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Abstract—In this work, we introduce a new technique for
taking a single-secret sharing scheme with a general access
structure and transforming it into an individually secure multi-
secret sharing scheme where every secret has the same general
access structure. To increase the information rate, we consider
Individual Security which guarantees zero mutual information
with each secret individually, for any unauthorized subsets. Our
approach involves identifying which shares of the single-secret
sharing scheme can be replaced by linear combinations of
messages. When m− 1 shares are replaced, our scheme obtains
an information rate of m/|S|, where S is the set of shares. This
provides an improvement over the information rate of 1/|S| in
the original single-secret sharing scheme.

I. INTRODUCTION

A secret sharing scheme is a method for sharing a secret
amongst a set of participants in such a way that only certain
authorized subsets of the participants are able to retrieve the
secret. Any unauthorized subset that combines their shares
should gain no new information about the secret. The first
secret sharing schemes were introduced in 1979 by Blakely [1]
and Shamir [2]. These initial schemes are now called (k, n)-
threshold schemes since any set of participants of size greater
than or equal to k is authorized to compute the secret. In
1988 Ito et. al. [3] introduced a multiple assignment scheme
to produce secret sharing schemes for any general access
structure. Monotone Boolean functions were then utilized by
Benaloh et. al. [4] in 1992 to improve the efficiency of the
multiple assignment scheme. These functions are the main
idea behind the monotone circuit construction [5] that we use
throughout this paper.

The notion of security utilized in the previous secret sharing
works is that of perfect security, first introduced by Shannon
[6] in 1949.1 This same notion was utilized by Wyner in
1975 when proposing the wire-tap channel [9], [10]. Carleial
and Hellman then proposed in 1977 the notion of individual
security [11] to obtain higher data rates for the case where
messages are uniformly and independently distributed. Since
then, individual security has been applied to various commu-
nication and storage systems, e.g., single communication link
[12], broadcast channels [13]–[16], multiple-access channels
[17], [18], networks and multicast communications [19]–[21],
algebraic security [22], [23], terahertz wireless systems [24],

1Shannon published an earlier version of this paper in 1945 [7] which was
classified. Interestingly, this precedes Shannon’s other seminal paper [8].

angularly dispersive links [25], and distributed storage systems
[26]–[30]. Individual security guarantees that an eavesdropper,
which can obtain any subset (up to a certain size) of the shared
information, obtains no information about each message indi-
vidually. Yet, an eavesdropper may obtain some insignificant
controlled information about the mixture of all the messages.

Karnin et. al. in 1983 [31] brought the notion of individual
security to secret sharing for the case of multiple secrets. This
setting is known as multi-secret sharing.2 Since then, much
work has been done in multi-secret sharing, e.g., works on
threshold schemes [31]–[34], generalizing ideal secret sharing
schemes to ideal multi-secret schemes [35], and defining
different access structures for different messages [34], [36],
[37]. However, to the best of our knowledge, there is no gen-
eral construction of individually-secure multi-secret sharing
schemes for general access structures in the literature. For
example, as the monotone circuit construction [5] for single-
secret sharing.

Our main contributions are as follows. In Algorithm 1 we
show how to convert a single-secret sharing scheme with a
general access structure into an individually secure multi-
secret sharing scheme where each message has the same
access structure. The algorithm works by identifying which
shares of the single-secret sharing scheme can be replaced
by combinations of messages. In Theorem 1, we show that
the scheme obtained from Algorithm 1 by performing m− 1
shares replacements is a multi-secret sharing scheme with
information rate of m/|S|, where S is the set of shares. This
provides an improvement over the information rate of 1/|S|
in the original single-secret sharing scheme. Moreover, we
show in Theorem 2 that making extra replacements causes
the decodability of the scheme to fail.

II. PRELIMINARIES ON SINGLE-SECRET SHARING

In this section, we first give definitions for a single-secret
sharing scheme on a general access structure and its informa-
tion rate. We then give an overview of the monotone circuit
construction from [5].

