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Atmospheric modulation of apparent
electrical conductivity in a metal−organic
framework
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Combining high surface area and efficient charge transport, electrically conductive metal−organic
frameworks (MOFs) find wide applications in energy storage, sensing, and electrocatalysis. Reliable
characterization of electrical conductivity, the keymetric for assessing this class of materials, remains
challenging due to its high sensitivity to the atmosphere. Herein, through electrical characterization of
anexemplaryMOF,Cd2(TTFTB) (TTFTB4−= tetrathiafulvalene tetrabenzoate), under various controlled
atmospheres, we show that adsorption of water in humid air or N2 improves the apparent room-
temperature electrical conductivity by one to two orders of magnitude compared to the values
observed in dry atmospheres. This observation in conjunction with spectroscopic characterization,
structural analysis, and band structure calculations indicates significant contribution of water-
mediated proton conductivity and/or proton-electron coupling to the apparent electrical conductivity.
Thus, controlling and reporting atmospheres in electrical conductivity measurements of MOFs is
critical to improve their reproducibility and to gain insights into electrical conduction mechanisms.

Electrically conductive metal−organic frameworks (MOFs) are a unique
class of materials that combine periodicity, microporosity, and electrical
conductivity1,2. Recent advancements have led toMOFs with high electrical
conductivity (σ > 1000 S·cm−1)3,4, charge mobility (μ > 200 cm2·V−1·s−1)5,
and charge density (n > 1 × 1021cm−3)6 at room temperature in conjunction
with high Brunauer−Emmett−Teller surface area (SBET > 500 m2·g−1).
These properties have not only empowered exceptional performance of
MOFs in a wide range of applications including supercapacitors7,
electrocatalysis8, and chemiresistive sensing9, etc., but also opened oppor-
tunities for investigating exotic physics10 such as superconductivity11–13,
charge density wave4, strong correlations14, and topological insulators15,16.

The development of electrically conductive MOFs demands sophisti-
cateddesignof charge transport pathways andcharge carriers, bothofwhich
require insights into structure−property relationships2. Accordingly, reli-
able data of crystal structures and electrical properties are indispensable to
provide foundations for theoretical analysis on electronic band structures
and charge transport mechanisms. The former has traditionally been
acquired by bench-top X-ray diffraction (XRD) with high-quality large
single crystals, while recent technological advances in continuous rotation
electron diffraction (or microcrystal electron diffraction)17,18 have enabled

structural determination of sub-micrometer-scale single crystals with
atomic resolution and precision. The structural data are typically reliable
and reproducible: crystal structures of the same species reportedby different
laboratories are often nearly identical with marginal errors. In sharp con-
trast, there remain significant inconsistencies in the literature among
reported electrical conductivity values of MOFs. For instance, the room-
temperature electrical conductivity in an iconic MOF, Cu3(HOTP)2
(HOTP = 2,3,6,7,10,11-hexaoxytriphenylene), was reported to be on the
order of 10−4 S·cm−1 or 0.02 S·cm−1 for thin films19,20, 0.045 S·cm−1 or 0.1
S·cm−1 for pressed pellets21,22, and 0.2 S·cm−1 or 1.5 S·cm−1 for single
crystals22,23—it varies by one to several orders of magnitude. Such lack of
consistency hinders the derivation of design principles for electrically
conductive MOFs.

Reliable and reproducible characterization of electrical conductivity in
MOFs is mainly limited by their morphologies, complex compositions, and
microporous structures. First, the apparent electrical conductivity is highly
dependent on the characterization method. Previous studies have revealed
orders of magnitude variations in electrical conductivity values acquired
from different device geometries (two-contact probe, four-contact probe,
four-point, or van der Pauw geometries), crystallographic orientations
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(perpendicular orparallel to charge transport pathways), andphysical forms
(thin films, pressed pellets, or single crystals)22,24,25. Second, it is difficult to
fabricate high-quality electronic devices such as resistors, field-effect tran-
sistors, and Hall bars with single crystals of MOFs. The often small and
irregularly shaped single crystals prevent fabrication of four-contact or van
der Pauw devices bymanually pasting electrical wires, and the lack of single
crystalline thin films hinders the use of conventional micro/nano-fabrica-
tion technologies. Third, the complex components and microporous
structures of MOFs make their electrical conductivity sensitive to the
environment (atmosphere, temperature, illumination, etc.)25–27. None-
theless, the environmental conditions are neither well controlled nor con-
cretely described in many literatures, which significantly compromises the
reproducibility of these reports.

