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A B S T R A C T   

Energy transitions are often characterized as discrete progressions away from fossil fuels to renewable energy, 
typically in different geographic spaces, which result in “winning” and “losing” communities. Policies have been 
enacted to encourage renewable energy investment in “losing” fossil fuel extractive communities. Such con
ceptualizations do not sufficiently consider how fossil fuel extraction and renewable energy intersect with and 
shape each other in these spaces. We introduce the term “stacked energyscapes” to better characterize these 
interactions. Rather than replacing a fossil fuel-based energy system, we argue that renewable energy is 
“stacked” atop it, entangling their sociotechnical “energyscapes” together in ways that can both accelerate and 
slow the transition. We develop this conceptualization based on a review of 149 journal articles, policy papers, 
and news articles of energy transition case studies, primarily focused on the U.S. We identify and analyze five key 
domains where stacked energyscapes manifest: land, labor, infrastructure, finance, and policy and regulation. 
Conceptualizing energy transitions as stacked energyscapes can sharpen understandings of transitions in 
extractive communities so as to better enable just transitions and reduce the environmental footprint of the 
energy sector.   

1. Introduction 

In August 2022, U.S. President Joe Biden signed the Inflation 
Reduction Act (IRA), the largest and most comprehensive climate bill in 
the country’s history. Amongst other things, the Act extends and renews 
the clean energy tax credit for existing and new renewable energy pro
jects, a policy that is projected to significantly ramp up utility-scale in
vestments [1]. Notably, the Act prioritizes projects (by applying a 10% 
credit bonus) that are located in “energy communities,” defined as 
places highly reliant on fossil fuel extraction and/or where coal mining 
facilities have recently closed [2]. The Act’s proponents frame this focus 
as a way to support energy transition and economic development in coal 
mining towns that have already faced long-term job losses and economic 
decline [3,4]. This provision, along with an expansion of federal loans 
and loan guarantees, has redoubled interest in repurposing old wells, 
power plants, and degraded mining lands for clean energy inputs and 
installations [5]. 

The explicit targeting of extractive communities highlights a com
mon understanding of the energy transition: that it is a shift from fossil 
fuels to renewable energy [6]. From this perspective, the central goal of 

transition is the replacement of “old” energy fuel sources and infra
structure with “new” clean energy sources and infrastructure. This un
derstanding suggests that places that embrace the clean energy economy 
will benefit from an influx of jobs and tax revenues, and places that 
reject it will experience a downturn. Moreover, downturns will be 
especially acute in extractive communities that cannot or choose not to 
transition - with coal towns in Appalachia as a prominent case [7]. 
Policymakers and advocates hope that an influx of renewable energy 
investment can turn extractive regions into new clean energy economies 
[8]. 

Yet a broader view of the U.S. energy transition reveals a more 
complicated picture - not just replacement of fossil fuels with renewable 
energy, but of mutual existence and synergy. In the Permian Basin in 
west Texas, for example, increased oil production is being partly pow
ered by electricity from nearby solar and wind farms [9,10]. In the 
Bakken oil shale in North Dakota, energy firms are investing in a “blue” 
hydrogen hub that uses locally sourced natural gas in the hydrogen 
production process [11]. In these regions, and others, the presence of 
fossil fuel extraction offers some cost advantages for renewable energy 
developers, with established land arrangements, permitting processes, 
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and skilled workers. At the same time, the shift to clean energy sources 
may prop up extractive industries in unexpected and counterproductive 
ways. These interactions extend beyond renewable energy installations 
to the “mining” of fossil fuel wastes for lithium and rare earths used in 
solar and wind manufacturing [12]. These dynamic entanglements have 
been somewhat overlooked in the energy transition scholarship, which, 
while attuned to the ways that established energy regimes shape 
emerging ones, has not systematically explored how they intersect and 
complement one another in specific places. 

The aim of this paper is to propose a framework for conceptualizing 
these intersections in extractive regions where energy communities are 
situated. We suggest that these regions can be characterized as stacked 
energyscapes of low-carbon transition, where old and new energy pro
duction systems overlay and articulate with one another in ways that 
have not been fully analyzed in transition scholarship. These in
teractions are contradictory. On the one hand, fossil fuel extractive 
zones have characteristics that attract clean energy, including vast land 
parcels, existing infrastructure, a supportive regulatory environment, 
and a potential labor pool. On another hand, investments in renewable 
energy installations, hydrogen production, and mineral waste process
ing can bolster and extend the life of extractive industries. These syn
ergies have significant consequences for local resource-based economies 
as well as the shape and speed of energy transition as a whole. Under
standing them is essential to developing policies and programs that aid 
energy communities while stabilizing emissions. While our focus here is 
in the U.S., our analysis raises important factors to consider for facili
tating energy transitions in other regions of the world. 

Our analysis is based on a review of 149 journal articles, policy pa
pers, and news articles of energy transition case studies. The authors 
iteratively compiled this list by first searching Google Scholar for liter
ature reviews of the energy transition scholarship and articles within the 
energy studies literature examining the relationship between fossil fuels 
and renewable energy. We read these articles to confirm our hypothesis 
that the intersections of fossil fuels and renewable energy have been 
under-examined in the literature. Our review also helped us to identify 
five domains of stacked energyscapes: land, infrastructure, labor, 
finance, and policy and regulation. Second, we conducted targeted 
searches of Google Scholar and Google News on the terms “energy 
transition” and each of the five domains. An annotated bibliography of 
these articles was compiled by a team of undergraduate and graduate 
student research assistants, which the authors have used to develop the 
arguments presented in this paper. 