A. Single-Secret Sharing

Given a group of n participants P = {P1, . . . , Pn} a
secret message M1, and a set of k authorized subsets Γ =

2In order to better distinguish the settings, in the rest of the paper we refer
to the traditional secret sharing as single-secret sharing.
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Symbol Description

Fq Finite Field of size q
P = {P1, . . . , Pn} Set of participants

n Number of participants
Γ Access structure

(set of all authorized subsets)
Ai ⊆ P A minimal authorized subset

Γ0 = {A1, . . . , Ar} Basis of the access structure
(set of minimal authorized subsets)

r Number of minimal authorized subsets
2P \ Γ Set of unauthorized subsets

U An unauthorized subset
SA Set of shares belonging to

authorized subset A
SA
j Share of Pj associated with A

SPj
= {SA

j }A∈Γ0
Set of shares belonging to Pj

S =
⋃

Pj∈P SPj
Set of all shares

SU Set of shares belonging to
an unauthorized subset

m Number of messages
M = {M1, . . . ,Mm} Set of all messages

RSS Information rate of a
secret sharing scheme

RMS Information rate of a
multi-secret sharing scheme

TABLE I
LIST OF SYMBOLS

{A1, . . . , Ak}, which we call an access structure, a single-
secret sharing scheme consists in assigning to each participant
a set of shares SP1 , . . . , SPn in such a way that only authorized
subsets of P are able to retrieve the secret, while unauthorized
subsets U /∈ Γ remain completely ignorant about the secret.

As is common in the literature [3]–[5], we only consider
monotone access structures, i.e., if A ∈ Γ and A′ ⊇ A, then
A′ ∈ Γ. Thus, it is sufficient to consider only the minimal
authorized subsets Ai ⊆ P . The set of minimal authorized
subsets is called a basis for Γ which we denote by Γ0.

We denote the set of all shares by S =
⋃

Pj∈P SPj
, the

shares held by an authorized subset by SA ⊆ S, and the shares
held by an unauthorized subset by SU ⊆ S. This leads to the
following definition.

Definition 1. Given a basis Γ0 = {A1, . . . , Ar} for an access
structure Γ and a secret M1 ∈ Fq , a single-secret sharing
scheme realizing Γ is one in which a set of shares S ⊆ Fq is
created such that the following hold.

1) Decodability: The conditional entropy H(M1|SA) = 0
for all A ∈ Γ. In other words, every authorized subset
is able to compute the secret.

2) Security: The mutual information I(M1;SU ) = 0 for
all U ∈ 2P \ Γ. In other words, no unauthorized subset
learns any new information about the secret.

Remark 1. We only need to consider access structures where
every authorized subset consists of more than one participant.
If Γ is an access structure on n participants that has an
authorized subset A = {Pi} for some i, then we can consider
the access structure Γ′ on n−1 participants where Γ′

0 = Γ0\A.
This is due to the fact that Pi’s share would be the secret itself.

We now define our performance metric.

Definition 2. The information rate of any secret sharing
scheme (single or multi) is measured in terms of the ratio
between the number of secrets and the total number of shares.

B. Monotone Circuit Construction

The monotone circuit construction [5] is a single-secret
sharing scheme that can realize any access structure Γ. The
scheme works as follows. Given a set of participants P and
a basis of authorized subsets Γ0 = {A1, . . . , Ar} of Γ, we
associate a monotone Boolean function that represents Γ0.
For example, if Γ0 = {A1, A2} where A1 = {P1, P2} and
A2 = {P1, P3}, then the monotone function representing Γ0

is (P1 ∧ P2) ∨ (P1 ∧ P3). This monotone Boolean function is
then utilized to create a circuit where the gates of the circuit
correspond to the clauses of the function. Share assignment for
the monotone circuit construction is carried out as follows. For
participant Pj ∈ A, the share assigned to Pj associated with
A is denoted by SA

j . These shares are chosen uniformly at
random but in such a way that their sum is equal to M1, i.e.,∑

Pj∈A SA
j = M1. We achieve this by fixing one of the shares

and choosing the others uniformly at random.
We remark here that to simplify the technical aspects and

allow us to focus on the key methods and results, during
this paper we have chosen to work with the monotone circuit
construction for its simplicity. However, it is known that there
are other, more efficient, constructions for general access struc-
ture secret sharing such as the vector space construction of
[38], the decomposition construction of [5], and the geometric
construction of [39]–[41].

