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Abstract

Following the work of Mazzeo-Swoboda-Weiß-Witt [MSWW16] and Mochizuki
[Moc16], there is a map Ξ between the algebraic compactification of the Dolbeault
moduli space of SL(2,C) Higgs bundles on a smooth projective curve coming from the
C∗ action, and the analytic compactification of Hitchin’s moduli space of solutions to
the SU(2) self-duality equations on a Riemann surface obtained by adding solutions
to the decoupled equations, known as “limiting configurations”. This map extends the
classical Kobayashi-Hitchin correspondence. The main result of this paper is that Ξ
fails to be continuous at the boundary over a certain subset of the discriminant locus
of the Hitchin fibration.

1. Introduction

Let Σ be a closed Riemann surface of genus g ⩾ 2. The coarse Dolbeault moduli space of
SL(2,C) semistable Higgs bundles on Σ, denoted by MDol, and Hitchin’s moduli space of solutions
to the SU(2) self-duality equations on Σ, denoted by MHit, have been extensively studied since
their introduction over 35 years ago. The Kobayashi-Hitchin correspondence, proved in [Hit87a],
gives a homeomorphism between these two moduli spaces:

Ξ : MDol
∼−−→ MHit . (1)

Both spaces are noncompact: MDol is naturally a quasiprojective variety [Nit91, Sim94], and
like monopole moduli spaces, MHit admits Higgs fields of arbitrarily large norm. Nevertheless,
the map Ξ is proper. Recently, there has been interest from several directions on natural com-
pactifications of these two spaces. A key feature on the Dolbeault side is the existence of a C∗

action with the Bia lynicki-Birula property, and this may be used to define a completion of MDol

as a projective variety [Hau98, dC21, Fan22a]. The ideal points are identified with the C∗ or-
bits in the complement of the nilpotent cone of MDol. The Hitchin moduli space also admits
a more recently introduced compactification, MHit, based on the work of several authors (see
[MSWW16, Moc16, Tau13b]). The boundary of MHit is given by gauge equivalence classes of
limiting configurations. This compactification is relevant to many aspects of Hitchin’s moduli
space. For more details, we refer the reader to [DN19, MSWW14, Fre20, FMSW22, OSWW20,
KNPS15, CL22], and the references therein.
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By the work of [MSWW16, Moc16], there is a natural extension

Ξ : MDol −→ MHit (2)

of the Kobayashi-Hitchin correspondence to the two compactifications described above, and it
is of interest to study the geometry of this map. This involves another key feature of Hitchin’s
moduli space; namely, spectral curves. Spectral curves and spectral data [Hit92] realize the
Dolbeault moduli space as an algebraically complete integrable system H : MDol → B. In the
case of SL(2,C), the base B is the space of holomorphic quadratic differentials on Σ. Given
q ∈ H0(K2), one obtains a (scheme theoretic) spectral curve Sq. This curve is reduced if q ̸= 0,
irreducible if q is not the square of an abelian differential, and smooth if q has simple zeros. Let
Breg ⊂ B denote the open cone of quadratic differentials with simple zeros.

The ideal points of both compactifications MDol and MHit have associated nonzero quadratic
differentials, and therefore spectral curves. We write Mreg

Dol for the elements in MDol with smooth

spectral curves, and Msing
Dol = MDol \M

reg
Dol for those with singular spectral curves; similarly for

Mreg
Hit and Msing

Hit . We then have the following result.

Theorem 1.1. The restriction of the compactified Kobayashi-Hitchin map Ξ to the locus with
smooth associated spectral curves defines a homeomorphism Mreg

Dol ≃ Mreg
Hit. On the singular

spectral curve locus, however, Ξ
sing

: Msing
Dol → Msing

Hit is neither surjective nor injective.

It will be convenient to analyze the behavior along rays in B, where the spectral curve is
simply rescaled. For q ̸= 0 a quadratic differential, we set MDol,q+ (resp. MHit,q+) to be the
points in MDol (resp. MHit) with spectral curves Stq, t ∈ R+. The restriction of Ξ gives a
map Ξq+ : MDol,q+ → MHit,q+ . We shall study the continuous behavior of Ξq+ for points in
the fiber H−1(tq) as t → +∞. For convenience, we set Mq+ := MDol,q+ ∩ MDol. When q
is irreducible, i.e. not a square, all elements in Mq+ are stable. Via the Hitchin [Hit87b] and
Beauville-Narasimhan-Ramanan (BNR) correspondence [BNR89], this reduces the description of
the fiber Mq := H−1(q) to the characterization of rank 1 torsion free sheaves on the integral
curve Sq.

In [Reg80], parameter spaces for rank 1 torsion free sheaves on algebraic curves with Goren-
stein singularities were studied in the context of compactified Jacobians, and the crucial notion of
a parabolic module was introduced. This was extensively investigated by Cook in [Coo93, Coo98],
partially following ideas of Bhosle [Bho92]. For simple plane curve singularities of the type ap-
pearing in spectral curves, one makes use of the local classification of torsion free modules of
Greuel-Knörrer [GK85]. These methods were applied to study the Hitchin fibration by Gothen-
Oliveira in [GO13] (see also [KSZ22] for recent study). In parallel, Horn [Hor22a] defines a
stratification Mq =

⋃
D Mq,D labeled by certain effective divisors contained in the divisor of q

called σ-divisors (see Section 5.5, and also [HN] for the more general situation).

Using the results from these references, we reinterpret the work of Mochizuki [Moc16] and
Mochizuki-Szabó [MS23]. We first prove that the restriction of the compactified Kobayashi-
Hitchin map to the boundary is discontinuous in general. Following that, by utilizing the expo-
nential decay results from Mochizuki-Szabó [MS23], which play an essential role, we demonstrate
that the entirety of Ξq+ is discontinuous.

Theorem 1.2. Let q ̸= 0 be an irreducible quadratic differential.

(i) The boundary map ∂Ξq+ |∂Mst
Dol,q+

is continuous if q has only zeros of odd order and discon-

tinuous if q has at least one zero of even order.
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(ii) If q has at least one zero of even order, then for each σ-divisor D ̸= 0 there exists an even
integer nD ⩾ 1 so that for any Higgs bundle (F , ψ) ∈ Mq,D, there exist 2nD sequences of
Higgs bundles (Ek

i , φ
k
i ), k = 1, . . . , 2nD such that

– limi→∞(Ek
i , φ

k
i ) = (F , ψ) for k = 1, . . . , 2nD,

– and if we write

ηk := lim
i→∞

∂Ξq+(Ek
i , tiφ

k
i ) , ξ := lim

i→∞
∂Ξq+(F , tiψ) ,

* if (F , ψ) doesn’t lie in the real locus, then ξ, η1, . . . , η2nD are 2nD + 1 different
limiting configurations,

* if (F , ψ) lies in the real locus, then ηi ∼= ηnD+i for i = 1, · · · , n and we obtain nD +1
different limiting configurations.

– for each k, there exists constants ti → +∞ such that limi→∞ Ξq+(Ek
i , tiφ

k
i ) ̸= Ξq+(F , ψ).

When q is reducible, the description of Higgs bundles in the fiber over q becomes more
complicated because of, among other things, the existence of strictly semistable objects. To
understand this, we use the local descriptions of Gothen-Oliveira and Mochizuki (see [GO13,
Moc16]). In contrast to the irreducible case, the analogous exponential decay result to that
of Mochizuki-Szabó [Moc16] is unfortunately currently not available. This results in a weaker
statement for the reducible fiber. Recall that we have defined Ξq+ : MDol,q+ → MHit,q+ as the
compactified Kobayashi-Hitchin map, and ∂Ξq+ : ∂MDol,q+ → ∂MHit,q+ as its restriction to the
compactified boundary. With this notation, the following holds:

Theorem 1.3. Suppose q ̸= 0 is reducible, if g ⩾ 3, then the boundary map ∂Ξq+ |∂Mst
Dol,q+

is

discontinuous. However, if g = 2, the boundary map ∂Ξq+ |∂Mst
Dol,q+

is continuous.

This paper is organized as follows: in Section 2, we provide a brief overview of Higgs bundles
and the BNR correspondence. In Section 3, we introduce the concepts of filtered bundles and
their compactness properties. Section 4 defines the algebraic and analytic compactifications.
Section 5 introduces parabolic modules and examines their connection to spectral curves. The
main results for Hitchin fibers with irreducible singular spectral curves are established in Section
6. In Section 7, the results for the reducible case are proven. Finally, in Section 8, we construct
the compactified Kobayashi-Hitchin map and prove the main results. The Appendix, based on
the work of Greuel-Knörrer, calculates some invariants of rank 1 torsion free sheaves on the
spectral curves we consider.
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2. Background on Higgs bundles

This section gives a very brief overview of the Dolbeault and Hitchin moduli spaces, spectral
curve descriptions, and the nonabelian Hodge correspondence. For more details on these topics,
see [Hit87a, Hit87b, Sim92].

2.1 Higgs bundles

As in the Introduction, throughout this paper Σ will denote a closed Riemann surface of
genus g ⩾ 2 with structure sheaf O = OΣ and canonical bundle K = KΣ. Let E → Σ be
a complex vector bundle. A Higgs bundle consists of a pair (E , φ), where E is a holomorphic
bundle structure on E, and φ ∈ H0(End(E) ⊗K). If rank(E) = 1, then a Higgs field is just an
abelian differential ω. The pair (E , φ) is called an SL(2,C) Higgs bundle if rank(E) = 2, det(E)
has a fixed isomorphism with the trivial bundle, and Tr(φ) = 0. In this paper we will focus
mainly on SL(2,C) Higgs bundles, but the rank 1 case will also be important.

Let (E , φ) be an SL(2,C) Higgs bundle. A (proper) Higgs subbundle of (E , φ) is a holomorphic
line bundle L ⊂ E that is φ-invariant, i.e. φ : L → L⊗K. In this case, the restriction φL := φ

∣∣
L,

makes (L, φL) a rank 1 Higgs bundle. Moreover, φ induces a Higgs bundle structure on the
quotient E/L. We say (E , φ) is stable (resp. semistable) if for all Higgs subbundles L, degL < 0
(resp. degL ⩽ 0). We say (E , φ) is polystable if (E , φ) ≃ (L, ω)⊕ (L−1,−ω), where L is a degree
zero holomorphic line bundle and ω ∈ H0(K).

If (E , φ) is strictly semistable, i.e. semistable but not polystable, the Seshadri filtration [Ses67]
gives a unique Higgs subbundle 0 ⊂ (L, ω) ⊂ (E , φ) with deg(L) = 1

2 deg(E) = 0. Write (L′, ω′) :=
(E , φ)/(L, ω), then we have ω′ = −ω and L′ = L−1. The associated graded bundle Gr(E , φ) =
(L, ω) ⊕ (L−1,−ω) of this filtration is a polystable SL(2,C) Higgs bundle. We say that (E , φ) is
S-equivalent to Gr(E , φ).

Holomorphic bundles E with underlying C∞ bundle E are in 1-1 correspondence with ∂̄-
operators ∂̄E : Ω0(E) → Ω0,1(E). We use the notation E := (E, ∂̄E). Let C denote the space of
pairs (∂̄E , φ), ∂̄Eφ = 0. Let Cs and Css denote the subspaces of C where the Higgs bundles are
stable (resp. semistable). The complex gauge transformation group GC := Aut(E) has a right
action on C by defining for g ∈ GC, (∂̄E , φ)g := (g−1 ◦ ∂̄ ◦ g, g−1 ◦ φ ◦ g).

There is a quasiprojective scheme MDol whose closed points are in 1-1 correspondence with
isomorphism classes of polystable SL(2,C) Higgs bundles constructed via (finite dimensional)
Geometric Invariant Theory (see [Nit91, Sim94]). In [Fan22b] it was shown that the infinite
dimensional quotient Css � GC, where the double slash indicates that S-equivalent orbits are
identified, admits the structure of a complex analytic space that is biholomorphic to the ana-
lytification Man

Dol of MDol. Henceforth, we shall work in the complex analytic category, identify
the algebro-geometric and gauge theoretic moduli spaces as complex analytic spaces, and sim-
ply denote them both by MDol. We note that the set of stable Higgs bundles modulo gauge
transformations, Ms

Dol := Cs/GC, is a geometric quotient and an open subset of MDol.

Finally, notice that the pair (E , φ) is stable (resp. semistable) if and only if the same is true
for (E , λφ), λ ∈ C∗. Hence, MDol admits an action of C∗ that preserves Ms

Dol. Though MDol is
only quasiprojective, the C∗ action satisfies the Bia lynicki-Birula property:

Theorem 2.1 ([Hit87a, Sim92]). For any [(E , φ)] ∈ MDol,

lim
λ→0

λ · [(E , φ)] := lim
λ→0

[(E , λφ)]

exists in MDol.
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2.2 Spectral curves and the Hitchin fibration

The Hitchin map is defined as

H : MDol −→ H0(K2) , [(E , φ)] 7→ det(φ) ,

where H0(K2) =: B is known as the Hitchin base. Hitchin [Hit87a, Hit87b] showed that H is
a proper map and a fibration by abelian varieties over the open cone Breg ⊂ B consisting of
nonzero quadratic differentials with only simple zeros. The discriminant locus Bsing := B \ Breg

consists of quadratic differentials that are either identically zero or have at least one zero with
multiplicity. For q ∈ B, let Mq := H−1(q). The “most singular fiber” M0 is called the nilpotent
cone.

Consider the total space Tot(K) of K, along with its projection π : Tot(K) → Σ. The pullback
bundle π∗K has a tautological section, which we denote by λ ∈ H0(Tot(K), π∗K). Given any
q ̸= 0 ∈ H0(K2), the spectral curve Sq associated with q is the zero scheme of the section
λ2 − π∗q ∈ H0(Tot(K), π∗K). This is a reduced, but possibly reducible, projective algebraic
curve. The restriction of π to Sq, also denoted by π : Sq → Σ, is a double covering branched
along the zeros of q.

The spectral curve Sq is smooth if and only if q has only simple zeros. It is reducible if and only
if q = −ω⊗ω for some ω ∈ H0(K). In the latter case, we call such quadratic differentials reducible,
and otherwise we refer to them as irreducible. There is a noteworthy observation regarding
irreducible spectral curves.

Proposition 2.2 (cf. [Hit87b]). Let (E , φ) be a Higgs bundle with q = det(φ), and suppose q is
irreducible. Then (E , φ) has no proper invariant subbundles. In particular, (E , φ) is stable.

Proof. Suppose L ⊂ E is φ-invariant, and let φL be the restriction. Then

detφ = −1

2
Tr(φ2) = −(φL)2 ,

contradicting the assumption.

Let us emphasize that being reducible is not the same as having only even zeros. To see this,
suppose that Div(q) = 2D. Then K ≃ O(D) ⊗ I, where I is a 2-torsion point in the Jacobian.
The spectral curve Sq is reducible if and only if I is trivial.

2.3 Rank 1 torsion free sheaves and the BNR correspondence

In this subsection, we provide some background on rank 1 torsion free sheaf theory over
spectral curves in the context of the Hitchin and BNR correspondence, as developed in [Hit87b,
BNR89].

Let S be a reduced and irreducible complex projective curve and OS its structure sheaf. The
moduli space of invertible sheaves on S is denoted by Pic(S). If F is a coherent analytic sheaf
on S, we can define its cohomology groups H i(S,F). Since dimS = 1, H i(S,F) = 0 for i ⩾ 2.
The Euler characteristic is defined as χ(F) = dimH0(S,F) − dimH1(S,F). The degree of a
torsion free sheaf F is given by deg(F) = χ(F)− rank(F)χ(OS). If F is locally free, then deg(F)
coincides with the degree of the invertible sheaf det(F). We let Picd(S) ⊂ Pic(S) denote the
degree d component.

Let Pic
d
(S) be the moduli space of degree d rank 1 torsion free sheaves on S, and Pic(S) =∏

d∈Z Pic
d
(S) [D’S79]. Then Pic

d
(S) is an irreducible projective scheme containing Picd(S) as
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an open subscheme. When S is smooth, we have Pic
d
(S) = Picd(S). The relationship to Higgs

bundles is given by the following.

Theorem 2.3 ([Hit87b, BNR89]). Let q ∈ H0(K2) be an irreducible quadratic differential with
spectral curve Sq. There is a bijective correspondence between points in Pic(Sq) and isomorphism
classes of rank 2 Higgs pairs (E , φ) with Tr(φ) = 0 and det(φ) = q. Explicitly: if L ∈ Pic(Sq), then
E := π∗(L) is a rank 2 vector bundle, and the homomorphism π∗L → π∗L ⊗K ∼= π∗(L ⊗ π∗K)
given by multiplication by the canonical section λ defines the Higgs field φ.

This correspondence gives the very useful exact sequence

0 → L⊗ I → π∗E π∗φ−λ−−−−→ π∗E ⊗ π∗K → L⊗ π∗K → 0 , (3)

for some ideal sheaf I. In case S is smooth, then I = OS(−∆), where ∆ is the ramification
divisor. The sequence (3) will be used below in Section 6.