Most electrical conductivity measurements of MOFs are conducted in
three kinds of atmospheres: air, inert gas (nitrogen or argon), and vacuum.
On one hand, the atmosphere may modulate structures of MOFs. Specifi-
cally, guest molecules may change coordination geometries of metal ions28,
π− π stacking distances between conjugated ligands (vide infra), and even
the shape of pores as exemplified by breathing MOFs29. Such structural
modulation may alter energy match and orbital overlap among metal ions
and organic ligands, leading to variation in electrical conductivity. On the
other hand, components of the air, especially oxygen and water, could exert
chemical influences on electrical conductivity when they are adsorbed into
pores. The oxygen may introduce holes and quench electrons through
oxidation reactions, leading to an increase in electrical conductivity of
p-type semiconducting materials or a decrease in n-type ones30. The water
may promote self-doping driven by proton-electron coupling31 and may
enable proton conduction32–35. Studying the dependencies of electrical
conductivity on various components of the air would not only reveal
insights into charge transport mechanisms but also help evaluate the
potential ofMOFs for chemiresistive sensing applications9,36. Therefore, it is
critical to establish amethodology to articulate the atmospheric influenceon
electrical conductivity in MOFs.

Previously, we proposed a standard protocol on measuring and
reporting electrical conductivity in MOFs by investigating the influence of
characterization methods and environmental conditions on electrical con-
ductivity in an exemplary MOF, Cd2(TTFTB) (TTFTB4− = tetra-
thiafulvalene tetrabenzoate)25. Notably, single-crystal measurements under
several cycles of evacuation and air-refilling at room temperature revealed
an order of magnitude decrease in the electrical conductivity upon eva-
cuation. Herein, we further investigated the atmospheric modulation of
apparent electrical conductivity in Cd2(TTFTB). Through structural,
spectroscopic, and electrical characterizations under various atmospheres
with controlled content of oxygen and water as well as electronic band
structure calculations, we conclude that water, rather than oxygen, plays a
key role in the air-induced improvement of the apparent electrical con-
ductivity. Such improvementmight stem fromproton conductivity coupled
with interfacial redox reactions and/or self-doping driven by proton-
electron coupling. Thus, this study highlights the importance of controlling
the atmosphere to improve reliability and reproducibility of electrical
characterization for MOFs as well as to reveal insights into electrical con-
duction mechanisms.

Results and discussions
Structure and desolvation
Cd2(TTFTB) was synthesized based on the previous literature (see
Methods)37.Opticalmicroscopy and scanning electronmicroscopy revealed
hexagonal rod-like single crystals with regular shapes, millimeter-scale size,
and smooth surfaces, which facilitate fabrication of single-crystal devices
(Fig. 1d, e; Supplementary Fig. 1a). Single-crystal X-ray diffraction (SC-
XRD) of the as-synthesized Cd2(TTFTB) revealed π-stacked TTF columns
formed by π− π stacking and S···S interactions betweenTTFmoieties along
the crystallographic c-axis (Fig. 1b). The side chain consists of two alter-
nating and crystallographically independent Cd2+ ions bridged by carbox-
ylate groups (Fig. 1c). One type of Cd2+ is six-coordinated and is bound to

two terminal water molecules; the other type is five-coordinated and does
not coordinate to water. The π-stacked TTF columns and side chains
together delineate one-dimensional (1D) quasi-elliptic cylindrical pores
(Fig. 1a). This structure is different from the previously reported
Cd2(TTFTB)

37 yet analogous to several otherM2(TTFTB) (M=Mn2+, Co2+,
and Zn2+)37,38. SC-XRD showed solvent molecules in the pores and ele-
mental analysis revealed a formula of [Cd2(TTFTB)
(H2O)2]·(DMF)1.34(H2O)3.73 (DMF =N,N-dimethylformamide). The guest
DMF and water molecules may assist with the terminal water molecules to
form hydrogen-bonded networks within the pores.

Electrical characterization of Cd2(TTFTB) involves maintaining its
crystal in the air at temperature up to 363 K and relative humidity (RH) up
to 90% or purging it in dryN2 for 1 h at a fixed temperature that varies from
298 K to 363 K (seeMethods). The structural stability ofCd2(TTFTB)under
elevated temperature and humidity was confirmed by powder X-ray
diffraction (PXRD), which revealed consistent diffraction pattern after
subjecting crystals to the air at 353 K and 90% RH for 72 h (Fig. 1f; Sup-
plementary Figs. 2 and 3). The diffraction angles andwidths of PXRDpeaks
persisted after this treatment, confirming the integrity of the framework
structure.