III. MULTI-SECRET SHARING

Given a group of participants P and an access structure
Γ as before along with a set of uniform and independently
distributed messages M = {M1, . . . ,Mm}, a multi-secret
sharing scheme consists in creating a set of shares S in
such a way that authorized subsets are able to reconstruct all
m messages while unauthorized subsets remain completely
ignorant about each individual message. Schemes that have
this property are said to be individually secure. The following
is a more formal definition.

Definition 3. Given a basis Γ0 = {A1, . . . , Ar} for an access
structure Γ and a set of messages M = {M1,M2, . . . ,Mm} ⊆
Fq where each message is uniformly and independently dis-
tributed, a multi-secret sharing scheme realizing Γ is one in
which a set of shares S ⊆ Fq is distributed amongst the
participants such that the following hold.

1) Decodability: The conditional entropy H(M |SA) = 0
for all A ∈ Γ. In other words, every authorized subset
can compute all m messages.

2) Individual Security: For any unauthorized subset U ∈
2P \ Γ, the mutual information I(Mℓ;SU ) = 0, for
any ℓ ∈ {1, . . . ,m}. In other words, unauthorized
subsets learn no new information about each message
individually.
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Fig. 1. The monotone circuit for Γ0, which can be represented by the follow-
ing monotone Boolean function: (P1∧P2∧P4)∨(P1∧P3∧P4)∨(P2∧P3).
Each ∧ gate corresponds to adding the shares on the input wires and thus
represents a secret sharing scheme among the participants of Ai. These
smaller schemes are the key to proving the monotone circuit single-secret
sharing scheme is decodable and secure. The replaceable shares for our
construction are shown in blue.

In Theorem 1 we show how to transform a single-secret
sharing scheme for a general access structure into a multi-
secret sharing scheme for the same access structure. In the
next section, we present a detailed example of our approach
to showcase the essential ingredients of the scheme.

IV. AN EXAMPLE OF OUR APPROACH

In the example given herein, we show how to convert a
single-secret sharing scheme from [5], with a general access
structure, into an individually secure multi-secret sharing
scheme for the same access structure. Our technique consists
in identifying shares from the original scheme which can be
substituted with a linear combination of messages. We begin
by presenting a single-secret sharing scheme.

A. Single-Secret Sharing for a General Access Structure

Let P = {P1, P2, P3, P4} be the set of participants and
consider an access structure Γ with a basis

Γ0 = {{P1, P2, P4}, {P1, P3, P4}, {P2, P3}}.

Thus, for example, participants P1, P2, and P4 can compute
the secret but participants P1 and P2 cannot. Also, since par-
ticipants P2 and P3 can compute the secret, so can participants
P1, P2, and P3, i.e., {P1, P2, P3} ∈ Γ. The access structure
Γ0 can be represented by the monotone circuit in Figure 1.

The construction in [5] consists in assigning one share
to each participant corresponding to each authorized subset
A ∈ Γ0. Denote the authorized subsets in Γ0 by A1 =
{P1, P2, P4}, A2 = {P1, P3, P4}, and A3 = {P2, P3}. Then
by [5], participant P1 is assigned two shares, SA1

1 and SA2
1 ,

participant P2 is assigned two shares, SA1
2 and SA3

2 , participant
P3 is assigned two shares, SA2

3 and SA3
3 , and participant P4

is assigned two shares, SA1
4 and SA2

4 .
The shares in each authorized subset are chosen uniformly

at random but such that their sum is equal to the secret M1.
In this example, this means that shares are constructed so that
SA1
1 + SA1

2 + SA1
4 = M1, SA2

1 + SA2
3 + SA2

4 = M1, and
SA3
2 + SA3

3 = M1. One way to obtain this is by fixing one of

the SA1
j ’s, one of the SA2

j ’s, and one of the SA3
j ’s and choosing

the other shares uniformly at random. For the single-secret
sharing problem in [5], the choice of which share to fix is not
relevant. In other words, fixing SA1

2 instead of fixing SA1
4 as is

done in [5] does not affect the decodability or security of the
scheme. This choice, however, is relevant in our construction
when we replace shares with linear combinations of messages.

