2024 |IEEE/ACIS 22nd International Conference on Software Engineering Research, Management and Applications (SERA) | 979-8-3503-9134-3/24/$31.00 ©2024 IEEE | DOI: 10.1109/SERA61261.2024.10685565

SpeciServe, a gRPC Infrastructure Concept

Chase Carthen®, Araam Zaremehrjardi*, Zachary Estreito®, Alireza Tavakkoli*, Frederick C. Harris* Jr., Sergiu M. Dascalu*

*Computer Science and Engineering
*University of Nevada, Reno

Reno, Nevada

Email: {ccarthen, azaremehrjardi, zestreito, tavakkol} @unr.edu,
{fred.harris, dascalus} @cse.unr.edu

Abstract—Smart city projects require data to be transferred
from one destination to the next using a number of different
network protocols. The data pipelines involved in these smart
city projects often have limited bandwidth or compute resources
due to the low power nature of most embedded hardware. The
data transferred between devices in these types of embedded
systems are often structured in non-standard data schemata.
Remote procedure calls (RPC) are implemented to transfer data
between devices and switching between RPC implementations
can be tricky due to the lack of standardization. There is no
guarantee that an existing data schema will work with a different
RPC implementation. This makes it difficult for a researcher or
system developer to benchmark and compare different RPC im-
plementations. In this paper, a conceptual infrastructure named
SpeciServe is introduced where gRPC is used as a communication
backbone due its support for flatbuffers and multiple server
modes. Multiple software services are described to allow for
dissimilar RPC implementations to be run in parallel. This system
is intended to allow for researchers in machine learning, smart
cities, and Internet of Things (IoT) to be able test different
versions of RPCs and provide support for system developers to
define the functions of an edge service.

Index Terms—gRPC, data streaming, IoT, data transfer, big
data, smart city, data pipeline, edge computing

I. INTRODUCTION

There has been a notable rise in the deployment of IoT
systems and the development of IoT management software.
This is partly due to the sudden onset of machine learning
techniques being integrated with IoT systems and development
of low powered devices along with new IoT network proto-
cols to enable communication between these devices. Some
notable areas that are seeing growth with these recent changes
are smart cities, agriculture, and industry. These applications
would benefit greatly from a standardized networking infras-
tructure to handle the flow of data between devices. Because
this networking infrastructure must accommodate low power
devices and networks with constrained resources, software
developers have created protocols such as gRPC, DDS, MQTT,
and other IoT application protocols to handle communication.
Developing an infrastructure with these networking protocols
requires creating a set of RPCs to handle the logic of the
system’s various applications, and changing the underlying im-
plementation of these RPCs can be challenging for developers.

Upgrading or changing the underlying RPCs of a distributed
system’s networking architecture often tasks software devel-
opers and system designers with testing, benchmarking, and

979-8-3503-9134-3/24/$31.00 ©2024 |EEE

comparing the new RPC implementations to previous versions.
When testing these RPCs, it must be ensured that the new
RPC implementation performs better or at least similar to the
previous version. In some cases, software developers may wish
to test multiple implementations of an RPC to see which one
performs best. For example, one may wish to test various RPC
implementations with a distributed machine learning system or
with a distributed system that requires heavy file compression.
Development and testing of new RPC implementations can be
difficult to tackle as a system scales up and evolves.

In this paper, we present a concept of a gRPC infrastruc-
ture where software developers can register their RPCs over
gRPC, REST, MQTT, and other network protocols. All other
interactions within the system utilize gRPC as the primary
communication backbone. This system consists of an RPC
server that stores definitions of different RPC implementations
and the schema of the data that is communicated across these
RPCs. The utilization of these RPCs would be handled by an
implementation server that would utilize a registration service
in the RPC server. Important information about the RPCs and
data schemas associated with the system will be tracked by
a metadata service. Data transfers between implementation
clients and implementation servers are handled by a data
flow service over gRPC. All data originating from the data
flow service will be cached to provide access to the data for
multiple services. Figure 1 demonstrates a simplified view of
the data flowing from the user of this system all the way to
the implementation server.

The rest of the paper is structured as follows. Section II
covers the background and related works for this paper. The
systems design and implementation is described in Section III.
Discussion of this paper’s prototype is included in Section IV.
Finally, the overall impact of this paper is discussed in
Section V.

II. BACKGROUND & RELATED WORKS
A. RPC Communication

Remote Procedure Call (RPC) communication was first
conceptualized in the 1970s. Scalability quickly became a
concern, and efforts to address the scalability of RPC were
undertaken in the 1980s [1]. Given the widespread use of
microservices and the ubiquitous rise of distributed computing,
the paradigm of RPC communication has both matured and

273
SERA%W&%Q?@%Q&E% |If’[1|ﬁ552t2’ HISH/&&%I’TL\%K NEVADA RENO. Downloaded on July 22,2025 at 20:14:27 UTC from IEEE Xplore. Restrictions apply.