We further investigated the desolvation of Cd2(TTFTB) with ther-
mogravimetric analysis coupled with Fourier transform infrared spectro-
scopy (TGA-FTIR). To simulate the electrical characterization procedures,
the samplewas heated slowly to 363 K in aflowof dryN2,maintained at this
temperature for 1 h, and heated rapidly to 473 K. TGA shows a mass loss
during the whole treatment, which is attributed to desolvation (Supple-
mentaryFig. 4). In thefirst two stages, thedegas ratewas too slow tomeet the
detection limit of spectrometer, resulting in negligible features of water or
DMF in IR spectra (Fig. 1g). In contrast, rapid degassing took place during
the fast-heating stage, revealing intense IR features of DMF (e.g., C =O
stretch at approximately 1700 cm−1) as well as a weak and broad band
centered at approximately 3400 cm−1 that signifies water. The former shows
up at above 417 K that is comparable to the boiling point of DMF (426 K),
whereas the latter was only observed at 473 K that is much higher than the
boiling point ofwater (373 K) likely due to a strongbindingofwater toCd2+.
Thus, the N2 purging process involved in electrical characterization deso-
lvates Cd2(TTFTB) partially—only a portion of DMF and water may be
removed from the pores.

DC electrical characterization
Two-contact probe single-crystal devices of Cd2(TTFTB)were fabricated to
characterize the electrical conductivity along the crystallographic c-axis
(Fig. 2a and Supplementary Fig. 1b). To elucidate the atmospheric mod-
ulation of electrical conductivity in Cd2(TTFTB), we conducted direct-
current (DC) electrical characterization at room temperature (298 K) and
under various atmospheres including humid air (38%− 45% RH), humid
N2 (100%RH), dry air (<2%RH), and dryN2 (<0.02%RH) (Supplementary
Fig. 1c). The comparison between humid and dry atmospheres reveals the
influence of water on the DC conductivity, whereas that between air andN2

atmospheres shows the influence of oxygen (Fig. 2b). Current−voltage
(I−V) curves are linear in all tested atmospheres, allowing extraction of the
apparent electrical conductivity values with the Ohm’s law (Fig. 2c).

For a representative device, the DC conductivity in humid air is σDC,
humid air = 9.44 × 10−5 S·cm−1, which is consistent with previously reported
values ofCd2(TTFTB)25,37. The crystalwas thenpurged indryN2 at 363 K for
1 h to desolvate it, cooled down to 298 K, maintained in dry N2 for 1 h, and
exposed to dry air for 1 h (see details inMethods and Supplementary Fig. 5).
As discussed above, this treatment can only desolvate the framework par-
tially with a significant amount of residual DMF and coordinating water in
pores. Nonetheless, it reduced the DC conductivity to σDC, dry N2 = 1.03 ×
10−6 S·cm−1, which remained in dry air (σDC, dry air = 1.06 × 10−6 S·cm−1).
Finally, exposing the crystal to humid N2 for 1 h improved the DC con-
ductivity toσDC, humidN2 = 5.24×10−5 S·cm−1.This is slightly lower thanσDC,
humid air, which may be attributed to desolvation-induced changes of the
crystal structure (vide infra) and guest composition in pores. Nonetheless,
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such recovery indicates that the low DC conductivity values under dry
atmospheres were not caused by an accidental device damage. Thus, the
room-temperature DC conductivity of Cd2(TTFTB) shows the following
trend: σDC, humid air > σDC, humid N2 » σDC, dry air ≈ σDC, dry N2 (Fig. 2d).

We further conducted variable-atmosphere DC electrical character-
ization for crystals from different batches and N2-purged at 298 K. The
order of atmospheres was switched for some devices and two cycles of
measurements were performed for one device. Characterization of four-
contact probe single-crystal devices was also conducted to eliminate the
influence of contact resistance (Supplementary Fig. 1d). Although the exact
electrical conductivity values differ among these devices, their atmospheric
dependencies are consistent with the above trend (see examples in Sup-
plementary Figs. 6 and 7). In addition, we monitored dynamic changes of
the current through a device (Fig. 2e and Supplementary Fig. 8). Purging the
single crystal of Cd2(TTFTB) with dryN2 reduced the current immediately,

reaching a plateau after 700 s. Switching dryN2 to dry air caused a negligible
change in current. We then switched the purging gas to humid N2. The
current first slightly dropped for 70 s, then increased sharply, and finally
levels off after 900 s. Notably, both the decline of current in dry N2 and the
rise of current in humidN2 exhibit exponential decayswith rate constants of
0.126 s−1 and 0.019 s−1, respectively (Supplementary Fig. 9). These trends
are consistent with the first-order dynamics of desorption and adsorption39.
Thus, the adsorbed guests should play a major role in the variation of
electrical conductivity.