The decodability of the scheme is shown in [5], and follows
from the fact that the shares associated with each authorized
subset form an independent single-secret sharing scheme. The
security of the scheme also follows from this fact since the
schemes being independent means that no share is assigned
to more than one participant. Note that since there are 8 total
shares and 1 secret, the information rate of this single-secret
sharing scheme is RSS = 1

8 .

B. The Conditions for Replacing a Share

In order to obtain a multi-secret sharing scheme with the
same access structure, Γ, for all messages, our construction
consists of replacing certain random shares from the single-
secret sharing scheme with linear combinations of messages.
The criterion for identifying which shares can be replaced is as
follows. A share SAi

j is replaceable if for every A′ ∈ Γ0 either
Pj ∈ A′ or A\{Pj} ⊆ A′. Thus, in our example, the share SA1

2

is replaceable since P2 ∈ A1∩A3 and A1\P2 ⊆ A2. However,
the share SA1

1 is not, since P1 /∈ A3 and A1 \ P1 ̸⊆ A3.
The first step in our construction consists in determining

which shares are replaceable. Checking for the replaceability
conditions, we obtain that the replaceable shares for the
access structure Γ0 are SA1

2 , SA2
3 , SA3

2 , and SA3
3 , as illustrated

in Figure 1. To show why the replaceability conditions are
defined as so, consider the following two examples where we
want to introduce a new message M2 into the shares. For these
examples, we choose SA1

4 = M1−SA1
1 −SA1

2 to be the fixed
share of A1.

Consider replacing the share SA1
2 with the linear combi-

nation of messages 2M1 + M2. The authorized set A1 can
compute M1 because the shares in A1 still sum to M1.
They can then compute M2 since they can subtract 2M1

from SA1
2 = 2M1 + M2. Again, the authorized set A2, can

compute M1 because its shares still sum to M1. They can
then compute M2 since M2 = −SA1

1 − SA1
4 − M1. Finally,

the authorized set A3 can compute M1 because the shares
in A3 still sum to M1. Since A3 contains participant P2, the
share SA1

2 = 2M1 + M2 ∈ SA3
. So they can compute M2

by subtracting 2M1 from SA1
2 . Thus, after computing M1, all

three authorized subsets can compute M2.
We now show that if the replaceability condition is not

satisfied, then our replacement technique does not work. As
described above, the share SA1

1 does not satisfy the replace-
ment condition. Suppose we instead replace the share SA1

1

with 2M1 + M2. We show that the authorized set A3 is not
able to compute M2. Note that the only shares A3 has access
to are SA1

2 , SA3
2 , SA2

3 , and SA3
3 . Since SA1

1 = M1−SA1
2 −SA1

4

and neither SA1
1 nor SA1

4 are accessible to the participants in
A3, there is no linear combination of the shares in SA3

that
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allow for the recovery of SA1
1 . Thus, M2 cannot be computed

by the participants in authorized subset A3.
The second step in our construction is to choose, for each

authorized subset A ∈ Γ0, which share SA
j to fix. The choice is

made as follows. For each authorized subset A ∈ Γ0, if every
share SA

j is replaceable, then pick any of them to be fixed.
Otherwise, pick a non-replaceable share SA

j to be fixed. The
choice of which share to fix is relevant for our construction
since we want to maximize the number of messages we are
able to introduce into the scheme.

