )

Writing V; + t¢; as the corresponding flat connection of (€, t¢) under the nonabelian Hodge
correspondence, then

THEOREM 7.10 (| ]). On any compact subset K of ¥\ Z, 1461y He converges smoothly to

z,

HY™_ In addition, we have lim;_.q |(Vy, ¢y) — TMOC(E, ®)lerxy = 0.

Comparing to the irreducible case Theorem 6.16, it is currently not known that the conver-
gence of (Vy, @) to TMOC(E ) is uniform.

Propositions 7.7 and 7.8 now give

THEOREM 7.11. (Theorem 1.3) When g > 3, TMOC\MZt is discontinuous, and when g = 2,

TMOC|MZt is continuous.

8. The Compactified Kobayashi-Hitchin map

In this section, we define a compactified version of the Kobayashi-Hitchin map and prove
the main theorem of our paper. The Kobayashi-Hitchin map = is a homeomorphism between
the Dolbeault moduli space Mp, and the Hitchin moduli space Myj. We wish to extend
this to a map = from the compactified Dolbeault moduli space Mp, to the compactification
My C My U /\/lh‘;f‘ of the Hitchin moduli space, and to study the properties of this extended
map.

8.1 The compactified Kobayashi-Hitchin map

We first summarize the results obtained above. By the construction in Section 4, there is
an identification OMpy = (Mpe \ H1(0))/C*. Moreover, through (24) and (29), we have
constructed the analytic Mochizuki map YMo¢ : Mpg \ H~1(0) — M{™. Writing

(Al ghm = g pltim) = TMOC(E, ) |
then for w € C*, we have

TMOC(g’wSO) _ (ALim,QSLim = wp + ,LDSOTLim) )
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Hence, TMo¢ descends to a map 0= between C* orbits:
OZ : OMpor = (Mpol \ H™1(0))/C* — My /C* .

Together with the initial Kobayashi-Hitchin map = : Mpo — Mpyjit, we obtain (2):

[1]]

: ﬂDol = Mpg U 8MD01 — M U Mﬁﬁ?/@* . (30)

Theorems 6.16 and 7.10 show that for a Higgs bundle (£,) € Mpg \ H~1(0) and real ¢,
limy 00 2(E, tp) = 8f[(5,g0)/(C*]. Thus the image of = lies in My, the closure of My in
Muir U Mpep \ 7—[ 1(0). There are natural extensions Hpel : Mpe — B and Hyjit : Mpy — B
such that Hpit 0 2 = Hpol.

In summary, there are commutative diagrams

[1]\

Mpop —— Muit  Mpg —— M

Mpol —— Muit

[1]\

We now turn to the analysis of some properties of the compactified Kobayashi-Hitchin map.
Define

B — {l(q,w)] € B| q # 0 has simple zeros} .

This is the compactified space of quadratic differentials with s1mple zeros. Let B8 = E\Breg be

its complement. Additionally, define the open sets Mpy = ’HDOI(Breg) and M;ht HHlt(Breg)
as the collections of elements with regular spectral curves. Set MDH;% = HDOl(Bsmg) and Mﬁ?tg =
HHit(Bsmg) to be the sets of singular fibers. We can write Z =2 = e

U= ", where
reg —“—reg ——reg =sing  ——sing ——sing
MDol MH1t7 — MDol MHlt :
S1n, S1n,
PROPOSITION 8.1. The map = = : Mps — My is bijective, whereas = ./\/lDO‘;g MHltg is
neither surjective nor injective.

Proof. The bijectivity of =" is established by Theorem 4.9. The non-surjectivity and non-
injectivity of 2 ¢ follow from Theorems 6.17 and 7.11. O

8.2 Discontinuity properties of the compactified Kobayashi-Hitchin map

In this subsection, we prove that the discontinuity of the compactified Kobayashi-Hitchin
map (30) is fully determined by the discontinuity of the analytic Mochizuki map.

Let (&;,tipi) be a sequence of Higgs bundles with real numbers t; — +o0, det(p;) = ¢,
Z;i = ¢; 1(0), and ||g;|| ;2 = 1. We denote & = [(&;, tipi)] € Mpel. By the compactness of Mp,,
after passing to a subsequence, we may assume there is £oo € OMpe such that lim; o & = &
Since OMpel =2 (Mpo \ H71(0))/C*, we can select a representative (Exo, Poo) Of £so. By Lemma
4.4, we have that (&;,¢;) converges to (Eso, Poo) I Mpol, and ¢; converges to goo. We write
oo = qgol(O). We note that for different choice of t;, as long as lim;_,., t; = +00, after passing
to a subsequence, we always have lim; ,o £ = £ € Mpol.