The next section of the paper distinguishes the term “stacked ener
gyscapes” and its contribution to the energy transition literature. In 
section 3, we analyze five domains of stacked energyscapes - land, 
infrastructure, labor, finance, and policy and regulation - where syn
ergies between fossil fuel and renewable systems manifest. These five 
domains are not an exhaustive list, but what we view as foundational 
elements to initiate discussion around the concept of stacked energy
scapes. We conclude with suggestions for future research to apply and 
strengthen this term to other domains, such as technology and 
geopolitics. 

2. Stacked energyscapes: Theoretical foundation 

That fossil fuels continue to play a role in the transition to renewable- 
based power systems is a well-recognized phenomenon. Energy analysts 
commonly use the term “energy mix” to indicate the number and per
centage of different energy sources in a system at any given time [13]. 
Somewhat less commonly, energy planners will use the more specific 
term “electricity stack” to refer to the aggregate supply curve of different 
energy generation sources in the power system [14]. In this under
standing, the grid operator sets the curve based on the marginal cost of 
the different sources, with the lowest-cost sources deployed first to meet 
expected demand. Applying this understanding of “stacking” to energy 
transition suggests that cost is the most important driver of moving from 

fossil fuels to renewable energy; as renewable sources become cheaper, 
they will migrate to the bottom of the electricity stack and be used first. 

Yet it is also well-recognized that transition is shaped by more than 
energy costs alone. This argument is central to the literature on socio
technical transitions. This work understands energy systems as socio
technical systems [15] that are embedded in society. Society gives 
meaning to technical systems while technology mediates the ways in 
which society functions [16]. Energy transitions can thus be described as 
a transition from one sociotechnical system to another [17]. Using a 
multi-level perspective framework, scholars have analyzed how 
entrenched values and institutions that govern a sociotechnical system - 
known as a sociotechnical “regime” - interact with “niche” innovations 
and the sociotechnical “landscape” to destabilize incumbent regimes 
and, eventually, establish a new regime [18]. This approach underscores 
the need to attend to the sociotechnical dimensions of energy planning 
in addition to economic dimensions. 

Importantly, transitions are not always clean breaks with past soci
otechnical regimes [17,19]. Rather, an energy sociotechnical system at 
any particular moment is comprised of an accumulation of different 
energy sources and their associated institutions, regulatory frameworks, 
and even infrastructure. This composition, in part, reflects the nature of 
transitions as both a “moving toward” a new sociotechnical system and a 
“moving away” from a previous one - processes that occur in fits and 
starts, leaving elements of the old regime in place even after a transition 
is seen to have occurred [20]. Eitan and Hekkert [21] call this continued 
influence of past sociotechnical systems on current ones a “path 
dependent lock-in,” emphasizing the risks and benefits that this presents 
for rapid energy transition. Indeed, they suggest that established energy 
players can manipulate lock-ins for their own benefit - for example, 
incumbent firms that use profits from fossil fuel projects to diversify into 
renewable energy [22–24]. The end result is a kind of contradictory 
energy system, characterized by elements from both fossil fuel and 
renewable energy regimes that compete for supremacy, yet can also be 
highly entangled. 

Energy geographers, meanwhile, have analyzed the spatial dynamics 
of sociotechnical energy transitions - what some scholars, building the 
multi-level perspective and geographical understandings of landscape, 
call an “energyscape.” Delina [25] defines an energyscape as “not only 
the energy technologies, infrastructure and systems but also the struc
tural arrangements and institutions that make up an entire ecology of 
what can be called an energy sociotechnical system.” Howard et al. [26] 
add a spatial component, calling energyscapes “the complex spatial and 
temporal combination of the supply, demand and infrastructure for 
energy within a landscape.” Building on these definitions, we might 
think of an energyscape as a place-based manifestation of a sociotechnical 
system; energyscapes embody and serve as nodes in the broader system, 
but also mediate and shape the system through their own place-based 
socionatural characteristics (this is similar to how geographers have 
understood other “scapes”, such as hydroscapes - see [27]). As the 
broader system undergoes transition, energyscapes embodying the old 
fossil fuel regime may continue to persist or expand, even as new 
renewable energyscapes proliferate. A growing body of research shows 
how old and new energyscapes can be inextricably linked through, for 
example, the extraction of certain minerals (cobalt, lithium, rare earths) 
in one place that allow for the manufacturing and installation of clean 
energy in another [28,29]. Scholars have also examined how community 
identity and place attachment in extractive energyscapes can generate 
both resistance to and receptiveness toward renewable energy devel
opment [30]. 

Relatively unexplored in the literature, however, are the multiple 
ways that fossil fuel and renewable energyscapes intersect and reinforce 
each other in specific places - a phenomenon we call “stacked” energy
scapes. This sociotechnical understanding of “stacking” is very different 
from its use in energy planning, and has roots in earlier literature on 
rural household transitions. This literature emerged as a critique of the 
concept of the energy ladder [31], popularized in the 1980s, which 
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argued that as households develop, they will often transition away from 
“traditional”, biomass-based energy sources for cooking and heating 
toward “modern”, primarily fossil fuel-based energy sources. However, 
studies have found that instead of discretely moving from one rung of 
the ladder to the next, households often “stack” energy choices, using a 
variety of fuels from traditional and modern energy systems, as the 
economic conditions of households improve [32]. This is a deliberate 
choice by households, based on the cost of fuel and stoves but also 
technical characteristics of stoves and cooking practices, cultural pref
erences, and health impacts [33]. Applied to energyscapes, “stacking” 
highlights both the deliberate choices that underpin how fossil fuel and 
renewable energy systems intersect, and that these choices are shaped 
by place-based technologies, values, preferences, and capabilities. 