Let q be a quadratic differential with only simple zeros, and to simplify notation write S = Sq.
Let Λ := Div(λ) be the ramification divisor of the map π : S → Σ. By the Riemann-Hurwitz
formula, the genus of S is g(S) = 4g − 3, where g is the genus of Σ. Furthermore, for any
L ∈ Pic(S), Riemann-Roch gives deg(π∗L) = deg(L)− (2g− 2). The SL(2,C) Higgs bundles are
characterized by

T := {L ∈ Pic2g−2(S) | det(π∗L) = OΣ}. (4)

By the Hitchin-BNR correspondence (Theorem 2.3), the map χBNR : T → Mq is a bijection.

The branched double cover π : S → Σ is given by an involution σ : S → S. We have the
norm map NmS/Σ : Jac(S) → Jac(Σ), where Jac(S) is the connected component of the trivial
line bundle in Pic(S) and NmS/Σ(OS(D)) := OΣ(π(D)). The Prym variety is defined as

Prym(S/Σ) := ker(NmS/Σ) = {L ∈ Pic(S) | L ⊗ σ∗L = OS} .

Also, we have det(π∗L) ∼= NmS/Σ(L) ⊗K−1. Thus, T can be expressed as

T = {L ∈ Pic2g−2(S) | NmS/Σ(L) ∼= K} .

Hence, T is a torsor over Prym(S/Σ). Explicitly, by choosing L0 ∈ T , we obtain an isomorphism
T ∼−−→ Prym(S/Σ) given by L → L⊗ L−1

0 .

To summarize, we have the following:

Proposition 2.4. Let q be a quadratic differential with simple zeros. Then Mq
∼= T ∼=

Prym(S/Σ).

If q ̸= 0 is irreducible but nongeneric, the spectral curve S is singular and irreducible. We

may still define the set T ⊂ Pic
2g−2

(S) as follows:

T := {L ∈ Pic
2g−2

(S) | det(π∗L) ∼= OΣ} ,

We also set T := T ∩ Pic2g−2.Then T is the natural compactification of T induced by the
inclusion Pic2g−2(S) ⊂ Pic(S). The BNR correspondence, as stated in Theorem 2.3, implies that
χBNR : T → Mq is an isomorphism.

2.4 The Hitchin moduli space and the nonabelian Hodge correspondence

We now recall the well-known nonabelian Hodge correspondence (NAH), which relates the
space of flat SL(2,C) connections, Higgs bundles, and solutions to the Hitchin equations. This
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result was developed in the work of Hitchin [Hit87a], Simpson [Sim88], Corlette [Cor88], and
Donaldson [Don87].

As above, let E be a trivial(ized), smooth, rank 2 vector bundle over the Riemann surface Σ,
and let H0 be a fixed Hermitian metric on E. We denote by sl(E) (resp. su(E)) the bundle of
traceless (resp. traceless skew-hermitian) endomorphisms of E. Let A be a unitary (with respect
to H0) connection on E that induces the trivial connection on detE, and let ϕ ∈ Ω1(isu(E)).
We will sometimes also refer to ϕ as a Higgs field. The Hitchin equations for the pair (A, ϕ) are
given by:

FA + ϕ ∧ ϕ = 0 , dAϕ = d∗Aϕ = 0 . (5)

If we split the Higgs field into type: ϕ = φ+ φ†, with φ ∈ Ω1,0(sl(E)), then (5) is equivalent to:

FA + [φ,φ†] = 0 , ∂̄Aφ = 0 . (6)

Notice that (∂̄E , φ) then defines an SL(2,C) Higgs bundle. The Hitchin moduli space, denoted
by MHit, is the moduli space of solutions to the Hitchin equations, given by

MHit := {(A, ϕ) | (A, ϕ) satisfies (5)}/G,

where G is the gauge group of unitary automorphisms of E. Recall that a flat connection D is
called completely reducible if and only if it is a direct sum of irreducible flat connections. The
NAH can be summarized as follows:

Theorem 2.5 ([Hit87a, Sim90, Cor88, Don87]). A Higgs bundle (E , φ) is polystable if and
only if there exists a Hermitian metric H such that the corresponding Chern connection A and
Higgs field ϕ = φ + φ† solve the Hitchin equations (5). Moreover, the connection D defined by
D = ∇A + ϕ is a completely reducible flat connection, and it is irreducible if and only if (E , φ)
is stable.

Conversely, a flat connection D is completely reducible if and only if there exists a Hermitian
metric H on E such that when we express D = ∇A + φ + φ†, we have ∂̄Eφ = 0. Moreover, the
corresponding Higgs bundle (E , φ) is polystable, and it is stable if and only if D is irreducible.

The nonabelian Hodge correspondence gives the Kobayashi-Hitchin homeomorphism (1),
which when restricted to the stable locus is a diffeomorphism onto irreducible solutions of (5).

Finally, we note that there is an action of S1 on MHit defined by (A, ϕ) → (A, eiθ · ϕ), where
eiθ · ϕ = eiθφ + e−iθφ†. With respect to this and the S1 ⊂ C∗ action on MDol, the map Ξ is
S1-equivariant.

3. Filtered bundles and compactness

Filtered (or parabolic) bundles are described, for example, in [Sim90]. They play a key role
in the analytic compactification. This section provides a brief overview of filtered line bundles
and demonstrates a compactness result.

3.1 Filtered line bundles

Let Z be a finite collection of distinct points on a closed Riemann surface Σ, and let Σ′ = Σ\Z.
Viewing Σ as a projective algebraic curve, an algebraic line bundle L over the affine curve Σ′

is a line bundle defined by regular transition functions on Zariski open sets over Σ′. The sheaf
of sections of L can be extended in infinitely many different ways over Z to obtain (invertible)
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coherent analytic sheaves on Σ. The sections of L are then realized as meromorphic sections of
any such extension that are regular on Σ′.

A filtered line bundle F∗(L) is an algebraic line bundle L → Σ′, along with a collection
{Lα}α∈R of coherent extensions across the punctures Z such that Lα ⊂ Lβ for α ⩾ β, for a
fixed sufficiently small ϵ, Lα−ϵ = Lα, and Lα = Lα+1 ⊗OΣ(Z). Let Grα = Lα/Lα+ϵ denote the
quotient (torsion) sheaf. A value α where Grα ̸= 0 is called a jump. Since we are considering line
bundles, for each p in the support of Grαp , there is exactly one jump αp in the interval [0, 1).
The collection of jumps αp, p ∈ Z, fully determines the filtered bundle structure. If we denote
by L := L0, the degree of a filtered line bundle is defined as

deg(F∗(L)) := deg(L) +
∑
p∈Z

αp .

Alternatively, a weighted line bundle is a pair (L, χ) where L → Σ is a holomorphic line
bundle and χ : Z → R is a weight function. The degree of a weighted bundle is defined as

deg(L, χ) := deg(L) +
∑
p∈Z

χp .

The notions of filtered and weighted line bundles are nearly equivalent. Namely, given a
filtered line bundle F∗(L), we define L := L0 and χp = αp. Conversely, given a weighted line
bundle (L, χ), let αp = χp + np, where np ∈ Z is the unique integer so that 0 ⩽ χp + np < 1. A
filtered bundle F∗(L), L := L

∣∣
Σ′ , is then determined by setting L0 = L(−

∑
p∈Z npp) with jumps

αp. Clearly, deg(F(L)) = deg(L, χ). We shall use the notation F∗(L, χ) for the filtered bundle
associated to a weighted bundle (L, χ) in this way.

Different weighted bundles can give rise to the same filtered bundle. The following is a fact
that will be frequently used in this paper. If D =

∑
x∈Z dxx is a divisor supported on Z, let

χD(x) :=

{
dx , x ∈ Z ;

0 , x ∈ Σ \ Z .

Then for any weighted bundle (L, χ) we have F∗(L(D), χ− χD) = F∗(L, χ).

Let (L1, χ1) and (L2, χ2) be two weighted lines bundles. We define the tensor product

(L1, χ1) ⊗ (L2, χ2) := (L1 ⊗ L2, χ1 + χ2) .

Then the degree is additive on tensor products. For filtered bundles, we define

F∗(L1, χ1) ⊗F∗(L2, χ2) := F∗(L1 ⊗ L2, χ1 + χ2) . (7)

The degree is again additive for the tensor product of filtered bundles. This agrees with the usual
definition of tensor product for parabolic bundles.

3.2 Harmonic metrics for weighted line bundles

Proposition 3.1. Let (L, χ) be a degree 0 weighted bundle. Then there exists a Hermitian
metric h on LΣ′ , which is unique up to a multiplication by a nonzero constant, and such that:

(i) the Chern connection Ah of (L, h) is flat: FAh
= 0;

(ii) for p ∈ Z, and (Up, z) a holomorphic coordinate centered at p, |z|−2χph extends to a C∞

Hermitian metric on L|Up .

Proof. We first choose a background Hermitian metric h0 such that |z|−2χph0 defines a C∞

Hermitian metric defined on Up. Let Ah0 be the Chern connection, and FA0 the curvature. Note
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that FA0 is smooth on Σ. By the Poincaré-Lelong formula, we have
√
−1
2π

´
Σ FA0 = deg(L, χ) = 0.

Therefore, there exists a C∞ function ρ such that ∆ρ+
√
−1
2π ΛFA0 = 0. We define h = h0e

ρ. For
the corresponding Chern connection Ah, we have FAh

= 0, which implies (i). (ii) follows from
the property for h0, since ρ is a smooth function on Σ. As ρ is well-defined up to a constant, h
is well-defined up to a constant, which implies the uniqueness of h up to a constant.

The metric obtained above is called the harmonic metric. For a weighted bundle (L, χ), the
holomorphic bundle L and the harmonic metric h define a filtration as follows. Given α, define
the sheaf

Lα(U) := {s ∈ H0(U,L(∗Z)) | |s|h = O(rα−ϵ) for all ϵ > 0} ,
and any open set U ⊂ Σ. Here, r denotes the distance to Z in any smooth conformal metric on

Σ. It is straightforward to check that this defines a filtered bundle that matches F∗(L, χ) under
the correspondence given in the previous section.

Even though the harmonic metric is only well-defined up to a constant, the Chern connection
A = (L, h) is independent of this choice. The (1, 0) part of A, denoted ∇h, then defines logarithmic
connections ∇h : Lα → Lα ⊗K(Z).

3.3 Convergence of weighted line bundles

In this subsection, we consider the convergence of weighted line bundles. The main result we
prove here is a consequence of [MS23, Theorem 1.8]. For the reader’s convenience, we present a
short proof in our situation.

Let (Σ0, g0) be a metrized Riemann surface (i.e. a Riemann surface Σ0 with conformal metric
g0). We view Σ0 as given by an underlying surface C with almost complex structure J0. Consider
a neighborhood U1 of J0 in the moduli space of holomorphic structures and a neighborhood
U2 of g0 in the space of smooth metrics. We denote the product of these neighborhoods by
U = U1 × U2. We can define the fiber bundle PicU → U , where each fiber is the Picard group
defined by the holomorphic structure. Let (Σt = (C, Jt), gt) be a family of metrized Riemann
surfaces that converge smoothly to (Σ0, g0) as t → 0. Let Zt ⊂ Σt be a collection of a finite
number of points that converge to Z0 in suitable symmetric products of C. For each p ∈ Z0, we
can write Zt = ∪p∈Z0Zt,p such that all points in Zt,p converge to p. We define the convergence of
weighted line bundles as follows.

Definition 3.2. A family of weighted line bundles (Lt, χt) over Σt \Zt with weights χt : Zt → R
converges to (L0, χ0) if

(i) Lt converges to L0 in PicU ,

(ii) for all p ∈ Z0 and t sufficiently small,
∑

q∈Zt,p
χt(q) = χ0(p).

A sequence of filtered bundles F∗(Lt) converges to F∗(L0) if the corresponding weighted
bundles converge. The following theorem provides insight into the compactness of a sequence of
weighted line bundles.

Theorem 3.3. Consider a family of weighted line bundles (Lt, χt) defined over (Σt \ Zt), and
with deg(Lt, χt) = 0. Let ht be the corresponding harmonic metrics from Proposition 3.1. If Zt

converges to Z0, we write Zt = ∪p∈Z0Zt,p. Then there exists a weighted line bundle (L0, χ0) over
Z0 with a harmonic metric h0 such that:

(i) After rescaling by ct > 0, ctht converges to h0 over Σ0 \ Z0 in the C∞
loc sense.

9
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(ii) If Aht is the Chern connection of (Lt, ht), then on Σ0 \ Z0, limt→0∇t = ∇0 in C∞
loc.

Proof. By the assumptions on weights, deg(Lt) is a fixed, t-independent constant. Let γt = (Jt, gt)
be a path in U . Then PicU |γt is compact, and there exists an L0 ∈ Pic(Σ0) such that Lt converges
to L0. For p ∈ Z0, define χ0(p) =

∑
q∈Zt,p

χt(q), and thus obtain a weighted line bundle (L0, χ0).

Choose a family of approximate harmonic metrics happt , such that |z|−2χphappt extends to a
smooth metric in a neighborhood of p and happt converges to happ0 in C∞

loc(Σ0 \ Z0). Moreover,
write ht = happt est . After a suitable rescaling of ht, we can assume ∥st∥L2 = 1. Let ρt := ∆th

app
t

be the curvature defined by the metric happt . Then st satisfies the equation ∆tst = ρt over Σ.
As ρt converges to ρ0 ∈ C∞

loc(Σ \ Z0), and gt is a family with bounded geometry, we obtain the
estimate

∥st∥Ck+2,α(Σ) ⩽ Ck,α(∥ρt∥Ck,α(Σ) + 1) ,

where Ck,α is a t-independent constant. Therefore, passing to a subsequence, st converges to s0
in C∞(Σ), which implies (i). The assertion (ii) follows from (i).

4. The algebraic and analytic compactifications

4.1 The algebraic compactification of the Dolbeault moduli space

In this subsection, we present the algebraic method for compactifying the Dolbeault moduli
space. This technique is based on the C∗ action on MDol, and was introduced in [Sim97, Sch98,
Hau98, dC21, KNPS15]. The gauge theoretic approach can be found in [Fan22a].

Theorem 4.1 ([Sim97, Thm. 11.2],[dC21]). Let V be a complex algebraic variety with C∗ action.
Suppose

(i) the fixed point set of the C∗ action is proper,

(ii) for every t ∈ C∗, v ∈ V , the limit lim
t→0

t · v exists.

Then the space U := {v ∈ V | lim
t→∞

t · v does not exist} is open in V , and the quotient U/C∗ is

separated and proper.

We apply this to the Dolbeault moduli space. The first step is to note that the possible
isotropy subgroups are limited.

Lemma 4.2 ([Hau98, Thm. 6.2]). Let ξ = [(E , φ)] be an SL(2,C) Higgs bundle equivalence class
with H(ξ) ̸= 0. Then the stabilizer Γξ of ξ for the C∗ action is either trivial or Z/2. The latter
case holds if and only if (E , φ) and (E ,−φ) are complex gauge equivalent.

Proof. For t ∈ Γξ, H(ξ) = H(t · ξ) = t2H(ξ). Hence, t2 = 1 if H(ξ) ̸= 0.

By this Lemma, the space (MDol \H−1(0))/C∗ has an orbifold structure. In passing, we note
that the fixed points of the Z/2 action correspond to real representations under the nonabelian
Hodge correspondence [Hit87a, Sec. 10].

By the properness of the Hitchin map H (see Theorem 2.1), it follows that lim
t→∞

t · ξ exists if

and only if H(ξ) = 0. Now define

MDol =
{

(MDol × C∗)
∐

(MDol \ H−1(0))
}
/C∗ . (8)

The analytic topology on the disjoint union is generated by open sets U ×W1 and

V × (W2 ∩ C∗) ⨿ V ∩ (MDol \ H−1(0)) ,

10
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where U, V ⊂ MDol, W1,W2 ⊂ C are open, and 0 ̸∈W1, 0 ∈W2. The topology on MDol is then
the quotient topology, and it is straightforward to see that with this topology, it is compact.

Since (MDol × C∗)/C∗ = MDol, there is a natural inclusion

ι : MDol → MDol, ι(ξ) = [(ξ, 1)] ,

where brackets denote the equivalence class under the C∗ action. The boundary of MDol is

∂MDol = MDol \ ι(MDol) = (MDol \ H−1(0))/C∗ .

There is a boundary map

ι∂ : MDol \ H−1(0) −→ ∂MDol, ξ 7→ [(ξ, 0)] ,

which is invariant under the C∗ action, i.e., ι∂(λξ) = ι∂(ξ) for λ ∈ C∗.

The C∗ action on MDol covers the square of the action on B. Hence, it is natural to compactify
B by projectivizing:

B := P(H0(K2) ⊕ C) .

The inclusion is given, as usual, by

ι0 : B → B, ι(q) = [q × {1}] ,

where q × {1} ∈ H0(K2) ⊕ C. We also define ∂B = B \ ι0(B) ≃ P(H0(K2)), with boundary
projection map

ι0,∂ : B \ {0} → ∂B , ι0,∂(q) = [q × {0}] .