Atmospheric modulation of charge mobility and hole density
TheDC electrical conductivity is a product of elementary charge (e), charge
mobility (μ), and charge density (n), i.e., σ = eμn2. Therefore, it is viable to
examine charge mobility and charge density separately to understand their
modulation by the atmosphere.
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Fig. 1 | Structure and desolvation of Cd2(TTFTB). a, b Portions of structures
viewed parallel or perpendicular to the crystallographic c-axis showing nanoscale
pores or the π-stacked TTF columns, respectively. Gray, red, yellow, and purple
spheres represent C, O, S, and Cd, respectively. Solvent and H atoms are omitted for
clarity. c Portion of the side chain highlighting terminal water molecules.
d, eMicrographs of single crystals viewed perpendicular or parallel to the long axis,

respectively. f PXRD patterns of the as-synthesized Cd2(TTFTB) and a sample
treated at 353 K and 90% RH for 72 h in comparison with a pattern simulated from
the crystal structure. Miller indices of primary PXRD peaks are indicated. g IR
spectra of evaporated gaseous products generated at various temperatures from
TGA. IR features of CO2 appeared due to instrumental artefacts.
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Directly measuring the charge mobility of Cd2(TTFTB) is challenging
due to technical difficulties of fabricating field-effect transistors orHall bars.
Hence, we probed it indirectly with structural characterization. Previous
studies on a series ofM2(TTFTB) (M

2+=Mn2+, Co2+, Zn2+, Cd2+)materials
showed that their electrical conductivity increases with decreasing S···S
distances. Thiswas rationalized by enhanced overlap between 3pz orbitals of
adjacent TTFmoieties and in turn improved chargemobility37,38. As the S···S
contact is in line with the crystallographic c-axis, a shorter S···S distance
should manifest as a reduced unit cell parameter in the c direction.

Driven by this hypothesis, we conducted in situ PXRDmeasurements
on Cd2(TTFTB) using CaCO3 as an internal reference for calibration
(Supplementary Fig. 10). The PXRD patterns were analyzed by the Le Bail
refinement to extract unit cell parameters (Supplementary Figs. 11−15). A
PXRD pattern of the as-synthesized Cd2(TTFTB) was first acquired in
humid air, revealing unit cell parameters of a = b = 19.6463 Å and
c = 21.0196 Å, which are consistent with those obtained from SC-XRD
(Supplementary Table 1). The same sample was then evacuated at 298 K for
1 h. Its PXRD peaks shifted towards high angles with the most repre-
sentative (006) diffraction peak shifting from 25.39° to 25.96° (Fig. 3b, c).
Although the crystal symmetry remained, the evacuation caused a con-
traction of the unit cell to a = b = 19.5446 Å and c = 20.5834 Å. The sample
was then allowed to stay in the humid air for 1 h, which shifted the PXRD
peaks back towards low angles. The (006) diffraction peakwas at 25.52°, and
the unit cell parameterswere a = b = 19.6411 Å and c = 20.8910 Å. This unit
cell is slightly smaller than that of the as-synthesized sample, which is likely
due to partial removal of the adsorbed solvent (vide supra). The evacuation
and air-refilling process was repeated once, displaying nearly consistent
PXRD patterns with the (006) peak showing at a slightly higher angle
possibly due to further removal of solvent during the second evacuation
process. These observations indicate that the S···S distancedecreases because
of partial desolvation, which should lead to an increase in charge mobility.

To confirm the shortening of the S···S distance, we evacuated
Cd2(TTFTB) at room temperature for 15 h and acquired its crystal structure
by SC-XRD. This treatment removed the adsorbed solvent and shrank the
unit cell to a = b = 19.6184Å and c = 20.6160 Å (Supplementary Table 2),

matching well with the parameters obtained from PXRD. Importantly, the
S···S distance decreases from 3.71Å in the as-synthesized framework to
3.62 Å in the evacuated one (Fig. 3d, e). Density functional theory (DFT)
calculations were performed on both the as-synthesized and evacuated
forms of Cd2(TTFTB) (Fig. 3f, g), revealing nearly identical electronic band
features.Aligningwith theprevious report37, the valencebandmaximumis a
six-folded carbon and sulfur band (Γ–A) with a bandwidth of 293meV for
the as-synthesized material. Evacuation results in contraction in the
π-stacked TTF column by approximately 3%, which is quantitatively
consistent with the experimentally observed contraction, and a corre-
sponding increase in the bandwidth to 333meV due to the increased S 3pz-
orbital overlap. Since TTF is a hole acceptor40 and the curved bands are
associated with the π-stacked TTF columns, both forms of Cd2(TTFTB)
should behave as p-type semiconductors. The increase in valence band
curvature should lead to a reduction of hole effective mass and an
enhancement of hole mobility.