Sends RPC)
-~ Request | RPC Implementation Implementation
to Server Server
Hook
User RPC Hook
gRPC,REST,
other
RPC
g Registration network Registration
Server protocols Client

Fig. 1. Conceptual data flow from the user through the RPC server all the
way to the implementation server.

shifted from its original purpose of facilitating communication
between clients and servers on external devices.

Specifically, RPC communication has been explored and
generalized as an interprocess communication (IPC) tool for
client’s internal processes and distributed computing environ-
ments by the use of an interface definition language (IDL). The
usage of IDLs has brought benefits in the form of an improved
software developer experience by allowing code generation
for RPC stubs. This may, however, incur a performance
penalty depending on system requirements [2]. That said, there
has been recent efforts to optimize for these performance
shortcomings [3]-[5].

One solution (Wang et al., 2021) presents a immutable
shared memory space where messages are passed between
processes and scheduler to manage said memory space [3].
Furthermore, HatRPC further expands on using memory
spaces effectively by incorporating remote direct memory
access (RDMA) with Apache Thrift to allow a generalized
RPC framework that implements granular optimizations for
throughput and latency based upon RPC message characteris-
tics [5]. By developing an abstraction layer between Apache
Thrift and RDMA, the authors were able implement specific
RMDA optimizations during compile time for client and server
stubs. Additionally, specialized RPC solutions have been
developed that employ specific optimizations for distributed
tasks [4]. PyTorch RPC is a example of a specialized RPC
framework designed to improve the scaling of key phases of
a federated learning pipeline by leveraging automatic tensor
optimizations when tensor-to-tensor communication is best
suited and uses low-level hardware communication pipelines
(e.g. NVLink) in the form of channels for IPC tasks.

B. gRPC

gRPC is an open-source RPC framework developed by
Google in 2015. It has gone through minor revisions since
its inception with the most recent of the protocol adopting
HTTP 2 in 2020 [6]. gRPC is composed of three major
aspects: serialization, the “proto” compiler, and the RPC
communication itself. Although gRPC offers the capability of
using JSON for message serialization, usage with Google’s
Protocol Buffers is preferred with support for flat buffers.

While capable of transmitting JSON data, gRPC serializa-
tion uses Protocol Buffers by default. Protocol Buffers make
use of schema files called “proto” files that are used by

979-8-3503-9134-3/24/$31.00 ©2024 |EEE

the “protoc” compiler to generate code that serializes and
deserializes data [7]. The compiler is capable of generating
for a wide range of programming languages such as C++,
Java, C#, Python, and others. gRPC builds on top of this
compiler methodology by allowing services to be defined
and compiled from proto files using the protoc compiler via
a plugin. gRPC services communicate with defined remote
procedure call functions that include a request (called “proto
request”) and response (called “proto response”) that define
the input and output of the remote procedure call. gRPC
offers four modes of communication: unary messages between
client and server, client streaming to server, server streaming
to client, and bidirectional streaming. Once services and
their respective remote procedures are defined, the compiler
generates both server and client interfaces dubbed “stubs” in
which users implement the request and response functions
for their applications. gRPC has seen use for communication
between microservices, a interprocess communication tool on
embedded platforms, and for internetwork communication by
using Software Defined Networks.

gRPC has also been implemented on a edge to client
test environment for offloading image computation using the
OpenCV library [8]. The authors designed the testbed envi-
ronment to have a smartphone capture a image and then uses
gRPC to transfer the image to a development board hosting
a gRPC server that applies OpenCV filters to the image. The
development of the testbed environment was for the purpose
of evaluating the performance of offloading computational
data across different environments and constraints such as
different programming languages, operating systems, and sys-
tem architectures. The authors compared the local execution
times and offloading (to the server) times with the dependent
variables being the platform used (Debian versus Android) and
programming languages. Throughout the testing gRPC was
used for both interdevice and interprocess communication on
the server for a matrix multiplication and image processing ap-
plication. The authors concluded from their testing that gRPC
had distinct performance advantages while also providing the
benefit of being an interprocess communication (IPC) tool. The
IPC benefits are due to gRPC being able to create Protocol
buffers for different programming languages rather easily to
facilitate passing messages between applications [8]. REST,
gRPC, and WebSocket were evaluated by Weerasinghe and
Perera for use within a distributed environment on Amazon
Web Services and they found that gRPC has the best results
for interservice communication in all metrics [9]. Additionally,
Park et al. present a shared backend architecture with a strong
emphasis on interprocess communication for using machine
learning applications on a resource constrained device such as
a edge device [10]. The authors considered the use of gRPC
as the backbone for allowing communication across services,
providing isolation, and allocating resources for such services
but reconsidered due to performance evaluations. Specifically,
the authors noted a high latency and memory footprint for each
new gRPC connection for their setup requirements. Thus, the
authors opted to use Oracle’s System V IPC rather than gRPC

274
SERA%W&%Q?@%Q&E% |If’[1|ﬁ552t2’ HISH/&&%I’TL\%K NEVADA RENO. Downloaded on July 22,2025 at 20:14:27 UTC from IEEE Xplore. Restrictions apply.