Stacked energyscapes thus helps fill a gap in understandings of en
ergy transitions by foregrounding the place-based entanglements and 
synergies between fossil fuel and renewable systems - and in turn, how 
these synergies may both accelerate and inhibit transition. This 
approach complements and extends the concept of energy “additions” 
[34] which, while importantly showing that fossil fuels have continued 
to grow instead of replacing renewable energy, does not explain how 
and why the two can mutually reinforce each other. Moreover, while 
energy geographers are highly attuned to the spatial embeddedness of 
transitions, ranging from landscape characteristics to historical path 
dependencies [35], there has been less attention to how new energy 
systems can be embedded in - or stacked upon - existing energy systems in 
ways that generate synergies. And while energy scholars have intro
duced the concept of “energyscape” to situate sociotechnical systems in 
space, the ways that distinct energyscapes intersect, compete, and 
complement each other are less understood. Stacked energyscapes, in 
sum, illustrate how fossil fuel and renewable systems become inter
twined in far more ways than a cost-based supply curve would suggest; 
they build on and influence one another in specific places, and in doing 
so, shape the direction and implications of local and national transitions. 

3. Analyzing stacked energyscapes 

To analyze stacked energyscapes, we turn an empirical focus to the 
places where interactions between fossil fuel and renewable energy 
production are most acute: energy extractive communities. For sim
plicity’s sake, we use the expansive definition of “energy communities” 
in the IRA, which are statistical areas where “‘0.17 percent or greater 
direct employment or at least 25 percent of local tax revenues [are] 
related to extraction, processing, transport, or storage of coal, oil, or 
natural gas,’ and unemployment is at or above the national average in 
the previous year” [36]. Many of these communities have been reliant 
upon fossil fuel extraction for generations, contributing to a strong 
shared identity and place attachment that can manifest as resistance to 
energy transition [30]. As such, much of the growing literature on these 
communities focuses on appropriate policies and strategies to enable a 
just transition [7,37,38], with a strong focus on attracting renewable 
energy investment through mechanisms like the IRA. 

Yet the story is not as simple as a decline in fossil fuels and the 
(hopeful) growth of solar and wind. Rather, as our framework suggests, 
fossil fuel installations and their associated firms, institutions, arrange
ments, and values (their “energyscapes”) may partly remain in place, 
even as new renewable energy systems proliferate. This stacking does 
not occur on its own, but results from deliberate decisions made by 
energy companies, local officials and community members seeking ways 
to limit disruptions from energy transition while securing its benefits 
[38,39]. Stacking energyscapes may thus act as a brake on transitioning 
from fossil fuels while still enabling (and even accelerating) deployment 
of renewable systems. 

Our examination of stacked energyscapes in energy extractive com
munities focuses on five key domains: land, infrastructure, labor, 
finance, and policy and regulation (see Fig. 1). We analyze these five 
components because they have been shown to be significant factors of 

energy transitions in separate, influential texts in the literature. First, 
McCarthy [40] highlights renewed interest in land - particularly rural 
land - as a fundamental outcome of the shift from a subterranean to a 
spatially extensive terrestrial energy system. Second, the importance of 
infrastructure in energy transitions, particularly infrastructure financed 
by nation states, was emphasized in a special issue in this journal [41]. 
Third, employment impacts are often debated in transition studies [6] 
and are a central component of IRA investments in energy communities. 
Fourth, Baker [42] describes the similar financial mechanisms and firms 
that are diversified in both fossil fuels and renewable energy, while 
Christophers [22] notes that fossil fuel projects can subsidize renewable 
investments. Lastly, Grubler [43] emphasizes the role of policy and 
regulation in setting the pathways and speed of energy transition, 
underscoring the importance of consistency and continuity. Below, we 
examine each of these domains of stacked energyscapes in detail, pri
marily drawing on case studies in the U.S. 

3.1. Land 

The first domain, land, is perhaps the clearest and most important to 
assembling new energyscapes. The spatial extensiveness of renewable 
energy reconfigures land use practices as well as property rights systems 
[40,44]. Changing land use practices are also embedded in and shape 
sociotechnical dynamics in the places where they occur. Within the U.S., 
there is growing interest in finding lands to situate utility-scale solar 
projects. Farmlands are a prime target as such lands are typically flat and 
often located near electricity substations [45]. But, transferring land out 
of farming is frequently contentious, which incentivizes locating 
renewable energy in non-farm landscapes [46]. And across much of the 
world, the non-farm landscapes with the highest solar (and for that 
matter, wind) factors are rural deserts and plains - the same places that 
host fossil fuel extraction [47,48]. 

This is the case in energy communities in the rural U.S. West where 
stacked energyscapes are proliferating. The plains and scrublands of 
west Texas that boast one of the nation’s highest wind capacity factors 
sit atop the oil-and-gas producing Permian Basin [49]. North Dakota’ 
Bakken Oil Shale has high wind potential, as does the region above and 
alongside Wyoming’s Powder River Coal Basin [50,51]. One of the best 
environments for continuous solar generation is in California’s San 
Joaquin Valley, on and adjacent to the Bakersfield oilfields that have 
been producing for over a hundred years. These regions, long reliant on 
fossil fuel extraction, are rapidly developing new renewable energy 
projects [52–54]. 