By Proposition 4.6, lim; ., =(&;, t;p;) exists. The following result establishes the discontinuity
of this map with respect to the analytic Mochizuki map YTMoc,
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PROPOSITION 8.2. Under the previous conventions, and suppose q;, oo are irreducible. Consider
(& i) € My, if im0 TMoc(&; ;) # TMO(E, o), then there exist constants t; such that
for & := (&, t;p;), we have lim;_,o0 2(&) # Z(€xo)-

Proof. Set
E(& tipi) = E(&i tipi) = Ai + tigi
TMOC(SM pi) = (A L1m7 ¢le)
TMOC( Eoos Poo) = (AL1m7¢IS<1>m)>

with ¢; to be determined later and (A;, ¢;) depends on t. Fix a positive integer k, suppose
lim; oo TMOC(E; ;) # TMOC(EL, 0oo), then passing to a subsequence, we could assume there
exists a compact set K C X\ Zy and €y > 0 such that [|(AM™, pbim) — (ALim, ¢gém)\\ck(K) > €
for i > 1.

By Theorem 6.16, for the fixed compact set K above, for each (&;, ¢;), there exist ¢; sufficiently
large such that |[(A;, ¢;) — (A{-‘im,gb%im)ﬂck([() < 3€9. Moreover, by Proposition 4.6, there is a
limiting configuration (As, ¢oo) 1= lim;o0(As, ¢i) defined over ¥\ Z, such that over K, for
i > g, we have

1
[(Ais @) — (Acos Poo) ller(xy < 160
For ¢ > max{i(, i) }, we compute
1(Ass, doo) — (AL, ded™ller ey = N(AF™, &™) — (AL, ¢5i™)llen (i)

~ (Ao, $0) = (Ais di)ller sy — 1(Ai 63) = (AF™, ™™o iy
1
2 560.

This proves the proposition. O

8.2.1 Continuity along rays. We now investigate the behavior of the compactified Kobayashi-
Hitchin map restricted to a singular fiber. Specifically, fix 0 # ¢ € H°(K?), and denote by [q] the

C*-orbit of ¢ x 1 in the compactified Hitchin base B. Define Mp, [y = ﬁ[_)il([q]), Muit g ==
ﬁﬁ}t([q]) Then the restriction of Z on MDOI,[q} defines a map E[q] : HDO]’[q] — ﬂHm[q].
THEOREM 8.3. Let q be an irreducible quadratic differential.

(i) The boundary map 8§[q] |ﬂp is continuous if ¢ has only zeros of odd order and discon-

tinuous if ¢ has at least one ;le?]o of even order.

(ii) If q has at least one zero of even order, then for each o-divisor D # 0 there exists an even
integer np > 1 so that for any Higgs bundle (F,v) € M, p, there exist 2np sequences of
Higgs bundles (EF,¢¥), k =1,...,2np such that

* limy o0 (EF, ©F) = (F ) for k =1,...,2np,

* and if we write

= lim 05 (EF i) &= lim OF(F, t)) ,

1—00 1—00
- if (F,1) doesn’t lie in the real locus, then &,n', ..., n*"P are 2np + 1 different
limiting configurations,
- if (F,b) lies in the real locus, then n' = n"P* fori =1,---  n and we obtain np +1

different limiting configurations.
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* for each k, there exists constants t; — +oo such that lim;_, E[q] (Sz-k, tigpf) #* E[q] (F, ).

Proof. This follows from Theorem 6.17, Proposition 8.2 and Proposition 6.15. O

8.2.2 Varying fiber. With the conventions above, suppose (&;, ;) converges to (Exo, Poo) With
doo having only simple zeros, and & = (&;,t;p;) converges to & on Mp,). Since the condition
of having only simple zeros is open, the ¢; also have simple zeros for ¢ sufficiently large.
PROPOSITION 8.4 (cf. | , Thm. 2.12]). Suppose g has only simple zeros. Then, lim Z(&;)

1— 00
Z(£0o). In particular, the map Z° : Mpy — Mys is continuous.
Proof. Let S; denote the spectral curve of (&;,¢;) with branching locus Z;. Also, let L; :=
Xpnr(Eir¢i) be the eigenline bundles. By the construction in Section 6, we have YMo¢(¢;) =
Fi(Li, xi), where x; = —3Xz,. Our assumption implies that F,(L;, x;) converges to Fiu(Loo, Xoo)
in the sense of Definition 3.2. Thus, by Theorem 3.3, we obtain the convergence of the limiting
configurations: lim; o, TM¢(¢&;) = TMo¢(¢). The claim follows from Proposition 8.2. O

THEOREM 8.5. The map Z = : Mpy — My is a homeomorphism.