The third and final step in our construction is to take the
shares that are replaceable, but not fixed, and replace them
with linear combinations of the message M1 with a new mes-
sage Mℓ, for each replaced share. These linear combinations
are of the form aM1 + bMℓ where a /∈ {0, 1} and b ̸= 0. It is
necessary for both a and b to be different than zero, because
no participant should have a share which consists of a single
message Mℓ, otherwise, we would have an authorized subset
with a single participant. Furthermore, a ̸= 1 since a fixed
share SA

j has the form M1 −
∑

Pk∈A\{Pj} S
A
k . Suppose that

we replace the share SA
i with aM1+ bMℓ where a = 1. Then

since A ∈ Γ0 is a minimal authorized subset, A \ {Pi} is
an unauthorized subset. If the participants in A \ Pi add their
shares, they can compute M1−SA

i = M1−M1−bMℓ = −bMℓ

which violates the security of the scheme.

C. From Single-Secret to Multi-Secret Sharing Schemes

We now show the details of converting the monotone circuit
construction to our construction for the basis Γ0 depicted in
Figure 1 using the following steps:

1) Identify which shares are replaceable. A share SAi
j is

replaceable if Pj ∈ A or Ai \ {Pj} ⊆ A for all A ∈ Γ0.
2) For each A ∈ Γ0, if the share SA

j is replaceable for all
participants Pj ∈ A, pick one of them to fix. Otherwise,
fix a non-replaceable share.

3) Replace all shares SA
j such that SA

j is replaceable but
not fixed. The replacement is of the form aM1 + bMℓ

where a /∈ 0, 1 and b ̸= 0. Note that each Mℓ appears
in exactly one replacement.

We note that any remaining shares that have not been
replaced or fixed are still uniform random over Fq .

As mentioned earlier (and shown in Figure 1), the replace-
able shares for Γ0 = {{P1, P2, P4}, {P1, P3, P4}, {P2, P3}}
are SA1

2 , SA2
3 , SA3

2 , and SA3
3 . We choose to fix the shares

SA1
4 , SA2

4 , and SA3
3 . Thus, SA1

4 = M1 − SA1
1 − SA1

2 , SA2
4 =

M1 − SA2
1 − SA2

3 , and SA3
3 = M1 − SA3

2 . The replacements
we make for this access structure are SA1

2 = 2M1 + M2,
SA3
2 = 2M1 +M3, and SA2

3 = 2M1 +M4.
We now prove that the scheme described above is decod-

able (all authorized subsets can compute all messages) and
individually secure (no unauthorized subset gains any new
information about any individual messages).

Proposition 1 (Decodability). H(M1,M2,M3,M4|SA) = 0
where SA is the set of shares held by an authorized sub-

set, i.e. every subset A ∈ Γ0 can compute all messages
M1,M2,M3,M4.

Proof. {P1,P2,P4}: For this authorized subset, SA =
{SA1

1 , SA2
1 , SA1

2 , SA3
2 ,M1 − SA1

1 − SA1
2 ,M1 − SA2

1 − SA2
3 }.

Since M1 − SA1
1 − SA1

2 + SA1
1 + SA1

2 = M1, it follows
that SA3

2 − 2M1 = M2, SA1
2 − 2M1 = M3, and −(M1 −

SA2
1 − SA2

3 ) − SA2
1 − M1 = M4. Thus, by [42, Lemma 3],

H(M1,M2,M3,M4|SA) = 0.
{P1,P3,P4}: For this authorized subset, SA =

{SA1
1 , SA2

1 , SA2
3 ,M1 − SA3

2 ,M1 − SA1
1 − SA1

2 ,M1 − SA2
1 −

SA2
3 }. Since M1 − SA2

1 − SA2
3 + SA2

1 + SA2
3 = M1, it

follows that −(M1 − SA1
1 − SA1

2 ) − M1 − SA1
1 = M2,

−(M1 − SA3
2 )−M1 = M3, and SA2

3 − 2M1 = M4. Thus, by
[42, Lemma 3], H(M1,M2,M3,M4|SA) = 0.
{P1,P2}: For this authorized subset, SA =

{SA1
2 , SA3

2 , SA2
3 ,M1 − SA3

2 }. Since M1 − SA3
2 + SA3

2 = M1

it follows that SA1
2 − 2M1 = M2, SA3

2 − 2M1 = M3,
and SA2

3 − 2M1 = M4. Thus, by [42, Lemma 3],
H(M1,M2,M3,M4|SA) = 0.