Moreover, the different land use requirements of fossil fuels and 
renewables allows for facilities to be close to each other, or even co- 
located. This is because extraction, by and large, is a vertical opera
tion targeting subsurface resources, while wind and solar are horizontal 
operations capturing aboveground resources. Co-location is also made 
possible by the structure of land ownership in many U.S. states, which 
bifurcates surface rights and subsurface mineral rights. Owners of sub
surface rights - which take precedence over surface rights - may be 
willing to allow solar and wind development as long as “reasonable use” 
of the surface for oil and gas drilling is not impeded [55]. This scenario 
can be highly attractive to oil and gas firms because it allows them to 
continue operating (potentially even underneath the solar or wind farm 
by using horizontal or directional drilling1), or if the land has never 
produced or been abandoned, allows them to collect royalties by simply 
holding subsurface rights. Moreover, owners of surface rights can also 
earn dependable revenue through leases to solar and wind firms. 

Shared use of land is less possible in coal regions, as coal mines and 
infrastructure are more spatially extensive. However, as on oil and gas 

1 At least one solar project, the 150 MW Oberon installation in the Permian, 
has cut out parking lot-size rectangular spaces in the array for future drill rigs to 
dig vertically - see [53]. 
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lands, siting wind and solar on abandoned coal lands has gathered pace 
over the past decade [56–59]. U.S. law requires coal mining firms to 
reclaim disused coal lands, which include surface mines, coal processing 
areas, and coal waste beds. Results of reclamation can be poor [60], and 
many sites languish with lingering environmental effects [61] - if they 
receive adequate reclamation funding at all [62]. Yet, while they may 
not be able to be used for agriculture or recreation, such sites are 
amenable for wind and solar development - in part because they may be 
able to make use of existing transmission lines. Recognizing their po
tential, the U.S. Environmental Protection Agency (EPA) is encouraging 
renewable energy projects on abandoned and contaminated lands 
through the Re-Powering program [57]. In one of the clearest examples 
of stacked energyscapes, the U.S. Department of Energy (DOE) recently 
awarded $90 million to build a 402 megawatt (MW) utility-scale solar 
facility on 2700 acres of former coal mine lands in central Pennsylvania 
[63]. 

Several other factors make land in extractive regions attractive to 
renewable energy developers. Rural and remote land in the U.S. West 
tends to be divided into large parcels with few owners that can be leased 
(and if needed, consolidated) in a relatively straightforward manner 
[64]. Landowners also tend to be familiar with leasing agreements with 
fossil fuel extractive firms, such that solar and wind developers find 
them easier to deal with. Indeed, some of the same “landmen” who plied 
extractive regions for oil and gas leases now do the same for solar and 
wind firms [65]. Owners of land with high solar and wind potential 
increasingly recognize the value of their properties and are pushing back 
against “lowball” landmen offers that ensnared previous generations of 
farmers and ranchers sitting atop fossil fuel resources [66]. 

Perhaps the most important factor is the vast amount of state and 
federal public land open to wind and solar development. The U.S. 
Department of the Interior through the Bureau of Land Management 
(BLM) owns some 380,000 sq.mi. of mostly desert and chaparral in the 
U.S. West. Traditionally, the BLM has prioritized oil and gas leases on 
public lands, even in cases where resource potential is low and leases are 
speculative [67]. However, in the past decade the BLM has encouraged 
utility-scale wind and solar projects, identifying suitable zones for pro
jects and adopting a “variance” permitting procedure for proposals 

outside of these zones [68,69]. Under the Biden administration, the BLM 
set a goal mandated by the Energy Act of 2020 of approving permits for 
25 gigawatts (GW) of renewable energy on public lands by 2025 [70]. A 
2023 proposed rule would reduce leasing and generation fees for 
renewable projects by 80% and streamline the approvals process [71]. 

Yet, these new solar and wind projects are still shaped by the BLM’s 
relationship to fossil fuel extraction on public lands. The IRA includes a 
provision that 2 million acres of public lands must be offered for oil and 
gas leases before leases are issued for solar and wind - a carve-out added 
by West Virginia senator (and scion of a coal family) Joe Machin [72]. 
The IRA also requires the BLM to hold quarterly lease sales that result in 
an oil and gas lease. These measures are in addition to existing subsidies 
and tax incentives for fossil fuel extraction on public lands [67]. 
Whether these oil and gas-friendly additions to the IRA actually facili
tate more extraction is an open question – since oil and gas firms do not 
have the capacity to drill on all of their leases [73]– but the ongoing 
prioritization of fossil fuels inextricably ties solar and wind expansion to 
the decisions made by these firms. 

3.2. Infrastructure 

In addition to co-location on the same land, renewable energy and 
fossil fuel infrastructure are often highly intertwined. Repurposing fossil 
fuel infrastructure for renewable energy systems not only reduces the 
cost of projects but can minimize disruptions to human-environmental 
systems. At the same time, prolonging the life of fossil fuel infrastruc
ture by stacking renewable energy atop it may also perpetuate extractive 
operations, and thus inhibit transition. 