The Hitchin map H : MDol → B extends to H : MDol → B, where H|MDol
:= ι0 ◦ H, and for

every [(E , φ)]/C∗ ∈ ∂MDol,

H([(E , φ)]/C∗) := [(H(φ), 0)] ⊂ B .

This is well defined, since det(φ) ̸= 0 if [(E , φ)]/C∗ ∈ ∂MDol. Moreover,

MDol MDol

B B

ι

H H
ι0

commutes.

There is a good algebraic structure on this compactification.

Theorem 4.3 ([Sim97, Sch98, Hau98, dC21, Fan22a]). The compactified space MDol is a normal
projective variety, and ∂MDol is a Cartier divisor of MDol.

The following characterization of sequential convergence is useful. As H0(K2) is a finite
dimensional space, the L2 norm on q ∈ H0(K2

Σ) can be chosen arbitrarily and we fix one such
choice.

Proposition 4.4. Let [(Ei, φi)] ∈ MDol be a sequence of Higgs bundles, and write qi = det(φi)

and ri = ∥qi∥
1
2

L2 . Suppose lim sup ri → ∞. Then up to subsequence:

(i) there exists a Higgs bundle [(Ê∞, φ̂∞)] with q̃∞ = det(φ̃∞) and ∥q̂∞∥L2 = 1 such that
limi→∞[(Ei, r−1

i φi)] = [(Ê∞, φ̂∞)] in MDol and limi→∞ r−1
i qi = q̂∞ in H0(K2);

11
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(ii)

lim
i→∞

ι[(Ei, φi)] = ι∂ [(Ê∞, φ̂∞)] , on MDol ,

lim
i→∞

ι0(qi) = ι0,∂(q̂∞) , on B .

Proof. The first point follows since the Hitchin map H is proper and H(r−1
i φi) is bounded. The

second follows directly from the definition.

4.2 The analytic compactification of the Hitchin moduli space

We next describe the compactification of the Hitchin moduli space, as developed in [MSWW14,
Moc16, Tau13a].

4.2.1 Decoupled Hitchin equations. We begin by defining the decoupled Hitchin equations.
Recall the notation from Section 2.4, let E be a trivial, smooth, rank 2 vector bundle over a
Riemann surface Σ, and let H0 be a background Hermitian metric on E. Let Z be a finite set
of distinct points in Σ. For a smooth unitary connection A on E|Σ\Z and smooth ϕ = φ+ φ† ∈
Ω1(isu(E))|Σ\Z , the decoupled Hitchin equations on Σ \ Z are:

FA = 0 , [φ,φ†] = 0 , ∂̄Aφ = 0 . (9)

Solutions to (9) alone may be quite singular near Z, so we make the following restriction:

Definition 4.5. A solution (A, ϕ) to (9) is called admissible if ϕ ̸= 0, and |ϕ| extends to a
continuous function on Σ with |ϕ|−1(0) = Z.

By a limiting configuration we always mean an admissible solution to the decoupled Hitchin
equations. Clearly, Z is determined by (A, ϕ). Admissibility guarantees that det(φ) extends to
a holomorphic quadratic differential q = det(φ) on Σ, with Z = q−1(0) the zero locus. Hence,
the spectral curve Sq is well-defined. We emphasize that Z may vary for different admissible
solutions, but one always has that #Z ⩽ 4g − 4.

The equivalence relation on limiting configurations is that (A1, ϕ1) ∼ (A2, ϕ2) if Z1 = Z2 and
(A1, ϕ1)g = (A2, ϕ2) for a smooth unitary gauge transformation g on Σ \ Z1. The moduli space
of decoupled Hitchin equations is then

MLim
Hit = {admissible solutions to (9)}/ ∼ .

We denote by MLim
Hit,q the elements in MLim

Hit with the determinant of the Higgs field equal to
a quadratic differential q. In this case, the equivalence relation is induced by the action of the
unitary gauge group over Σ \ Z, Z = q−1(0).

There is a natural C∗ action on the moduli space MLim
Hit : given (A, ϕ = φ+ φ†) ∈ MLim

Hit and
t ∈ C∗, we set t · [(A, ϕ)] = [(A, tφ+ t̄φ†)], which is also a solution to (9).

4.2.2 Compactification of the Hitchin moduli space. The following compactness result is due
to Taubes [Tau13b] and Mochizuki [Moc16] (see also [He20]).

Proposition 4.6. Let (Ai, φi) be a sequence of solutions to (5), with qi = det(φi) ∈ H0(K2).
Then

(i) if lim sup ∥qi∥L2(Σ) <∞, then there is a subsequence (also denoted {i}), a smooth solution
(A∞, ϕ∞) to (5), and a sequence gi of smooth unitary gauge transformations on Σ, such
that (Ai, ϕi)gi converges smoothly to (A∞, ϕ∞) on Σ;
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(ii) if lim ∥qi∥L2(Σ) = ∞, then there is a subsequence (also denoted {i}), and q∞ ∈ H0(K2) so
that

qi
∥qi∥L2

−→ q∞

over Σ, and an admissible solution (A∞, ϕ∞ = φ∞ + φ†
∞) to (9), with Z∞ := q−1

∞ (0), and
smooth unitary gauge transformations gi on Σ\Z∞, such that over any open set Ω ⋐ Σ\Z∞,
(Ai)gi → A∞, and

g−1
i ϕigi
∥ϕ∥L2

−→ ϕ∞

smoothly on Ω.

There is also a compactness result for sequences of solutions in MLim
Hit .

Proposition 4.7. Let [(Ai, ϕi = φi + φ†
i )] ∈ MLim

Hit be a sequence of admissible solutions to
(9), and let qi = det(φi) be the corresponding quadratic differentials. Then after passing to a

subsequence, there are ti ∈ C∗, a limiting configuration (A∞, ϕ∞ = φ∞ + φ†
∞) with quadratic

differential q∞ = det(φ∞) ̸= 0, and a sequence gi of smooth gauge transformations on Σ \ Z∞,
such that:

(i) t2i qi converges smoothly to q∞,

(ii) over any open set Ω ⋐ X \ Z∞, (Ai, ti · ϕi)gi converges smoothly to (A∞, ϕ∞).

Proof. Write qi = det(φi) ∈ H0(K2). Adjusting by ti if necessary, we may assume qi converges to
q∞ over Σ. Also, since FAi = 0 over Σ\Zi and Zi converges to Z∞, we can apply both Uhlenbeck
compactness and the classical bootstrapping method to obtain A∞ such that up to gauge Ai

converges smoothly to A∞ over Σ \ Z∞. Finally, the convergence of φi follows by the bound on
qi’s.

4.2.3 The topology on the compactified space. We now carefully define the topology on the
space MHit

∐
MLim

Hit /C∗. Choose a metric in the conformal class on Σ. Let W k,2 denote the
Sobolev spaces on Σ of distributional sections with at least k derivatives in L2. For a finite set
of points Z ⊂ Σ (or indeed any closed subset),

W k,2
loc (Σ \ Z) := {f | f ∈W k,2(K), K ⊂ Σ \ Z, K compact}.

These definitions extend easily to the space of connections and Ω1(isu(E)) for a Hermitian vector
bundle (E,H0) over Σ with a fixed smooth background connection.

Let ωn be a nested collection of open sets with ωn ⊂ ωn ⊂ ωn+1, with
⋃

n ωn = Σ \ Z. We

then define the seminorms ∥f∥n := ∥f∥Wk,2(ωn); in terms of these, W k,2
loc (Σ \ Z) a Fréchet space.

For any q ∈ H0(K2) \ {0}, set Zq := q−1(0), and consider the moduli space

Mq = {[(A, ϕ)] ∈ MHit,q∗ ∩W k,2(Σ)} ∪ {[(A, ϕ)] ∈ MLim
Hit,q ∩W

k,2
loc (Σ \ Zq)}/C∗.

Here we give more precise explanation of the above notation. The space MHit,q∗ consists of
solutions (A, ϕ = φ + φ†) to the Hitchin equations such that det(φ) = tq for some non-zero
complex number t. Moreover, the notation [(A, ϕ)] ∈ MHit,q∗ ∩ W k,2(Σ) means the equiva-
lence class of (A, ϕ) ∈ W k,2(Σ) modulo unitary gauge transformations in W k+1,2(Σ). Similarly,

[(A, ϕ)] ∈ MLim
Hit,q∩W loc consists of the equivalence class of (A, ϕ) ∈W k,2

loc (Σ\Zq) modulo unitary
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gauge transformations in W k+1,2
loc (Σ \Zq) and the C∗ action is given by t · [(A, ϕ)] → [(A, tϕ)]. By

classical bootstrapping of the gauge-theoretic elliptic equations, Mq is independent of k ⩾ 2.

Next define M := M0 ∪
⋃

q∈H0(K2)\{0}Mq and based on definition, we have M = MHit ∪
MLim

Hit /C∗. Its topology is generated by two types of open sets. For interior points ξ = [(A, ϕ)] ∈
MHit ⊂ M we use the open sets

Vξ,ϵ := {[(A′, ϕ′)] ∈ MHit | ∥A′ −A∥Wk,2(Σ) + ∥ϕ′ − ϕ∥Wk,2(Σ) < ϵ}

from the topology of MHit. For any boundary point ξ0 ∈ MLim
Hit /C∗, choose a representative

(A0, ϕ0) with ∥ϕ0∥L2 = 1. Let q = det(ϕ0), and fix any open set ω ⋐ Σ \ Zq. Then, setting
M∗

Hit = MHit \ H−1(0),

Uξ0,ω,ϵ :={(A, ϕ) ∈ M∗
Hit | ∥A−A0∥Wk,2(ω) + inf

θ∈S1
∥∥ϕ∥−

1
2

L2 ϕ− eiθϕ0∥Wk,2(ω) < ϵ, ∥ϕ∥L2 >
1

ϵ
}⋃

{(A, ϕ) ∈ MLim
Hit |∥A−A0∥Wk,2(ω) + ∥ϕ− ϕ0∥Wk,2(ω) < ϵ}

defines an open set around ξ0. The sets Uξ0,ω,ϵ and Vξ,ϵ generate the topology on M.

Theorem 4.8. The space M is Hausdorff and compact.

Proof. The Hausdorff property follows from the definition of the topology. By Propositions 4.6
and 4.7, M is sequentially compact. Moreover, using this explicit base for the topology, M is first
countable and hence compact.

We may now define the compactification of the Hitchin moduli space as the closure MHit ⊂ M;
we write ∂MHit for the boundary of the closure, and MHit,q∗ := MHit ∩ Mq for the subset of
elements with a fixed quadratic differential.

The following result is described in [MSWW16, OSWW20, MSWW19].

Theorem 4.9 ([MSWW19, Prop. 3.3]). If q has only simple zeros, then MHit,q∗ = Mq.

In other words, the compactification of any slice where q does not lie in the discriminant locus
is “the obvious one”.

5. Parabolic modules and stratification of BNR data

In this section, we review the notion of a parabolic module, as described in [Reg80, Coo93,
Coo98, GO13]. This concept leads to a partial normalization of the generalized Jacobian and
Prym varieties of the spectral curve.

5.1 Normalization of the spectral curve

Let q ̸= 0 be a quadratic differential with an irreducible, singular spectral curve S = Sq.
The zeros of q define a divisor Div(q) =

∑r1
i=1mipi +

∑r2
j=1 njp

′
j , where the mi and nj are even

and odd integers, respectively, and hence r1 and r2 are the numbers of even and odd zeros,
respectively, counted without multiplicity. Write Zeven = {p1, . . . , pr1}, Zodd = {p′1, . . . , p′r2}, and
Z = Zeven ∪ Zodd, so #Z = r = r1 + r2.

The map π : S → Σ is a double covering branched along Z; hence, we may view pi and p′i
as points in S. For x ∈ S, let Ox be the algebraic local ring, O∗

x its group of units, and Rx the
completion. We say that S has an An singularity at x if Rx

∼= C[[r, s]]/(r2 − sn+1), where n ⩾ 1.
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If S has an A1 singularity at x, we call it a nodal singularity, and if S has an A2 singularity at
x, we call it a cusp singularity.

Let p : S̃ → S be the normalization of S, and let π̃ := π ◦ p:

S̃ S

Σ

p

π̃
π (10)

For even zeros pi we write p−1(pi) = {p̃+i , p̃
−
i }, and for odd zeros p′i we write p−1(p′i) = p̃′i. Since

π : S → Σ is a branched double cover, the involution σ on S extends to an involution of S̃ which
we also denote by σ. Note that σ(p̃′i) = p̃′i while σ(p̃±i ) = p̃∓i .

The ramification divisor Λ′ = 1
2

∑r1
i=1mipi + 1

2

∑r2
j=1(nj − 1)p′j , is a (Weil) divisor on S, and

there is an exact sequence:

0 −→ OS −→ p∗OS̃
−→

∑
x∈Supp(Λ′)

Õx/Ox −→ 0 . (11)

The genus of S̃ is g(S̃) = 4g − 3 − deg(Λ′) = 2g − 1 + r2/2.

5.2 Jacobian under the pull-back to the normalization

We now recall some facts about the Jacobian under the pull-back to the normalization (cf.
[GO13]). Let x ∈ Z ⊂ S be a singular point, i.e. either x ∈ Zeven or x = p′j with nj ⩾ 3. Let Õx

be the integral closure of Ox. Set V :=
∏

x∈Z Õ∗
x/O∗

x. Then we have the following well-known
short exact sequence.

0 −→ V −→ Jac(S)
p∗−→ Jac(S̃) −→ 0 . (12)

This will play an important role later on.

5.2.1 Hitchin fiber. We examine the locally free part T of the Hitchin fiber under the pull-
back. Here, T is defined to be the set of L ∈ Pic2g−2(S) such that det(π∗L) = OΣ (see 4). Though
Λ′ is a divisor S, it could also be considered as a divisor on Σ by the identification of pi, p

′
j and

π(pi), π(p′j). To save notation, we write OΣ(Λ′) for the corresponding line bundle on Σ. For any

L ∈ Pic(S), from (11) we see that det(π̃∗p
∗L) ∼= det(π∗L) ⊗OΣ(Λ′). We define a new set, T̃ , as

follows:

T̃ := {L̃ ∈ Pic2g−2(S̃) | det(π̃∗L) ∼= O(Λ′)}.
Then p∗ maps T to T̃ . Furthermore, if L1, L2 ∈ Pic(S) satisfy p∗L1

∼= p∗L2, then we have
π∗L1

∼= π∗L2. This means that the fiber of p∗ : Jac(S) → Jac(S̃) is the same as that of p∗ : T → T̃ ,
resulting in the following fibration:

V −→ T p∗−−−−→ T̃ . (13)

5.3 Torsion free sheaves

Now we present Cook’s parametrization of rank 1 torsion free sheaves on curves with Goren-
stein singularities (see [Coo98, p. 40] and also [Coo93, Reg80]). An explicit computation of the
invariants used in this paper is provided in Appendix A. Let x ∈ Z be a singular point of S,
and let L → S be a rank 1 torsion free sheaf. We again let Ox denote the local ring at x, Õx
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its integral closure, and δx = dimC(Õx/Ox). According to [GP93, Lemma 1.1], there exists a
fractional ideal Ix that is isomorphic to Lx, uniquely defined up to multiplication by a unit of
Õx, such that Ox ⊂ Ix ⊂ Õx. We define ℓx := dimC(Ix/Ox) and bx := dimC(T (Ix ⊗Ox Õx)),
where T means the torsion subsheaf. Then, ℓx and bx are invariants of L.

Let Kx be the field of fractions of Ox. The conductor of Ix ⊂ Õx is defined to be

C(Ix) = {u ∈ Kx | u · Õx ⊂ Ix} .

The singularity is characterized by the following dimensions:

C(Ox) ⊂

2δx−2ℓx︷ ︸︸ ︷
C(Ix) ⊂

δx︷ ︸︸ ︷
Ox ⊂ Ix ⊂ Õx︸ ︷︷ ︸

δx−ℓx︸ ︷︷ ︸
2δx

. (14)

For x = pi ∈ Zeven, we have δpi = mi/2, and there are two maximal ideals m± in Õx corresponding

to the points p̃±i . We let (Õpi/C(Ipi))m± be the localization by the ideals m±, and define ap̃±i
:=

dimC(Õpi/C(Ipi))m± . Moreover, we have dimC(Õpi/C(Opi))m± = mi/2 = δpi . By Appendix A,
ap̃±i

= (mi/2) − ℓpi , and therefore ap̃+i
+ ap̃−i

= 2δpi − 2ℓpi , and also bpi = ℓpi . Define

V (Lpi) = {(c+i , c
−
i ) | c±i ∈ Z⩾0 , c

+
i + c−i = ℓpi} .