Proposition 2 (Individual Security). I(Mℓ;SU ) = 0 for ℓ ∈
{1, . . . , 4} where SU is the set of shares held by unauthorized
subset, i.e. no unauthorized subset learns any new information
about any of the 4 messages.

Proof. It is sufficient to consider only the maximal
unauthorized subsets which are, for this example,
{P1, P2},{P1, P3},{P1, P4},{P2, P4}, and {P3, P4}. We
prove the proposition for {P1, P2} since analogous arguments
work for the other unauthorized subsets. For this subset,
SU = {SA1

1 , SA2
1 , SA1

2 , SA3
2 }. By the definition of mutual

information, I(M1;SU ) = H(SU )−H(SU |M1).

Note that SU can be represented by the following matrix
equation:

A


M1

M2

M3

M4

SA1
1

SA2
1

 =

 0 0 0 0 1 0
0 0 0 0 0 1
2 1 0 0 0 0
2 0 1 0 0 0




M1

M2

M3

M4

SA1
1

SA2
1

 =


SA1
1

SA2
1

2M1 +M2

2M1 +M3



Since A is full rank and SA1
1 , SA2

1 ,M1,M2,M3,M4 all follow
a uniform distribution, by [42, Lemmas 5 and 6] we have that
H(SU ) = 4 log2 q.

Now, [42, Lemma 4], H(SU |M1) = H(SA1
1 , SA2

1 ,M2,M3).
Thus, SU |M1 can be represented by the following:

A1


M1

M2

M3

M4

SA1
1

SA2
1

 =

 0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 1 0 0 0




M1

M2

M3

M4

SA1
1

SA2
1

 =


SA1
1

SA2
1

M2

M3


Since A1 is full rank we have that H(SU |M1) = 4 log2 q by
[42, Lemmas 5 and 6].
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Thus,

I(M1;SU ) = H(SU )−H(SU |M1)

= 4 log2 q − 4 log2 q

= 0.

Showing I(Mℓ;SU ) = 0 for ℓ ∈ {2, 3, 4} involves similar
arguments.

Since we now have 4 messages and we have not increased
the number of shares, the information rate using our construc-
tion for this example is RMS = 4

8 = 1
2 , an improvement over

the information rate RSS = 1
8 of the single-secret sharing

scheme.

V. MAIN RESULTS

In this section, we show how to convert any single-secret
sharing scheme with a general access structure into a multi-
secret sharing scheme where every message has the same
access structure. Given a single-secret sharing scheme with
a monotone circuit, (P ,Γ0, S), we define a replaceable share
as the following.

Definition 4. A share SA
j is replaceable if, for every autho-

rized subset A′ ∈ Γ0, either the participant Pj ∈ A′ or the
subset A \ Pj ⊆ A′.

Then, as shown in Section IV, our method for replacing
shares consists in the following algorithm.

Algorithm 1 (Replacement Algorithm). Given a monotone
circuit construction, we perform the following steps.

1) Identify replaceable shares SA
j according to Definition 4.

2) For each authorized subset A ∈ Γ0, if the share SA
j is

replaceable for every participant Pj ∈ A, pick any such
share to be fixed. Otherwise, fix a non-replaceable SA

j .
3) Replace every share SA

j that is replaceable but not
fixed with a linear combination of messages of the
form aM1 + bMℓ where a /∈ 0, 1 and b ̸= 0 for
ℓ ∈ {2, . . . ,m}. Each Mℓ is allowed to appear in exactly
one replacement.

We now present in Theorems 1 and 2 the main results of this
paper for an individually secure multi-secret sharing scheme.