Proof. By Theorem 4.9, Z® is a bijection. Moreover, by Proposition 8.4, 2 ° is continuous.

Finally, that (2®)~! is continuous follows directly from the construction in [ ]. O

Appendix A. Classification of rank 1 torsion modules for A, singularities

In this appendix, we review the classification result for rank 1 torsion free modules at A,
singularities, as given in | ]. We compute the integer invariants defined in Subsection 5.3.

Let S be the spectral curve of an SL(2,C) Higgs bundle, and x a singular point with local
defining equation given by r? — s"*! = 0; this is an A,, singularity. Let p : S — S be the
normalization, where p~!(z) = {Z,,%_} if n is odd and p~!(x) = & if n is even. We use R to
denote the completion of the local ring O,, K its field of fractions, and R its normalization.

A.1 A, singularity
The local equation is r? — s2"*1

rings, and we can write
¥ Clrys]/(r? = s — Clt], 9(f(r,9)) = f(*",1%),

where R = C[[t]] and R = C[[t2,#2"*1]] C R. According to | , Anh. (1.1)], any rank 1 torsion
free R-module can be written as

My=R+R-t*CR, k=1,3,...,2n+1.
Here, M. is a fractional ideal that satisfies R C M} C ﬁ, with My = R and Mopi1 = R. We
k=1 . .
may express any f € My as f =Y, 2% fait® + > sk fit', where f; € C.

We are interested in the integers £, := dimg(My/R), az = dimg(R/C(My)) and b, =

dime (T (My ®pr ﬁ)) (where T' denotes the torsion submodule). Thus, as a C-vector space, My /R
is generated by ¢*,#¥+2 .. #?"~1 implying that ¢, = 22t1=k,

The conductor of My, is given by C(My) = {u € K | u- R C Mj}. By the expression of

M, and a straightforward computation, we have C(Mj) = (t*~1), where (t*71) is the ideal in R

= 0. The normalization induces a map between coordinate
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generated by t*~1. Thus, 1,t,...,t* 2 will form a basis for ﬁ/C(Mk), and we have az = k — 1.
Therefore, we have az = 2n — 2/,.

For i = 0,1,...,2”_21_k, we define s; = t"2 @p 1 — 1@ tht2 € M, ®p R. As k is odd,
2 Hl=k=2i ¢ R and 2 t1-k—2ig, = 27l @p1 - 1@ 2! = 0, where the last equality is becasue
t>+1 ¢ R. Moreover, {s1,... ,52%21*} form a basis of T(Mj, ® R), thus b, = 1ok k=0,

A.2 Ay, 1 singularity
2

The local equation is 72 — s?® = 0. The normalization induces a map between the coordinate

rings:
¥ Clrsl/(r? = s*") — Cl] @ Clt], $(f(r,s)) = (f{", 1), f(~1",1)
where R = C[[t]] ® C[[t] and R = C[[(z,t), (¢", —t")]] = C[[(£,?), (t",0)]]. By [ , Anh. (2.1)],
any rank 1 torsion free R-module can be written as:
M,=R+R-(t*,;0)CcR, k=0,1,...,n

Then, My, is also a fractional ideal with R C M}, C R. Moreover, M,, = R, and My = R.

As p~Yz) = {&4,%_}, R contains two maximal ideals, my = ((¢,1)), m_ = ((1,¢)). For
f € My, we can express f as:

k1
f= Z ICIGRAES Zflo(tkH, 0) 4 for (0, 5+,
i=0

=0

where f;; € C. Therefore, ¢, = dimc(Mj/R) = n — k. Moreover, using the expression, we
can compute the conductor C(My) = ((t*,1)) - ((1,#%)), which implies az, = k. Similarly, for
i =k,...,n—1, we define s; = (t',0) ®p (1,1) — (1,1) ®g (#,0), then (¢, )" -s; = 0 and
{Sk,...,Sn—1} will be a basis for T (M} ®r R) and b, = /.

In summary, we have the following:

PROPOSITION A.1. For the integers defined above, we have:
(i) for the Asgy, singularity, we have az = 2n — 2{, and b, = {5,

(ii) for the As,_1 singularity, we have az, = n — {; and by = (5.
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