For x = p′i ∈ Zodd, we have δp′i = (ni − 1)/2, and the maximal ideal m of Õx is unique. Define

ap̃′i := dimC(Õp′i
/C(Ip′i))m. By Appendix A, we have ap̃′i = 2δp′i − 2ℓp′i and bp′i = ℓp′i . Moreover,

dimC(Õp′i
/C(Op′i

))m = ni − 1 = 2δp′i . In this case we set V (Lp′i
) = {ℓp′i}.

Let η : Õx → Õx/C(Ox) be the quotient map. Define

S(Lx) := {Ox-submodules Fx ⊂ Õx/C(Ox) | dimC(Fx) = δx , η
−1(Fx) ∼= Lx} .

Hence, if Jx = η−1(Fx) with Fx ∈ S(Lx), there exists an ideal tx in Õx such that Jx = tx · Lx.
For x = pi ∈ Zeven, we obtain two integers c±i = dimC(Õx/(tx · Õx))m± . By [Coo98, Lemma 6],

(c+i , c
−
i ) ∈ V (Lpi), for x = p′i ∈ Zodd, dimC(Õx/(tx · Õx)) = ℓp′i ∈ V (Lp′i

), and these only depend
on Fx. Hence, there is a well-defined map:

κx : S(Lx) −→ V (Lx) :

{
Fx → (c+i , c

−
i ) when x = pi,

Fx → ℓp′i when x = p′i .

Lemma 5.1 ([Coo98, Lemma 6]). For x ∈ Z, the connected components of S(Lx) are parame-
terized by elements in V (Lx).

Set V (L) :=
∏

x∈Z V (Lx) and S(L) :=
∏

x∈Z S(Lx). Write N(L) := |V (L)| for the number of
points in V (L). There is a map

κ :=
∏
x∈Z

κx : S(L) −→ V (L) .

For any c ∈ V (L), write c = (c±1 , . . . , c
±
r1 , ℓp′1 , . . . , ℓp′r2

). Associate to c the divisor

Dc =

r1∑
i=1

(c+i p̃
+
i + c−i p̃

−
i ) +

r2∑
i=1

ℓp′i p̃
′
i

16
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on S̃. Composing κ with the map above, we define

κ : S(L) −→ Div(S̃) :
∏
x∈Z

Fx 7→ c 7→ Dc . (15)

The following result is straightforward but important:

Proposition 5.2. L is locally free if and only if κ = 0 on S(L).

Proof. L is locally free if and only if ℓx = 0 for all x ∈ Z. The claim then follows directly from
the definition of Dc.

5.4 Parabolic modules

In this subsection, we define the notion of a parabolic module, following [Reg80, Coo93,
Coo98]. First note that dimC(Õx/C(Ox)) = 2δx (cf. (14)). Let Gr(δx, Õx/C(Ox)) be the Grass-
mannian of δx dimensional subspaces of the vector space Õx/C(Ox). Then Õ∗

x acts on Gr(δx, Õx/C(Ox))
by multiplication, with fixed points corresponding to δx-dimensional Ox submodules of Õx/C(Ox).
We write P(x) for the (reduced) variety of fixed points. This is a closed subvariety of Gr(δx, Õx/C(Ox)).

Suppose x is an An singularity. For notational convenience, we write P(An) := P(x). We
have the following:

Proposition 5.3 ([Coo98, Prop. 2]). The following holds:

(i) P(An) is connected and depends only on δx. Also, dimC P(A2n) = n, and we have isomor-
phisms P(A2n−1) ∼= P(A2n).

(ii) If P (A0) is defined to be a point, then the inclusions P(A0) ⊂ P(A2) ⊂ · · · ⊂ P(A2n) give
a cell decomposition of P(A2n).

(iii) The singular locus Sing(P(A2n)) ∼= P(A2n−4). In particular, it has codimension ⩾ 2. More-
over, P(A1) = P(A2) ∼= CP 1, and P(A4) is a quadric cone.

Define P(S) =
∏

x∈Z P(x). This only depends on the curve singularity of S. Let J ∈ Pic(S̃).
As vector spaces,

J
⊕mi

2

p̃+i
⊕ J

⊕mi
2

p̃−i

∼= Õpi/C(Opi) , J
⊕(ni−1)
p̃′i

∼= Õp′i
/C(Op′i

) .

Definition 5.4. A parabolic module PMod(S̃) consists of pairs (J, v), where J ∈ Jac(S̃) and
v =

∏
x∈Z vx, with vx ∈ P(x).

By [Coo98, p. 41], PMod(S̃) has a natural algebraic structure. Let pr : PMod(S̃) → Jac(S̃) be
the projection to the first component. Then pr defines a fibration of PMod(S̃) with fiber P(S).
Moreover, there is a finite morphism τ : PMod(S̃) → Jac(S) defined by sending (J, v) → L,
where L is given by:

0 −→ L −→ p∗J −→ (J ⊗OΛ)/v −→ 0 .

There is a diagram:

P(S) PMod(S̃) Jac(S̃)

Jac(S)

pr

τ .

The map τ may be regarded as the compactification of the pull-back normalization map p∗ in
(12).

17
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Theorem 5.5 ([Coo98, Thm. 1]). For the map τ : PMod(S̃) → Jac(S) defined above,

(i) τ is a finite morphism, where the fiber over L consists of N(L) points,

(ii) The restriction τ : τ−1Jac(S) → Jac(S) is an isomorphism. Moreover, for L ∈ Jac(S), we
have pr ◦ τ−1(L) = p∗(L).

(iii) Suppose τ(J, v) = L. For x ∈ Z, we have vx ∈ S(Lx). Let Dv = κ(v) be the divisor defined
in (15). Then

0 −→ p∗L/T (p∗L) −→ J −→ J ⊗ODv −→ 0 .

In particular, p∗L/T (p∗L) = J(−Dv).

Suppose all of the zeros of the quadratic differential q are odd. Then for L ∈ Jac(S), N(L) = 1,
and we can deduce the following.

Corollary 5.6. If q−1(0) = {p′1, . . . , p′r} and all zeroes have odd multiplicity, then τ : PMod(S̃) →
Jac(S) is a bijection. Moreover, for L ∈ Jac(S) with τ(J, v) = L, we have

p∗L/T (p∗L) = J(−
∑

ℓp′i p̃
′
i) .

For convenience, we recall the canonical example of a parabolic module.

Example 5.7 ([Coo98, Ex. 2]). Suppose q contains 4g−2 simple zeros and one zero x of order 2.
Then the spectral curve S has one nodal singularity at x. Denote p : S̃ → S the normalization,
with p−1(x) = {x̃+, x̃−}. Then P(S) = CP 1, and we obtain a fibration CP 1 → PMod(S̃) →
Jac(S̃). Let L ∈ Jac(S) \ Jac(S). If we write L̃ := p∗L/T (p∗L), then

τ−1(L) = {(L̃⊗O(x̃+), v+), (L̃⊗O(x̃−), v−)} .

We can define two sections:

s± : Jac(S̃) −→ PMod(S̃) : J 7→ (J, v±) ,

where v+ = [1, 0], v− = [0, 1]. Then Jac(S) is the quotient of PMod(S̃) given by the identification

Jac(S) ∼= PMod(S̃)/(s+ ∼ O(x̃− − x̃+)s−) .

In particular, PMod(S̃) is not a fibration over Jac(S).

Proposition 5.8. The singular set of PMod(S̃) has codimension at least 2. Moreover, if the
spectral curve S contains only cusp or nodal singularities, then PMod(S̃) is smooth.

Proof. As the singularities of PMod(S̃) come from the space P(S), the claim follows from
Proposition 5.3.

Let P := {L ∈ Jac(S) | det(π∗L) ∼= K−1} and P be the closure of P in Pic(S). Since we
focus on SL(2,C) Higgs bundles, we must consider the parabolic module compactification of the
fibration

0 −→ V −→ P p∗−−−→ Prym(S̃/Σ) −→ 0 .

Setting, P̂Mod(S̃) := τ−1(P), then there is a diagram from [GO13, p. 17]

P(S) P̂Mod(S̃) Prym(S̃/Σ)

P

pr

τ
(16)

Theorem 5.5 proves that pr ◦ τ−1|P = p∗.
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5.5 Stratifications of the BNR data

Recall that T (resp. P) is the natural compactification of T (resp. P) induced by the inclusion
Pic(S) ⊂ Pic(S). Parabolic modules define a stratification of P and T . In the following, π : S → Σ
is a branched double cover, σ the associated involution on S, and by σ we also denote its extension
to an involution on the normalization S̃ of S.

For a rank 1 torsion free sheaf L ∈ Pic(S), consider the map

p⋆tf : Pic(S) −→ Pic(S̃) , p⋆tf(L) := p∗L/T (p∗L) ,

i.e. the torsion free part of the pull-back to the normalization. By [Rab79], p⋆tf(L) = p∗L at x ∈ S̃
if and only if L is locally free at p(x) ∈ S.

Using the previous conventions, recall that we have the divisor

Λ =

r1∑
i=1

mi

2
(p̃+i + p̃−i ) +

r2∑
j=1

nj p̃
′
j

on S̃.

Definition 5.9 ([Hor22a]). An effective divisor D ∈ Div(S̃) is called a σ-divisor if

(i) D ⩽ Λ and σ∗D = D;

(ii) and for any x ∈ Fix(σ), D|x = dxx, where dx ≡ 0 mod 2.

The σ-divisors play an important role in describing the singular Hitchin fibers.

Proposition 5.10 ([Hor22a, Moc16]). Let L ∈ P and write L̃ := p⋆tfL. Then we have L̃⊗σ∗L̃ =
O(−D) for D a σ-divisor.

For a σ-divisor D, define

T̃D = {J ∈ Pic(S̃) | J ⊗ σ∗J = O(Λ −D)} ;

P̃D = {J ∈ Pic(S̃) | J ⊗ σ∗J = O(−D)} .
(17)

By [Hor22a, Prop. 5.6], when the number of odd zeros r2 > 0 or D ̸= 0, T̃D and P̃D are abelian
torsors over Prym(S̃/Σ) with dimension g(S̃)−g = g−1+ 1

2r2. When r2 = 0 and D = 0, P̃D and

T̃D are torsors over Nm−1(OΣ)∪Nm−1(I), where Nm is the norm map of the covering π̃ : S̃ → Σ,
and I is the unique non-trivial line bundle satisfies π̃∗I ∼= O

S̃
. In addition, we define

T D = {L ∈ T | p⋆tfL ∈ T̃D} ;

PD = {L ∈ P | p⋆tfL ∈ P̃D} .
(18)

Then the partial order on divisors defines a stratification of T (resp. P) by: ∪D′⩽DT D′ (resp.
∪D′⩽DPD′). The top strata are T D=0 (resp. PD=0), and these consist of the locally free sheaves.
From the definition, T = T D=0 and P = PD=0.

Theorem 5.11 ([Hor22a, Thm. 6.2]). (i) Suppose q contains at least one zero of odd order. For
each stratum indexed by a σ-divisor D, if we let nss be the number of p such that D|p = Λ|p,
then there are holomorphic fiber bundles

(C∗)k1 × Ck2 −→ T D
p⋆tf−−−→ T̃D ;

(C∗)k1 × Ck2 −→ PD
p⋆tf−−−→ P̃D ,

(19)
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where k1 = r1 − nss, k2 = 2g − 2 − 1
2 deg(D) − r1 + nss − r2

2 , and r1, r2 are the number of even
and odd zeros.1

(ii) Suppose q is irreducible but all zeros are of even order. Then there exists an analytic

space T ′
D and a double branched covering p : T D → T ′

D, with T ′
D a holomorphic fibration

(C∗)k1 × Ck2 −→ T ′
D

p⋆tf−−−→ T̃D .

In particular, dim(PD) = dim(T D) = 3g − 3 − 1
2 deg(D).

As explained in [Hor22a], via the BNR correspondence the stratification above translates into
a stratification of the Hitchin fiber. Let χBNR : T ∼−−→ Mq be the bijection in Theorem 2.3. Let D
be a σ-divisor. Define Mq,D := χBNR(T D). Then the stratification of T induces a stratification
on Mq =

⋃
D Mq,D.

For each σ-divisor D, since σ∗D = D and for any x ∈ Fix(σ), D|x = dxx, where dx ≡ 0
mod 2, we can write D′ := 1

2 π̃(D). Then D′ is an effective divisor with supp D′ ⊂ Z. Moreover,
for x ∈ q−1(0), D′

x ⩽ 1
2⌊ordx(q)⌋. Therefore, Mq may be regarded as also being stratified by

divisors D′ defined over Σ.

5.6 The structure of the parabolic module projection

We now explain the relationship between the divisor Dv in Theorem 5.5 and the σ-divisor.
Given L ∈ P, define

NL := {(J, v) ∈ P̂Mod(S̃) | τ(J, v) = L} ;

DL := {Dv | (J, v) ∈ NL} ,
(20)

That is, NL = τ−1(L), and DL is the collection of divisors Dv such that J(−Dv) = p⋆tf(L). By
Theorem 5.5, if τ(J, v) = τ(J ′, v), then J ′ = J(Dv′ − Dv). By (16), as L ∈ P, we have J, J ′ ∈
Prym(S̃/Σ), which implies Dv = Dv′ . Therefore, for the cardinalities, we have |NL| = |DL|.
Furthermore, we define NL := |NL| = |DL|.

The divisor Dv satisfies the following symmetry property.

Proposition 5.12. LetD be a σ-divisor and L ∈ PD. For anyDv ∈ DL, we haveDv+σ∗Dv = D.

Proof. Let τ(J, v) = L. Then by Theorem 5.5 we have L̃ = J(−Dv), where L̃ = p⋆tf(L). As

L ∈ PD and J ∈ Prym(S̃/Σ), we have L̃ ⊗ σ∗L̃ = O(−D) and J ⊗ σ∗J = O
S̃

, which implies
Dv + σ∗Dv = D.

As a consequence, we have the following.

Corollary 5.13. Suppose q has only zeroes of odd order. Then for L ∈ PD and Dv ∈ DL, we

have σ∗Dv = Dv and Dv = 1
2D. In addition, τ : P̂Mod(S̃) → P is a bijection.

Proof. Since each zero has odd order, supp (Dv) ⊂ Fix(σ), which implies Dv = σ∗Dv. By Propo-
sition 5.12, we must have Dv = 1

2D.

There are relationships between the integers appearing in the construction of the parabolic
module.

1J. Horn kindly pointed out to us that the formula in the paper [Hor22a, Theorem 6.2] needs to be modified
by incorporating nss. The expressions for k1 and k2 are derived from [Hor22a, Proposition 5.12] and [Hor22a,
Theorem 5.13]. Specifically, in [Hor22a, Proposition 5.12], it is stated that the local contribution of p is null when
D|p = Λ|p, which leads to the expression k1 = r1 − nss.
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Lemma 5.14 ([GK85]). Let D =
∑r1

i=1 di(p̃
+
i + p̃−i ) +

∑r2
i=1 d

′
ip̃

′
i be a σ-divisor, and let L ∈ PD.

Then we have

(i) ℓpi = di and ℓp′i = d′i/2;

(ii) ap̃+i
= ap̃−i

= (mi/2) − di and ap̃′i = ni − 1 − d′i.

Proof. Since L ∈ PD, we have dimT (p∗Lpi) = di and dimT (p∗Lp′i
) = d′i/2. The claim then

follows from Proposition A.1.

Proposition 5.15. Let D =
∑r1

i=1 di(p̃
+
i + p̃−i )+

∑r2
i=1 d

′
ip̃

′
i be a σ-divisor, and let L ∈ PD. Then

NL =
∏r1

i=1(di + 1). The number NL depends only on the σ-divisor D.

Proof. By Lemma 5.14, V (L) can be rewritten as

V (L) = {(c±1 , . . . , c
±
r1 , c

′
1 = lp′1 , . . . , c

′
r2 = lp′r2

) | c+i + c−i = di, c
±
i ∈ Z⩾0} ,

If we define nL to be the number of Dv ∈ DL such that σ∗Dv ̸= Dv, then we have the
following.

Proposition 5.16. (i) nL is even;

(ii) if L ∈ PD with

D =

r1∑
i=1

di(p̃
+
i + p̃−i ) +

r2∑
i=1

d′ip̃
′
i ,

and if there exists i0 ∈ {1, . . . , r1} such that di0 is not even, then nL = NL; otherwise,
nL = NL − 1.

Proof. To prove (i), note that if σ∗Dv ̸= Dv, then σ∗(σ∗Dv) ̸= σ∗Dv, which means that nL is
even. For (ii), by Proposition 5.15, Dv = σ∗Dv for Dv ∈ DL if and only if c+i = c−i = di/2.
Therefore, nL ̸= NL if and only if all di are even, which implies (ii).

We should note that the integer nL only depends on the Higgs divisor D and in the rest of
paper, we define nD := nL

2 .

6. Irreducible singular fibers and the Mochizuki map

In this section, we provide a reinterpretation of the limiting configuration construction of a
Higgs bundle on an irreducible fiber, as introduced by Mochizuki in [Moc16] (see also [Hor22a]).
We also investigate the relationship between limiting configurations and the stratification.