Theorem 1. Let (P ,Γ0, S) be a single-secret sharing scheme
with a monotone circuit. Then, by applying Algorithm 1, we
construct an individually secure multi-secret sharing scheme
that achieves an information rate of RMS = m

|S| where m−1
is the number of replaced shares.

The proof of Theorem 1 relies on the following two Lem-
mas 1 and 2 to show that the new scheme is decodable and
individually secure.

Lemma 1 (Decodability). Let SA be the set of shares held
by an authorized subset A after applying Algorithm 1. For
all A ∈ Γ0, H(Mℓ|SA) = 0 for any ℓ. In other words, all
authorized subsets can compute all messages.

Proof. We prove Lemma 1 by showing that every message
can be written as a linear combination of the shares held by
an authorized subset. By construction, M1 is equal to the
sum of the shares SA

j ∈ SA, i.e., M1 =
∑

Pj∈A SA
j . Thus,

H(M1|SA) = 0 for all A by [42, Lemma 3].
For the remaining messages Mℓ, ℓ ∈ {2, . . . ,m}, there

exists a participant Pj ∈ Ai such that SAi
j = aM1 + bMℓ.

For each authorized subset A, there are two cases to consider.
Case 1 (Pj ∈ A): In this case, SAi

j ∈ SA. Then, since
we’ve already shown A can compute M1, we can write Mℓ

as a linear combination of SAi
j and M1. More explicitly,

b−1(SAi
j − aM1) = b−1(aM1 + bMℓ − aM1) = Mℓ. Thus,

H(Mℓ|SA) = 0 by [42, Lemma 3].
Case 2 (Pj /∈ A): Since Pj /∈ A, then Ai \ {Pj} ⊆ A by

our replaceability condition. Let S′ = SAi
\ SPj

be the set
of shares held by Ai \ {Pj}. Then S′ ⊆ SA. By construction,
we can recover SAi

j as a linear combination of the shares
SAi
t ∈ S′ for t ̸= j, i.e., SAi

j = M1 −
∑

t̸=j ctS
Ai
t for some

constants ct ∈ Fq . Then, as in Case 1, we can write Mℓ as a
linear combination of SAi

j and M1. Thus, H(Mℓ|SA) = 0 by
[42, Lemma 3].

Lemma 2 (Security). After applying Algorithm 1, no unautho-
rized subset gains any new information about any individual
message, i.e. I(Mℓ;SU ) = 0 for ℓ ∈ {1, . . . ,m} where
SU =

⋃
Pj∈U SPj

is the set of shares held by an unauthorized
subset.

Proof: The proof is given in [42, Appendix A].
The proof of individual security given in [42, Appendix A]

is done using an inductive argument where the base case fol-
lows from the underlying secret sharing scheme. The inductive
step is proved by showing that the representative matrices for
SU and SU |Mℓ for ℓ ∈ {1, . . . ,m− 1} remain full rank after
the replacement since they are obtained by elementary column
operations. To finish the inductive step, we show that the new
representative matrix for SU |Mm is also full rank. This is
done by way of contradiction. Thus, when m − 1 shares are
replaced, the information rate for our construction of a multi-
secret sharing scheme is RMS = m

|S| .
Finally, we show that if a share SA

j not satisfying Definition
4 is replaced, then the decodability of the scheme fails. Thus,
our replacement procedure can only be applied to replaceable
shares.

Theorem 2. Suppose Pj’s share SAi
j is not replaceable. If we

make the replacement SAi
j = aM1 + bMℓ where a /∈ 0, 1 and

b ̸= 0, then H(Mℓ|SA) ̸= 0 where SA is the set of shares held
by the participants in A. In other words, replacing a share
that does not satisfy Definiton 4 results in some authorized
subset being unable to compute Mℓ.

Proof: The proof is given in [42, Appendix B].
The proof of Theorem 2 given in [42, Appendix B] follows

from the fact that there exists an authorized subset that does
not have SA

j and also does not have enough shares of SA\SPj

in order to reconstruct SA
j .
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