Core Services

Infrastructure

<gRPC>

Registration Server

unary message for self-registration

<gRPC>
unary message for P
assigned path for > M Service = L
! ! > <gRPC>
service routing unary message with
<gRPC> RPC implementation
<gRPC> unary message
unary message for with assigned RPC
assigned RPC <gRPC> implementation
specification. unary confirmation - - >
message <gRPC, REST, IPC> ="~
streaming/unary
. €« --" dafa message
Data Flow Service «--"" . i
-~ (Reverse-Proxy) <gRPC, REST, IPC>~

Generic Service

Registration Client

streaming/unary
data message

<YAML> |
Provisioning

Database |

Configuration

e L

Orchestration |

Process Message

Registration Message

Fig. 2. The conceptual SpeciServe system as a whole.

for their shared back-end configuration.

III. DESIGN

SpeciServe will consist of several data different services
with different services being available in the RPC Server to
allow for other services that are implementations to the RPCs
stored in the RPC server. Figure 2 shows a figure of the system
as a whole and its individual components. Communication
between different services will be handled by IPC within the
RPC server to ensure fast communication between the ser-
vices. SpeciServe’s RPC architecture begins with the creation
of a yaml configuration file with the following responsibilities:
defining core services paths and generic services with their
respective RPC functions. Furthermore, the yaml configuration
file is responsible for establishing the operating parameters
of the core services that will be used in an orchestration
applications such as Kubernetes and Docker-Compose. Core
service paths are the statically bound in the infrastructure,
while generic services make themselves known using the
registration service and are dynamically bound. By providing a
provisioning configuration, the necessary forethought for over-
all system interoperability is taken care through the metadata
and registration service.

Within the RPC server a metadata service is used to
maintain what RPC clients are connected to a RPCs, data
schemas, and the RPCs within the whole system. The metadata
service will act as a service that allows for system developers
to see what a given system can support and what can be added.
Within the metadata service it will encapsulate what gRPC
server modes are used within connections. This will allow for
the system to support different network infrastructures where
certain network modes may be advantageous. Data schemas

979-8-3503-9134-3/24/$31.00 ©2024 |EEE

within the metadata server will be stored as flatbuffers or
protocol buffers to ensure strong typing within the system.
RPCs will be stored as a yaml file that will use any data
schemas and predefined types within flatbuffers and protocol
buffers.

In order to allow for different implementations to connect
to the RPC server, a registration service will handle adding
new implementations to the RPC server and validating whether
the implementation matches any present RPCs stored within
the service. It will also update the metadata service with
the details of the client being added to the service as it
is added. This service will be responsible for adding new
services to the system and ensures that it matches the current
data model present in the metadata service. A thin client in
tandem with this registration client will make it possible for
implementation server or generic service to connect to the RPC
server. This registration process can occur over REST, IPC, or
other network protocols.

All RPC calls and the result of those are handled by a
dataflow service. This service is responsible for handling the
traffic between an outsider user and the generic services over
gRPC. As data is sent out and received by the dataflow service,
the data will be stored into a database for caching and allowing
the user to retrieve previous results. This database may be
utilized by external users or by other implementations to get
information about past messages.

IV. DISCUSSION

This SpeciServe conceptual framework is designed to allow
for developers to test and implement their edge services with
ease. However, this conceptual framework may not be as
fast as other RPC implementations such as Kogias et al.’s

275
SERA%W&%Q?@%Q&E% |If’[1|ﬁ552t2’ HBW&&%I,TL\%K NEVADA RENO. Downloaded on July 22,2025 at 20:14:27 UTC from IEEE Xplore. Restrictions apply.

implementation where their RPC implementation is designed
to speed up several unique types of services across different
programs [11]. Although, there exists performance disadvan-
tages within the conceptualized framework we rather aim to
emphasize compatibility for infrastructures that may incor-
porate different protocols for communication. By prioritizing
compatibility, we improve the developer experience and sys-
tem extensibility at the cost of system efficiently. These goals
are achieved through the registration server and client in which
allow the conceptualized system to receive and transmit these
new data streams during runtime by using services’ provided
data schema. Furthermore, our implementation is meant to
serve as a way for researchers in different fields to be able
to test their own implementations. In effect this conceptual
system will be more suited for near-realtime applications. One
field that may benefit greatly from this is machine learning
where multiple different versions of an ML solution are often
compared against each other. This conceptual framework could
be used as a tool for different researchers to test different
algorithms with the same set goal. Beyond testing different
versions of RPCs, this system could allow for testing similar
sensors from different manufacturers.