6.1 Abelianization of a Higgs bundle

Let q be a fixed irreducible quadratic differential with spectral curve S, with normalization
p : S̃ → S. We define K̃ := π̃∗K (but note that K̃ ̸= K

S̃
) and q̃ := π̃∗q ∈ H0(K̃2), where π̃ is as

in (10). Choose a square root ω ∈ H0(K̃) such that q̃ = −ω ⊗ ω (i.e. ω = p∗λ). Let Λ := Div(ω)
and Z̃ := supp(Λ). We can then write

Λ =

r1∑
i=1

mi

2
(p̃+i + p̃−i ) +

r2∑
j=1

nj p̃
′
j . (21)
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If σ : S̃ → S̃ denotes the involution, then σ∗ω = −ω.

Let (E , φ) be a Higgs bundle on Σ with detφ = q. Consider the pullback (Ẽ , φ̃) := (π̃∗E , π̃∗φ)
to S̃. We have φ̃ ∈ H0(End(Ẽ) ⊗ K̃) and q̃ = det(φ̃). Since q̃ = −ω ⊗ ω, ±ω are well-defined
eigenvalues of φ̃ over S̃. Let λ̃ be the canonical section of the pullback of K̃ to the total space
Tot(K̃). The spectral curve for (Ẽ , φ̃) is defined by the equation

S̃′ := {λ̃2 − q̃ = 0}.

The set S̃′ = Im(ω) ∪ Im(−ω) ⊂ Tot(K̃) decomposes into two irreducible pieces.

Having fixed a choice of ω, the eigenvalues of φ̃ are globally well-defined, and we can define
the line bundle L̃+ ⊂ Ẽ as L̃+ := ker(φ̃ − ω). Since σ∗ω = −ω, L̃− = σ∗L̃+ = ker(φ̃ + ω), and
there is an isomorphism Ẽ |

S̃\Z̃
∼= L̃+ ⊕ L̃−|S̃\Z̃ .

There is a local description of (Ẽ , φ̃).

Lemma 6.1 ([Hor22a, Lemma 5.1, Thm. 5.3],[Moc16, Lemma 4.2]). Let x ∈ Z̃ and write Λ|x =
mxx. Let U be a holomorphic coordinate neighborhood of x. Then there exists a frame e ∈
H0(U, K̃) such that, under a suitable trivialization of E|U ∼= U × C2, we can write

φ̃ = zdx
(

0 1
z2mx−2dx 0

)
⊗ e. (22)

Moreover, if we define D :=
∑

x∈Z̃ dxx, then D is a σ-divisor.

Lemma 6.2 ([Moc16, Sec. 4.1]). For the L̃± defined above, we have L̃+ ⊗ L̃− = O
S̃

(D − Λ).

Moreover, if we denote L̃0 := L̃+(Λ −D) and L̃1 := σ∗L̃0, then L̃+ = Ẽ ∩ L̃0, L̃− = Ẽ ∩ L̃1, and
we have the exact sequences

0 −→ L̃+ −→ Ẽ −→ L̃1 −→ 0 ;

0 −→ L̃− −→ Ẽ −→ L̃0 −→ 0 .

Proof. The inclusion of L̃± → Ẽ defines an exact sequence:

0 −→ L̃+ ⊕ L̃− −→ Ẽ −→ T −→ 0 ,

where T is a torsion sheaf with supp T ⊂ Z̃. From the local description in (22), in the same

trivialization, L̃± are spanned by the bases s± =

(
1

±zmx−dx

)
. Therefore, as det(E) = OΣ, we

obtain L̃+ ⊗ L̃− = O
S̃

(D−Λ). Since s+, s− are linear independent away from z, Ẽ/L̃+ is locally

generated by the section zdx−mxs−. Therefore, Ẽ/L̃+
∼= L̃−(Λ −D) = L̃1. Using the involution,

we obtain the other exact sequence.

Therefore, if L̃ ⊗ σ∗L̃ = O
S̃

(D − Λ), we have L̃0 = L̃(Λ − D) ∈ T̃D. In summary, the
construction above leads us to consider the composition of the following maps given by the
composition

δ : Mq → T̃D, (E , φ) 7→ L̃+ 7→ L̃+(Λ −D) ,

where the first map is obtained by taking the kernel of (π̃∗φ− ω)|π̃∗E .

This procedure is directly related to the torsion free pull-back. Recall that χBNR : T → Mq

is the BNR correspondence map, and p⋆tf : Pic(S) → Pic(S̃) is the torsion free pull-back. Then
we have
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Proposition 6.3. δ ◦ χBNR = p⋆tf . In particular, if J ∈ T D, then δ ◦ χBNR(J) ∈ T̃D.

Proof. Let J ∈ T , and write (E , φ) = χBNR(J), (Ẽ , φ̃) := π̃∗(E , φ). Recall the BNR exact
sequence on S (see (3)). As p∗ is right exact, we obtain

Ẽ φ̃−λ̃−−−−−→ Ẽ ⊗ K̃ −→ p∗J ⊗ K̃ −→ 0 .

Since the spectral curve is S̃′ = Im(ω)∪Im(−ω), we can consider the restriction to the component
Im(ω) and write λ̃ = ω, L̃± := ker(φ̃∓ ω). We obtain an exact sequence

0 −→ L̃+ −→ Ẽ φ̃−ω−−−−→ Ẽ ⊗ K̃ −→ p∗J ⊗ K̃ −→ 0 ,

which breaks into short exact sequences

0 −→ L̃+ −→ Ẽ −→ Im(φ̃− ω) −→ 0 ;

0 −→ Im(φ̃− ω) −→ Ẽ ⊗ K̃ −→ p∗J ⊗ K̃ −→ 0 .

Using the local trivialization in Lemma 6.1, Im(φ̃ − ω) is locally spanned by

(
zdx

−zmx

)
e. From

Lemma 6.2, if we write L̃0 := L̃+(Λ −D) and L̃1 := σ∗L̃0, then

δ ◦ χBNR(J) = L̃+(Λ −D) .

Moreover, there is an isomorphism Im(φ̃ − ω) ∼= L̃1. Letting L̃′
1 be the saturation of L̃1, then

we obtain the commutative diagram:

0 L̃1 Ẽ ⊗ K̃ p∗J ⊗ K̃ 0

0 L̃′
1 Ẽ ⊗ K̃ p⋆tfJ ⊗ K̃ 0

i ∼=

where i : L̃1 → L̃′
1 is the natural inclusion. Moreover, in the same trivialization, L̃′

1 is spanned by

the section

(
1

−zmx−dx

)
e. Therefore, L̃′

1
∼= L̃−⊗K̃ and from Lemma 6.2, p⋆tfJ = δ◦χBNR(J).

If (E , φ) is a Higgs bundle with (E , φ) = χBNR(L), and L̃0 = δ◦χBNR(L), then by Proposition
6.3, L̃0 = p⋆tf(L). We define a Higgs bundle (Ẽ0, φ̃0) as follows

Ẽ0 = L̃0 ⊕ σ∗L̃0, φ̃0 =

(
ω 0
0 −ω

)
.

Moreover, Ẽ is an O
S̃

submodule of Ẽ0 with a natural inclusion ι : Ẽ → Ẽ0 satisfying the following:

(i) the induced morphism Ẽ → L̃0, Ẽ → σ∗L̃0 is surjective,

(ii) the restriction of ι|
S̃\Z̃ is an isomorphism,

(iii) φ̃0 ◦ ι = ι ◦ φ̃.

Following [Moc16, Sec. 4.1], we call (Ẽ0, φ̃0) the abelianization of the Higgs bundle (E , φ).
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6.2 The construction of the algebraic Mochizuki map

In this subsection, we define the algebraic Mochizuki map, as introduced in [Moc16]. Recall
that for any divisor D =

∑
x∈Z dxx, there is a canonical weight function

χD(x) :=

{
dx x ∈ supp D ;

0 x /∈ supp D .

We also have the stratification T = ∪DT D, for σ divisors D. Let F (S̃) be the space of all degree
zero filtered line bundles over S̃. The algebraic Mochizuki map ΘMoc is defined as

ΘMoc : T −→ F (S̃) , L 7→ F∗(p
⋆
tf(L), 12χD−Λ) .

Example 6.4. When q has only simple zeroes, this construction generalizes that of [MSWW16]
(see also [Fre18]). In the case of a quadratic differential with simple zeros, the spectral curve S
is smooth, and every torsion free sheaf is locally free, so that T = T . If Z = {p1, . . . , p4g−4} are

the branch points of S, and Λ =
∑4g−4

i=1 pi, then the weight function 1
2χ−Λ assigns a weight of

−1
2 at each pi. For L ∈ T , ΘMoc(L) = F∗(L,

1
2χ−Λ).

Below are some additional properties of ΘMoc.

Proposition 6.5. ΘMoc|T D
is a continuous map.

Proof. This follows directly from the definition of ΘMoc and Theorem 3.3.

From Theorem 5.11, we know that for a σ-divisor D, the preimage of the map p⋆tf : T D → T̃D
has dimension 2g−2− 1

2 deg(D)−r2/2, where r2 is the number of odd zeros of q. Even for the top
stratum D = 0, p⋆tf is not injective if the spectral curve is not smooth. Indeed, if L1, L2 ∈ T D with
p⋆tf(L1) = p⋆tf(L2), then based on the construction we have ΘMoc(L1) = ΘMoc(L2). In summary,
we have the following result:

Proposition 6.6. If q ∈ H0(K2) is irreducible, then ΘMoc is injective if and only if q has simple
zeros.

6.3 Convergence of subsequences

Fix a locally free L0 ∈ T . Using the isomorphism ψL0 : T → P defined by ψL0(L) = LL−1
0 ,

we can extend the Mochizuki map ΘMoc to P. For J ∈ PD, we write J̃ := p⋆tf(J) and choose the
weight function 1

2χD. We then define:

ΘMoc
0 : PD −→ F (S̃) , J 7→ F∗(J̃ ,

1
2χD) .

Proposition 6.7. The map ΘMoc
0 satisfies the following properties:

(i) Let J ∈ P and L := L0J , then

ΘMoc
0 (J) = ΘMoc(L) ⊗ ΘMoc(L0)

−1 ,

where ⊗ is the tensor product for filtered line bundles (7).

(ii) Suppose L = τ(I, v) with (I, v) ∈ P̂Mod(S̃) and L ∈ PD, then

ΘMoc
0 ◦ τ(I, v) = F∗(I(−Dv), 12χDv+σ∗Dv) ,

where Dv is the corresponding divisor defined in Theorem 5.5.

(iii) If σ∗Dv = Dv, then ΘMoc
0 ◦ τ(I, v) = F∗(I, 0), where 0 means all parabolic weights are zero.
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Proof. As L0 is locally free, we have p⋆tfJ = (p∗L0)
−1 ⊗ p⋆tfL. By definition,

ΘMoc
0 (J) = F∗(p

⋆
tfJ,

1
2χD) , ΘMoc(L) = F∗(p

⋆
tfL,

1
2χD−Λ) , ΘMoc(L0) = F∗(p

⋆
tfL0,

1
2χ−Λ) ,

which implies (i). For (ii), by Theorem 5.5, p⋆tfL = I(−Dv), and from Proposition 5.12, we have
D = Dv + σ∗Dv, which implies (ii). When σ∗Dv = Dv, we compute

F∗(I(−Dv) , 1
2χDv+σ∗Dv) = F∗(I(−Dv) , χDv) = F∗(I, 0) ,

which implies (iii).

We now give a criterion for the continuity of the map ΘMoc. By Proposition 6.7, it is sufficient
to study the map ΘMoc

0 . Recall that for L ∈ P, we have

NL := {(J, v) ∈ P̂Mod(S̃) | τ(J, v) = L}, DL := {Dv | (J, v) ∈ NL},

and the number nL is defined to be the number of divisors Dv ∈ DL such that σ∗Dv ̸= Dv.

Proposition 6.8. Let D be a σ-divisor, L ∈ PD, and assume that ΘMoc
0 is continuous at L.

Then, for (J, v) ∈ NL and Dv ∈ DL, we have σ∗Dv = Dv, i.e., nL = 0.

Proof. As the top stratum P is dense in P, there exists a family Li ∈ P such that limi→∞ Li =

L. Let (Ji, vi) ∈ P̂Mod(S̃) be such that τ(Ji, vi) = Li. Then, after passing to subsequences,
limi→∞(Ji, vi) = (J∞, v∞), and τ(J∞, v∞) = L. As Li is locally free, we have Dvi = 0. Moreover,
by Theorem 5.5, we have p⋆tfL = J∞(−Dv∞), and from Proposition 5.12, we have D = Dv∞ +
σ∗Dv∞ . By Proposition 6.7, we have

ΘMoc
0 (Li) = ΘMoc

0 ◦ τ(Ji, vi) = F∗(Ji, 0) ,

and we compute

lim
i→∞

ΘMoc
0 (Li) = F∗(J∞, 0) = F∗(J∞(−Dv∞), χDv∞ ) .

Moreover, by Proposition 6.7, we have

ΘMoc
0 (L) = F∗(J∞(−Dv∞),

1

2
(χDv∞ + χσ∗Dv∞ )).

Since ΘMoc
0 is continuous on L, we have limi→∞ ΘMoc

0 (Li) = ΘMoc(L), which implies that
χDv∞ = χσ∗Dv∞ .

By Proposition 5.16, nL > 0 if and only if q has at least one zero of even order. Hence, the
following is immediate.

Corollary 6.9. Suppose q is irreducible and has a zero of even order. Then ΘMoc
0 is not

continuous.

By contrast, we have the following.

Proposition 6.10. If q is irreducible with all zeroes of odd order, then ΘMoc
0 is continuous.

Proof. Since all zeroes of q are odd, for any L ∈ P, we have nL = 0. Let L∞ ∈ P be fixed and

let Li ∈ P be any sequence such that limi→∞ Li = L∞. Since τ : P̂Mod(S̃) → P is bijective,

we take (Ji, vi) ∈ P̂Mod(S̃) with τ(Ji, vi) = Li. Moreover, we assume limi→∞(Ji, vi) = (J∞, v∞)
with τ(J∞, v∞) = L∞. Since q contains only odd order zeros, it follows that supp Dv ⊂ Fix(σ).
By Proposition 6.7, we have ΘMoc

0 (Li) = F∗(Ji, 0). Therefore, we have:

lim
i→∞

ΘMoc
0 (Li) = lim

i→∞
F∗(Ji, 0) = F∗(J∞, 0) = ΘMoc

0 (L∞).
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This concludes the proof.

Theorem 6.11. Suppose q is irreducible. For the map ΘMoc : Mq → F (S̃), we have:

(i) ΘMoc is injective if and only if q only has only simple zeros;

(ii) if q has only zeroes of odd order, ΘMoc is continuous;

(iii) if q contains a zero of even order, ΘMoc is not continuous.

Proof. (i) follows from Proposition 6.6. (ii) follows from Proposition 6.10. (iii) follows from
Corollary 6.9.

Proposition 6.12. Suppose nL > 0. Then for k = 1, . . . , nL, there exist sequences Lk
i ∈ P with

limi→∞ Lk
i = L such that if we denote Fk

∗ := limi→∞ ΘMoc
0 (Lk

i ), F0
∗ := ΘMoc

0 (L), then Fk1
∗ ̸= Fk2

∗
for k1 ̸= k2. Moreover, there exist {D1, . . . , DnL} ⊂ DL such that Fk

∗ = F∗(p
⋆
tfL, χDk

).

Proof. By the definition of nL, we can find (Jk, vk) with τ(Jk, vk) = L. If we define Dk := Dvk ,
then σ∗Dk ̸= Dk. Moreover, by Theorem 5.5, we have p⋆tfL = Jk(−Dk). As τ−1(P) is dense in

P̂Mod(S̃), for each (Jk, vk), we can find a sequence (Jk
i , v

k
i ) ∈ τ−1(P) such that limi→∞(Jk

i , v
k
i ) =

(Jk, vk) and we define Lk
i := τ(Jk

i , v
k
i ). Since Lk

i is locally free, Dvki
= 0, and thus ΘMoc

0 (Lk
i ) =

F∗(J
k
i , 0). We compute

lim
i→∞

ΘMoc
0 (Lk

i ) = F∗(J
k, 0) = F∗(p

⋆
tfL, χDk

)

and ΘMoc
0 (L) = F∗(p

⋆
tfL,

1
2χD). Based on our assumptions, we have Dk1 ̸= Dk2 for k1 ̸= k2 and

σ∗Dk ̸= Dk, which implies that χDk1
̸= χDk2

for k1 ̸= k2 and χDk
̸= 1

2χD.

We now present a computation for the case of a simple nodal curve.