Cd2(TTFTB) is known to contain TTF·+ radical cations37, which are
likely formed through spontaneous oxidation of the TTF moiety by O2

during the high-temperature synthesis of the precursor or framework. If the
relatively high σDC, humid air had been caused exclusively by TTF oxidation,
the concentration of TTF·+ radical cations would be significantly higher in
aerobic atmospheres than that in anaerobic atmospheres. To investigate this
possibility, we conducted continuous wave electron paramagnetic reso-
nance (CW-EPR) spectroscopic characterization on the same sample of
Cd2(TTFTB) under both aerobic and evacuated conditions at 298 K. Both
CW-EPRspectra exhibit single axial peakswith gk and g? centered at 2.0068
and 2.0013, respectively (Fig. 3a). These are close to the free electron value
(g = 2.0023), confirming the presence of TTF·+. Notably, the evacuation
barely changes the concentration of radicals as indicated by nearly identical
peak intensities and shapes in the two spectra. Thus, the presence ofO2 does
not promote further oxidation of Cd2(TTFTB) at room temperature and in
turn does not improve the hole density. This is consistent with the above-
mentioned observation that σDC, dry air ≈ σDC, dry N2.

Therefore, upon evacuating Cd2(TTFTB), its charge mobility increa-
ses, and its charge density persists, which together should enhance the
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electrical conductivity. Although technical limitations prevented us from
performing thesemeasurements in dryN2, the same trend is expected as dry
N2 purging also removes portions of guestmolecules. This is contrary to the
experimental observation that σDC, humid air » σDC, dry N2. It implies that in
humid air, besides TTF·+-based hole conduction, other charge transport
mechanisms and/or charge carriers are involved, which are likely mediated
by coordinating water and adsorbed solvent molecules.

AC electrical characterization
To investigate the contribution of water to apparent electrical conductivity
in Cd2(TTFTB), we performed alternative-current (AC) electrochemical
impedance spectroscopy (EIS) and DC I−V measurements, which reveal
AC and DC conductivity, respectively, for the same device at 298K under
humid air, humid N2, dry air, and dry N2. The Nyquist plot obtained from
EIS characterization under each atmosphere appears to be a semicircle. It
can be well fitted by an equivalent parallel circuit consisting of a resistor and
a capacitor. The resistance was used to calculate the AC conductivity
(SupplementaryFig. 16)32. In eachatmosphere, theACandDCconductivity
values are nearly identical — they differ by less than 1%. Take the above-
mentioned single-crystal device for example. Its AC conductivity in humid
airwasσAC, humid air = 9.38×10−5 S·cm−1, dropped toσAC, dry air = 1.06×10−6

S·cm−1 in dry air and σAC, dry N2 = 1.03 × 10−6 S·cm−1 in dry N2, and
recovered to σAC, humid N2 = 5.26 × 10−5 S·cm−1 in humid N2 (Fig. 4a, b).
These values match closely with DC counterparts (Fig. 2d).

We further conducted EIS and DC I−V measurements for several
devices at 298 K and in the air with the relative humidity ranging from 20%
RH to 90%RH.BothACandDCconductivity values increase exponentially
with increasing relative humidity, and they match well with each other
(Fig. 4c and Supplementary Fig. 17). For instance, in an exemplary device,
both started with 1.31 × 10−4 S·cm−1 at 20% RH and rose to 1.75 × 10−4

S·cm−1 at 90%RH. Extrapolating the conductivity value to 0%RHgives 1.30
×10−4 S·cm−1, which is significantly higher than the expected value indry air
and dry N2 likely because the material was desolvated to a higher degree in
these dry atmospheres. These observations confirm the key role of water in

the apparent electrical conduction. Hence, we tentatively assigned the AC
conductivity toprotonconductivity.Considering the ratio betweenσhumid air

and σdry air observed from both DC and AC electrical characterization, the
proton conductivity is at least 1− 2 orders of magnitude higher than the
electrical conductivity in humid atmospheres.