The most straightforward example of infrastructure stacking is 
shared ancillary infrastructure required of all energy projects, such road 
and rail connections to deliver and transport materials, and more 
importantly, electrical infrastructure to transmit power to consumers. In 
the U.S., high-voltage transmission has traditionally been built to link 
large coal-fired power stations to industrial and population centers - 
meaning that the closer wind and solar are to existing lines, the more 
easily (and cheaply) they can connect. Much of U.S. wind and solar 
development in the 2010s utilized these existing lines [74]. In recent 

Fig. 1. Stacked energyscapes framework. Each column represents a domain and its characteristics. Vertical shading represents the entangled nature of stacked 
renewable energy and fossil fuel systems. 
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years, however, many of these high-voltage lines are at risk of over
capacity, creating a long multi-year queue of new renewable projects 
that lack approvals because they cannot connect to the grid [75]. The 
development pipeline is further exacerbated by a lack of electrical 
substations in rural areas with high solar and wind potential [45]. 
Renewable energy proponents have called for a significant ramp-up in 
transmission line construction to deal with this bottleneck [76]. These 
issues are particularly acute in the PJM Regional Transmission Organi
zation, the largest regional electricity grid in the U.S. As of September 
2022, there were over 202 GW of renewable projects waiting in the PJM 
queue. If connected to the grid, this would double the amount of 
renewable energy capacity operating in the U.S. With an estimated time 
of four years to be interconnected to the grid, the PJM stopped accepting 
new renewable energy projects in February 2023 to clear the project 
backlog and to implement reforms to speed up interconnection times 
[77]. 

Meanwhile, an increasing number of renewable energy installations 
are making use of fossil fuel infrastructure itself, by repurposing 
decommissioned coal plants into solar, wind, and battery storage facil
ities [78]. Coal plants are situated on large land parcels that can be 
populated with solar panels and wind turbines - a strategy being pursued 
at nine retired plants owned in Illinois owned by Vistra Corp., a power 
producer [79]. Illinois’ Coal-to-Storage Grant Program supports the 
transformation of coal plants to large battery storage at two other fa
cilities [80]. Similar projects are proposed or underway in states across 
the U.S. [78]. Even if renewables and storage are not located onsite, 
retired coal plants can still act as the grid connection point for nearby 
installations, enabling them to circumvent the connectivity bottlenecks 
currently plaguing solar and wind developers [81]. 

Another emerging example is to repurpose abandoned conventional 
oil and gas wells for geothermal energy. Abandoned wells are those 
whose owners are unknown and are not currently productive. They are a 
concern because many are thought to be leaking methane but locating 
them and “plugging” them to stop leakages is costly. The U.S. federal 
government has allocated $4.7 billion to the Department of Interior to 
plug abandoned wells [82], most of which will be allocated to state 
environmental regulators. The extent to which these funds will signifi
cantly aid in plugging abandoned wells is unknown. The Pennsylvania 
Department of Environmental Protection, the main environmental 
regulator in the state, estimates that it costs about US$33,000 on 
average to plug an abandoned well [83]. Yet, it also reports costs as high 
as US$800,000 to plug one well. The state has identified 25,000 aban
doned wells and plugged about 3000 to date [83]. However, it estimates 
that hundreds of thousands of wells have been drilled in the state since 
the 1850s, when well drilling began [84]. Given these complications, 
researchers have been exploring the potential to repurpose abandoned 
wells for geothermal energy, arguing that it would be less costly than 
plugging and provide a new clean energy alternative to fossil fuels [85]. 
To advance the use of abandoned wells for geothermal energy, the DOE 
initiated a Wells of Opportunity Initiative [86], which, to date, has 
awarded over $36 million to demonstration projects across the US 
[87,88]. 

Distribution infrastructure can also be repurposed, and in some 
cases, shared outright between fossil fuels and renewable energy. In 
areas like the Pennsylvania Marcellus, pipelines originally built to 
transport natural gas directly from wells are being used to deliver 
renewable natural gas (RNG), defined as methane produced from farm 
waste, landfills, and wastewater [89]. The ratio of RNG to shale-derived 
natural gas in U.S. pipelines is small but growing [90]. A more promi
nent use case of existing pipelines is to transport hydrogen by “blending” 
it with natural gas, enabling it to be used to both heat buildings and in 
gas-fired power plants [91]. Only 1600 miles of hydrogen pipelines are 
currently in operation in the U.S., and are almost all located near the 
Gulf of Mexico, making utilizing the existing nationwide natural gas 
network an attractive proposition [92]. Some 26 pilot projects are 
currently in place, including the DOE’s HyBlend project [92]. Still, there 

are significant safety concerns with hydrogen leaking from pipelines 
designed for methane, and studies to date show that existing gas turbines 
may not be able to run on hydrogen-heavy mixes [93]. Skeptical ob
servers suggest that blending hydrogen is simply a clever means to 
“greenwash” the continued extraction of natural gas, particularly given 
that less than 1% of hydrogen in the U.S. is produced using renewable 
energy [94]. 

Indeed, infrastructural synergies by and large benefit the persistence 
of fossil fuel extraction. A clear case is that of solar and wind farms that 
are constructed primarily to power oil and natural gas drilling. One 
example, a solar project at California’s Belridge oil field, features a 26.5 
MW solar array to power drill rigs, and an 850 MW-thermal of solar 
collectors for steam generation, which is pumped back into the earth for 
enhanced oil recovery (EOR) [52,95]. A 29 MW solar array also provides 
electricity for Chevron’s Lost Hills facility located next door to Belridge 
[96]. In Texas’ Permian Basin, meanwhile, Exxon Mobil is buying 500 
MW of wind and solar power produced at the nearby Sage Draw wind 
farm and Permian solar facility [9]. Occidental Petroleum, another 
Permian producer, chose to both purchase nearby solar and build its 
own solar farm [10]. Extractive firms are also making use of U.S. federal 
tax credits in the IRA for battery storage projects to purchase or 
construct hybrid renewables + storage systems to power their opera
tions [97]. Across the board, producers rationalize these investments as 
a way to reduce their carbon footprint - even as they continue to drill for 
fossil fuels and release emissions. 