Example 6.13. Let q be a quadratic differential with 2g − 4 simple zeros, and let x be an even
zero of q of order two. Then S has a singular point, which we also denote by x. Let p : S̃ → S
be the normalization map and p−1(x) = {x1, x2}. Consider the σ-divisor D = x1 + x2, and let
L ∈ PD. Then nL = 2, and we can write NL = (J1, v1), (J2, v2), where Dv1 = x1 and Dv2 = x2.
Moreover, we have p⋆tfL = J1 ⊗O(−x1) = J2 ⊗O(−x2). Let (α, β) denote the parabolic weight
that is equal to α at x1, β at x2, and

1
2 at all other zeros. Then the filtered bundles obtained in

Proposition 6.12 are

F∗(p
⋆
tfL, (1, 0)) , F∗(p

⋆
tfL, (0, 1)) , F∗(p

⋆
tfL, (

1
2 ,

1
2)) .

6.4 Mochizuki’s convergence theorem for irreducible fibers

In this subsection, we recall Mochizuki’s construction of the limiting configuration metric
[Moc16, Section 4.2.1, 4.3.2] and the convergence theorem.

6.4.1 Limiting configuration metric. Let q be an irreducible quadratic differential and (E , φ) ∈
Mq a Higgs bundle with (E , φ) = χBNR(L). We write L̃0 = p⋆tfL and (Ẽ , φ̃) := p∗(E , φ). Then the

abelianization of (E , φ), which is a Higgs bundle over S̃, can be written as Ẽ0 = L̃0⊕σ∗L̃0, φ̃0 =
diag(ω, −ω). The natural inclusion ι : (Ẽ , φ̃) → (Ẽ0, φ̃0) is an isomorphism over S̃ \ Z̃. Moreover,
we let D be the σ-divisor of (E , φ).

From the construction of ΘMoc(L) and Proposition 6.12, we have nL different divisors Dk for
k = 1, · · · , nL with σ∗Dk ̸= Dk and Dk + σ∗Dk = D. Moreover, we can find nL + 1 different
filtered bundles with deg 0. Define

F∗,0 := ΘMoc(L) = F∗(L̃0, χ 1
2
(D−Λ)), F∗,k := F∗(L̃0, χ(Dk− 1

2
Λ)) ,
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which are all degree zero filtered bundles with different level of filtrations.

Now we will introduce the construction in [Moc16, Section 4.2.1, 4.3.2]. For k = 0, · · · , nL,
we define h̃k to be the harmonic metric for the filtered bundle F∗,k; this is well-defined up to a
positive multiplicative constant. To fix this constant, assume that σ∗h̃k ⊗ h̃k = 1. This gives a
unique choice of h̃k. We then define the metric H̃k = diag(h̃k, σ

∗h̃k) on Ẽ0, with det(H̃k) = 1. For
the resulting harmonic bundle (Ẽ0, φ0, H̃k), we define ∇̃k to be the unitary connection determined

by H̃k. Since H̃k is diagonal, over S̃ \ Z̃, it follows that F∇̃k
= 0, and we have [φ0, φ

†
H̃k
0 ] = 0.

Furthermore, as ι is an isomorphism on S̃ \ Z̃, the metric H̃k also defines a metric on (Ẽ , φ̃) over
S̃ \ Z̃.

For any x̃ ∈ S̃ \ Z̃ with x := p(x̃), we have isomorphisms

(Ẽ0, φ̃0)|σ(x̃) ∼= (Ẽ0, φ̃0)|x̃ ∼= (Ẽ , φ̃)|x̃ ∼= (E , φ)|x .

Therefore, H̃k induces a metric HLim
k on Σ \Z, and we may consider HLim

k as the push-forward
of h̃k. In [Hor22b, Theorem 5.2], the push-forward metric of ΘMoc(L) is explicitly written in local
coordinates.

Recall the notation from Section 2.4. Let E be a trivial, smooth, rank 2 vector bundle over a
Riemann surface Σ, and let H0 be a background Hermitian metric on E. Over Σ\Z, we write ∇Lim

k

for the Chern connection defined by HLim
k , which is unitary w.r.t. H0 and ϕLimk = φLim

k +φ†Lim

k be
the corresponding Higgs field in the unitary gauge. They satisfy the decoupled Hitchin equations
over Σ \ Z. Thus from any Higgs bundle (E , φ), we obtain nL + 1 limiting configurations

(∇Lim
k , ϕLimk = φ+ φ†Lim

k ) ∈ MLim
Hit .

The flat connection, which is defined over Σ \Z, may be understood by using the nonabelian
Hodge correspondence for filtered vector bundles [Sim90]. Given filtered line bundles F∗,k, define

filtered vector bundles Ẽ∗,k := F∗,k ⊕ σ∗F∗,k, which can be explicitly written as

Ẽ∗,0 : = F∗(L̃0, χ 1
2
(D−Λ)) ⊕F∗(σ

∗L̃0, χ 1
2
(D−Λ)) ;

Ẽ∗,k : = F∗(L̃0, χDk− 1
2
Λ) ⊕F∗(σ

∗L̃0, χσ∗Dk− 1
2
Λ) , k ̸= 0 .

(23)

These are polystable filtered vector bundles over S̃ \ Z̃. As for each k = 0, · · · , nL, σ∗Ẽ∗,k = Ẽ∗,k,

the filtered bundles Ẽ∗,k induce filtered vector bundles E∗,k over Σ \ Z. The flat connections
∇Lim

k will be the unique harmonic unitary connections corresponding to the E∗,k. Moreover, for

0 ⩽ k1 ̸= k2 ⩽ nL, based on the definition of Dk1 and Dk2 , we can always find x̃ ∈ Z̃even, a
preimage of an even zero x of q, such that Ẽ∗,k1 and Ẽ∗,k2 have different filtered structures near

x̃. Since over even zeros, S̃ → Σ is not a branched covering, we conclude that near x, E∗,k1 and
E∗,k2 are different filtered bundles. By [Sim90, Main theorem], the harmonic connections ∇k1 and
∇k2 are not gauge equivalent.

We therefore conclude the following:

Proposition 6.14. For 0 ⩽ k1 ̸= k2 ⩽ nL, (∇Lim
k1

, ϕLimk1
) and (∇Lim

k2
, ϕLimk2

) are not gauge equiva-

lent in MLim
Hit .

Moreover, as with the algebraic compactification of the elements in the C∗ orbit, we would like
to compare with the limiting configurations in the space MLim

Hit /C∗. Over the Dolbeault moduli
space MDol, there is a natural Z2 action given by (E , φ) → (E ,−φ), and the fixed point of the Z2

action is defined to be the real locus of the Dolbeault moduli space, which we denoted by MR
Dol.
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It follows from [Hau98, Theorem 6.2] that the source of the orbifold points of the algebraic
compactification comes from the quotient of the real locus. Moreover, for (E , φ) = χBNR(L),
(E , φ) ∈ MR

Dol if and only if σ∗L = L.

Given a Higgs bundle (E , φ), under the previous convention we let

(Ẽ0 = L̃0 ⊕ σ∗L̃0, φ̃0 = diag(ω,−ω))

be the abelianization of (E , φ). Note that σ∗(Ẽ0, φ̃0) = (Ẽ0, φ̃0) and L̃0 is the eigenline bundle
for φ̃0 with eigenvalue ω. Therefore, (Ẽ0, φ̃0) is gauge equivalent to (Ẽ0,−φ̃0) if and only if
L̃0 = σ∗L̃0, which is equivalent to (E , φ) lies in the real locus. For the collection of divisors
D := {D1, · · · , DnL}, for any Dk ∈ D , we have σ∗Dk ∈ D . Therefore, there exists a permutation
of the index τ : {1, · · · , nL} → {1, · · · , nL} such that Dτ(k) = σ∗Dk with τ2 = id.

Suppose for the limiting configurations in (23), (Ẽ∗,k1 , φ0) is gauge equivalent to (Ẽ∗,k2 ,−φ0).
Then the eigenline bundle for eigenvalue ω will be gauge equivalent, which implies

F∗(L̃0, χDk1
− 1

2
Λ) ∼= F∗(σ

∗L̃0, χσ∗Dk2
− 1

2
Λ).

The above equality holds if and only if L̃0 = σ∗L̃0 and k1 = τ(k2). In summary, we conclude
the following:

Proposition 6.15. Let [(∇Lim
k , ϕLimk )] be the C∗ equivalence class of (∇Lim

k , ϕLimk ) in the space
MLim

Hit /C∗. Then the following holds:

(i) Suppose (E , φ) /∈ MR
Dol, then for any 0 ⩽ k1 ̸= k2 ⩽ nL, [(∇Lim

k1
, ϕLimk1

)] ̸= [(∇Lim
k2

, ϕLimk2
)] in

MLim
Hit /C∗.

(ii) Suppose (E , φ) ∈ MR
Dol, then [(∇Lim

k1
, ϕLimk1

)] = [(∇Lim
k2

, ϕLimk2
)] in MLim

Hit /C∗ if and only if
k1 = k2 or k1 = τ(k2).

In particular, when (E , φ) /∈ MR
Dol, we obtain 1 + 2nD different C∗ equivalence classes of the

limiting configurations in MLim
Hit /C∗ and when (E , φ) ∈ MR

Dol, we obtain 1 + nD different C∗

equivalence classes of limiting configurations in MLim
Hit /C∗.

We define the analytic Mochizuki map ΥMoc as

ΥMoc : Mq −→ MLim
Hit : [(E , φ)] 7→ [(∇Lim

0 , ϕLim0 )], (24)

which we recall is the limiting configuration defined by ΘMoc(L).

6.4.2 The continuity of the limiting configurations. We now introduce the main result of
Mochizuki [Moc16]. Fix (E , φ) = χBNR(L) ∈ Mq. For any real parameter t > 0, (E , tφ) is a
stable Higgs bundle. By the Kobayashi-Hitchin correspondence, there exists a unique metric Ht

solving the Hitchin equation. Denote by ∇t the unitary connection defined by Ht and write
Dt = ∇t + tϕt for the full SL(2,C) flat connection. We then have:

Theorem 6.16 ([Moc16], [MS23, Theorem 1.7]. The family (E , tφ) has a unique limiting config-
uration ΥMoc(E , φ) such that for any compact set K ⊂ Σ \ Z,

lim
t→∞

|(∇t, ϕt) − ΥMoc(E , φ)|Cl(K) = 0.

Moreover, if write (E , φ) = χBNR(L), suppose L = p∗L̃, then there exist t-independent positive
constants Cl,K and C ′

l,K such that

|(∇t, ϕt) − ΥMoc(E , φ)|Cl(K) ⩽ Cl,Ke
−C′

l,Kt .
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As the map ΥMoc is the composition of ΘMoc ◦ χ−1
BNR with the nonabelian Hodge correspon-

dence, the behavior of ΥMoc is the same as ΘMoc. Recall the decomposition Mq =
⋃
Mq,D from

the end of Section 5. By Theorem 6.11, Proposition 6.12, Proposition 6.14 and Proposition 6.15,
we obtain:

Theorem 6.17. Let q be an irreducible quadratic differential. The map ΥMoc : Mq → MLim
Hit

satisfies the following properties:

(i) if all the zeros of q are odd, then ΥMoc is continuous;

(ii) if at least one zero of q is even, then for each (F , ψ) ∈ Mq,D, there exists an integer 2nD
that only depends on D, and 2nD sequences {(Ek

i , φ
k
i )} for k = 1, . . . , 2nD, such that

* limi→∞(Ek
i , φ

k
i ) = (F , ψ) for k = 1, . . . , 2nD,

* and if we write

ηk := lim
i→∞

ΥMoc(Ek
i , tiφ

k
i ) , ξ := lim

i→∞
ΥMoc(F , tiψ) ,

· if (F , ψ) doesn’t lie in the real locus, then ξ, η1, . . . , η2nD are 2nD + 1 different
limiting configurations,

· if (F , ψ) lies in the real locus, then ηi ∼= ηnD+i for i = 1, · · · , n and we obtain nD +1
different limiting configurations.

7. Reducible singular fiber and the Mochizuki map

We now investigate properties of the Hitchin fiber associated with a reducible quadratic
differential, as discussed in [GO13]. Additionally, we provide an overview of Mochizuki’s technique
for constructing limiting configurations of Hitchin fibers for reducible quadratic differentials, as
detailed in [Moc16]. We also analyze the continuity of the Mochizuki map.

7.1 Local description of a Higgs bundle

Write q = −ω⊗ω with ω ∈ H0(K), Λ = Div(ω), Z = supp (Λ), and Mq = H−1(q). Compared
to the irreducible case, Mq contains strictly semistable Higgs bundles, so we let Mst

q denote the
stable locus. We point out that there is a sign ambiguity in the choice of ω, which actually plays
an important role in the following.

7.1.1 Local description. Given a Higgs bundle (E , φ) with det(φ) = q, define line bundles

L± := ker(φ± ω) . (25)

Then the inclusion maps L± → E are injective. Similarly, we may define an abelianization of
(E , φ) by (E0 = L+ ⊕L−, φ0 = diag(ω,−ω)). We then have a natural inclusion ι : E0 → E , which
is an isomorphism on Σ \ Z, and φ ◦ ι = ι ◦ φ0.

It follows from [GO13, Prop. 7.10] that L± are the only φ-invariant subbundles of E . If we
write d± := deg(L±), then (E , φ) is stable (resp. semistable) if and only if d± < 0 (resp. ⩽ 0).
As det(E) = O, the map det(ι) : L+ ⊗ L− → O defines a divisor D = Div(det(ι)) such that
L+ ⊗ L− = O(−D). Therefore, we obtain

d+ + d− + degD = 0 ,

and 0 ⩽ D ⩽ Λ. The Higgs bundle (E , φ) is semistable if and only if −degD ⩽ d+ ⩽ 0 and
stable if the equalities are strict. For the rest of this section, we always write D =

∑
p∈Z ℓpp.
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By Mq,D we mean the set of Higgs bundles (E , φ) ∈ Mq for which the relation L+ ⊗ L− =
O(−D) holds. Consequently, we have Mq =

⋃
0⩽D⩽ΛMq,D.

7.1.2 Semistable settings. As the fiber Mq might contain strictly semistable Higgs bundles,
we now explicitly enumerate all of the possible S-equivalence classes. When D = 0, then L− =
L−1
+ and deg(L+) = 0. The corresponding Higgs bundle is polystable and can be explicitly written

as (
L⊕ L−1,

(
ω 0
0 −ω

))
,

where L ∈ Jac(Σ). When D ̸= 0, suppose deg(L+) = −deg(D). Then L− = L−1
+ (−D) and

deg(L−) = 0. Under S-equivalence, the polystable Higgs bundle is(
L+(D) ⊕ L−1

+ (−D),

(
ω 0
0 −ω

))
,

where L+ ∈ Pic− deg(D)(Σ).

7.2 Reducible spectral curves

In this subsection, we introduce the algebraic data in [GO13] which describes the singular
fiber with a reducible spectral curve. This plays a similar role to the parabolic modules. See
[GO13, Sec. 7.1] for more details.

For any effective divisor D, and line bundle L, define the space

H0(D,L) =
⊕

p∈supp D

O(L)p/ ∼ ,

where s1 ∼ s2 if and only if ordp([s1] − [s2]) ⩾ Dp. Let L ∈ Pic(Σ), and define the following
subspaces of H0(Λ, L2K):

V(D,L) := {s ∈ H0(Λ, L2K) | ordp(s) = Λp −Dp, if Dp > 0; s|p = 0, if Dp = 0},
W(D,L) = {s ∈ H0(Λ, L2K) | s|supp (Λ−D) = 0} .

One checks that W(D,L) = ∪D′⩽DV(D′, L). Moreover, the space V(D,L) is a linear subspace of
H0(Λ, L2K) with a hyperplane removed. In addition, C∗ acts on V(D,L) by multiplication, and
dim(V(D,L)/C∗) = deg(D) − 1.

We define the fibrations

pm : V (D,m) −→ Picm(Σ), pm : W (D,m) −→ Picm(Σ)

such that for L ∈ Picm(Σ), the fibers are V(D,L) and W(D,L).

7.2.1 Algebraic data from the extension. The Higgs bundle (E , φ) can be understood in terms
of an extension. Since det(E) = O, we have the exact sequence

0 −→ L+ −→ E −→ L−1
+ −→ 0 .

For each p ∈ Z, with U ⊂ Σ a neighborhood of p, (E , φ) can be written in terms of a splitting
of C∞ bundles

E = L+ ⊕C∞ L−1
+ , ∂̄E =

(
∂̄L+ b

0 ∂̄L−1
+

)
, φ =

(
ω c
0 −ω

)
.
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Now consider φ
∣∣
Λ

. Because the induced morphisms

(L+)
∣∣
Λ
−→ (L+ ⊗K)

∣∣
Λ
, (E/L+)

∣∣
Λ
−→ (E/L+ ⊗K)

∣∣
Λ

both vanish, we obtain a map s : L−1
+ |Λ ≃ (E/L+)

∣∣
Λ

→ L+K|Λ, or equivalently a section
s ∈ H0(Λ, L2

+K). Moreover, by [GO13, Lemma 7.12], Div(s) = Λ−D, where Div(s) is the divisor
defined by zeros of s. Therefore, given any (E , φ) ∈ Mq, we obtain an L ∈ Picm(Σ) and an element
in V(D,L). The stability condition implies that 0 ⩽ D ⩽ Λ, we have −degD ⩽ degL ⩽ 0.