Electrical conduction mechanisms
Watermay contribute to the apparent electrical conduction inCd2(TTFTB)
through two mechanisms. On one hand, water could provide protons and
help form their conduction pathways32. Meanwhile, although the TTF
moiety is not oxidized by the air at room temperature, it could undergo
redox reactions at the crystal−electrode interface under an applied electric
field, giving rise to so called interfacial pseudo-capacitance41. The coupling
between proton conductivity and interfacial pseudo-capacitance may
improve the apparent electrical conductivity value, resulting in an over-
estimation of the latter (Fig. 4d). This phenomenon has been observed in
[(CH3)2NH2]In(H4TTFOC) (H8TTFOC = tetrakis(3,5-dicarboxyphenyl)-
tetrathiafulvalene) in which proton conduction and interfacial redox reac-
tions of the TTF moiety improve the apparent DC conductivity by five
orders of magnitude41. On the other hand, water could be deprotonated
under an applied electric field, which facilitates the formation of holes
through proton-electron coupling. Such self-doping process improves hole
density and thereby electrical conductivity, as evident by molecular con-
ductors comprising of TTF moieties and protonic functional groups (e.g.,
hydroxy)31,42,43.

Both mechanisms require redox-active components and hydrogen-
bonded networks. Although there are terminal water molecules in the
structure, their locations and orientations prevent direct formation of long-
range hydrogen-bonded networks (Fig. 1c). This explains the relatively low
DC and AC conductivity in dry atmospheres. These distant coordinating
water molecules might be connected by adsorbed water and DMF to form
hydrogen-bonded networks in the pores to promote proton conduction41,44.
The proton conduction may couple with interfacial redox reactions of TTF
moieties to contribute to theDCconductivity41.Meanwhile, suchhydrogen-
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columns in the as-synthesized and e evacuated Cd2(TTFTB) highlighting the
shortest S···S contact. f, g Electronic band structures of the as-synthesized and
evacuated frameworks. M–Γ and A–H are in-plane vectors, while Γ–A samples the
TTF π-stacking direction.
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bonded networks could also promote self-doping that improves hole-based
electrical conduction through π−stacked TTF columns. The latter is unli-
kely to be dominant because non-conjugated linkages (e.g.,
Cd2+−carboxylate coordination) between hydrogen-bonded networks and
TTF columns should lead to weak proton-electron coupling. Although
contributions differ, both mechanisms may be applicable to Cd2(TTFTB),
rendering it as a potential candidate of proton−electron dual conductor
(Fig. 4d)45,46.

Conclusions
In conclusion, electrical, spectroscopic, structural characterization andband
structure calculations of an exemplary MOF, Cd2(TTFTB), revealed that
water molecules in the atmosphere could modulate its apparent electrical
conductivity by 1 – 2 orders of magnitude. Cd2(TTFTB) has long been
perceived as a p-type semiconductor25,37, yet our studies indicate that its
apparent electrical conductivity likely manifests a combination of electrical
conduction through π-stacked TTF columns and proton conduction
through hydrogen-bonded networks. Both are promoted by the redox
activity of TTF moieties and protons provided by coordinating water and
adsorbed solvent.Thisfinding raises demandson elucidating theunderlying
mechanism of apparent electrical conductivity in MOFs, especially those
that lack electron/hole transport pathways but comprise of redox-active
building blocks and potential proton sources (e.g., coordinating water and
carboxylic acid groups).

As various components of the air (H2O, O2, CO2, N2, etc.) could affect
charge transport pathways, chargedensities, and types of charge carriers, the
atmospheric modulation is expected to take place in a wide range ofMOFs.
Without controlling the atmosphere of electrical conductivity measure-
ments, it is difficult to achieve consistent results even for the same batch of
materials and to reproduce the results reported by other laboratories.
Meanwhile, conducting electrical characterization under a well-controlled
atmosphere allows probing the influence of a specific gas molecule on the

electrical conductivity, which may bring insights into the electrical con-
duction mechanism as shown herein and portend applications of the fra-
mework for chemiresistive sensing. Thus, we suggest subsequent studies on
the electrical conductivity in MOFs to record, control, and report the
characterization atmosphere to improve reliability, verifiability, and
reproducibility, ultimately establishing a unified standard for the field of
electrically conductive MOFs.