3.3. Labor 

The perception of job losses in fossil fuel regions is a longstanding 
and persistent concern. The International Labor Organization (ILO) es
timates that low-carbon transition in a 2 ◦C scenario will lead to a global 
loss of 6 million jobs in fossil fuel industries by 2030 [98]. Job loss is an 
especially salient issue for energy communities in the U.S., particularly 
coal regions in Appalachia [99]. Bringing back the glory days of coal in 
Appalachia was an important pillar of former President Trump’s 2016 
election campaign [100]. 

Yet the same ILO report predicts a global gain of 23 million jobs in 
green energy [98]. In announcing his support of the IRA, Senator Joe 
Manchin highlighted the potential of the Act to create new jobs in 
Appalachia as well as for the potential for fossil fuel and low carbon 
energy systems to co-exist as a result of the Act [101]. Scholarly litera
ture, however, tends to treat fossil fuel job loss and renewable energy job 
creation as spatially distinct processes, with “losing” communities 
requiring compensation and upskilling [102–104]. The possible move
ment of fossil fuel extractive workers to renewable energy within energy 
communities is rarely considered in the literature (see [105] for recent 
brief treatment of the topic). 

The “stacking” of renewable energy labor atop fossil fuel extraction 
labor is certainly occurring, however. In Texas, amidst an oil and gas 
downturn, solar and wind developers have targeted laid-off fossil fuel 
workers (who one executive called “oil and gas refugees”) to fill roles in 
geology, land acquisition, engineering, finance, asset management, and 
energy contracting [106]. In North Dakota’s Bakken, former oil workers 
on fracking derricks are being retrained as wind turbine technicians at 
installations nearby [107]. Former coal workers in Wyoming’s Powder 
River Basin are also moving into wind generation [108], with Chinese- 
owned firm Goldwind specifically recruiting coal miners for a turbine 
manufacturing facility in the area, and offering free training [109]. 
Recognizing this trend, staffing companies like Workrise in Texas are 
contracting with both oil and gas and renewables firms to recruit and 
train skilled “roughnecks” to work in green jobs [110]. 

One particular pathway that has received attention is from coal to 
offshore wind. The Gippsland coal region in Australia, which has 
experienced ongoing job loss and economic decline, is now the site of a 
2.5 GW “Star of the South” offshore wind project touted by the state 
government as an employment lifeline. The project’s developer and state 
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officials recently released a report that specifically identifies transfer
able skills between coal and offshore wind, with technical, trades, and 
engineering roles having particularly strong overlap [111]. The 
Australian government estimates that the project will provide 760 local 
jobs during construction and 200 ongoing jobs [112]. A very similar 
process is underway in the North Sea off the northern United Kingdom 
coast, where former coal workers are being retrained as tradespeople, 
technicians, and operators [113]. Offshore wind firms have partnered 
with local and national governments to construct a renewable energy 
manufacturing hub in Newcastle and the Humber coal valley (plans are 
also underway to transform a disused coal-fired power plant into an 
offshore wind battery hub) [114]. Fossil fuel workers in the U.S. also 
appear to be increasingly seeking out construction and technician jobs in 
the offshore wind industry located along the eastern seaboard [115]. 

The quality of green jobs for cast-off workers is a concern, however. 
A worker on a Texas oil derrick could expect to be paid approx. US$27 
per hour with benefits [116]. Utility-scale wind and solar jobs offer 
comparable but slightly lower wages ($26/ h for wind, $24/ h for solar), 
while small-scale rooftop solar installation pay starts at a much lower 
level [117]. Unionization is also low in the renewable energy sector: 
while some utility-scale roles are unionized, rooftop installer jobs 
generally are not. Electric battery manufacturers have also sought to 
limit unionization (for example, Elon Musk’s Tesla battery plant) [118]. 
U.S. states that lean politically progressive have passed legislation to 
ensure workers are hired locally and paid prevailing wages, and in some 
cases to require the use of project labor agreements or community 
benefits/workforce agreements [119]. Such efforts are likely to make 
clean energy work more attractive to fossil fuel workers, especially if 
jobs are situated where workers live. 

Perhaps the greatest concern is that new renewable energy jobs in 
fossil fuel regions will not be stable or long-lasting. The majority of 
utility-scale green energy jobs occur during the project construction 
phase [45], with operational jobs relatively limited, especially 
compared to employment in coal, oil, and gas [120]. Workers employed 
in wind or solar installation construction thus potentially have to move 
after projects are completed. Manufacturing jobs might offer longer- 
term employment and are (like generation projects) eligible for sub
sidies under the IRA, with an additional subsidy for locating in energy 
communities [121]. Indeed, eleven factories making wind turbines and 
components have been announced since the IRA’s passage, all of which 
are located in rural areas, and two of which are in regions with fossil fuel 
economies [122]. It remains to be seen whether job expansion will 
continue, and moreover, whether workers in fossil fuel regions will be 
able to permanently transition to these jobs. 

3.4. Finance 

Energy systems require significant financial investment. The dy
namics of low carbon financing is an emerging area of research interest. 
This research highlights that the material form of energy investments – 
fossil fuels or renewables – may be less important than investing in 
whichever option yields steady returns [22,123]. As such, “stacking” 
investments in both fossil fuel and renewable energy projects may be the 
best strategy for guaranteeing profit. 

While the relationship between the energy and finance sectors has 
long existed, it gained importance with efforts to deregulate the energy 
sector in the late 1990s. As the industry restructured, companies turned 
to the finance sector for new sources of funding support [124]. The state 
continues to play a significant role in such relationships by shaping the 
regulatory landscape and by providing funding to support low carbon 
energy transitions. Luke and Huber [125] refer to the co-constitutive 
relationships amongst the state, energy and finance sectors as “elec
tricity capital.” 