7.2.2 Inverse construction. The inverse of the construction above also holds; for further
details, see [GO13, Sec. 7] and [Hor22a, Sec. 5]. Given L ∈ Picm(Σ) and s ∈ V(D,L), we define
a Higgs bundle via extensions as follows. From q = −ω ⊗ ω,L, we have a short exact sequence
of complexes of sheaves:

C∗
1 C∗

2 C∗
3

0 L2 L2 0 0

0 L2 L2K L2K|Λ 0

=

id

pr

c 0

c res(Λ)

,

where, for a section s′ ∈ Γ(L2), c(s′) :=
√
−1ωs′, and res(Λ) is the restriction map to the divisor

Λ. The long exact sequence in hypercohomology implies that res(Λ) induces an isomorphism

res(Λ) : H1(C∗
2 ) ∼= H1(C∗

3 ) = H0(Λ, L2K) .

Moreover, H1(C∗
2 ) fits into an exact sequence

0 −→W1 −→ H1(C∗
2 ) −→W2 −→ 0 ,

where

W1 = coker
(
c : H0(L2) −→ H0(L2K)

)
;

W2 = ker
(
c : H1(L2) −→ H1(L2K)

)
.

Now H1(Σ, L2) parameterizes extensions

0 −→ L −→ E −→ L−1 −→ 0 .

Given b ∈W2, we can find c′ ∈ Γ(L2K), ∂̄c′ = 2bω, and construct a Higgs bundle

E = L⊕C∞ L−1, ∂̄E =

(
∂̄L b
0 ∂̄L−1

)
, φ =

(
ω c′

0 −ω

)
, (26)

For 0 ⩽ D ⩽ Λ and −degD ⩽ m ⩽ 0, the construction above defines a map

℘ : V (D,m) −→ Mq , s ∈ V(D,L) 7→ [(E , φ)] ,

where [(E , φ)] is the S-equivalence class of the Higgs bundle constructed in (26) (note that for
(b, c′) ̸= (0, 0), the orbit of (E , φ) is closed in the semistable locus if and only if deg(L) ̸= 0).
When D = 0, V(Λ, L) = {0} and the image of ℘ : V (Λ, 0) → Mq consists of the polystable Higgs
bundles E = L⊕ L−1, φ = diag(ω,−ω) such that L2 ∼= OΣ.

Theorem 7.1 ([GO13, Thm. 7.7]). For 0 ⩽ D ⩽ Λ and −deg(D) ⩽ m1 ⩽ 0 and the map
℘ : V (D,m1) → Mq, we have
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(i) for m2 = −deg(D) −m1, we have ℘(V (D,m1)) = ℘(V (D,m2)),

(ii) for the C∗ action on V (D,m1) by multiplication, for ξ ∈ V (D,m1), ℘(C∗ξ) = ℘(ξ),

(iii) when m1 ̸= −1
2 deg(D), 0,−deg(D), ℘ : V (D,m1)/C∗ → Mq is an isomorphism onto its

image,

(iv) when m1 = −1
2 deg(D), ℘ : V (D,m1)/C∗ → Mq is a double branched covering, which

branched along line bundles L ∈ Picm1(Σ) such that L2 ∼= O(−D),

(v) when D = 0, then ℘ : V (Λ, 0) → Mq is a double branched covering, branched along
L ∈ Pic0(Σ) such that L2 ∼= O.

(vi) when m1 = 0,−deg(D), ℘ : V (Λ, 0) → Mq is surjective but not injective. The image of ℘
are all polystable Higgs bundles.

Remark. Parts (iii) and (vi) of Theorem 7.1 are different from the statements in [GO13, Theo-
rem 7.7]. Because of the S-equivalence, when m1 = 0,−deg(D), the map ℘ will not be injective.
We thank the authors of [GO13] for clarification of this point.

Example 7.2. When g = 2, for q = −ω⊗ω, we can write Λ = p1 + p2 or Λ = 2p. In either case,
the Mst

q = ℘(V (D,m)) for −deg(D) < m < 0 and 0 ⩽ D ⩽ Λ. Therefore, m = −1, D = Λ and
℘(V (Λ,−1)) = Mst

q . Moreover, generically, the map ℘ : (V (Λ,−1))/C∗ → Mst
q is two-to-one.

7.3 The stratification of the singular fiber

We now present two stratifications of Mq. Recall that from any Higgs bundle (E , φ) we obtain
two line bundles L± and a divisor D. There are two different stratifications: one given by the
divisor D and the other by the degree of L+.

7.3.1 Divisor stratification. We first discuss the stratification defined by the divisor. Indeed,
using D, decompose into strata: Mq =

⋃
0⩽D⩽ΛMq,D. As the definition of L± depends on the

choice of the square root, there is no natural map from MD to Pic(Σ). Consider the following
space: VD =

⋃
− deg(D)⩽m⩽0 V (D,m). This forms a fibration

τ : VD −→
⋃

− deg(D)⩽m⩽0

Picm(Σ) .

Moreover, for L ∈ Picm(Σ), we have τ−1(L) = V (D,L) and dim(τ−1(L)/C∗) = deg(D) − 1. By
Theorem 7.1, ℘|VD

: VD → MD is surjective. Since

℘|V (D,m) = ℘|V (D,− deg(D)−m)

generically, ℘|VD
is a two-to-one map.

In summary, we obtain the following map which characterizes the singular fiber.

℘ : V =
⋃

0⩽D⩽Λ

VD → Mq =
⋃

0⩽D⩽Λ

Mq,D.

The top stratum is given by D = Λ.

7.3.2 Degree stratification. We next introduce the stratification defined by degrees; this en-
codes how different divisor stratifications are glued together. For −(2g − 2) ⩽ m ⩽ 0 and
L ∈ Picm(Σ), define W(L) :=

⋃
degD⩾−m V(D,L). This set is connected, based on the definition
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and [GO13, Lemma 7.14]. Moreover, if we define

Wm :=
⋃

−m⩽degD, 0⩽D⩽Λ

V (D,m) , W :=
⋃

−(2g−2)⩽m⩽0

Wm ,

then we have ℘(W) = ℘(V). We should also note that though Wm ∩Wn = ∅ for any m ̸= n, W
is connected. As L+, L− are symmetric, by Theorem 7.1, we have

℘(V (D,m)) = ℘(V (D,−deg(D) −m)) ,

which implies that for any integer −(2g − 2 +m) ⩽ n ⩽ 0, ℘Wm ∩ ℘Wn ̸= ∅.

We now give an example of the degree stratification when g = 2.

Example 7.3. Suppose ω has only one zero with order 2. Then Λ = 2p, and all possible divisors
are D2 = 2p,D1 = p,D0 = 0. The degree stratification is

W−2 = V (D2,−2) , W−1 = V (D2,−1) ∪ V (D1,−1)

W0 = V (D0, 0) ∪ V (D1, 0) ∩ V (D2, 0) .

The image of ℘(V (D2,−1)) is stable, ℘(V (D0, 0)) is poly-stable and ℘(W \ (V (D2,−1) ∪
V (D0, 0))) is semistable.

Moreover, we have ℘(V (D2,−2)) = ℘(V (D2, 0)), ℘(V (D1,−1)) = ℘(V (D1, 0)) and ℘|V (D2,−1)

is a branched covering. Furthermore, we have ℘(V (D2,−1))∩℘(V (D1, 0)) ̸= 0 and ℘(V (D2,−1))∩
℘(V (D0, 0)) = 0.

7.4 Algebraic Mochizuki map

Based on the study of the local rescaling properties of Higgs bundles, Mochizuki introduced
a weight for each p ∈ Z in [Moc16, Sec. 3]. To be more specific, let c be a real number. For each
p ∈ Z, the weight we consider is given by

χp(c) = min{ℓp, (mp + 1)c+ ℓp/2} ,

where Div(ω) =
∑

pmpp and ℓp is defined in Section 7.1.1.

By utilizing the global geometry of a Higgs bundle, we can uniquely determine the constant
c. We aim to choose the sign of ω such that d+ ⩽ d−.

Lemma 7.4 ([Moc16, Lemma 4.3]). If (E , φ) is stable, then there exists a unique constant c ⩾ 0
such that

d+ +
∑
p∈Z

χp(c) = 0 , d− +
∑
p∈Z

(ℓp − χp(c)) = 0 .

Proof. Since (E , φ) is stable, we have −
∑
ℓp < d± < 0. We define the function

f(c) = d+ +
∑
p

χp(c) , (27)

which is strictly increasing. Moreover, for c sufficiently large, χp(c) = ℓp, and therefore f(c) =
d++

∑
p ℓp = −d− > 0. Additionally, f(0) = d++

∑
p(ℓp/2). Since d+ ⩽ d− and d++d−+

∑
p ℓp =

0, we obtain f(0) ⩽ 0. The monotonicity of f implies the existence of c0 such that f(c0) = 0.

From the construction, if d+ ⩽ d−, two weighted bundles (L+, χp(c0)) and (L−, ℓp − χp(c0))
are obtained with weights χp(c0) and ℓp−χp(c0) at each p ∈ Z, respectively. On the other hand, if
d+ ⩾ d−, by symmetry, weighted bundles (L+, ℓp−χp(c0)) and (L−, χp(c0)) are obtained. When
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(E , φ) is strictly semistable, S-equivalent to (L, ω) ⊕ (L−1,−ω), then we would like to consider
the weighted bundles (L, 0) ⊕ (L−1, 0) with weight zero.

Next, we define the algebraic Mochizuki map. Let F±(Σ) be the space of rank 1 degree zero
filtered bundles on Σ, and let F2(Σ) := F+(Σ) × F−(Σ) be the direct product. Fix a choice of
ω. Then from any Higgs bundle (E , φ), we obtain the subbundles L± with degree d± and define
the algebraic Mochizuki map

ΘMoc : Mq −→ F2(Σ),

ΘMoc(E , φ) :=

{
F∗(L+, χp(c0)) ⊕F∗(L−, ℓp − χp(c0)), if d+ ⩽ d−
F∗(L+, ℓp − χp(c0)) ⊕F∗(L−, χp(c0)), if d− ⩽ d+

, (E , φ) stable,

ΘMoc(E , φ) := F∗(L, 0) ⊕F∗(L
−1, 0), (E , φ) semistable.

We list some properties of this map.

Proposition 7.5. For ΘMoc, we have:

(i) for each V (D,m) with 0 ⩽ D ⩽ Λ, −deg(D) ⩽ m ⩽ 0, ΘMoc|℘(V (D,m)) is continuous,

(ii) for i = 1, 2 and si ∈ VD with (Ei, φi) := ℘(si), suppose τ(s1) = τ(s2), then ΘMoc(E1, φ1) =
ΘMoc(E2, φ2). In particular, ΘMoc is not injective.

Proof. The proof follows directly from the definition.

A Higgs bundle (E , φ) ∈ Mq is called “exotic” if the constant c in Lemma 7.4 satisfies c ̸= 0.
This new behavior only appears in the Hitchin fiber with reducible spectral curve.

Proposition 7.6. A Higgs bundle (E , φ) is not exotic if and only if its corresponding degrees
satisfy d+ = d−.

Proof. This is straightforward from the definition and Lemma 7.4.

7.5 Discontinuous behavior

In this subsection, we study the discontinuous behavior of ΘMoc. Consider a sequence of
algebraic data (Li, qi) ∈ Wm, where Li ∈ Picm and qi ∈ V (D,Li). We assume that limi→∞ Li =
L∞ in Picm and limi→∞ qi = q∞ ∈ V (D∞, L), for D∞ ̸= D. As the space

⋃
degD′⩾−m V (D′,m)

is connected, we can always find such a sequence.

Let Li
+ := Li and Li

− := L−1
i ⊗O(−D). By Lemma 7.4, the weight function, which we denote

by χ±, is independent of i. In addition, we have

lim
i→∞

ΘMoc ◦ ℘(Li, qi) = F∗(L∞, χ+) ⊕F∗(L
−1
∞ (−D), χ−) .

For (L∞, q∞ ∈ V (D∞, L)), let χ∞
± be the corresponding weights. These depend on D∞ and m.

Then

ΘMoc ◦ ℘(L∞, q∞) = F∗(L∞, χ
∞
+ ) ⊕F∗(L

−1
∞ ⊗O(−D∞), χ∞

− ) .

Therefore, we obtain

lim
i→∞

ΘMoc ◦ ℘(Li, qi)

=ΘMoc ◦ ℘(L∞, q∞) ⊗ (F∗(O, χ+ − χ∞
+ ) ⊕F∗(O(D∞ −D), χ− − χ∞

− )) .
(28)

Proposition 7.7. When g ⩾ 3, there exists a sequence (Ei, φi) ∈ Mq of stable Higgs bundles
with stable limit (E∞, φ∞) = limi→∞(Ei, φi) such that

lim
i→∞

ΘMoc(Ei, φi) ̸= ΘMoc(E∞, φ∞) .
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Proof. Choose D = Λ and d+ = −(g − 1) with Li = L ∈ Picd+(Σ), and study the degenerate
behavior for a family qi ∈ V(Λ, L) which converges to q∞ ∈ V (D∞, L). Here, D∞ satisfies
D∞ ⩽ D and deg(D∞) = deg(D) − 1. As qi lies in the top stratum, we can always find such a
family. Take (Ei, φi) = ℘(Li, qi) and (E∞, φ∞) = ℘(L, q∞). When g ⩾ 3, we have −deg(D∞) <
d+ ⩽ −1

2 deg(D∞), which implies (E∞, φ∞) is a stable Higgs bundle.

Write D =
∑

p ℓp. As (Ei, φi) is nonexotic, the weights will be χ+(p) = χ−(p) = ℓp/2.
However, as deg(D∞) ̸= 2d+, (E∞, φ∞) is exotic. By Proposition 7.6, if we write χ∞

± (p) for
the weight functions with corresponding constant c, then c > 0. Therefore, for p ̸= p0, we have
χ∞
+ (p) = (mp+1)c+mp/2 > mp/2 = χ+(p). By (28), limi→∞ ΘMoc(Ei, φi) ̸= ΘMoc(E∞, φ∞).

When g = 2, the stratification is simpler, and we have the following.

Proposition 7.8. When g = 2, the following holds:

(i) Suppose Λ = p1 + p2 for p1 ̸= p2, then ΘMoc|Mst
q

is continuous. Moreover, there exists a
sequence of stable Higgs bundles (Ei, φi) ∈ Mq where the limit (E∞, φ∞) = limi→∞(Ei, φi)
is semistable, and γ(0) is also semistable and furthermore

lim
i→∞

ΘMoc(Ei, φi) ̸= ΘMoc(E∞, φ∞) .

(ii) Suppose Λ = 2p. Then ΘMoc|Mst
q
is continuous.

Proof. For (i), suppose Λ = p1 + p2, then by Example 7.2, we have Mst
q = ℘(V (Λ,−1)). By

Proposition 7.5, ΘMoc
q |Mst

q
is continuous. However, for semistable elements other strata must

be taken into consideration. Take L ∈ Pic−1(Σ) and qi ∈ V(Λ, L) such that qi convergence to
q∞ ∈ V(p1, L). We define (Ei, φi) = ℘(L, qi) and (E∞, φ∞) = ℘(L, q∞). For each i,

ΘMoc(Ei, φi) = F∗(L, (
1
2 ,

1
2)) ⊕F∗(L

−1(−Λ), (12 ,
1
2)).

Moreover, we have

ΘMoc(E∞, φ∞) = F∗(L(D), (0, 0)) ⊕F∗(L
−1(−D), (0, 0)) ̸= lim

i→∞
ΘMoc(Ei, φi).

For (ii), by Example 7.3, ℘(V (D2,−1)) = Mst
q and by Proposition 7.5, ΘMoc

q |Mst
q

is continu-
ous. We now consider the behavior of the filtered bundle when crossing the divisors.

7.6 The analytic Mochizuki map and limiting configurations

In this subsection, we construct the analytic Mochizuki map for the Hitchin fiber with a
reducible spectral curve. We also introduce the convergence theorem of Mochizuki as stated in
[Moc16] and examine the discontinuous behavior of the analytic Mochizuki map.

For (E , φ) ∈ Mq, we can express the abelianization as (E0, φ0) = (L+ ⊕L−,

(
ω 0
0 −ω

)
), thus

ΘMoc(E , φ) = F∗(L+, χ+) ⊕L−(L−, χ−) ∈ F2(Σ). Via the nonabelian Hodge correspondence for
filtered bundles, we obtain two Hermitian metrics hLim± with corresponding Chern connections
AhLim

±
. These metrics satisfy the following proposition.