Methods
Synthesis of Cd2(TTFTB)
Cd2(TTFTB) was synthesized by modifying the previous reported
procedure37. Cd(NO3)2·4H2O (172mg, 0.558mmol) was dissolved in a
mixture of 6mL water and 6mL ethanol. H4TTFTB (103mg, 0.154mmol)
was dissolved in 6.3 mL DMF and 2.1mL ethanol in a 20mL scintillation
vial. Both solutions were sonicated for 3min. The former solution was
slowly added to the latter with a pipette, and the mixture was sonicated for
3min. The reactionmixture was heated to 75 °C in 10 h in a programmable
oven, kept at this temperature for 72 h, and cooled down to 30 °C in 10 h,
affording dark red rod-like crystals. The top solution was decanted. The
remaining crystals were washed by soaking them in DMF for 3 times and
then in ethanol for 3 times. Finally, the product was dried in a vacuum oven
at 40 °C for 24 h. Elemental analysis calcd. For C38H36.8N1.34O15.1S4Cd2: C,
41.26; H, 3.36; N, 1.70; Found: C, 41.23; H, 3.24; N, 1.75.

Fabrication of single-crystal devices
A single crystal with a smooth surface and regular rod-like shape was
selected under an optical microscope (Guangzhou Liss Optical Instrument
L3230) equippedwith a digital camera (LIT Firefly 12). The crystal was then
transferred onto a piece of glass slide. The glass slide was pre-patternedwith
two electrodes fabricated by depositing 5 nm Ti and 60 nm Au with an
e-beam evaporator (ULVAC ei-5z) using a piece of Kapton tape as a shield
mask.Agoldwirewas attached toone endof the rod-like crystalwith carbon
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Fig. 4 | AC electrical characterization of Cd2(TTFTB). a, bNyquist plots acquired
at 298 K under various atmospheres. c DC and AC conductivity acquired at 298 K
under various relative humidities for the same device. d Schematic illustration of the

hole transport pathway and the proton conduction channel coupled with redox
reactions at the crystal−electrode interface.
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paste, and the other end of the gold wire was subsequently connected to the
gold electrode with carbon paste. The same procedure was repeated on the
other end of the crystal to fabricate a single-crystal two-contact probe device
with electrical current transporting along the crystallographic c-axis
(Fig. 2a). Single-crystal four-contact probe devices were fabricated by
pastinganother twowires in themiddleof the crystal. The lengthandedgeof
cross-section of the conduction channel were measured by the optical
microscope and a digital camera.

DC I− V and EIS characterization
Single-crystal two-contact probe devices were used without further speci-
fication. The device was placed in a mini electrical probe stage (INSTEC
HP1000G-PM) capable of accommodating various atmospheres and tem-
peratures. A probe was brought into contact with each gold electrode.
Electrical characterizationwas conducted at room temperature (298 K). DC
I−V curves were acquired with the Current Voltage Curves (Steady State)
module of a potentiostat (Zahner Zennium Pro) or with a sourcemeter
(Keithley 2636B).Voltagewas scanned from−0.1 V to0.1 Vwith a step size
of 1mV while the current was collected at each step. The DC resistance
(RDC) was extracted by linear fitting of the I−V curve according to the
Ohm’s law. EIS measurements were conducted with the Potentiostatic
module of the potentiostat (Zahner Zennium Pro). The amplitude of AC
voltage was kept at 500mV and the frequency was scanned from 8MHz to
1Hz. The obtained Nyquist plot was fitted by an equivalent parallel circuit
containing a resistor and a capacitor:

ðZ0 " RAC
2 Þ

2
þ Z002 ¼ ðRAC

2 Þ
2

where Z’ and Z” represent the real and imaginary components of impe-
dance, respectively, and RAC represents the AC resistance. The apparent
electrical conductivity (σDC) and proton conductivity (σAC) were calculated
by taking the geometry of conduction channel into account25:

σDC ¼ 1
RDC

× 2
ffiffi
3

p
L

9E2 and σAC ¼ 1
RAC

× 2
ffiffi
3

p
L

9E2

Variable-atmosphere σDC and σAC measurements were conducted
with the following process. First, σDC, humid air and σAC, humid air were
acquired in humid air. The probe station chamber was then purged by dry
N2.Thedevicewas eitherkept at 298 K for 1 h, or itwasheated to an elevated
temperaturewith a rate of 0.8 °C/min. This heating ratewas chosen to avoid
crystal fracturing. The crystal was then kept at that temperature for 1 h and
cooled down to 298 K with the same rate. σDC, dry N2 and σAC, dry N2 were
thenacquired, followedbypurging the chamberwith dry air at 298 K for 1 h
andmeasuringσDC, dry air andσAC, dry air. Finally, the chamberwaspurgedby
humid N2 at 298 K for 1 h and both σDC, humid N2 and σAC, humid N2 were
measured. The humid N2 was prepared by flowing dry N2 through deio-
nized water at 298 K.