gRPC is proposed as a backbone to this system as it allows
for more flexibility and scalability in terms of the data format
and its underlying features. It has the capability for more
threads to be added if the demand of the networking increases.
It has several different server modes unary, bidirectional, client
send/receive, and server send/receive modes. Flatbuffers, a
format supported by gRPC to be sent, has an option for data
to be compressed within the format itself. Both flatbuffer and
protocol buffers impose a strongly typed data schema that most
systems are designed for. These different server modes allow
for versatility in that the RPC Server can be connected to
generic services in many different types of networks.

V. CONCLUSION

In the future we plan to implement a proof of concept based
on this proposed infrastructure. While the implementation
of this conceptual framework will have more performance
bottlenecks than regular RPC implementations or other similar
implementations, it may prove useful for system developers
and researchers to test, benchmark, and develop their algo-
rithms. This concept may be worth trying in many different
types of networks including in the cloud, at the edge, or both.
Given that this conceptual framework is suitable for testing
and designing different RPCs. The SpeciServe framework
will be used to develop several example applications and
benchmark them against existing implementations. Along with
the development of example these applications, we will test
interfacing and interacting with devices of differing designs
when considering high latency protocols like LoRa.

ACKNOWLEDGMENT

This material is in part upon work supported by the Na-
tional Science Foundation under grants OAC-2209806, OIA-
2019609, and OIA-2148788. Any opinions, findings, and

979-8-3503-9134-3/24/$31.00 ©2024 |EEE

conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of The National Science Foundation.

REFERENCES

[1] B. Bershad, D. Ching, E. Lazowska, J. Sanislo, and
M. Schwartz, “A remote procedure call facility for in-
terconnecting heterogeneous computer systems,” I[EEE
Transactions on Software Engineering, vol. SE-13,
no. 8, pp. 880-894, 1987.

[2] N. Feske, “A case study on the cost and benefit of
dynamic rpc marshalling for low-level system com-
ponents,” SIGOPS Oper. Syst. Rev., vol. 41, no. 4,
pp. 40-48, Jul. 2007.

[3] S. Wang, B. Hindman, and I. Stoica, “In reference
to rpc: It’s time to add distributed memory,” in Pro-
ceedings of the Workshop on Hot Topics in Operating
Systems, ser. HotOS °21, Ann Arbor, Michigan: Asso-
ciation for Computing Machinery, 2021, pp. 191-198.

[4] P. Damania, S. Li, A. Desmaison, et al., “Pytorch rpc:
Distributed deep learning built on tensor-optimized re-
mote procedure calls,” Proceedings of Machine Learn-
ing and Systems, vol. 5, 2023.

[5] T. Li, H. Shi, and X. Lu, “Hatrpc: Hint-accelerated
thrift rpc over rdma,” in Proceedings of the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1-14.

[6] Google. “Grpc - a high performance, open source
universal rpc framework.” (2016), [Online]. Available:
https://grpc.io (visited on 03/24/2024).

[7]1 Google. “Protocol buffers - protocol buffers are
language-neutral, platform-neutral extensible mecha-
nisms for serializing structured data.” (), [Online].
Available: https://protobuf.dev (visited on 03/04/2024).

[8] M. Aradjo, M. E. Maia, P. A. Rego, and J. N. De Souza,
“Performance analysis of computational offloading on
embedded platforms using the grpc framework,” in
8th International Workshop on ADVANCEs in ICT
Infrastructures and Services (ADVANCE 2020), 2020,
pp. 1-8.

[9] L. Weerasinghe and I. Perera, “Evaluating the inter-
service communication on microservice architecture,”
in 2022 7th International Conference on Information
Technology Research (ICITR), 2022, pp. 1-6.

[10] M. Park, K. Bhardwaj, and A. Gavrilovska, “Pocket:
MI serving from the edge,” in Proceedings of the
Eighteenth European Conference on Computer Systems,
2023, pp. 46-62.

[11] M. Kogias, G. Prekas, A. Ghosn, J. Fietz, and E.

Bugnion, “R2P2: Making RPCs first-class datacenter
citizens,” in 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19), Renton, WA: USENIX Asso-
ciation, Jul. 2019, pp. 863-880.

276
SERA%W&%E?@%Q&E% |If’[1|ﬁ552t2’ HBW&&%I,TL\%K NEVADA RENO. Downloaded on July 22,2025 at 20:14:27 UTC from IEEE Xplore. Restrictions apply.