Proposition 7.9 ([Moc07, Lemma 4.4]). The metrics hLim± over L± satisfy

i) FA
hLim
±

= 0 and hLim+ hLim− = 1,

ii) for every p ∈ Σ, there exists an open neighborhood (U, z) with P = {z = 0} such that
|z|−2χp(c0)hLim+ and |z|2χp(c0)+2lP hLim− extends smoothly to L±|U .
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Now, HLim := hLim+ ⊕ hLim− is a metric on E0 which induces a metric on (E , φ)|Σ\Z because

(E , φ)|Σ\Z ∼= (E0, φ0)|Σ\Z . Let (ALim, ϕLim) be the Chern connection defined by (E , φ,HLim) over

Σ\Z. Then (ALim, ϕLim) is a limiting configuration that satisfies the decoupled Hitchin equations
(9). The analytic Mochizuki map ΥMoc is defined as:

ΥMoc : Mq −→ MLim
Hit , ΥMoc(E , φ) = (ALim, ϕLim). (29)

Note that HLim is not unique: for any constant c, the metric chLim+ ⊕ c−1hLim− defines the same
Chern connection as HLim. In any case, the map ΥMoc is well-defined.

Suppose (E , φ) is an S-equivalence class of a semistable Higgs bundle. Let Ht be the harmonic
metric for (E , tφ). For each constant C > 0, define µC to be the automorphism of L+⊕L− given
by µC = CidL+ ⊕ C−1idL− . As E ∼= L+ ⊕ L− on Σ \ Z, µ∗CHt can be regarded as a metric on
E|Σ\Z . Take any point x ∈ Σ \ Z and a frame ex of L+|x, and define:

C(x, t) :=

(
hLimL+

(ex, ex)

Ht(ex, ex)

)1/2

.

Writing ∇t + tϕt as the corresponding flat connection of (E , tφ) under the nonabelian Hodge
correspondence, then

Theorem 7.10 ([Moc16]). On any compact subset K of Σ \Z, µ∗C(x,t)Ht converges smoothly to

HLim. In addition, we have limt→0 |(∇t, ϕt) − ΥMoc(E , φ)|Ck(K) = 0.

Comparing to the irreducible case Theorem 6.16, it is currently not known that the conver-
gence of (∇t, ϕt) to ΥMoc(E , φ) is uniform.

Propositions 7.7 and 7.8 now give

Theorem 7.11. (Theorem 1.3 ) When g ⩾ 3, ΥMoc|Mst
q

is discontinuous, and when g = 2,

ΥMoc|Mst
q
is continuous.

8. The Compactified Kobayashi-Hitchin map

In this section, we define a compactified version of the Kobayashi-Hitchin map and prove
the main theorem of our paper. The Kobayashi-Hitchin map Ξ is a homeomorphism between
the Dolbeault moduli space MDol and the Hitchin moduli space MHit. We wish to extend
this to a map Ξ from the compactified Dolbeault moduli space MDol to the compactification
MHit ⊂ MHit ∪MLim

Hit of the Hitchin moduli space, and to study the properties of this extended
map.

8.1 The compactified Kobayashi-Hitchin map

We first summarize the results obtained above. By the construction in Section 4, there is
an identification ∂MDol

∼= (MDol \ H−1(0))/C∗. Moreover, through (24) and (29), we have
constructed the analytic Mochizuki map ΥMoc : MDol \ H−1(0) → MLim

Hit . Writing

(ALim, ϕLim = φ+ φ†Lim) = ΥMoc(E , φ) ,

then for w ∈ C∗, we have

ΥMoc(E , wφ) = (ALim, ϕLim = wφ+ w̄φ†Lim) .

36



Compactifications of the Hitchin Moduli Space

Hence, ΥMoc descends to a map ∂Ξ between C∗ orbits:

∂Ξ : ∂MDol = (MDol \ H−1(0))/C∗ −→ MLim
Hit /C∗ .

Together with the initial Kobayashi-Hitchin map Ξ : MDol → MHit, we obtain (2):

Ξ : MDol = MDol ∪ ∂MDol −→ MHit ∪MLim
Hit /C∗ . (30)

Theorems 6.16 and 7.10 show that for a Higgs bundle (E , φ) ∈ MDol \ H−1(0) and real t,
limt→∞ Ξ(E , tφ) = ∂Ξ[(E , φ)/C∗]. Thus the image of Ξ lies in MHit, the closure of MHit in
MHit ∪ MDol \ H−1(0). There are natural extensions HDol : MDol → B and HHit : MHit → B
such that HHit ◦ Ξ = HDol.

In summary, there are commutative diagrams

MDol MHit

MDol MHit

Ξ

Ξ

,

MDol MHit

B
HDol

Ξ

HHit
.

We now turn to the analysis of some properties of the compactified Kobayashi-Hitchin map.
Define

Breg
= {[(q, w)] ∈ B | q ̸= 0 has simple zeros} .

This is the compactified space of quadratic differentials with simple zeros. Let Bsing
= B\Breg

be

its complement. Additionally, define the open sets Mreg
Dol = H−1

Dol(B
reg

) and Mreg
Hit = H−1

Hit(B
reg

)

as the collections of elements with regular spectral curves. Set Msing
Dol = H−1

Dol(B
sing

) and Msing
Hit =

H−1
Hit(B

sing
) to be the sets of singular fibers. We can write Ξ = Ξ

reg ∪ Ξ
sing

, where

Ξ
reg

: Mreg
Dol −→ Mreg

Hit, Ξ
sing

: Msing
Dol −→ Msing

Hit .

Proposition 8.1. The map Ξ
reg

: Mreg
Dol → Mreg

Hit is bijective, whereas Ξ
sing

: Msing
Dol → Msing

Hit is
neither surjective nor injective.

Proof. The bijectivity of Ξ
reg

is established by Theorem 4.9. The non-surjectivity and non-

injectivity of Ξ
sing

follow from Theorems 6.17 and 7.11.

8.2 Discontinuity properties of the compactified Kobayashi-Hitchin map

In this subsection, we prove that the discontinuity of the compactified Kobayashi-Hitchin
map (30) is fully determined by the discontinuity of the analytic Mochizuki map.

Let (Ei, tiφi) be a sequence of Higgs bundles with real numbers ti → +∞, det(φi) = qi,
Zi = q−1

i (0), and ∥qi∥L2 = 1. We denote ξi = [(Ei, tiφi)] ∈ MDol. By the compactness of MDol,
after passing to a subsequence, we may assume there is ξ∞ ∈ ∂MDol such that limi→∞ ξi = ξ∞.
Since ∂MDol

∼= (MDol \H−1(0))/C∗, we can select a representative (E∞, φ∞) of ξ∞. By Lemma
4.4, we have that (Ei, φi) converges to (E∞, φ∞) in MDol, and qi converges to q∞. We write
Z∞ = q−1

∞ (0). We note that for different choice of ti, as long as limi→∞ ti = +∞, after passing
to a subsequence, we always have limi→∞ ξ = ξ∞ ∈ MDol.

By Proposition 4.6, limi→∞ Ξ(Ei, tiφi) exists. The following result establishes the discontinuity
of this map with respect to the analytic Mochizuki map ΥMoc.
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Proposition 8.2. Under the previous conventions, and suppose qi, q∞ are irreducible. Consider
(Ei, φi) ∈ Mqi , if limi→∞ ΥMoc(Ei, φi) ̸= ΥMoc(E∞, φ∞), then there exist constants ti such that
for ξi := (Ei, tiφi), we have limi→∞ Ξ(ξi) ̸= Ξ(ξ∞).

Proof. Set

Ξ(Ei, tiφi) = Ξ(Ei, tiφi) = Ai + tiϕi ,

ΥMoc(Ei, φi) = (ALim
i , ϕLimi ) ,

ΥMoc(E∞, φ∞) = (ALim
∞ , ϕLim∞ ),

with ti to be determined later and (Ai, ϕi) depends on t. Fix a positive integer k, suppose
limi→∞ ΥMoc(Ei, φi) ̸= ΥMoc(E∞, φ∞), then passing to a subsequence, we could assume there
exists a compact set K ⊂ Σ \ Z∞ and ϵ0 > 0 such that ∥(ALim

i , ϕLimi ) − (ALim
∞ , ϕLim∞ )∥Ck(K) ⩾ ϵ0

for i ⩾ i′0.

By Theorem 6.16, for the fixed compact set K above, for each (Ei, φi), there exist ti sufficiently
large such that ∥(Ai, ϕi) − (ALim

i , ϕLimi )∥Ck(K) <
1
4ϵ0. Moreover, by Proposition 4.6, there is a

limiting configuration (A∞, ϕ∞) := limi→∞(Ai, ϕi) defined over Σ \ Z∞, such that over K, for
i ⩾ i′′0, we have

∥(Ai, ϕi) − (A∞, ϕ∞)∥Ck(K) <
1

4
ϵ0.

For i ⩾ max{i′0, i′′0}, we compute

∥(A∞, ϕ∞) − (ALim
∞ , ϕLim∞ )∥Ck(K) ⩾ ∥(ALim

i , ϕLimi ) − (ALim
∞ , ϕLim∞ )∥Ck(K)

− ∥(A∞, ϕ∞) − (Ai, ϕi)∥Ck(K) − ∥(Ai, ϕi) − (ALim
i , ϕLimi )∥Ck(K)

⩾
1

2
ϵ0.

This proves the proposition.

8.2.1 Continuity along rays. We now investigate the behavior of the compactified Kobayashi-
Hitchin map restricted to a singular fiber. Specifically, fix 0 ̸= q ∈ H0(K2), and denote by [q] the

C∗-orbit of q × 1 in the compactified Hitchin base B. Define MDol,[q] := H−1
Dol([q]), MHit,[q] :=

H−1
Hit([q]). Then the restriction of Ξ on MDol,[q] defines a map Ξ[q] : MDol,[q] → MHit,[q].

Theorem 8.3. Let q be an irreducible quadratic differential.

(i) The boundary map ∂Ξ[q]|MDol,[q]
is continuous if q has only zeros of odd order and discon-

tinuous if q has at least one zero of even order.

(ii) If q has at least one zero of even order, then for each σ-divisor D ̸= 0 there exists an even
integer nD ⩾ 1 so that for any Higgs bundle (F , ψ) ∈ Mq,D, there exist 2nD sequences of
Higgs bundles (Ek

i , φ
k
i ), k = 1, . . . , 2nD such that

* limi→∞(Ek
i , φ

k
i ) = (F , ψ) for k = 1, . . . , 2nD,

* and if we write

ηk := lim
i→∞

∂Ξ[q](Ek
i , tiφ

k
i ) , ξ := lim

i→∞
∂Ξ[q](F , tiψ) ,

· if (F , ψ) doesn’t lie in the real locus, then ξ, η1, . . . , η2nD are 2nD + 1 different
limiting configurations,

· if (F , ψ) lies in the real locus, then ηi ∼= ηnD+i for i = 1, · · · , n and we obtain nD +1
different limiting configurations.
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* for each k, there exists constants ti → +∞ such that limi→∞ Ξ[q](Ek
i , tiφ

k
i ) ̸= Ξ[q](F , ψ).

Proof. This follows from Theorem 6.17, Proposition 8.2 and Proposition 6.15.

8.2.2 Varying fiber. With the conventions above, suppose (Ei, φi) converges to (E∞, φ∞) with
q∞ having only simple zeros, and ξi = (Ei, tiφi) converges to ξ∞ on MDol. Since the condition
of having only simple zeros is open, the qi also have simple zeros for i sufficiently large.

Proposition 8.4 (cf. [OSWW20, Thm. 2.12]). Suppose q∞ has only simple zeros. Then, lim
i→∞

Ξ(ξi) =

Ξ(ξ∞). In particular, the map Ξ
reg

: Mreg
Dol → Mreg

Hit is continuous.

Proof. Let Si denote the spectral curve of (Ei, φi) with branching locus Zi. Also, let Li :=
χ−1
BNR(Ei, φi) be the eigenline bundles. By the construction in Section 6, we have ΥMoc(ξi) =

F∗(Li, χi), where χi = −1
2χZi . Our assumption implies that F∗(Li, χi) converges to F∗(L∞, χ∞)

in the sense of Definition 3.2. Thus, by Theorem 3.3, we obtain the convergence of the limiting
configurations: limi→∞ ΥMoc(ξi) = ΥMoc(ξ∞). The claim follows from Proposition 8.2.

Theorem 8.5. The map Ξ
reg

: Mreg
Dol → Mreg

Hit is a homeomorphism.

Proof. By Theorem 4.9, Ξ
reg

is a bijection. Moreover, by Proposition 8.4, Ξ
reg

is continuous.
Finally, that (Ξ

reg
)−1 is continuous follows directly from the construction in [MSWW19].

Appendix A. Classification of rank 1 torsion modules for An singularities

In this appendix, we review the classification result for rank 1 torsion free modules at An

singularities, as given in [GK85]. We compute the integer invariants defined in Subsection 5.3.

Let S be the spectral curve of an SL(2,C) Higgs bundle, and x a singular point with local
defining equation given by r2 − sn+1 = 0; this is an An singularity. Let p : S̃ → S be the
normalization, where p−1(x) = {x̃+, x̃−} if n is odd and p−1(x) = x̃ if n is even. We use R to
denote the completion of the local ring Ox, K its field of fractions, and R̃ its normalization.

A.1 A2n singularity

The local equation is r2 − s2n+1 = 0. The normalization induces a map between coordinate
rings, and we can write

ψ : C[r, s]/(r2 − s2n+1) −→ C[t], ψ(f(r, s)) = f(t2n+1, t2),

where R̃ = C[[t]] and R = C[[t2, t2n+1]] ⊂ R̃. According to [GK85, Anh. (1.1)], any rank 1 torsion
free R-module can be written as

Mk = R+R · tk ⊂ R̃, k = 1, 3, . . . , 2n+ 1.

Here, Mk is a fractional ideal that satisfies R ⊂ Mk ⊂ R̃, with M1 = R̃ and M2n+1 = R. We

may express any f ∈Mk as f =
∑ k−1

2
i=0 f2it

2i +
∑

i⩾k fit
i, where fi ∈ C.

We are interested in the integers ℓx := dimC(Mk/R), ax̃ := dimC(R̃/C(Mk)) and bx =
dimC(T (Mk ⊗R R̃)) (where T denotes the torsion submodule). Thus, as a C-vector space, Mk/R
is generated by tk, tk+2, . . . , t2n−1, implying that ℓx = 2n+1−k

2 .

The conductor of Mk is given by C(Mk) = {u ∈ K | u · R̃ ⊂ Mk}. By the expression of
Mk and a straightforward computation, we have C(Mk) = (tk−1), where (tk−1) is the ideal in R̃
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generated by tk−1. Thus, 1, t, . . . , tk−2 will form a basis for R̃/C(Mk), and we have ax̃ = k − 1.
Therefore, we have ax̃ = 2n− 2ℓx.

For i = 0, 1, . . . , 2n−1−k
2 , we define si = tk+2i ⊗R 1 − 1 ⊗ tk+2i ∈ Mk ⊗R R̃. As k is odd,

t2n+1−k−2i ∈ R and t2n+1−k−2isi = t2n+1⊗R1−1⊗R t
2n+1 = 0, where the last equality is becasue

t2n+1 ∈ R. Moreover, {s1, . . . , s 2n−1−k
2

} form a basis of T (Mk ⊗R R̃), thus bx = 2n+1−k
2 = ℓx.

A.2 A2n−1 singularity

The local equation is r2 − s2n = 0. The normalization induces a map between the coordinate
rings:

ψ : C[r, s]/(r2 − s2n) −→ C[t] ⊕ C[t], ψ(f(r, s)) = (f(tn, t), f(−tn, t)) ,
where R̃ = C[[t]] ⊕ C[[t]] and R = C[[(t, t), (tn,−tn)]] ∼= C[[(t, t), (tn, 0)]]. By [GK85, Anh. (2.1)],
any rank 1 torsion free R-module can be written as:

Mk = R+R · (tk, 0) ⊂ R̃, k = 0, 1, . . . , n.

Then, Mk is also a fractional ideal with R ⊂Mk ⊂ R̃. Moreover, Mn = R, and M0 = R̃.

As p−1(x) = {x̃+, x̃−}, R̃ contains two maximal ideals, m+ = ((t, 1)), m− = ((1, t)). For
f ∈Mk, we can express f as:

f =
k−1∑
i=0

fii(t
i, ti) +

∑
l⩾0

fl0(t
k+l, 0) + f0l(0, t

k+l),

where fij ∈ C. Therefore, ℓx = dimC(Mk/R) = n − k. Moreover, using the expression, we
can compute the conductor C(Mk) = ((tk, 1)) · ((1, tk)), which implies ax̃± = k. Similarly, for
i = k, . . . , n − 1, we define si = (ti, 0) ⊗R (1, 1) − (1, 1) ⊗R (ti, 0), then (t, t)n−i · si = 0 and
{sk, . . . , sn−1} will be a basis for T (Mk ⊗R R̃) and bx = ℓx.

In summary, we have the following:

Proposition A.1. For the integers defined above, we have:

(i) for the A2n singularity, we have ax̃ = 2n− 2ℓx and bx = ℓx,

(ii) for the A2n−1 singularity, we have ax̃± = n− ℓx and bx = ℓx.
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