Variable-humidity σDC and σAC measurements were conducted after
maintaining the device in the air at 298 K and each relative humidity for
30min. The relative humidity was controlled using a humidity and tem-
perature control chamber (Doaho,DHTLH-27). The device was kept inside
this chamberwas connected to the potentiostat or sourcemeter through two
Teflon-covered electrical wires.

TGA-FTIR characterization
Thermogravimetry analyzer coupled with Fourier Transform Infrared
spectrometer (TGA8000/Spectrum 3, Perkin-Elmer, the UK) was used for
acquiring the real-time information about the quantity and type of the
gaseous functional groups. The sample was heated from 25 °C to 90 °Cwith
a heating rate of 0.8 °C/min, maintained at 90 °C for 60min, and then
heated to 200 °C with a heating rate of 25 °C/min. The first two processes
simulated experimental procedures involved in electrical characterization,
and the last process produced fast degassing from the sample. Dry N2 at a
flow rate of 30mL/min carried the evolved gas products through a stainless

steel line into the gas cell for IR detection. The transfer line, adapter, and the
FTIR gas cell were kept at 100 °C to avoid gas condensation. IR spectra were
recorded in the spectral rangeof 4000− 600 cm−1with a resolutionof 8 cm-1

and 8 scans.

CW EPR characterization
Crystals of as-synthesized Cd2(TTFTB) were added into a quartz tube. The
CW EPR spectrum was acquired at 298 K using a CIQTEK EPR200M
spectrometer operating at X-band (9.6 GHz) frequencies. The modulation
amplitude was set to 2.0 Gauss and themicrowave power was 0.1mW. The
same sample was then flame sealed in vacuum with a vacuum tube sealer
(BALAB MRVS1003S003). Its CW EPR spectrum was acquired with the
same instrument and parameters.

SC-XRD characterization
X-ray diffraction measurement for Cd2(TTFTB) compounds was collected
at 305(2) K, performed on a Bruker D8 Venture diffractometer with
PHOTON III detector in shutterless mode with an incoatec microfocus
source (Mo-Diamond Kαradiation, λ = 0.71073 Å) and anOxford 800 Plus
liquid nitrogen vapor cooling device. Details of sample preparation, data
analysis, and structural determination are presented in the Supplementary
Information. Asymmetric units, crystal data, data collection parameters,
and structure refinement details of the as-synthesized Cd2(TTFTB) are
given in Supplementary Fig. 18 and Table 1, and those of the evacuated
Cd2(TTFTB) are given in Supplementary Fig. 19 and Table 2.

in situ PXRD characterization
in situ PXRD characterization was conducted with Bruker D8 Discover
diffractometer equipped with a θ/2θBragg-Brentano geometry, a rotational
Cu anode (6 kWTXS-HE X-ray source), and a 2D Eiger detector. The tube
voltage and current were 42 kV and 100mA, respectively. The 2θ angle was
scanned from 5° to 50° with a step size of 0.02° and a scan rate of 0.3 s per
step. The sample was prepared by grinding crystals of Cd2(TTFTB) (50mg)
and the CaCO3 standard (50mg) in a mortar for 10min. A portion of the
mixture was used to fill an XRD non-ambient stage (MTC-LOWTEMP),
and its PXRD pattern was acquired in humid air (temperature: 296–298 K;
relative humidity: 40− 45%). The sample was evacuated at 10−2 mbar and
298 K for 1 h, and it was exposed to humid air for 1 h. PXRD patterns were
taken at the end of each process. This procedure was repeated once. Le Bail
refinement of the PXRD pattern was performed by TOPAS.

Electronic band structure calculations
Beginning with the experimentally determined single crystal structures, the
materials were geometrically equilibrated within VASP using the PBEsol47

functional paired with a 500 eV cutoff, a 2 × 2 × 2 k-grid, and an ionic
convergence of less than 0.005 eV per atom. The electronic band structures
were then computed using the same functional, and the band gap was
adjusted to the computed HSEsol48 gap at the Γ-point, using the same basis.
The band structures were aligned to vacuum using a prior method49.

Data availability
The crystallographic information has been deposited in the Cambridge
Crystallographic Data Center (CCDC) under accession codes 2372942 and
2372943. All data supporting the findings of this study are available within
the paper and its Supplementary Information.
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