Various scholars have highlighted the contradictory nature of elec
tricity capital in the context of renewable energy transitions. The elec
tricity sector is characterized by high fixed costs and multi-decadal 

project financing to support the costs of generating assets and infra
structure. Fossil fuel companies may oppose or attempt to slow the 
development of renewable energy projects because large investments in 
renewables will likely devalue fossil fuel assets [40]. As such, the fossil 
fuel sector will want to recoup their investments before renewable en
ergy systems gain a significant market foothold [126]. Along this line of 
thinking, Eckhouse [127] argues that the looming threat renewable 
energy poses to fossil fuel systems may speed up more flexible forms of 
fossil fuel extraction, such as hydraulic fracturing. On the other hand, 
the renewable energy sector may function as a “spatial fix” for the 
electricity sector as investing in renewable energy projects could pro
vide new market opportunities to ensure a steady flow of profits for the 
energy sector [128]. 

In fact, despite calls to stop investment in new fossil fuel projects to 
mitigate climate change [129], recent NGO analyses have found that 
large banks continue to invest in fossil energy. One report by a coalition 
of environmental groups led by the Rainforest Action Network found 
that investment in fossil fuel projects reached US$5.5 trillion from the 
world’s largest 60 banks since the Paris Agreement was signed [130]. 
The second report by Ceres and the Transition Pathways Initiative 
analyzed planned investments in the energy sector for the top six US 
banks and found that the banks’ planned investments do not align with 
strategies to achieve the Paris Agreement target of limiting global 
warming to 1.5 ◦C [131]. Yet, based on International Energy Agency 
(IEA) estimates, global investment in clean energy is forecast to exceed 
fossil fuel investments in 2023 [132]. Geographers have also posited 
that the global banking system can play an influential role in financing 
low-carbon energy pathways, particularly in infrastructure develop
ment, if it were to more systematically integrate the possibilities of 
climate change into its investment planning [133]. 

Within the U.S., the renewable sector is already having demonstrable 
impacts on the economics of electricity provision, again in ways that rely 
on fossil fuels. In states that participate in regional electricity markets 
that rely on providing electricity through market bidding, the renewable 
sector has contributed to displacing electricity from higher cost energy 
sources, namely coal and nuclear [124]. The extent to which this 
transformation results in emission reductions is yet to be determined as 
nuclear is often regarded as a low carbon, high risk energy source. 
Additionally, because the marginal cost of renewable energy is essen
tially zero, bidding renewable energy into spot markets has helped to 
lower peak energy costs [124]. It is worth noting that renewable energy 
would unlikely be successful in such markets without the support of 
favorable state policies and financial assistance [125]. In states that 
have not restructured their electricity sectors, traditional vertically in
tegrated utilities that continue to rely on fossil fuels as their primary 
energy source are still able to benefit by investing in renewable energy 
projects in other states with restructured electricity markets [124]. 

3.5. Policy & regulation 

In his “cautionary tales” of energy transitions, Grubler [43] empha
sizes the importance of policy and regulation as a means of providing 
continuity in energy transitions. Other scholars highlight the need to 
integrate components of justice into energy transition policy for the 
transition to meaningfully reverse historic patterns of uneven develop
ment, particularly in extractive communities [134]. Thus, policy and 
regulation is an important dimension to evaluate for better under
standing the stacking of fossil fuel and renewable energyscapes in the 
process of energy transition. 

The U.S. energy regulatory system is a patchwork landscape 
comprised of federal, state, and local regulations. The federal govern
ment generally regulates interstate transmission of energy and the 
production of energy on federal lands. Most other aspects of regulation 
are devolved to the states who set policy agendas and control permitting 
processes. Local municipalities are also important players in many states 
through their power to establish zoning laws. Supporters of this 
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approach, namely the fossil fuel industry and business and 
manufacturing interests, have argued that energy basins have unique 
geologies that states, not the federal government, are best equipped to 
understand and regulate [135]. Yet, these same interests have often 
argued in favor of preemption laws, which would limit the authority of 
local governments to regulate the energy sector [136]. 

As such, state legislatures are influential players in setting U.S. en
ergy policy for both fossil fuel and renewable energy. On the one hand, 
this may be concerning because few states have full-time legislatures 
and even fewer have non-partisan research agencies that could help 
provide background research to support policymaking [137]. This may 
provide an opening for advocacy groups to have outsized influence over 
shaping regulatory agendas by addressing information deficits. Indeed, 
this has been an objective of the American Legislative Exchange Council 
(ALEC), a right of center advocacy group, that helps to facilitate infor
mation exchange at the state level by writing “model bills” [138]. On the 
other hand, research on hydraulic fracturing policy making in the U.S. 
found that information sharing amongst established groups of state 
regulatory officials, such as the Interstate Oil and Gas Compact Com
mission, rather than ALEC, have been more influential in shaping state 
regulatory agendas [139]. 

Yet, private governance plays a key role in shaping if and whether to 
regulate aspects of the energy sector. The American Petroleum Institute 
(API), one of the key advocacy groups for the fossil fuel industry, de
velops voluntary best practice standards on a host of topics for energy 
companies to follow. Again in the context of hydraulic fracturing, the 
fossil fuel industry pointed to API standards as justification for not 
increasing federal regulation of the industry [135]. In the context of 
renewable energy, various certification schemes were established to 
produce “sustainable biofuels” [140]. Scholars have documented sig
nificant industry influence in shaping these schemes [140]. 

State legislatures and private governance are playing key roles in 
shaping energy transitions. Some states, most notably Texas, are 
attempting to outright block transitions away from fossil fuels despite 
having ample renewable energy resources [141]. Other states are 
broadly defining energy transition pathways so that fossil fuels could 
qualify as low carbon fuel sources. In Pennsylvania, concessions to the 
coal industry have been important to the state’s efforts to join the 
Regional Greenhouse Gas Initiative, a cap and trade program for 
Northeast and Mid-Atlantic states. Specifically, generating electricity 
from waste coal has been granted CO2 allowances under the program 
[84]. Some environmental groups have raised concerns that such con
cessions may decrease air quality as waste coal is considered a low- 
quality fuel compared to other energy resources [142]. The interplay 
between fossil and renewable energy in Pennsylvania resembles efforts 
at the federal level to advance low carbon energy transitions. Most 
notably, Senator Joe Manchin has allegedly agreed to support President 
Biden’s initiative to expand renewable energy transmission lines in ex
change for approving new fossil fuel projects, specifically the Mountain 
Valley Pipeline [143]. 

Lastly, the API has also established a Climate Action Framework 
[144] to help shape low carbon futures. The five-point framework ad
vocates for accelerating technology and innovation, particularly in 
hydrogen and carbon capture and sequestration, mitigating emissions 
from oil and gas operations, endorsing carbon pricing, advancing 
cleaner fuels, and improving climate reporting through expanded use of 
Environmental and Social Governance reporting for oil and natural gas. 
Based on these examples, renewable energy transition pathways are in 
many ways predicated on and likely heavily shaped by the continued 
existence of the fossil fuel industry, supporting cautions previously 
raised by McCarthy [40]. 

4. Conclusion 

Dominant understandings of energy transitions posit that places that 
are highly dependent on fossil fuel extraction are at risk of economic 

stagnation and decline; put differently, that they are the “losers” of 
transition. This paper describes an alternative and more complex dy
namic: that rather than simply replacing fossil fuels, renewable energy 
sources are being added alongside and atop them. We propose the 
framework of stacked energyscapes to emphasize the interactions and 
synergies between these old and new sociotechnical energy systems in 
energy communities where they are situated. These places possess 
characteristics that facilitate interactions between fossil fuels and 
renewable energy, including large land parcels, pre-existing infrastruc
ture, access to a skilled labor pool, synergistic financing, and supportive 
regulatory environments. In these places, in a way not dissimilar to 
households, energy firms, local officials, energy workers, and commu
nity members will “stack” energy systems so as to minimize disruption 
and maximize benefit. In this way, our paper builds on the concepts of 
the energy mix [13] and energy “additions” [34] by analyzing how and 
why established and emerging systems intersect and complement one 
another. We also contribute to the literature on geographies of transition 
by highlighting the embeddedness of stacking in specific places and their 
assorted infrastructure, institutions, arrangements, and values - i.e., 
their energyscapes. 

Moreover, the findings of this paper, which are intended to initiate 
future primary research, suggest that stacking energyscapes can both 
ease the path of energy transitions in extractive communities, and also 
potentially inhibit them. Utilizing the same plots of land and infra
structure for both fossil fuel and renewable systems can minimize 
environmental disruption, lessen the need for additional costly trans
mission and transportation infrastructure, and possibly reduce emissions 
by electrifying extraction. Enabling labor migration between fossil fuel 
and renewable industries may provide continuity for energy workers. 
Energy communities that have long relied on extraction may also be 
more supportive of renewable energy development if it does not fully 
replace - and even supports - the continuation of the extractive economy. 
Seen in this way, stacking has the potential to facilitate more just tran
sitions in extractive communities. 

At the same time, stacking is also likely to prolong the existence of 
fossil fuel extraction in these communities, which - as important energy 
producers - may reduce the pace and scale of energy transition at the 
local and the national/global scale. Indeed, in a kind of Jevons paradox, 
the synergies offered by stacking may result in increased energy use and 
emissions. Solar and wind farms deployed to electrify existing oil and 
gas operations may also enable firms to “greenwash” future expansion. 
Natural gas pipelines that are repurposed for RNG and “blended” 
hydrogen may ensure a future for gas production. Fossil fuel firms that 
are enlisted to draft regulations for “waste coal” and sustainable biofuels 
will be eligible for subsidies, and they have negotiated numerous con
cessions for oil and gas leases as a precondition for renewable energy 
development on public lands. And these same firms continue to invest in 
profitable fossil fuel projects, providing a stable revenue stream that 
reduces investment risk in their renewable energy portfolios. These in
tersections are largely overlooked in the energy transition literature, 
which may result in unintended consequences that hinder transition 
objectives. 

This paper also opens up other new, underexplored lines of inquiry in 
the field. These include: how do incumbent firms and institutions in 
extractive regions enable and/or constrain transitions [145–147]? How 
do local governments and communities shape (or not) stacking in their 
administrative regions [37]? What are the justice dimensions and im
plications of stacked energyscapes - both within energy communities 
and between places? What other sociotechnical domains of energy
scapes - such as technological innovation, distributed generation, and 
even geopolitics [148] - might experience stacking? And, building on 
calls for a geographical political economy of energy transitions [149], 
how does stacking that manifests in specific landscapes influence 
broader transition trajectories? Overall, we suggest, the concept of 
stacked energyscapes opens space for more granular place-based, rela
tional studies of transitions that are attentive to the geographical 
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political economic dynamics that shape the speed and scale broader 
transitions as a whole. 
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